intel_pm.c 241.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 63 64
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67

68
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk */
69 70
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71 72

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk */
74 75 76
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77 78 79 80

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82
}

83
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84
{
85
	gen9_init_clock_gating(dev_priv);
86

87 88 89 90
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

91 92
	/*
	 * FIXME:
93
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 95
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97 98 99 100 101

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
102 103
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
104 105
}

106 107 108 109 110 111 112 113 114 115 116
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
117 118 119 120 121 122 123 124 125 126

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

127 128
}

129
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

167
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

194
	dev_priv->ips.r_t = dev_priv->mem_freq;
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
226
		dev_priv->ips.c_m = 0;
227
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
228
		dev_priv->ips.c_m = 1;
229
	} else {
230
		dev_priv->ips.c_m = 2;
231 232 233
	}
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

272 273
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

334 335 336
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

337
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
338
{
339
	bool was_enabled;
340
	u32 val;
341

342
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
343
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
344
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
345
		POSTING_READ(FW_BLC_SELF_VLV);
346
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
347
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
348
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
349
		POSTING_READ(FW_BLC_SELF);
350
	} else if (IS_PINEVIEW(dev_priv)) {
351 352 353 354 355 356
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
357
		I915_WRITE(DSPFW3, val);
358
		POSTING_READ(DSPFW3);
359
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
360
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
361 362 363
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
364
		POSTING_READ(FW_BLC_SELF);
365
	} else if (IS_I915GM(dev_priv)) {
366 367 368 369 370
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
371
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
372 373 374
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
375
		POSTING_READ(INSTPM);
376
	} else {
377
		return false;
378
	}
379

380 381
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

382 383 384 385 386
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
387 388
}

V
Ville Syrjälä 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
426
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
427
{
428 429
	bool ret;

430
	mutex_lock(&dev_priv->wm.wm_mutex);
431
	ret = _intel_set_memory_cxsr(dev_priv, enable);
432 433
	dev_priv->wm.vlv.cxsr = enable;
	mutex_unlock(&dev_priv->wm.wm_mutex);
434 435

	return ret;
436
}
437

438 439 440 441 442 443 444 445 446 447 448 449 450 451
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
452
static const int pessimal_latency_ns = 5000;
453

454 455 456
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

457
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
458
{
459
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
460
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
461
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
462 463
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
464

465
	switch (pipe) {
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
486 487
		MISSING_CASE(pipe);
		return;
488 489
	}

490 491 492 493
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
494 495
}

496
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
497 498 499 500 501 502 503 504 505 506 507 508 509 510
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

511
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

527
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
544 545 546 547 548
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
549 550
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
551 552 553 554 555
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
556 557
};
static const struct intel_watermark_params pineview_cursor_wm = {
558 559 560 561 562
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
563 564
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
565 566 567 568 569
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
570 571
};
static const struct intel_watermark_params g4x_wm_info = {
572 573 574 575 576
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
577 578
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
579 580 581 582 583
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
584 585
};
static const struct intel_watermark_params i965_cursor_wm_info = {
586 587 588 589 590
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
591 592
};
static const struct intel_watermark_params i945_wm_info = {
593 594 595 596 597
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
598 599
};
static const struct intel_watermark_params i915_wm_info = {
600 601 602 603 604
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
605
};
606
static const struct intel_watermark_params i830_a_wm_info = {
607 608 609 610 611
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
612
};
613 614 615 616 617 618 619
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
620
static const struct intel_watermark_params i845_wm_info = {
621 622 623 624 625
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
626 627 628 629 630 631
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
632
 * @cpp: bytes per pixel
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
648
					int fifo_size, int cpp,
649 650 651 652 653 654 655 656 657 658
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
659
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
660 661 662 663 664 665 666 667 668 669 670 671 672 673
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
674 675 676 677 678 679 680 681 682 683 684

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

685 686 687
	return wm_size;
}

688 689 690 691 692
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
	if (!crtc_state->base.active)
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

716
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
717
{
718
	struct intel_crtc *crtc, *enabled = NULL;
719

720
	for_each_intel_crtc(&dev_priv->drm, crtc) {
721
		if (intel_crtc_active(crtc)) {
722 723 724 725 726 727 728 729 730
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

731
static void pineview_update_wm(struct intel_crtc *unused_crtc)
732
{
733
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
734
	struct intel_crtc *crtc;
735 736 737 738
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

739 740 741 742
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
743 744
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
745
		intel_set_memory_cxsr(dev_priv, false);
746 747 748
		return;
	}

749
	crtc = single_enabled_crtc(dev_priv);
750
	if (crtc) {
751 752 753 754
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
755
		int cpp = fb->format->cpp[0];
756
		int clock = adjusted_mode->crtc_clock;
757 758 759 760

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
761
					cpp, latency->display_sr);
762 763
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
764
		reg |= FW_WM(wm, SR);
765 766 767 768 769 770
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
771
					cpp, latency->cursor_sr);
772 773
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
774
		reg |= FW_WM(wm, CURSOR_SR);
775 776 777 778 779
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
780
					cpp, latency->display_hpll_disable);
781 782
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
783
		reg |= FW_WM(wm, HPLL_SR);
784 785 786 787 788
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
789
					cpp, latency->cursor_hpll_disable);
790 791
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
792
		reg |= FW_WM(wm, HPLL_CURSOR);
793 794 795
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

796
		intel_set_memory_cxsr(dev_priv, true);
797
	} else {
798
		intel_set_memory_cxsr(dev_priv, false);
799 800 801
	}
}

802
static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
803 804 805 806 807 808 809 810
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
811
	struct intel_crtc *crtc;
812
	const struct drm_display_mode *adjusted_mode;
813
	const struct drm_framebuffer *fb;
814
	int htotal, hdisplay, clock, cpp;
815 816 817
	int line_time_us, line_count;
	int entries, tlb_miss;

818
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
819
	if (!intel_crtc_active(crtc)) {
820 821 822 823 824
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

825 826
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
827
	clock = adjusted_mode->crtc_clock;
828
	htotal = adjusted_mode->crtc_htotal;
829
	hdisplay = crtc->config->pipe_src_w;
830
	cpp = fb->format->cpp[0];
831 832

	/* Use the small buffer method to calculate plane watermark */
833
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
834 835 836 837 838 839 840 841 842
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
843
	line_time_us = max(htotal * 1000 / clock, 1);
844
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
845
	entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
864
static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
865 866 867 868 869 870 871 872
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
873
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
874 875 876 877 878
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
879
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
880 881 882 883 884 885 886 887 888 889 890 891
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

892
static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
893 894 895 896 897 898
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
899
	struct intel_crtc *crtc;
900
	const struct drm_display_mode *adjusted_mode;
901
	const struct drm_framebuffer *fb;
902
	int hdisplay, htotal, cpp, clock;
903 904 905 906 907 908 909 910 911 912
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

913
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
914 915
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
916
	clock = adjusted_mode->crtc_clock;
917
	htotal = adjusted_mode->crtc_htotal;
918
	hdisplay = crtc->config->pipe_src_w;
919
	cpp = fb->format->cpp[0];
920

921
	line_time_us = max(htotal * 1000 / clock, 1);
922
	line_count = (latency_ns / line_time_us + 1000) / 1000;
923
	line_size = hdisplay * cpp;
924 925

	/* Use the minimum of the small and large buffer method for primary */
926
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
927 928 929 930 931 932
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
933
	entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
934 935 936
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

937
	return g4x_check_srwm(dev_priv,
938 939 940 941
			      *display_wm, *cursor_wm,
			      display, cursor);
}

942 943 944
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

945
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
946 947
				const struct vlv_wm_values *wm)
{
948 949 950
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
951 952
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

953 954 955 956 957 958
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
959

960 961 962 963 964 965 966 967 968 969 970
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

971
	I915_WRITE(DSPFW1,
972
		   FW_WM(wm->sr.plane, SR) |
973 974 975
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
976
	I915_WRITE(DSPFW2,
977 978 979
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
980
	I915_WRITE(DSPFW3,
981
		   FW_WM(wm->sr.cursor, CURSOR_SR));
982 983 984

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
985 986
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
987
		I915_WRITE(DSPFW8_CHV,
988 989
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
990
		I915_WRITE(DSPFW9_CHV,
991 992
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
993
		I915_WRITE(DSPHOWM,
994
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
995 996 997 998 999 1000 1001 1002 1003
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1004 1005
	} else {
		I915_WRITE(DSPFW7,
1006 1007
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1008
		I915_WRITE(DSPHOWM,
1009
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1010 1011 1012 1013 1014 1015
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1016 1017 1018
	}

	POSTING_READ(DSPFW1);
1019 1020
}

1021 1022
#undef FW_WM_VLV

1023 1024 1025 1026
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
1027
				   unsigned int cpp,
1028 1029 1030 1031 1032
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1033
	ret = (ret + 1) * horiz_pixels * cpp;
1034 1035 1036 1037 1038
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1039
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1040 1041 1042 1043
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1044 1045
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1046 1047 1048
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1049 1050

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1051 1052 1053
	}
}

1054 1055
static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state,
1056 1057
				     int level)
{
1058
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1059
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1060 1061
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1062
	int clock, htotal, cpp, width, wm;
1063 1064 1065 1066

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1067
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1068 1069
		return 0;

1070
	cpp = plane_state->base.fb->format->cpp[0];
1071 1072 1073
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1074 1075 1076
	if (WARN_ON(htotal == 0))
		htotal = 1;

1077
	if (plane->id == PLANE_CURSOR) {
1078 1079 1080 1081 1082 1083 1084 1085
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1086
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1087 1088 1089 1090 1091 1092
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1093 1094 1095 1096 1097 1098
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1099
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1100
{
1101
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1102
	const struct g4x_pipe_wm *raw =
1103
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1104
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1105 1106 1107
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
	int num_active_planes = hweight32(active_planes);
	const int fifo_size = 511;
1108
	int fifo_extra, fifo_left = fifo_size;
1109
	int sprite0_fifo_extra = 0;
1110 1111
	unsigned int total_rate;
	enum plane_id plane_id;
1112

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1124 1125
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1126 1127
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1128

1129 1130
	if (total_rate > fifo_size)
		return -EINVAL;
1131

1132 1133
	if (total_rate == 0)
		total_rate = 1;
1134

1135
	for_each_plane_id_on_crtc(crtc, plane_id) {
1136 1137
		unsigned int rate;

1138 1139
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1140 1141 1142
			continue;
		}

1143 1144 1145
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1146 1147
	}

1148 1149 1150
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1151 1152 1153
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1154 1155

	/* spread the remainder evenly */
1156
	for_each_plane_id_on_crtc(crtc, plane_id) {
1157 1158 1159 1160 1161
		int plane_extra;

		if (fifo_left == 0)
			break;

1162
		if ((active_planes & BIT(plane_id)) == 0)
1163 1164 1165
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1166
		fifo_state->plane[plane_id] += plane_extra;
1167 1168 1169
		fifo_left -= plane_extra;
	}

1170 1171 1172 1173 1174 1175 1176 1177 1178
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1179 1180
}

1181 1182 1183 1184 1185 1186
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1187
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1198 1199 1200 1201 1202 1203 1204 1205
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1206 1207 1208 1209
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1210
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1211
				 int level, enum plane_id plane_id, u16 value)
1212
{
1213
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1214
	int num_levels = intel_wm_num_levels(dev_priv);
1215
	bool dirty = false;
1216

1217
	for (; level < num_levels; level++) {
1218
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1219

1220
		dirty |= raw->plane[plane_id] != value;
1221
		raw->plane[plane_id] = value;
1222
	}
1223 1224

	return dirty;
1225 1226
}

1227 1228
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1229
{
1230 1231
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
1232
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1233
	int level;
1234
	bool dirty = false;
1235

1236
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1237 1238
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1239
	}
1240

1241
	for (level = 0; level < num_levels; level++) {
1242
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1243 1244
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1245

1246 1247
		if (wm > max_wm)
			break;
1248

1249
		dirty |= raw->plane[plane_id] != wm;
1250 1251
		raw->plane[plane_id] = wm;
	}
1252

1253
	/* mark all higher levels as invalid */
1254
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1255

1256 1257
out:
	if (dirty)
1258
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1259 1260 1261 1262 1263 1264
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1265
}
1266

1267 1268
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1269
{
1270
	const struct g4x_pipe_wm *raw =
1271 1272 1273
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1274

1275 1276
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1277

1278
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1279
{
1280 1281 1282 1283
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
1297
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1298 1299 1300 1301
	struct intel_plane_state *plane_state;
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1302
	unsigned int dirty = 0;
1303 1304 1305 1306 1307 1308 1309 1310

	for_each_intel_plane_in_state(state, plane, plane_state, i) {
		const struct intel_plane_state *old_plane_state =
			to_intel_plane_state(plane->base.state);

		if (plane_state->base.crtc != &crtc->base &&
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1311

1312
		if (vlv_raw_plane_wm_compute(crtc_state, plane_state))
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
			to_intel_crtc_state(crtc->base.state);
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1343
	}
1344

1345
	/* initially allow all levels */
1346
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1347 1348 1349 1350 1351
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1352
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1353

1354
	for (level = 0; level < wm_state->num_levels; level++) {
1355
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1356
		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1357

1358
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1359
			break;
1360

1361 1362 1363 1364 1365 1366 1367 1368
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1369
						 raw->plane[PLANE_SPRITE0],
1370 1371
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1372

1373 1374 1375
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1376 1377
	}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1388 1389
}

1390 1391 1392
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1393 1394
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1395
{
1396
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1397
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1398 1399
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1400
	int sprite0_start, sprite1_start, fifo_size;
1401

1402 1403 1404
	if (!crtc_state->fifo_changed)
		return;

1405 1406 1407
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1408

1409 1410
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1411

1412 1413
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
	spin_lock(&dev_priv->uncore.lock);
1424

1425 1426 1427
	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
1428 1429
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1441 1442
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1443 1444
		break;
	case PIPE_B:
1445 1446
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

1458 1459
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1460 1461
		break;
	case PIPE_C:
1462 1463
		dsparb3 = I915_READ_FW(DSPARB3);
		dsparb2 = I915_READ_FW(DSPARB2);
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

1475 1476
		I915_WRITE_FW(DSPARB3, dsparb3);
		I915_WRITE_FW(DSPARB2, dsparb2);
1477 1478 1479 1480
		break;
	default:
		break;
	}
1481

1482
	POSTING_READ_FW(DSPARB);
1483

1484
	spin_unlock(&dev_priv->uncore.lock);
1485 1486 1487 1488
}

#undef VLV_FIFO

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
static int vlv_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
				       struct intel_crtc_state *crtc_state)
{
	struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
	const struct vlv_wm_state *active = &crtc->wm.active.vlv;
	int level;

	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
1499 1500
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
		!crtc_state->disable_cxsr;
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
1523 1524
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
		crtc_state->wm.need_postvbl_update = true;
1525 1526 1527 1528

	return 0;
}

1529
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
1530 1531 1532 1533 1534
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1535
	wm->level = dev_priv->wm.max_level;
1536 1537
	wm->cxsr = true;

1538
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1539
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1554 1555 1556
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1557
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1558
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
1559 1560 1561
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
1562
		if (crtc->active && wm->cxsr)
1563 1564
			wm->sr = wm_state->sr[wm->level];

1565 1566 1567 1568
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
1569 1570 1571
	}
}

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

1582
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
1583
{
1584 1585
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
1586

1587
	vlv_merge_wm(dev_priv, &new_wm);
1588

1589
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1590 1591
		return;

1592
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1593 1594
		chv_set_memory_dvfs(dev_priv, false);

1595
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1596 1597
		chv_set_memory_pm5(dev_priv, false);

1598
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1599
		_intel_set_memory_cxsr(dev_priv, false);
1600

1601
	vlv_write_wm_values(dev_priv, &new_wm);
1602

1603
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1604
		_intel_set_memory_cxsr(dev_priv, true);
1605

1606
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1607 1608
		chv_set_memory_pm5(dev_priv, true);

1609
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1610 1611
		chv_set_memory_dvfs(dev_priv, true);

1612
	*old_wm = new_wm;
1613 1614
}

1615 1616 1617 1618 1619 1620 1621
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
1638 1639 1640 1641
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1642 1643
#define single_plane_enabled(mask) is_power_of_2(mask)

1644
static void g4x_update_wm(struct intel_crtc *crtc)
1645
{
1646
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1647 1648 1649 1650
	static const int sr_latency_ns = 12000;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1651
	bool cxsr_enabled;
1652

1653
	if (g4x_compute_wm0(dev_priv, PIPE_A,
1654 1655
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1656
			    &planea_wm, &cursora_wm))
1657
		enabled |= 1 << PIPE_A;
1658

1659
	if (g4x_compute_wm0(dev_priv, PIPE_B,
1660 1661
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1662
			    &planeb_wm, &cursorb_wm))
1663
		enabled |= 1 << PIPE_B;
1664 1665

	if (single_plane_enabled(enabled) &&
1666
	    g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1667 1668 1669
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1670
			     &plane_sr, &cursor_sr)) {
1671
		cxsr_enabled = true;
1672
	} else {
1673
		cxsr_enabled = false;
1674
		intel_set_memory_cxsr(dev_priv, false);
1675 1676
		plane_sr = cursor_sr = 0;
	}
1677

1678 1679
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1680 1681 1682 1683 1684
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1685 1686 1687 1688
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1689
	I915_WRITE(DSPFW2,
1690
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1691
		   FW_WM(cursora_wm, CURSORA));
1692 1693
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1694
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1695
		   FW_WM(cursor_sr, CURSOR_SR));
1696 1697 1698

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1699 1700
}

1701
static void i965_update_wm(struct intel_crtc *unused_crtc)
1702
{
1703
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1704
	struct intel_crtc *crtc;
1705 1706
	int srwm = 1;
	int cursor_sr = 16;
1707
	bool cxsr_enabled;
1708 1709

	/* Calc sr entries for one plane configs */
1710
	crtc = single_enabled_crtc(dev_priv);
1711 1712 1713
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1714 1715 1716 1717
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
1718
		int clock = adjusted_mode->crtc_clock;
1719
		int htotal = adjusted_mode->crtc_htotal;
1720
		int hdisplay = crtc->config->pipe_src_w;
1721
		int cpp = fb->format->cpp[0];
1722 1723 1724
		unsigned long line_time_us;
		int entries;

1725
		line_time_us = max(htotal * 1000 / clock, 1);
1726 1727 1728

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1729
			cpp * hdisplay;
1730 1731 1732 1733 1734 1735 1736 1737 1738
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1739
			cpp * crtc->base.cursor->state->crtc_w;
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1751
		cxsr_enabled = true;
1752
	} else {
1753
		cxsr_enabled = false;
1754
		/* Turn off self refresh if both pipes are enabled */
1755
		intel_set_memory_cxsr(dev_priv, false);
1756 1757 1758 1759 1760 1761
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1762 1763 1764 1765 1766 1767
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1768
	/* update cursor SR watermark */
1769
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1770 1771 1772

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1773 1774
}

1775 1776
#undef FW_WM

1777
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1778
{
1779
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1780 1781 1782 1783 1784 1785
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
1786
	struct intel_crtc *crtc, *enabled = NULL;
1787

1788
	if (IS_I945GM(dev_priv))
1789
		wm_info = &i945_wm_info;
1790
	else if (!IS_GEN2(dev_priv))
1791 1792
		wm_info = &i915_wm_info;
	else
1793
		wm_info = &i830_a_wm_info;
1794

1795
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1796
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
1797 1798 1799 1800 1801 1802 1803
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1804
		if (IS_GEN2(dev_priv))
1805
			cpp = 4;
1806
		else
1807
			cpp = fb->format->cpp[0];
1808

1809
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1810
					       wm_info, fifo_size, cpp,
1811
					       pessimal_latency_ns);
1812
		enabled = crtc;
1813
	} else {
1814
		planea_wm = fifo_size - wm_info->guard_size;
1815 1816 1817 1818
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1819
	if (IS_GEN2(dev_priv))
1820
		wm_info = &i830_bc_wm_info;
1821

1822
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1823
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
1824 1825 1826 1827 1828 1829 1830
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1831
		if (IS_GEN2(dev_priv))
1832
			cpp = 4;
1833
		else
1834
			cpp = fb->format->cpp[0];
1835

1836
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1837
					       wm_info, fifo_size, cpp,
1838
					       pessimal_latency_ns);
1839 1840 1841 1842
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1843
	} else {
1844
		planeb_wm = fifo_size - wm_info->guard_size;
1845 1846 1847
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1848 1849 1850

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1851
	if (IS_I915GM(dev_priv) && enabled) {
1852
		struct drm_i915_gem_object *obj;
1853

1854
		obj = intel_fb_obj(enabled->base.primary->state->fb);
1855 1856

		/* self-refresh seems busted with untiled */
1857
		if (!i915_gem_object_is_tiled(obj))
1858 1859 1860
			enabled = NULL;
	}

1861 1862 1863 1864 1865 1866
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1867
	intel_set_memory_cxsr(dev_priv, false);
1868 1869

	/* Calc sr entries for one plane configs */
1870
	if (HAS_FW_BLC(dev_priv) && enabled) {
1871 1872
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1873 1874 1875 1876
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
1877
		int clock = adjusted_mode->crtc_clock;
1878
		int htotal = adjusted_mode->crtc_htotal;
1879 1880
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
1881 1882 1883
		unsigned long line_time_us;
		int entries;

1884
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1885
			cpp = 4;
1886
		else
1887
			cpp = fb->format->cpp[0];
1888

1889
		line_time_us = max(htotal * 1000 / clock, 1);
1890 1891 1892

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1893
			cpp * hdisplay;
1894 1895 1896 1897 1898 1899
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1900
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1901 1902
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1903
		else
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1920 1921
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1922 1923
}

1924
static void i845_update_wm(struct intel_crtc *unused_crtc)
1925
{
1926
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1927
	struct intel_crtc *crtc;
1928
	const struct drm_display_mode *adjusted_mode;
1929 1930 1931
	uint32_t fwater_lo;
	int planea_wm;

1932
	crtc = single_enabled_crtc(dev_priv);
1933 1934 1935
	if (crtc == NULL)
		return;

1936
	adjusted_mode = &crtc->config->base.adjusted_mode;
1937
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1938
				       &i845_wm_info,
1939
				       dev_priv->display.get_fifo_size(dev_priv, 0),
1940
				       4, pessimal_latency_ns);
1941 1942 1943 1944 1945 1946 1947 1948
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1949
/* latency must be in 0.1us units. */
1950
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1951 1952 1953
{
	uint64_t ret;

1954 1955 1956
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1957
	ret = (uint64_t) pixel_rate * cpp * latency;
1958 1959 1960 1961 1962
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1963
/* latency must be in 0.1us units. */
1964
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1965
			       uint32_t horiz_pixels, uint8_t cpp,
1966 1967 1968 1969
			       uint32_t latency)
{
	uint32_t ret;

1970 1971
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1972 1973
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1974

1975
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1976
	ret = (ret + 1) * horiz_pixels * cpp;
1977 1978 1979 1980
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1981
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1982
			   uint8_t cpp)
1983
{
1984 1985 1986 1987 1988 1989
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1990
	if (WARN_ON(!cpp))
1991 1992 1993 1994
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1995
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1996 1997
}

1998
struct ilk_wm_maximums {
1999 2000 2001 2002 2003 2004
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

2005 2006 2007 2008
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2009
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2010
				   const struct intel_plane_state *pstate,
2011 2012
				   uint32_t mem_value,
				   bool is_lp)
2013
{
2014
	uint32_t method1, method2;
2015
	int cpp;
2016

2017
	if (!intel_wm_plane_visible(cstate, pstate))
2018 2019
		return 0;

2020
	cpp = pstate->base.fb->format->cpp[0];
2021

2022
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2023 2024 2025 2026

	if (!is_lp)
		return method1;

2027
	method2 = ilk_wm_method2(cstate->pixel_rate,
2028
				 cstate->base.adjusted_mode.crtc_htotal,
2029
				 drm_rect_width(&pstate->base.dst),
2030
				 cpp, mem_value);
2031 2032

	return min(method1, method2);
2033 2034
}

2035 2036 2037 2038
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2039
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2040
				   const struct intel_plane_state *pstate,
2041 2042 2043
				   uint32_t mem_value)
{
	uint32_t method1, method2;
2044
	int cpp;
2045

2046
	if (!intel_wm_plane_visible(cstate, pstate))
2047 2048
		return 0;

2049
	cpp = pstate->base.fb->format->cpp[0];
2050

2051 2052
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
2053
				 cstate->base.adjusted_mode.crtc_htotal,
2054
				 drm_rect_width(&pstate->base.dst),
2055
				 cpp, mem_value);
2056 2057 2058
	return min(method1, method2);
}

2059 2060 2061 2062
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2063
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2064
				   const struct intel_plane_state *pstate,
2065 2066
				   uint32_t mem_value)
{
2067 2068
	int cpp;

2069
	if (!intel_wm_plane_visible(cstate, pstate))
2070 2071
		return 0;

2072 2073
	cpp = pstate->base.fb->format->cpp[0];

2074
	return ilk_wm_method2(cstate->pixel_rate,
2075
			      cstate->base.adjusted_mode.crtc_htotal,
2076
			      pstate->base.crtc_w, cpp, mem_value);
2077 2078
}

2079
/* Only for WM_LP. */
2080
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2081
				   const struct intel_plane_state *pstate,
2082
				   uint32_t pri_val)
2083
{
2084
	int cpp;
2085

2086
	if (!intel_wm_plane_visible(cstate, pstate))
2087 2088
		return 0;

2089
	cpp = pstate->base.fb->format->cpp[0];
2090

2091
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2092 2093
}

2094 2095
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2096
{
2097
	if (INTEL_GEN(dev_priv) >= 8)
2098
		return 3072;
2099
	else if (INTEL_GEN(dev_priv) >= 7)
2100 2101 2102 2103 2104
		return 768;
	else
		return 512;
}

2105 2106 2107
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2108
{
2109
	if (INTEL_GEN(dev_priv) >= 8)
2110 2111
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2112
	else if (INTEL_GEN(dev_priv) >= 7)
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2123 2124
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2125
{
2126
	if (INTEL_GEN(dev_priv) >= 7)
2127 2128 2129 2130 2131
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2132
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2133
{
2134
	if (INTEL_GEN(dev_priv) >= 8)
2135 2136 2137 2138 2139
		return 31;
	else
		return 15;
}

2140 2141 2142
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2143
				     const struct intel_wm_config *config,
2144 2145 2146
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2147 2148
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2149 2150

	/* if sprites aren't enabled, sprites get nothing */
2151
	if (is_sprite && !config->sprites_enabled)
2152 2153 2154
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2155
	if (level == 0 || config->num_pipes_active > 1) {
2156
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2157 2158 2159 2160 2161 2162

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2163
		if (INTEL_GEN(dev_priv) <= 6)
2164 2165 2166
			fifo_size /= 2;
	}

2167
	if (config->sprites_enabled) {
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2179
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2180 2181 2182 2183
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2184 2185
				      int level,
				      const struct intel_wm_config *config)
2186 2187
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2188
	if (level > 0 && config->num_pipes_active > 1)
2189 2190 2191
		return 64;

	/* otherwise just report max that registers can hold */
2192
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
2193 2194
}

2195
static void ilk_compute_wm_maximums(const struct drm_device *dev,
2196 2197 2198
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2199
				    struct ilk_wm_maximums *max)
2200
{
2201 2202 2203
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2204
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2205 2206
}

2207
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2208 2209 2210
					int level,
					struct ilk_wm_maximums *max)
{
2211 2212 2213 2214
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2215 2216
}

2217
static bool ilk_validate_wm_level(int level,
2218
				  const struct ilk_wm_maximums *max,
2219
				  struct intel_wm_level *result)
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2258
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2259
				 const struct intel_crtc *intel_crtc,
2260
				 int level,
2261
				 struct intel_crtc_state *cstate,
2262 2263 2264
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2265
				 struct intel_wm_level *result)
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2290 2291 2292
	result->enable = true;
}

2293
static uint32_t
2294
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2295
{
2296 2297
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2298 2299
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2300
	u32 linetime, ips_linetime;
2301

2302 2303 2304 2305
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2306
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2307
		return 0;
2308

2309 2310 2311
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2312 2313 2314
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2315
					 intel_state->cdclk.logical.cdclk);
2316

2317 2318
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2319 2320
}

2321 2322
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2323
{
2324
	if (IS_GEN9(dev_priv)) {
2325
		uint32_t val;
2326
		int ret, i;
2327
		int level, max_level = ilk_wm_max_level(dev_priv);
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2383
		/*
2384
		 * WaWmMemoryReadLatency:skl,glk
2385
		 *
2386
		 * punit doesn't take into account the read latency so we need
2387 2388
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2389
		 */
2390 2391 2392 2393 2394
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2395
				wm[level] += 2;
2396
			}
2397 2398
		}

2399
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2400 2401 2402 2403 2404
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2405 2406 2407 2408
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2409
	} else if (INTEL_GEN(dev_priv) >= 6) {
2410 2411 2412 2413 2414 2415
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2416
	} else if (INTEL_GEN(dev_priv) >= 5) {
2417 2418 2419 2420 2421 2422
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2423 2424 2425
	}
}

2426 2427
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2428 2429
{
	/* ILK sprite LP0 latency is 1300 ns */
2430
	if (IS_GEN5(dev_priv))
2431 2432 2433
		wm[0] = 13;
}

2434 2435
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2436 2437
{
	/* ILK cursor LP0 latency is 1300 ns */
2438
	if (IS_GEN5(dev_priv))
2439 2440 2441
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2442
	if (IS_IVYBRIDGE(dev_priv))
2443 2444 2445
		wm[3] *= 2;
}

2446
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2447 2448
{
	/* how many WM levels are we expecting */
2449
	if (INTEL_GEN(dev_priv) >= 9)
2450
		return 7;
2451
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2452
		return 4;
2453
	else if (INTEL_GEN(dev_priv) >= 6)
2454
		return 3;
2455
	else
2456 2457
		return 2;
}
2458

2459
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2460
				   const char *name,
2461
				   const uint16_t wm[8])
2462
{
2463
	int level, max_level = ilk_wm_max_level(dev_priv);
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2474 2475 2476 2477
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2478
		if (IS_GEN9(dev_priv))
2479 2480
			latency *= 10;
		else if (level > 0)
2481 2482 2483 2484 2485 2486 2487 2488
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2489 2490 2491
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2492
	int level, max_level = ilk_wm_max_level(dev_priv);
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2504
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2520 2521 2522
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2523 2524
}

2525
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2526
{
2527
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2528 2529 2530 2531 2532 2533

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2534
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2535
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2536

2537 2538 2539
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2540

2541
	if (IS_GEN6(dev_priv))
2542
		snb_wm_latency_quirk(dev_priv);
2543 2544
}

2545
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2546
{
2547
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2548
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2549 2550
}

2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2574
/* Compute new watermarks for the pipe */
2575
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2576
{
2577 2578
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2579
	struct intel_pipe_wm *pipe_wm;
2580
	struct drm_device *dev = state->dev;
2581
	const struct drm_i915_private *dev_priv = to_i915(dev);
2582
	struct intel_plane *intel_plane;
2583
	struct intel_plane_state *pristate = NULL;
2584
	struct intel_plane_state *sprstate = NULL;
2585
	struct intel_plane_state *curstate = NULL;
2586
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2587
	struct ilk_wm_maximums max;
2588

2589
	pipe_wm = &cstate->wm.ilk.optimal;
2590

2591
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2592 2593 2594 2595 2596 2597
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2598 2599

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2600
			pristate = ps;
2601
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2602
			sprstate = ps;
2603
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2604
			curstate = ps;
2605 2606
	}

2607
	pipe_wm->pipe_enabled = cstate->base.active;
2608
	if (sprstate) {
2609 2610 2611 2612
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2613 2614
	}

2615 2616
	usable_level = max_level;

2617
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2618
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
2619
		usable_level = 1;
2620 2621

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2622
	if (pipe_wm->sprites_scaled)
2623
		usable_level = 0;
2624

2625
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2626 2627 2628 2629
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2630

2631
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2632
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2633

2634
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2635
		return -EINVAL;
2636

2637
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2638 2639

	for (level = 1; level <= max_level; level++) {
2640
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2641

2642
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2643
				     pristate, sprstate, curstate, wm);
2644 2645 2646 2647 2648 2649

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2650 2651 2652 2653 2654 2655
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2656
			usable_level = level;
2657 2658
	}

2659
	return 0;
2660 2661
}

2662 2663 2664 2665 2666 2667 2668 2669 2670
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2671
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2672
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2673
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2674 2675 2676 2677 2678 2679

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2680
	*a = newstate->wm.ilk.optimal;
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2709 2710
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
2711 2712 2713 2714

	return 0;
}

2715 2716 2717 2718 2719 2720 2721 2722 2723
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2724 2725
	ret_wm->enable = true;

2726
	for_each_intel_crtc(dev, intel_crtc) {
2727
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2728 2729 2730 2731
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2732

2733 2734 2735 2736 2737
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2738
		if (!wm->enable)
2739
			ret_wm->enable = false;
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2752
			 const struct intel_wm_config *config,
2753
			 const struct ilk_wm_maximums *max,
2754 2755
			 struct intel_pipe_wm *merged)
{
2756
	struct drm_i915_private *dev_priv = to_i915(dev);
2757
	int level, max_level = ilk_wm_max_level(dev_priv);
2758
	int last_enabled_level = max_level;
2759

2760
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2761
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2762
	    config->num_pipes_active > 1)
2763
		last_enabled_level = 0;
2764

2765
	/* ILK: FBC WM must be disabled always */
2766
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
2767 2768 2769 2770 2771 2772 2773

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2774 2775 2776 2777 2778
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2779 2780 2781 2782 2783 2784

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2785 2786
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2787 2788 2789
			wm->fbc_val = 0;
		}
	}
2790 2791 2792 2793 2794 2795 2796

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2797
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2798
	    intel_fbc_is_active(dev_priv)) {
2799 2800 2801 2802 2803 2804
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2805 2806
}

2807 2808 2809 2810 2811 2812
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2813 2814 2815
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2816
	struct drm_i915_private *dev_priv = to_i915(dev);
2817

2818
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2819 2820 2821 2822 2823
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2824
static void ilk_compute_wm_results(struct drm_device *dev,
2825
				   const struct intel_pipe_wm *merged,
2826
				   enum intel_ddb_partitioning partitioning,
2827
				   struct ilk_wm_values *results)
2828
{
2829
	struct drm_i915_private *dev_priv = to_i915(dev);
2830 2831
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2832

2833
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2834
	results->partitioning = partitioning;
2835

2836
	/* LP1+ register values */
2837
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2838
		const struct intel_wm_level *r;
2839

2840
		level = ilk_wm_lp_to_level(wm_lp, merged);
2841

2842
		r = &merged->wm[level];
2843

2844 2845 2846 2847 2848
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2849
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2850 2851 2852
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2853 2854 2855
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2856
		if (INTEL_GEN(dev_priv) >= 8)
2857 2858 2859 2860 2861 2862
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2863 2864 2865 2866
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2867
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
2868 2869 2870 2871
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2872
	}
2873

2874
	/* LP0 register values */
2875
	for_each_intel_crtc(dev, intel_crtc) {
2876
		enum pipe pipe = intel_crtc->pipe;
2877 2878
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2879 2880 2881 2882

		if (WARN_ON(!r->enable))
			continue;

2883
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2884

2885 2886 2887 2888
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2889 2890 2891
	}
}

2892 2893
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2894
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2895 2896
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2897
{
2898
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2899
	int level1 = 0, level2 = 0;
2900

2901 2902 2903 2904 2905
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2906 2907
	}

2908 2909
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2910 2911 2912
			return r2;
		else
			return r1;
2913
	} else if (level1 > level2) {
2914 2915 2916 2917 2918 2919
		return r1;
	} else {
		return r2;
	}
}

2920 2921 2922 2923 2924 2925 2926 2927
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2928
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2929 2930
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2931 2932 2933 2934 2935
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2936
	for_each_pipe(dev_priv, pipe) {
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2980 2981
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2982
{
2983
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2984
	bool changed = false;
2985

2986 2987 2988
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2989
		changed = true;
2990 2991 2992 2993
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2994
		changed = true;
2995 2996 2997 2998
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2999
		changed = true;
3000
	}
3001

3002 3003 3004 3005
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3006

3007 3008 3009 3010 3011 3012 3013
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3014 3015
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3016
{
3017
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3018 3019 3020
	unsigned int dirty;
	uint32_t val;

3021
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3022 3023 3024 3025 3026
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3027
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3028
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3029
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3030
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3031
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3032 3033
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3034
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3035
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3036
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3037
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3038
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3039 3040
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3041
	if (dirty & WM_DIRTY_DDB) {
3042
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3057 3058
	}

3059
	if (dirty & WM_DIRTY_FBC) {
3060 3061 3062 3063 3064 3065 3066 3067
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3068 3069 3070 3071
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3072
	if (INTEL_GEN(dev_priv) >= 7) {
3073 3074 3075 3076 3077
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3078

3079
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3080
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3081
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3082
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3083
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3084
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3085 3086

	dev_priv->wm.hw = *results;
3087 3088
}

3089
bool ilk_disable_lp_wm(struct drm_device *dev)
3090
{
3091
	struct drm_i915_private *dev_priv = to_i915(dev);
3092 3093 3094 3095

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3096
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
3097

3098 3099 3100 3101 3102 3103 3104 3105
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

3106
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3107 3108 3109 3110 3111
		return true;

	return false;
}

3112 3113 3114
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3115 3116 3117 3118 3119 3120 3121 3122
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
3123 3124
}

3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3137
intel_enable_sagv(struct drm_i915_private *dev_priv)
3138 3139 3140
{
	int ret;

3141 3142 3143 3144
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3160
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3161
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3162
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3163 3164 3165 3166 3167 3168
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

3169
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3170 3171 3172 3173
	return 0;
}

int
3174
intel_disable_sagv(struct drm_i915_private *dev_priv)
3175
{
3176
	int ret;
3177

3178 3179 3180 3181
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3182 3183 3184 3185 3186 3187
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
3188 3189 3190 3191
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3192 3193 3194 3195 3196 3197
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3198
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3199
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3200
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3201
		return 0;
3202 3203 3204
	} else if (ret < 0) {
		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
		return ret;
3205 3206
	}

3207
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3208 3209 3210
	return 0;
}

3211
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3212 3213 3214 3215
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3216 3217
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3218
	struct intel_crtc_state *cstate;
3219
	enum pipe pipe;
3220
	int level, latency;
3221

3222 3223 3224
	if (!intel_has_sagv(dev_priv))
		return false;

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3238
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3239
	cstate = to_intel_crtc_state(crtc->base.state);
3240

3241
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3242 3243
		return false;

3244
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3245 3246
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3247

3248
		/* Skip this plane if it's not enabled */
3249
		if (!wm->wm[0].plane_en)
3250 3251 3252
			continue;

		/* Find the highest enabled wm level for this plane */
3253
		for (level = ilk_wm_max_level(dev_priv);
3254
		     !wm->wm[level].plane_en; --level)
3255 3256
		     { }

3257 3258 3259
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3260
		    plane->base.state->fb->modifier ==
3261 3262 3263
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3264 3265 3266 3267 3268
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3269
		if (latency < SKL_SAGV_BLOCK_TIME)
3270 3271 3272 3273 3274 3275
			return false;
	}

	return true;
}

3276 3277
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3278
				   const struct intel_crtc_state *cstate,
3279 3280
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3281
{
3282 3283 3284
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3285
	struct drm_crtc *for_crtc = cstate->base.crtc;
3286 3287
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3288

3289
	if (WARN_ON(!state) || !cstate->base.active) {
3290 3291
		alloc->start = 0;
		alloc->end = 0;
3292
		*num_active = hweight32(dev_priv->active_crtcs);
3293 3294 3295
		return;
	}

3296 3297 3298 3299 3300
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3301 3302
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3303 3304 3305

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3306
	/*
3307 3308 3309 3310 3311 3312
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3313
	 */
3314
	if (!intel_state->active_pipe_changes) {
3315 3316 3317 3318 3319
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3320
		return;
3321
	}
3322 3323 3324 3325 3326 3327

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3328 3329
}

3330
static unsigned int skl_cursor_allocation(int num_active)
3331
{
3332
	if (num_active == 1)
3333 3334 3335 3336 3337
		return 32;

	return 8;
}

3338 3339 3340 3341
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3342 3343
	if (entry->end)
		entry->end += 1;
3344 3345
}

3346 3347
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3348
{
3349
	struct intel_crtc *crtc;
3350

3351 3352
	memset(ddb, 0, sizeof(*ddb));

3353
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3354
		enum intel_display_power_domain power_domain;
3355 3356
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3357 3358 3359

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3360 3361
			continue;

3362 3363 3364 3365 3366 3367 3368
		for_each_plane_id_on_crtc(crtc, plane_id) {
			u32 val;

			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
			else
				val = I915_READ(CUR_BUF_CFG(pipe));
3369

3370 3371
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
		}
3372 3373

		intel_display_power_put(dev_priv, power_domain);
3374 3375 3376
	}
}

3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
3394 3395
skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
			   const struct intel_plane_state *pstate)
3396
{
3397
	struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3398 3399 3400
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3401
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3402 3403 3404
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
	if (plane->id == PLANE_CURSOR) {
		src_w = pstate->base.src_w;
		src_h = pstate->base.src_h;
		dst_w = pstate->base.crtc_w;
		dst_h = pstate->base.crtc_h;
	} else {
		src_w = drm_rect_width(&pstate->base.src);
		src_h = drm_rect_height(&pstate->base.src);
		dst_w = drm_rect_width(&pstate->base.dst);
		dst_h = drm_rect_height(&pstate->base.dst);
	}

3417
	if (drm_rotation_90_or_270(pstate->base.rotation))
3418 3419 3420 3421 3422 3423 3424 3425 3426
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3427
static unsigned int
3428 3429 3430
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3431
{
3432
	struct intel_plane *plane = to_intel_plane(pstate->plane);
3433
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3434
	uint32_t down_scale_amount, data_rate;
3435
	uint32_t width = 0, height = 0;
3436 3437
	struct drm_framebuffer *fb;
	u32 format;
3438

3439
	if (!intel_pstate->base.visible)
3440
		return 0;
3441 3442

	fb = pstate->fb;
V
Ville Syrjälä 已提交
3443
	format = fb->format->format;
3444

3445
	if (plane->id == PLANE_CURSOR)
3446 3447 3448
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3449

3450 3451
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3452

3453
	if (drm_rotation_90_or_270(pstate->rotation))
3454
		swap(width, height);
3455 3456

	/* for planar format */
3457
	if (format == DRM_FORMAT_NV12) {
3458
		if (y)  /* y-plane data rate */
3459
			data_rate = width * height *
3460
				fb->format->cpp[0];
3461
		else    /* uv-plane data rate */
3462
			data_rate = (width / 2) * (height / 2) *
3463
				fb->format->cpp[1];
3464 3465
	} else {
		/* for packed formats */
3466
		data_rate = width * height * fb->format->cpp[0];
3467 3468
	}

3469
	down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
3470 3471

	return (uint64_t)data_rate * down_scale_amount >> 16;
3472 3473 3474 3475 3476 3477 3478 3479
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3480 3481 3482
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3483
{
3484 3485
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3486 3487
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
3488
	unsigned int total_data_rate = 0;
3489 3490 3491

	if (WARN_ON(!state))
		return 0;
3492

3493
	/* Calculate and cache data rate for each plane */
3494
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3495 3496
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
3497 3498 3499 3500

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3501
		plane_data_rate[plane_id] = rate;
3502 3503

		total_data_rate += rate;
3504 3505 3506 3507

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3508
		plane_y_data_rate[plane_id] = rate;
3509

3510
		total_data_rate += rate;
3511 3512 3513 3514 3515
	}

	return total_data_rate;
}

3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
V
Ville Syrjälä 已提交
3530
	if (y && fb->format->format != DRM_FORMAT_NV12)
3531 3532 3533
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
3534 3535
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED)
3536 3537
		return 8;

3538 3539
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3540

3541
	if (drm_rotation_90_or_270(pstate->rotation))
3542 3543 3544
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
V
Ville Syrjälä 已提交
3545
	if (fb->format->format == DRM_FORMAT_NV12 && !y) {
3546 3547 3548 3549
		src_w /= 2;
		src_h /= 2;
	}

V
Ville Syrjälä 已提交
3550
	if (fb->format->format == DRM_FORMAT_NV12 && !y)
3551
		plane_bpp = fb->format->cpp[1];
3552
	else
3553
		plane_bpp = fb->format->cpp[0];
3554

3555
	if (drm_rotation_90_or_270(pstate->rotation)) {
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3579 3580 3581 3582 3583 3584 3585 3586
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
3587
		enum plane_id plane_id = to_intel_plane(plane)->id;
3588

3589
		if (plane_id == PLANE_CURSOR)
3590 3591 3592 3593 3594
			continue;

		if (!pstate->visible)
			continue;

3595 3596
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
3597 3598 3599 3600 3601
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

3602
static int
3603
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3604 3605
		      struct skl_ddb_allocation *ddb /* out */)
{
3606
	struct drm_atomic_state *state = cstate->base.state;
3607
	struct drm_crtc *crtc = cstate->base.crtc;
3608 3609 3610
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
3611
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3612
	uint16_t alloc_size, start;
3613 3614
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
3615
	unsigned int total_data_rate;
3616
	enum plane_id plane_id;
3617
	int num_active;
3618 3619
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3620

3621 3622 3623 3624
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3625 3626 3627
	if (WARN_ON(!state))
		return 0;

3628
	if (!cstate->base.active) {
3629
		alloc->start = alloc->end = 0;
3630 3631 3632
		return 0;
	}

3633
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3634
	alloc_size = skl_ddb_entry_size(alloc);
3635 3636
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3637
		return 0;
3638 3639
	}

3640
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3641

3642 3643 3644 3645 3646
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
3647

3648 3649 3650
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		alloc_size -= minimum[plane_id];
		alloc_size -= y_minimum[plane_id];
3651 3652
	}

3653 3654 3655
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

3656
	/*
3657 3658
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3659 3660 3661
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3662 3663 3664
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
3665
	if (total_data_rate == 0)
3666
		return 0;
3667

3668
	start = alloc->start;
3669
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
3670 3671
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3672

3673
		if (plane_id == PLANE_CURSOR)
3674 3675
			continue;

3676
		data_rate = plane_data_rate[plane_id];
3677 3678

		/*
3679
		 * allocation for (packed formats) or (uv-plane part of planar format):
3680 3681 3682
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3683
		plane_blocks = minimum[plane_id];
3684 3685
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3686

3687 3688
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
3689 3690
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
3691
		}
3692 3693

		start += plane_blocks;
3694 3695 3696 3697

		/*
		 * allocation for y_plane part of planar format:
		 */
3698
		y_data_rate = plane_y_data_rate[plane_id];
3699

3700
		y_plane_blocks = y_minimum[plane_id];
3701 3702
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3703

3704
		if (y_data_rate) {
3705 3706
			ddb->y_plane[pipe][plane_id].start = start;
			ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
3707
		}
3708 3709

		start += y_plane_blocks;
3710 3711
	}

3712
	return 0;
3713 3714
}

3715 3716
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3717
 * for the read latency) and cpp should always be <= 8, so that
3718 3719 3720
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3721 3722
static uint_fixed_16_16_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp,
					 uint32_t latency)
3723
{
3724 3725
	uint32_t wm_intermediate_val;
	uint_fixed_16_16_t ret;
3726 3727

	if (latency == 0)
3728
		return FP_16_16_MAX;
3729

3730 3731
	wm_intermediate_val = latency * pixel_rate * cpp;
	ret = fixed_16_16_div_round_up_u64(wm_intermediate_val, 1000 * 512);
3732 3733 3734
	return ret;
}

3735 3736 3737 3738
static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
			uint32_t pipe_htotal,
			uint32_t latency,
			uint_fixed_16_16_t plane_blocks_per_line)
3739
{
3740
	uint32_t wm_intermediate_val;
3741
	uint_fixed_16_16_t ret;
3742 3743

	if (latency == 0)
3744
		return FP_16_16_MAX;
3745 3746

	wm_intermediate_val = latency * pixel_rate;
3747 3748 3749
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
	ret = mul_u32_fixed_16_16(wm_intermediate_val, plane_blocks_per_line);
3750 3751 3752
	return ret;
}

3753 3754 3755 3756 3757 3758 3759 3760
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3761
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3762 3763 3764 3765 3766 3767
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3768
	adjusted_pixel_rate = cstate->pixel_rate;
3769
	downscale_amount = skl_plane_downscale_amount(cstate, pstate);
3770 3771 3772 3773 3774 3775 3776

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3777 3778 3779 3780 3781 3782 3783 3784
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3785
{
3786
	struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
3787 3788
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3789
	uint32_t latency = dev_priv->wm.skl_latency[level];
3790 3791 3792 3793 3794
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t plane_blocks_per_line;
	uint_fixed_16_16_t selected_result;
	uint32_t interm_pbpl;
	uint32_t plane_bytes_per_line;
3795
	uint32_t res_blocks, res_lines;
3796
	uint8_t cpp;
3797
	uint32_t width = 0, height = 0;
3798
	uint32_t plane_pixel_rate;
3799 3800
	uint_fixed_16_16_t y_tile_minimum;
	uint32_t y_min_scanlines;
3801 3802 3803
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3804
	bool y_tiled, x_tiled;
3805

3806 3807
	if (latency == 0 ||
	    !intel_wm_plane_visible(cstate, intel_pstate)) {
3808 3809 3810
		*enabled = false;
		return 0;
	}
3811

3812 3813 3814 3815
	y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		  fb->modifier == I915_FORMAT_MOD_Yf_TILED;
	x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;

3816 3817 3818 3819
	/* Display WA #1141: kbl. */
	if (IS_KABYLAKE(dev_priv) && dev_priv->ipc_enabled)
		latency += 4;

3820
	if (apply_memory_bw_wa && x_tiled)
3821 3822
		latency += 15;

3823 3824 3825 3826 3827 3828 3829
	if (plane->id == PLANE_CURSOR) {
		width = intel_pstate->base.crtc_w;
		height = intel_pstate->base.crtc_h;
	} else {
		width = drm_rect_width(&intel_pstate->base.src) >> 16;
		height = drm_rect_height(&intel_pstate->base.src) >> 16;
	}
3830

3831
	if (drm_rotation_90_or_270(pstate->rotation))
3832 3833
		swap(width, height);

3834
	cpp = fb->format->cpp[0];
3835 3836
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3837
	if (drm_rotation_90_or_270(pstate->rotation)) {
V
Ville Syrjälä 已提交
3838
		int cpp = (fb->format->format == DRM_FORMAT_NV12) ?
3839 3840
			fb->format->cpp[1] :
			fb->format->cpp[0];
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3852 3853 3854
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3855 3856 3857 3858 3859
		}
	} else {
		y_min_scanlines = 4;
	}

3860 3861 3862
	if (apply_memory_bw_wa)
		y_min_scanlines *= 2;

3863
	plane_bytes_per_line = width * cpp;
3864
	if (y_tiled) {
3865 3866
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
					   y_min_scanlines, 512);
3867
		plane_blocks_per_line =
3868
		      fixed_16_16_div_round_up(interm_pbpl, y_min_scanlines);
3869
	} else if (x_tiled) {
3870 3871
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3872
	} else {
3873 3874
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
		plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3875 3876
	}

3877 3878
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3879
				 cstate->base.adjusted_mode.crtc_htotal,
3880
				 latency,
3881
				 plane_blocks_per_line);
3882

3883 3884
	y_tile_minimum = mul_u32_fixed_16_16(y_min_scanlines,
					     plane_blocks_per_line);
3885

3886
	if (y_tiled) {
3887
		selected_result = max_fixed_16_16(method2, y_tile_minimum);
3888
	} else {
3889 3890 3891
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
3892 3893 3894
		else if ((ddb_allocation /
			fixed_16_16_to_u32_round_up(plane_blocks_per_line)) >= 1)
			selected_result = min_fixed_16_16(method1, method2);
3895 3896 3897
		else
			selected_result = method1;
	}
3898

3899 3900 3901
	res_blocks = fixed_16_16_to_u32_round_up(selected_result) + 1;
	res_lines = DIV_ROUND_UP(selected_result.val,
				 plane_blocks_per_line.val);
3902

3903
	if (level >= 1 && level <= 7) {
3904
		if (y_tiled) {
3905
			res_blocks += fixed_16_16_to_u32_round_up(y_tile_minimum);
3906
			res_lines += y_min_scanlines;
3907
		} else {
3908
			res_blocks++;
3909
		}
3910
	}
3911

3912 3913
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3914 3915 3916 3917 3918 3919 3920 3921

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
3922 3923
			struct drm_plane *plane = pstate->plane;

3924
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3925 3926
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
3927 3928 3929
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
3930
	}
3931 3932 3933

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3934
	*enabled = true;
3935

3936
	return 0;
3937 3938
}

3939 3940 3941 3942
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3943
		     struct intel_plane *intel_plane,
3944 3945
		     int level,
		     struct skl_wm_level *result)
3946
{
3947
	struct drm_atomic_state *state = cstate->base.state;
3948
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3949 3950
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3951
	uint16_t ddb_blocks;
3952
	enum pipe pipe = intel_crtc->pipe;
3953
	int ret;
L
Lyude 已提交
3954 3955 3956 3957 3958

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3959

3960
	/*
L
Lyude 已提交
3961 3962 3963 3964 3965 3966 3967 3968 3969
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3970
	 */
L
Lyude 已提交
3971 3972
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3973

L
Lyude 已提交
3974
	WARN_ON(!intel_pstate->base.fb);
3975

3976
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
3977

L
Lyude 已提交
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3988 3989

	return 0;
3990 3991
}

3992
static uint32_t
3993
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3994
{
M
Mahesh Kumar 已提交
3995 3996
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
3997
	uint32_t pixel_rate;
M
Mahesh Kumar 已提交
3998
	uint32_t linetime_wm;
3999

4000
	if (!cstate->base.active)
4001 4002
		return 0;

4003
	pixel_rate = cstate->pixel_rate;
4004 4005

	if (WARN_ON(pixel_rate == 0))
4006
		return 0;
4007

M
Mahesh Kumar 已提交
4008 4009 4010 4011 4012 4013 4014 4015
	linetime_wm = DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal *
				   1000, pixel_rate);

	/* Display WA #1135: bxt. */
	if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
		linetime_wm = DIV_ROUND_UP(linetime_wm, 2);

	return linetime_wm;
4016 4017
}

4018
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4019
				      struct skl_wm_level *trans_wm /* out */)
4020
{
4021
	if (!cstate->base.active)
4022
		return;
4023 4024

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
4025
	trans_wm->plane_en = false;
4026 4027
}

4028 4029 4030
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
4031
{
4032
	struct drm_device *dev = cstate->base.crtc->dev;
4033
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
4034 4035
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
4036
	int level, max_level = ilk_wm_max_level(dev_priv);
4037
	int ret;
4038

L
Lyude 已提交
4039 4040 4041 4042 4043 4044 4045 4046 4047
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
4048
		wm = &pipe_wm->planes[intel_plane->id];
L
Lyude 已提交
4049 4050 4051 4052 4053 4054 4055 4056 4057

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
4058
	}
4059
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4060

4061
	return 0;
4062 4063
}

4064 4065
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
4066 4067 4068 4069 4070 4071 4072 4073
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

4089 4090 4091
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
4092
			       enum plane_id plane_id)
4093 4094 4095 4096
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4097
	int level, max_level = ilk_wm_max_level(dev_priv);
4098 4099 4100
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4101
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4102
				   &wm->wm[level]);
4103
	}
4104
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4105
			   &wm->trans_wm);
4106

4107 4108 4109 4110
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
			    &ddb->y_plane[pipe][plane_id]);
4111 4112
}

4113 4114 4115
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
4116 4117 4118 4119
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4120
	int level, max_level = ilk_wm_max_level(dev_priv);
4121 4122 4123
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4124 4125
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
4126
	}
4127
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4128

4129
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4130
			    &ddb->plane[pipe][PLANE_CURSOR]);
4131 4132
}

4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

4147 4148
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
4149
{
4150
	return a->start < b->end && b->start < a->end;
4151 4152
}

4153 4154 4155
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
				 const struct skl_ddb_entry *ddb,
				 int ignore)
4156
{
4157
	int i;
4158

4159 4160 4161
	for (i = 0; i < I915_MAX_PIPES; i++)
		if (i != ignore && entries[i] &&
		    skl_ddb_entries_overlap(ddb, entries[i]))
4162
			return true;
4163

4164
	return false;
4165 4166
}

4167
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4168
			      const struct skl_pipe_wm *old_pipe_wm,
4169
			      struct skl_pipe_wm *pipe_wm, /* out */
4170
			      struct skl_ddb_allocation *ddb, /* out */
4171
			      bool *changed /* out */)
4172
{
4173
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4174
	int ret;
4175

4176 4177 4178
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
4179

4180
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4181 4182 4183
		*changed = false;
	else
		*changed = true;
4184

4185
	return 0;
4186 4187
}

4188 4189 4190 4191 4192 4193 4194
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

4195
	for_each_new_crtc_in_state(state, crtc, cstate, i)
4196 4197 4198 4199 4200
		ret |= drm_crtc_mask(crtc);

	return ret;
}

4201
static int
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

4218
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
4219
		enum plane_id plane_id = to_intel_plane(plane)->id;
4220

4221 4222 4223 4224
		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
					&new_ddb->y_plane[pipe][plane_id]))
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

4235 4236 4237 4238 4239 4240 4241
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4242
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4243
	uint32_t realloc_pipes = pipes_modified(state);
4244 4245 4246 4247 4248 4249 4250 4251
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4252 4253 4254 4255 4256 4257
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4258 4259
		intel_state->active_pipe_changes = ~0;

4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4283
	if (intel_state->active_pipe_changes) {
4284
		realloc_pipes = ~0;
4285 4286
		intel_state->wm_results.dirty_pipes = ~0;
	}
4287

4288 4289 4290 4291 4292 4293
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4294 4295 4296 4297 4298 4299 4300
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4301
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4302 4303
		if (ret)
			return ret;
4304

4305
		ret = skl_ddb_add_affected_planes(cstate);
4306 4307
		if (ret)
			return ret;
4308 4309 4310 4311 4312
	}

	return 0;
}

4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4336
	int i;
4337

4338
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
4339 4340
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4341

4342
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4343
			enum plane_id plane_id = intel_plane->id;
4344 4345
			const struct skl_ddb_entry *old, *new;

4346 4347
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
4348 4349 4350 4351

			if (skl_ddb_entry_equal(old, new))
				continue;

4352 4353 4354 4355 4356
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4357 4358 4359 4360
		}
	}
}

4361 4362 4363 4364 4365
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4366 4367 4368
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4369
	bool changed = false;
4370
	int ret, i;
4371 4372 4373 4374 4375 4376 4377 4378 4379

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
4380
	for_each_new_crtc_in_state(state, crtc, cstate, i)
4381 4382 4383 4384
		changed = true;
	if (!changed)
		return 0;

4385 4386 4387
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4388 4389 4390 4391
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
4402
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
4403 4404
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4405 4406
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4407 4408

		pipe_wm = &intel_cstate->wm.skl.optimal;
4409 4410
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4424 4425
	skl_print_wm_changes(state);

4426 4427 4428
	return 0;
}

4429 4430 4431 4432 4433 4434
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4435
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4436
	enum pipe pipe = crtc->pipe;
4437
	enum plane_id plane_id;
4438 4439 4440

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
4441 4442

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4443

4444 4445 4446 4447 4448 4449 4450 4451
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
4452 4453
}

4454 4455
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
4456
{
4457
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4458
	struct drm_device *dev = intel_crtc->base.dev;
4459
	struct drm_i915_private *dev_priv = to_i915(dev);
4460
	struct skl_wm_values *results = &state->wm_results;
4461
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4462
	enum pipe pipe = intel_crtc->pipe;
4463

4464
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4465 4466
		return;

4467
	mutex_lock(&dev_priv->wm.wm_mutex);
4468

4469 4470
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
4471 4472

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4473 4474

	mutex_unlock(&dev_priv->wm.wm_mutex);
4475 4476
}

4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4495
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4496
{
4497
	struct drm_device *dev = &dev_priv->drm;
4498
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4499
	struct ilk_wm_maximums max;
4500
	struct intel_wm_config config = {};
4501
	struct ilk_wm_values results = {};
4502
	enum intel_ddb_partitioning partitioning;
4503

4504 4505 4506 4507
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4508 4509

	/* 5/6 split only in single pipe config on IVB+ */
4510
	if (INTEL_GEN(dev_priv) >= 7 &&
4511 4512 4513
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4514

4515
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4516
	} else {
4517
		best_lp_wm = &lp_wm_1_2;
4518 4519
	}

4520
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4521
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4522

4523
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4524

4525
	ilk_write_wm_values(dev_priv, &results);
4526 4527
}

4528 4529
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
4530
{
4531 4532
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4533

4534
	mutex_lock(&dev_priv->wm.wm_mutex);
4535
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4536 4537 4538
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4539

4540 4541
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
4542 4543 4544
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4545

4546 4547
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4548
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4549 4550 4551
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4552 4553
}

4554 4555
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4556
{
4557 4558 4559 4560
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4561 4562
}

4563 4564
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4565
{
4566
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4567 4568
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4569 4570
	int level, max_level;
	enum plane_id plane_id;
4571
	uint32_t val;
4572

4573
	max_level = ilk_wm_max_level(dev_priv);
4574

4575 4576
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
4577

4578
		for (level = 0; level <= max_level; level++) {
4579 4580
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
4581 4582
			else
				val = I915_READ(CUR_WM(pipe, level));
4583

4584
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4585 4586
		}

4587 4588
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
4589 4590 4591 4592
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4593 4594
	}

4595 4596
	if (!intel_crtc->active)
		return;
4597

4598
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4599 4600 4601 4602
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4603
	struct drm_i915_private *dev_priv = to_i915(dev);
4604
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4605
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4606
	struct drm_crtc *crtc;
4607 4608
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4609

4610
	skl_ddb_get_hw_state(dev_priv, ddb);
4611 4612 4613 4614 4615 4616
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

4617
		if (intel_crtc->active)
4618 4619
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
4620

4621 4622 4623 4624 4625 4626 4627
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4628 4629
}

4630 4631 4632
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4633
	struct drm_i915_private *dev_priv = to_i915(dev);
4634
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4635
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4636
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4637
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4638
	enum pipe pipe = intel_crtc->pipe;
4639
	static const i915_reg_t wm0_pipe_reg[] = {
4640 4641 4642 4643 4644 4645
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4646
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4647
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4648

4649 4650
	memset(active, 0, sizeof(*active));

4651
	active->pipe_enabled = intel_crtc->active;
4652 4653

	if (active->pipe_enabled) {
4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4668
		int level, max_level = ilk_wm_max_level(dev_priv);
4669 4670 4671 4672 4673 4674 4675 4676 4677

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4678 4679

	intel_crtc->wm.active.ilk = *active;
4680 4681
}

4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

4696
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
4697
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4698
		wm->ddl[pipe].plane[PLANE_CURSOR] =
4699
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4700
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
4701
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4702
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
4703 4704 4705 4706 4707
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
4708 4709 4710
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
4711 4712

	tmp = I915_READ(DSPFW2);
4713 4714 4715
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
4716 4717 4718 4719 4720 4721

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
4722 4723
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4724 4725

		tmp = I915_READ(DSPFW8_CHV);
4726 4727
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
4728 4729

		tmp = I915_READ(DSPFW9_CHV);
4730 4731
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
4732 4733 4734

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4735 4736 4737 4738 4739 4740 4741 4742 4743
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4744 4745
	} else {
		tmp = I915_READ(DSPFW7);
4746 4747
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4748 4749 4750

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4751 4752 4753 4754 4755 4756
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4767
	struct intel_crtc *crtc;
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4782 4783 4784 4785 4786 4787 4788 4789 4790
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4791
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4805 4806 4807 4808

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
4825
			struct g4x_pipe_wm *raw =
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
4847
		crtc_state->wm.vlv.intermediate = *active;
4848

4849
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4850 4851 4852 4853 4854
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
4855
	}
4856 4857 4858 4859 4860

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
4885
			struct g4x_pipe_wm *raw =
4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

4910 4911
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4912
	struct drm_i915_private *dev_priv = to_i915(dev);
4913
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4914 4915
	struct drm_crtc *crtc;

4916
	for_each_crtc(dev, crtc)
4917 4918 4919 4920 4921 4922 4923
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4924
	if (INTEL_GEN(dev_priv) >= 7) {
4925 4926 4927
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4928

4929
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4930 4931
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4932
	else if (IS_IVYBRIDGE(dev_priv))
4933 4934
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4935 4936 4937 4938 4939

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4972
void intel_update_watermarks(struct intel_crtc *crtc)
4973
{
4974
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4975 4976

	if (dev_priv->display.update_wm)
4977
		dev_priv->display.update_wm(crtc);
4978 4979
}

4980
/*
4981 4982 4983 4984 4985 4986 4987 4988
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4989
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4990 4991 4992
{
	u16 rgvswctl;

4993
	lockdep_assert_held(&mchdev_lock);
4994

4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

5012
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
5013
{
5014
	u32 rgvmodectl;
5015 5016
	u8 fmax, fmin, fstart, vstart;

5017 5018
	spin_lock_irq(&mchdev_lock);

5019 5020
	rgvmodectl = I915_READ(MEMMODECTL);

5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

5041
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
5042 5043
		PXVFREQ_PX_SHIFT;

5044 5045
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
5046

5047 5048 5049
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

5066
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5067
		DRM_ERROR("stuck trying to change perf mode\n");
5068
	mdelay(1);
5069

5070
	ironlake_set_drps(dev_priv, fstart);
5071

5072 5073
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
5074
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
5075
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
5076
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
5077 5078

	spin_unlock_irq(&mchdev_lock);
5079 5080
}

5081
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
5082
{
5083 5084 5085 5086 5087
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
5088 5089 5090 5091 5092 5093 5094 5095 5096

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
5097
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
5098
	mdelay(1);
5099 5100
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
5101
	mdelay(1);
5102

5103
	spin_unlock_irq(&mchdev_lock);
5104 5105
}

5106 5107 5108 5109 5110
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
5111
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
5112
{
5113
	u32 limits;
5114

5115 5116 5117 5118 5119 5120
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
5121
	if (IS_GEN9(dev_priv)) {
5122 5123 5124 5125 5126 5127 5128 5129
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
5130 5131 5132 5133

	return limits;
}

5134 5135 5136
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
5137 5138
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
5139 5140 5141 5142

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
5143 5144
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
5145 5146 5147 5148
			new_power = BETWEEN;
		break;

	case BETWEEN:
5149 5150
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
5151
			new_power = LOW_POWER;
5152 5153
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
5154 5155 5156 5157
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
5158 5159
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
5160 5161 5162 5163
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
5164
	if (val <= dev_priv->rps.min_freq_softlimit)
5165
		new_power = LOW_POWER;
5166
	if (val >= dev_priv->rps.max_freq_softlimit)
5167 5168 5169 5170 5171 5172 5173 5174
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
5175 5176
		ei_up = 16000;
		threshold_up = 95;
5177 5178

		/* Downclock if less than 85% busy over 32ms */
5179 5180
		ei_down = 32000;
		threshold_down = 85;
5181 5182 5183 5184
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
5185 5186
		ei_up = 13000;
		threshold_up = 90;
5187 5188

		/* Downclock if less than 75% busy over 32ms */
5189 5190
		ei_down = 32000;
		threshold_down = 75;
5191 5192 5193 5194
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
5195 5196
		ei_up = 10000;
		threshold_up = 85;
5197 5198

		/* Downclock if less than 60% busy over 32ms */
5199 5200
		ei_down = 32000;
		threshold_down = 60;
5201 5202 5203
		break;
	}

5204 5205 5206 5207 5208 5209
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

5210
	I915_WRITE(GEN6_RP_UP_EI,
5211
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
5212
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
5213 5214
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
5215 5216

	I915_WRITE(GEN6_RP_DOWN_EI,
5217
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
5218
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
5219 5220 5221 5222 5223 5224 5225 5226 5227 5228
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
5229

5230
skip_hw_write:
5231
	dev_priv->rps.power = new_power;
5232 5233
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
5234 5235 5236
	dev_priv->rps.last_adj = 0;
}

5237 5238 5239 5240
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

5241
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
5242
	if (val > dev_priv->rps.min_freq_softlimit)
5243
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
5244
	if (val < dev_priv->rps.max_freq_softlimit)
5245
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
5246

5247 5248
	mask &= dev_priv->pm_rps_events;

5249
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
5250 5251
}

5252 5253 5254
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
5255
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
5256
{
C
Chris Wilson 已提交
5257 5258 5259 5260 5261
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
5262

5263
		if (IS_GEN9(dev_priv))
5264 5265
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
5266
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
5267 5268 5269 5270 5271 5272 5273
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
5274
	}
5275 5276 5277 5278

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
5279
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
5280
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
5281

5282
	dev_priv->rps.cur_freq = val;
5283
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5284 5285

	return 0;
5286 5287
}

5288
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
5289
{
5290 5291
	int err;

5292
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
5293 5294 5295
		      "Odd GPU freq value\n"))
		val &= ~1;

5296 5297
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

5298
	if (val != dev_priv->rps.cur_freq) {
5299 5300 5301 5302
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
		if (err)
			return err;

5303
		gen6_set_rps_thresholds(dev_priv, val);
5304
	}
5305 5306 5307

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5308 5309

	return 0;
5310 5311
}

5312
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5313 5314
 *
 * * If Gfx is Idle, then
5315 5316 5317
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
5318 5319 5320
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
5321
	u32 val = dev_priv->rps.idle_freq;
5322
	int err;
5323

5324
	if (dev_priv->rps.cur_freq <= val)
5325 5326
		return;

5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
5339
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5340
	err = valleyview_set_rps(dev_priv, val);
5341
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5342 5343 5344

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
5345 5346
}

5347 5348 5349 5350
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
5351 5352
		u8 freq;

5353
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
5354 5355 5356
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5357

5358 5359
		gen6_enable_rps_interrupts(dev_priv);

5360 5361 5362 5363 5364 5365
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
		freq = max(dev_priv->rps.cur_freq,
			   dev_priv->rps.efficient_freq);

5366
		if (intel_set_rps(dev_priv,
5367
				  clamp(freq,
5368 5369 5370
					dev_priv->rps.min_freq_softlimit,
					dev_priv->rps.max_freq_softlimit)))
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
5371 5372 5373 5374
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5375 5376
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5377 5378 5379 5380 5381 5382 5383
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5384
	mutex_lock(&dev_priv->rps.hw_lock);
5385
	if (dev_priv->rps.enabled) {
5386
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5387
			vlv_set_rps_idle(dev_priv);
5388
		else
5389
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5390
		dev_priv->rps.last_adj = 0;
5391 5392
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5393
	}
5394
	mutex_unlock(&dev_priv->rps.hw_lock);
5395

5396
	spin_lock(&dev_priv->rps.client_lock);
5397 5398
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5399
	spin_unlock(&dev_priv->rps.client_lock);
5400 5401
}

5402
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5403 5404
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5405
{
5406 5407 5408
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5409
	if (!(dev_priv->gt.awake &&
5410
	      dev_priv->rps.enabled &&
5411
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5412
		return;
5413

5414 5415 5416
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5417
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5418 5419
		rps = NULL;

5420 5421 5422 5423 5424
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5425
			schedule_work(&dev_priv->rps.work);
5426 5427
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5428

5429 5430 5431
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5432 5433
		} else
			dev_priv->rps.boosts++;
5434
	}
5435
	spin_unlock(&dev_priv->rps.client_lock);
5436 5437
}

5438
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5439
{
5440 5441
	int err;

5442 5443 5444 5445
	lockdep_assert_held(&dev_priv->rps.hw_lock);
	GEM_BUG_ON(val > dev_priv->rps.max_freq);
	GEM_BUG_ON(val < dev_priv->rps.min_freq);

5446 5447 5448 5449 5450
	if (!dev_priv->rps.enabled) {
		dev_priv->rps.cur_freq = val;
		return 0;
	}

5451
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5452
		err = valleyview_set_rps(dev_priv, val);
5453
	else
5454 5455 5456
		err = gen6_set_rps(dev_priv, val);

	return err;
5457 5458
}

5459
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5460 5461
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5462
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5463 5464
}

5465
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5466 5467 5468 5469
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5470
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5471 5472
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5473
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5474
	I915_WRITE(GEN6_RP_CONTROL, 0);
5475 5476
}

5477
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5478 5479 5480 5481
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5482
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5483
{
5484 5485
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5486
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5487

5488
	I915_WRITE(GEN6_RC_CONTROL, 0);
5489

5490
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5491 5492
}

5493
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5494
{
5495
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5496 5497 5498 5499 5500
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5501
	if (HAS_RC6p(dev_priv))
5502 5503 5504 5505 5506
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5507 5508

	else
5509 5510
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5511 5512
}

5513
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5514
{
5515
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5516 5517
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5529 5530

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5531
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5532 5533 5534 5535 5536 5537 5538 5539
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5540 5541 5542
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5543
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5544 5545 5546 5547 5548 5549 5550
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5551
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5552 5553 5554
		enable_rc6 = false;
	}

5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5569 5570 5571 5572 5573 5574
		enable_rc6 = false;
	}

	return enable_rc6;
}

5575
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5576
{
5577
	/* No RC6 before Ironlake and code is gone for ilk. */
5578
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5579 5580
		return 0;

5581 5582 5583
	if (!enable_rc6)
		return 0;

5584
	if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5585 5586 5587 5588
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5589
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5590 5591 5592
	if (enable_rc6 >= 0) {
		int mask;

5593
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5594 5595 5596 5597 5598 5599
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5600 5601 5602
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5603 5604 5605

		return enable_rc6 & mask;
	}
5606

5607
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5608
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5609 5610

	return INTEL_RC6_ENABLE;
5611 5612
}

5613
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5614 5615
{
	/* All of these values are in units of 50MHz */
5616

5617
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5618
	if (IS_GEN9_LP(dev_priv)) {
5619
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5620 5621 5622 5623
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5624
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5625 5626 5627 5628
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5629
	/* hw_max = RP0 until we check for overclocking */
5630
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5631

5632
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5633
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5634
	    IS_GEN9_BC(dev_priv)) {
5635 5636 5637 5638 5639
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5640
			dev_priv->rps.efficient_freq =
5641 5642 5643 5644
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5645 5646
	}

5647
	if (IS_GEN9_BC(dev_priv)) {
5648
		/* Store the frequency values in 16.66 MHZ units, which is
5649 5650
		 * the natural hardware unit for SKL
		 */
5651 5652 5653 5654 5655 5656
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5657 5658
}

5659
static void reset_rps(struct drm_i915_private *dev_priv,
5660
		      int (*set)(struct drm_i915_private *, u8))
5661 5662 5663 5664 5665 5666 5667
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

5668 5669
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
5670 5671
}

J
Jesse Barnes 已提交
5672
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5673
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5674 5675 5676
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5677 5678 5679 5680 5681 5682 5683 5684
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5685 5686
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5687 5688 5689
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5690
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5691 5692 5693 5694

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5695
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5696
{
5697
	struct intel_engine_cs *engine;
5698
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5699 5700 5701 5702 5703 5704 5705
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5706
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5707 5708 5709 5710 5711

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5712 5713

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5714
	if (IS_SKYLAKE(dev_priv))
5715 5716 5717
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5718 5719
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5720
	for_each_engine(engine, dev_priv, id)
5721
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5722

5723
	if (HAS_GUC(dev_priv))
5724 5725
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5726 5727
	I915_WRITE(GEN6_RC_SLEEP, 0);

5728 5729 5730 5731
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5732
	/* 3a: Enable RC6 */
5733
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5734
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5735
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5736 5737 5738
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask);
Z
Zhe Wang 已提交
5739

5740 5741
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5742
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5743
	 */
5744
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5745 5746 5747 5748
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5749

5750
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5751 5752
}

5753
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5754
{
5755
	struct intel_engine_cs *engine;
5756
	enum intel_engine_id id;
5757
	uint32_t rc6_mask = 0;
5758 5759 5760 5761 5762 5763

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5764
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5765 5766 5767 5768 5769 5770 5771 5772

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5773
	for_each_engine(engine, dev_priv, id)
5774
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5775
	I915_WRITE(GEN6_RC_SLEEP, 0);
5776
	if (IS_BROADWELL(dev_priv))
5777 5778 5779
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5780 5781

	/* 3: Enable RC6 */
5782
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5783
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5784 5785
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5786 5787 5788 5789 5790 5791 5792
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5793 5794

	/* 4 Program defaults and thresholds for RPS*/
5795 5796 5797 5798
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5813 5814

	/* 5: Enable RPS */
5815 5816 5817 5818 5819 5820 5821 5822 5823 5824
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5825
	reset_rps(dev_priv, gen6_set_rps);
5826

5827
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5828 5829
}

5830
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5831
{
5832
	struct intel_engine_cs *engine;
5833
	enum intel_engine_id id;
5834
	u32 rc6vids, rc6_mask = 0;
5835 5836
	u32 gtfifodbg;
	int rc6_mode;
5837
	int ret;
5838

5839
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5840

5841 5842 5843 5844 5845 5846 5847 5848 5849
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5850 5851
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5852 5853 5854 5855
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5856
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5857 5858 5859 5860 5861 5862 5863 5864 5865 5866

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5867
	for_each_engine(engine, dev_priv, id)
5868
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5869 5870 5871

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5872
	if (IS_IVYBRIDGE(dev_priv))
5873 5874 5875
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5876
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5877 5878
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5879
	/* Check if we are enabling RC6 */
5880
	rc6_mode = intel_enable_rc6();
5881 5882 5883
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5884
	/* We don't use those on Haswell */
5885
	if (!IS_HASWELL(dev_priv)) {
5886 5887
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5888

5889 5890 5891
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5892

5893
	intel_print_rc6_info(dev_priv, rc6_mask);
5894 5895 5896 5897 5898 5899

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5900 5901
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5902 5903
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5904
	reset_rps(dev_priv, gen6_set_rps);
5905

5906 5907
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5908
	if (IS_GEN6(dev_priv) && ret) {
5909
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5910
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5911 5912 5913 5914 5915 5916 5917 5918 5919
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5920
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5921 5922
}

5923
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5924 5925
{
	int min_freq = 15;
5926 5927
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5928
	unsigned int max_gpu_freq, min_gpu_freq;
5929
	int scaling_factor = 180;
5930
	struct cpufreq_policy *policy;
5931

5932
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5933

5934 5935 5936 5937 5938 5939 5940 5941 5942
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5943
		max_ia_freq = tsc_khz;
5944
	}
5945 5946 5947 5948

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5949
	min_ring_freq = I915_READ(DCLK) & 0xf;
5950 5951
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5952

5953
	if (IS_GEN9_BC(dev_priv)) {
5954 5955 5956 5957 5958 5959 5960 5961
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5962 5963 5964 5965 5966
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5967 5968
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5969 5970
		unsigned int ia_freq = 0, ring_freq = 0;

5971
		if (IS_GEN9_BC(dev_priv)) {
5972 5973 5974 5975 5976
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5977
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5978 5979
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5980
		} else if (IS_HASWELL(dev_priv)) {
5981
			ring_freq = mult_frac(gpu_freq, 5, 4);
5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5998

B
Ben Widawsky 已提交
5999 6000
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
6001 6002 6003
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
6004 6005 6006
	}
}

6007
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
6008 6009 6010
{
	u32 val, rp0;

6011
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6012

6013
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
6028
	}
6029 6030 6031

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

6045 6046 6047 6048
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

6049 6050 6051
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

6052 6053 6054
	return rp1;
}

6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

6077
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
6078 6079 6080
{
	u32 val, rp0;

6081
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

6094
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
6095
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
6096
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
6097 6098 6099 6100 6101
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

6102
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
6103
{
6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
6115 6116
}

6117 6118 6119 6120 6121 6122 6123 6124 6125
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

6126 6127 6128 6129 6130 6131 6132 6133 6134

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

6135
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
6136
{
6137
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
6138
	unsigned long pctx_paddr, paddr;
6139 6140 6141 6142 6143
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
6144
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
6145
		paddr = (dev_priv->mm.stolen_base +
6146
			 (ggtt->stolen_size - pctx_size));
6147 6148 6149 6150

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
6151 6152

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6153 6154
}

6155
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
6168
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
6169
								      pcbr_offset,
6170
								      I915_GTT_OFFSET_NONE,
6171 6172 6173 6174
								      pctx_size);
		goto out;
	}

6175 6176
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

6177 6178 6179 6180 6181 6182 6183 6184
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
6185
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
6186 6187
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
6188
		goto out;
6189 6190 6191 6192 6193 6194
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
6195
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6196 6197 6198
	dev_priv->vlv_pctx = pctx;
}

6199
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
6200 6201 6202 6203
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
6204
	i915_gem_object_put(dev_priv->vlv_pctx);
6205 6206 6207
	dev_priv->vlv_pctx = NULL;
}

6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

6219
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
6220
{
6221
	u32 val;
6222

6223
	valleyview_setup_pctx(dev_priv);
6224

6225 6226
	vlv_init_gpll_ref_freq(dev_priv);

6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
6240
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
6241

6242 6243 6244
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6245
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
6246 6247 6248 6249
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6250
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
6251 6252
			 dev_priv->rps.efficient_freq);

6253 6254
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
6255
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
6256 6257
			 dev_priv->rps.rp1_freq);

6258 6259
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6260
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6261 6262 6263
			 dev_priv->rps.min_freq);
}

6264
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
6265
{
6266
	u32 val;
6267

6268
	cherryview_setup_pctx(dev_priv);
6269

6270 6271
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
6272
	mutex_lock(&dev_priv->sb_lock);
6273
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
6274
	mutex_unlock(&dev_priv->sb_lock);
6275

6276 6277 6278 6279
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
6280
	default:
6281 6282 6283
		dev_priv->mem_freq = 1600;
		break;
	}
6284
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
6285

6286 6287 6288
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6289
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
6290 6291 6292 6293
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6294
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
6295 6296
			 dev_priv->rps.efficient_freq);

6297 6298
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
6299
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
6300 6301
			 dev_priv->rps.rp1_freq);

6302
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
6303
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6304
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6305 6306
			 dev_priv->rps.min_freq);

6307 6308 6309 6310 6311
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
6312 6313
}

6314
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6315
{
6316
	valleyview_cleanup_pctx(dev_priv);
6317 6318
}

6319
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
6320
{
6321
	struct intel_engine_cs *engine;
6322
	enum intel_engine_id id;
6323
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
6324 6325 6326

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6327 6328
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
6329 6330 6331 6332 6333 6334 6335 6336 6337 6338
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6339
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6340

6341 6342 6343
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6344 6345 6346 6347 6348
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6349
	for_each_engine(engine, dev_priv, id)
6350
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6351 6352
	I915_WRITE(GEN6_RC_SLEEP, 0);

6353 6354
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6366 6367
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6368
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6369 6370 6371

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6372
	/* 4 Program defaults and thresholds for RPS*/
6373
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6374 6375 6376 6377 6378 6379 6380 6381 6382 6383
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6384
		   GEN6_RP_MEDIA_IS_GFX |
6385 6386 6387 6388
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6389 6390 6391 6392 6393 6394
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6395 6396
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6397 6398 6399
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6400
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6401 6402
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6403
	reset_rps(dev_priv, valleyview_set_rps);
6404

6405
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6406 6407
}

6408
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6409
{
6410
	struct intel_engine_cs *engine;
6411
	enum intel_engine_id id;
6412
	u32 gtfifodbg, val, rc6_mode = 0;
6413 6414 6415

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6416 6417
	valleyview_check_pctx(dev_priv);

6418 6419
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6420 6421
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6422 6423 6424
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6425
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6426
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6427

6428 6429 6430
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6431
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6451
	for_each_engine(engine, dev_priv, id)
6452
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6453

6454
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6455 6456

	/* allows RC6 residency counter to work */
6457
	I915_WRITE(VLV_COUNTER_CONTROL,
6458 6459
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC0_COUNT_EN |
6460
				      VLV_RENDER_RC0_COUNT_EN |
6461 6462
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6463

6464
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6465
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6466

6467
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6468

6469
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6470

D
Deepak S 已提交
6471 6472 6473 6474 6475 6476
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6477
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6478

6479 6480 6481
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6482
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6483 6484
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6485
	reset_rps(dev_priv, valleyview_set_rps);
6486

6487
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6488 6489
}

6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6519
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6520 6521 6522 6523 6524 6525
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6526
	lockdep_assert_held(&mchdev_lock);
6527

6528
	diff1 = now - dev_priv->ips.last_time1;
6529 6530 6531 6532 6533 6534 6535

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6536
		return dev_priv->ips.chipset_power;
6537 6538 6539 6540 6541 6542 6543 6544

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6545 6546
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6547 6548
		diff += total_count;
	} else {
6549
		diff = total_count - dev_priv->ips.last_count1;
6550 6551 6552
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6553 6554
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6555 6556 6557 6558 6559 6560 6561 6562 6563 6564
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6565 6566
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6567

6568
	dev_priv->ips.chipset_power = ret;
6569 6570 6571 6572

	return ret;
}

6573 6574 6575 6576
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6577
	if (INTEL_INFO(dev_priv)->gen != 5)
6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6616
{
6617 6618 6619
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6620
	if (INTEL_INFO(dev_priv)->is_mobile)
6621 6622 6623
		return vm > 0 ? vm : 0;

	return vd;
6624 6625
}

6626
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6627
{
6628
	u64 now, diff, diffms;
6629 6630
	u32 count;

6631
	lockdep_assert_held(&mchdev_lock);
6632

6633 6634 6635
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6636 6637 6638 6639 6640 6641 6642

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6643 6644
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6645 6646
		diff += count;
	} else {
6647
		diff = count - dev_priv->ips.last_count2;
6648 6649
	}

6650 6651
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6652 6653 6654 6655

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6656
	dev_priv->ips.gfx_power = diff;
6657 6658
}

6659 6660
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6661
	if (INTEL_INFO(dev_priv)->gen != 5)
6662 6663
		return;

6664
	spin_lock_irq(&mchdev_lock);
6665 6666 6667

	__i915_update_gfx_val(dev_priv);

6668
	spin_unlock_irq(&mchdev_lock);
6669 6670
}

6671
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6672 6673 6674 6675
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6676
	lockdep_assert_held(&mchdev_lock);
6677

6678
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6698
	corr2 = (corr * dev_priv->ips.corr);
6699 6700 6701 6702

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6703
	__i915_update_gfx_val(dev_priv);
6704

6705
	return dev_priv->ips.gfx_power + state2;
6706 6707
}

6708 6709 6710 6711
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6712
	if (INTEL_INFO(dev_priv)->gen != 5)
6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6735
	spin_lock_irq(&mchdev_lock);
6736 6737 6738 6739
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6740 6741
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6742 6743 6744 6745

	ret = chipset_val + graphics_val;

out_unlock:
6746
	spin_unlock_irq(&mchdev_lock);
6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6762
	spin_lock_irq(&mchdev_lock);
6763 6764 6765 6766 6767 6768
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6769 6770
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6771 6772

out_unlock:
6773
	spin_unlock_irq(&mchdev_lock);
6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6790
	spin_lock_irq(&mchdev_lock);
6791 6792 6793 6794 6795 6796
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6797 6798
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6799 6800

out_unlock:
6801
	spin_unlock_irq(&mchdev_lock);
6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6816
	spin_lock_irq(&mchdev_lock);
6817 6818
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6819
	spin_unlock_irq(&mchdev_lock);
6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6836
	spin_lock_irq(&mchdev_lock);
6837 6838 6839 6840 6841 6842
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6843
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6844

6845
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6846 6847 6848
		ret = false;

out_unlock:
6849
	spin_unlock_irq(&mchdev_lock);
6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6877 6878
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6879
	spin_lock_irq(&mchdev_lock);
6880
	i915_mch_dev = dev_priv;
6881
	spin_unlock_irq(&mchdev_lock);
6882 6883 6884 6885 6886 6887

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6888
	spin_lock_irq(&mchdev_lock);
6889
	i915_mch_dev = NULL;
6890
	spin_unlock_irq(&mchdev_lock);
6891
}
6892

6893
static void intel_init_emon(struct drm_i915_private *dev_priv)
6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6910
		I915_WRITE(PEW(i), 0);
6911
	for (i = 0; i < 3; i++)
6912
		I915_WRITE(DEW(i), 0);
6913 6914 6915

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6916
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6937
		I915_WRITE(PXW(i), val);
6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6953
		I915_WRITE(PXWL(i), 0);
6954 6955 6956 6957 6958 6959

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6960
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6961 6962
}

6963
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6964
{
6965 6966 6967 6968 6969 6970 6971 6972
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6973

6974
	mutex_lock(&dev_priv->drm.struct_mutex);
6975 6976 6977
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6978 6979 6980 6981
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6982
	else if (INTEL_GEN(dev_priv) >= 6)
6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

7012 7013 7014
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

7015
	mutex_unlock(&dev_priv->rps.hw_lock);
7016
	mutex_unlock(&dev_priv->drm.struct_mutex);
7017 7018

	intel_autoenable_gt_powersave(dev_priv);
7019 7020
}

7021
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7022
{
7023
	if (IS_VALLEYVIEW(dev_priv))
7024
		valleyview_cleanup_gt_powersave(dev_priv);
7025 7026 7027

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
7028 7029
}

7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

7049 7050 7051 7052
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
7053 7054

	gen6_reset_rps_interrupts(dev_priv);
7055 7056
}

7057
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
7058
{
7059 7060
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
7061

7062
	mutex_lock(&dev_priv->rps.hw_lock);
7063

7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
7075
	}
7076 7077 7078

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
7079 7080
}

7081
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
7082
{
7083 7084 7085
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
7086 7087
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
7088

7089 7090 7091
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
7092

7093
	mutex_lock(&dev_priv->rps.hw_lock);
7094 7095 7096 7097 7098

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
7099
	} else if (INTEL_GEN(dev_priv) >= 9) {
7100 7101
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
7102
		if (IS_GEN9_BC(dev_priv))
7103
			gen6_update_ring_freq(dev_priv);
7104 7105
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
7106
		gen6_update_ring_freq(dev_priv);
7107
	} else if (INTEL_GEN(dev_priv) >= 6) {
7108
		gen6_enable_rps(dev_priv);
7109
		gen6_update_ring_freq(dev_priv);
7110 7111 7112
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
7113
	}
7114 7115 7116 7117 7118 7119 7120

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

7121
	dev_priv->rps.enabled = true;
7122 7123
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
7124

7125 7126 7127 7128 7129 7130 7131 7132 7133 7134
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

7135
	rcs = dev_priv->engine[RCS];
7136
	if (rcs->last_retired_context)
7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
7152
	i915_add_request(req);
7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

7188
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
7189 7190 7191 7192 7193 7194 7195 7196 7197
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

7198
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
7199
{
7200
	enum pipe pipe;
7201

7202
	for_each_pipe(dev_priv, pipe) {
7203 7204 7205
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
7206 7207 7208

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
7209 7210 7211
	}
}

7212
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

7224
static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
7225
{
7226
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7227

7228 7229 7230 7231
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
7232 7233 7234
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7252
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
7253 7254 7255
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
7256

7257
	ilk_init_lp_watermarks(dev_priv);
7258 7259 7260 7261 7262 7263 7264 7265

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
7266
	if (IS_IRONLAKE_M(dev_priv)) {
7267
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
7268 7269 7270 7271 7272 7273 7274 7275
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

7276 7277
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

7278 7279 7280 7281 7282 7283
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
7284

7285
	/* WaDisableRenderCachePipelinedFlush:ilk */
7286 7287
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7288

7289 7290 7291
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7292
	g4x_disable_trickle_feed(dev_priv);
7293

7294
	ibx_init_clock_gating(dev_priv);
7295 7296
}

7297
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
7298 7299
{
	int pipe;
7300
	uint32_t val;
7301 7302 7303 7304 7305 7306

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
7307 7308 7309
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
7310 7311
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
7312 7313 7314
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
7315
	for_each_pipe(dev_priv, pipe) {
7316 7317 7318
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7319
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
7320
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7321 7322 7323
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7324 7325
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
7326
	/* WADP0ClockGatingDisable */
7327
	for_each_pipe(dev_priv, pipe) {
7328 7329 7330
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
7331 7332
}

7333
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
7334 7335 7336 7337
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
7338 7339 7340
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7341 7342
}

7343
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7344
{
7345
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7346

7347
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7348 7349 7350 7351 7352

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7353
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7354 7355 7356
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7357 7358 7359
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7360 7361 7362
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7363 7364 7365 7366
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7367 7368
	 */
	I915_WRITE(GEN6_GT_MODE,
7369
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7370

7371
	ilk_init_lp_watermarks(dev_priv);
7372 7373

	I915_WRITE(CACHE_MODE_0,
7374
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7390
	 *
7391 7392
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7393 7394 7395 7396 7397
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7398
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7399 7400
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7401

7402 7403 7404 7405 7406 7407 7408 7409
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7410 7411 7412 7413 7414 7415 7416 7417
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7418 7419
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7420 7421 7422 7423 7424 7425 7426
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7427 7428 7429 7430
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7431

7432
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
7433

7434
	cpt_init_clock_gating(dev_priv);
7435

7436
	gen6_check_mch_setup(dev_priv);
7437 7438 7439 7440 7441 7442
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7443
	/*
7444
	 * WaVSThreadDispatchOverride:ivb,vlv
7445 7446 7447 7448
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7449 7450 7451 7452 7453 7454 7455 7456
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7457
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7458 7459 7460 7461 7462
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7463
	if (HAS_PCH_LPT_LP(dev_priv))
7464 7465 7466
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7467 7468

	/* WADPOClockGatingDisable:hsw */
7469 7470
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7471
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7472 7473
}

7474
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7475
{
7476
	if (HAS_PCH_LPT_LP(dev_priv)) {
7477 7478 7479 7480 7481 7482 7483
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7507
static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7508
{
7509
	gen9_init_clock_gating(dev_priv);
7510 7511 7512 7513 7514

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7515 7516 7517 7518 7519

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7520 7521 7522 7523

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7524 7525
}

7526
static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7527
{
7528
	gen9_init_clock_gating(dev_priv);
7529 7530 7531 7532

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7533 7534 7535 7536

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7537 7538
}

7539
static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
7540
{
7541
	enum pipe pipe;
B
Ben Widawsky 已提交
7542

7543
	ilk_init_lp_watermarks(dev_priv);
7544

7545
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7546
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7547

7548
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7549 7550 7551
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7552
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7553
	for_each_pipe(dev_priv, pipe) {
7554
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7555
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7556
			   BDW_DPRS_MASK_VBLANK_SRD);
7557
	}
7558

7559 7560 7561 7562 7563
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7564

7565 7566
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7567 7568 7569 7570

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7571

7572 7573
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7574

7575 7576 7577 7578 7579 7580 7581
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7582 7583 7584 7585
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7586
	lpt_init_clock_gating(dev_priv);
7587 7588 7589 7590 7591 7592 7593 7594

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
7595 7596
}

7597
static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7598
{
7599
	ilk_init_lp_watermarks(dev_priv);
7600

7601 7602 7603 7604 7605
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7606
	/* This is required by WaCatErrorRejectionIssue:hsw */
7607 7608 7609 7610
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7611 7612 7613
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7614

7615 7616 7617
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7618 7619 7620 7621
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7622
	/* WaDisable4x2SubspanOptimization:hsw */
7623 7624
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7625

7626 7627 7628
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7629 7630 7631 7632
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7633 7634
	 */
	I915_WRITE(GEN7_GT_MODE,
7635
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7636

7637 7638 7639 7640
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7641
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7642 7643
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7644 7645 7646
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7647

7648
	lpt_init_clock_gating(dev_priv);
7649 7650
}

7651
static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7652
{
7653
	uint32_t snpcr;
7654

7655
	ilk_init_lp_watermarks(dev_priv);
7656

7657
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7658

7659
	/* WaDisableEarlyCull:ivb */
7660 7661 7662
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7663
	/* WaDisableBackToBackFlipFix:ivb */
7664 7665 7666 7667
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7668
	/* WaDisablePSDDualDispatchEnable:ivb */
7669
	if (IS_IVB_GT1(dev_priv))
7670 7671 7672
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7673 7674 7675
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7676
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7677 7678 7679
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7680
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7681 7682 7683
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7684
		   GEN7_WA_L3_CHICKEN_MODE);
7685
	if (IS_IVB_GT1(dev_priv))
7686 7687
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7688 7689 7690 7691
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7692 7693
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7694
	}
7695

7696
	/* WaForceL3Serialization:ivb */
7697 7698 7699
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7700
	/*
7701
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7702
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7703 7704
	 */
	I915_WRITE(GEN6_UCGCTL2,
7705
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7706

7707
	/* This is required by WaCatErrorRejectionIssue:ivb */
7708 7709 7710 7711
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7712
	g4x_disable_trickle_feed(dev_priv);
7713 7714

	gen7_setup_fixed_func_scheduler(dev_priv);
7715

7716 7717 7718 7719 7720
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7721

7722
	/* WaDisable4x2SubspanOptimization:ivb */
7723 7724
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7725

7726 7727 7728
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7729 7730 7731 7732
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7733 7734
	 */
	I915_WRITE(GEN7_GT_MODE,
7735
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7736

7737 7738 7739 7740
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7741

7742
	if (!HAS_PCH_NOP(dev_priv))
7743
		cpt_init_clock_gating(dev_priv);
7744

7745
	gen6_check_mch_setup(dev_priv);
7746 7747
}

7748
static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7749
{
7750
	/* WaDisableEarlyCull:vlv */
7751 7752 7753
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7754
	/* WaDisableBackToBackFlipFix:vlv */
7755 7756 7757 7758
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7759
	/* WaPsdDispatchEnable:vlv */
7760
	/* WaDisablePSDDualDispatchEnable:vlv */
7761
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7762 7763
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7764

7765 7766 7767
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7768
	/* WaForceL3Serialization:vlv */
7769 7770 7771
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7772
	/* WaDisableDopClockGating:vlv */
7773 7774 7775
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7776
	/* This is required by WaCatErrorRejectionIssue:vlv */
7777 7778 7779 7780
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7781 7782
	gen7_setup_fixed_func_scheduler(dev_priv);

7783
	/*
7784
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7785
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7786 7787
	 */
	I915_WRITE(GEN6_UCGCTL2,
7788
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7789

7790 7791 7792 7793 7794
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7795

7796 7797 7798 7799
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7800 7801
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7802

7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7814 7815 7816 7817 7818 7819
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7820
	/*
7821
	 * WaDisableVLVClockGating_VBIIssue:vlv
7822 7823 7824
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7825
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7826 7827
}

7828
static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7829
{
7830 7831 7832 7833 7834
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7835 7836 7837 7838

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7839 7840 7841 7842

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7843 7844 7845 7846

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7847

7848 7849 7850 7851 7852 7853 7854
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7855 7856 7857 7858 7859
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7860 7861
}

7862
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7874
	if (IS_GM45(dev_priv))
7875 7876
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7877 7878 7879 7880

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7881

7882 7883 7884
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7885
	g4x_disable_trickle_feed(dev_priv);
7886 7887
}

7888
static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7889 7890 7891 7892 7893 7894
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7895 7896
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7897 7898 7899

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7900 7901
}

7902
static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7903 7904 7905 7906 7907 7908 7909
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7910 7911
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7912 7913 7914

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7915 7916
}

7917
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7918 7919 7920 7921 7922 7923
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7924

7925
	if (IS_PINEVIEW(dev_priv))
7926
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7927 7928 7929

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7930 7931

	/* interrupts should cause a wake up from C3 */
7932
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7933 7934 7935

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7936 7937 7938

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7939 7940
}

7941
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7942 7943
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7944 7945 7946 7947

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7948 7949 7950

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7951 7952
}

7953
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7954
{
7955 7956 7957
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7958 7959
}

7960
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7961
{
7962
	dev_priv->display.init_clock_gating(dev_priv);
7963 7964
}

7965
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7966
{
7967 7968
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7969 7970
}

7971
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7988
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7989
	else if (IS_KABYLAKE(dev_priv))
7990
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7991
	else if (IS_BROXTON(dev_priv))
7992
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7993 7994
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8011
	else if (IS_I965GM(dev_priv))
8012
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8013
	else if (IS_I965G(dev_priv))
8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

8027
/* Set up chip specific power management-related functions */
8028
void intel_init_pm(struct drm_i915_private *dev_priv)
8029
{
8030
	intel_fbc_init(dev_priv);
8031

8032
	/* For cxsr */
8033
	if (IS_PINEVIEW(dev_priv))
8034
		i915_pineview_get_mem_freq(dev_priv);
8035
	else if (IS_GEN5(dev_priv))
8036
		i915_ironlake_get_mem_freq(dev_priv);
8037

8038
	/* For FIFO watermark updates */
8039
	if (INTEL_GEN(dev_priv) >= 9) {
8040
		skl_setup_wm_latency(dev_priv);
8041
		dev_priv->display.initial_watermarks = skl_initial_wm;
8042
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
8043
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
8044
	} else if (HAS_PCH_SPLIT(dev_priv)) {
8045
		ilk_setup_wm_latency(dev_priv);
8046

8047
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
8048
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
8049
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
8050
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
8051
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
8052 8053 8054 8055 8056 8057
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
8058 8059 8060 8061
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
8062
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8063
		vlv_setup_wm_latency(dev_priv);
8064
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
8065
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
8066
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
8067
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
8068
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
8069
	} else if (IS_PINEVIEW(dev_priv)) {
8070
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
8071 8072 8073 8074 8075 8076 8077 8078 8079
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
8080
			intel_set_memory_cxsr(dev_priv, false);
8081 8082 8083
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
8084
	} else if (IS_G4X(dev_priv)) {
8085
		dev_priv->display.update_wm = g4x_update_wm;
8086
	} else if (IS_GEN4(dev_priv)) {
8087
		dev_priv->display.update_wm = i965_update_wm;
8088
	} else if (IS_GEN3(dev_priv)) {
8089 8090
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8091
	} else if (IS_GEN2(dev_priv)) {
8092
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
8093
			dev_priv->display.update_wm = i845_update_wm;
8094
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
8095 8096
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
8097
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
8098 8099 8100
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
8101 8102 8103
	}
}

8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8116
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8117 8118 8119 8120
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
8121
		MISSING_CASE(flags);
8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

8148
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
8149
{
8150 8151
	int status;

8152
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
8153

8154 8155 8156 8157 8158 8159
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
8160 8161 8162 8163
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

8164 8165 8166
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
8167

8168 8169 8170
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
B
Ben Widawsky 已提交
8171 8172 8173 8174
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

8175 8176
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
8177

8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
8189 8190 8191
	return 0;
}

8192
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
8193
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
8194
{
8195 8196
	int status;

8197
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
8198

8199 8200 8201 8202 8203 8204
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
8205 8206 8207 8208
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

8209
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
8210
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
8211
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
8212

8213 8214 8215
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
B
Ben Widawsky 已提交
8216 8217 8218 8219
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

8220
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
8221

8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
8233 8234
	return 0;
}
8235

8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
8257
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
8258 8259
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
8260
 * for @timeout_base_ms and if this times out for another 50 ms with
8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
	ret = _wait_for(COND, timeout_base_ms * 1000, 10);
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
8296
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
8297
	 * account for interrupts that could reduce the number of these
8298 8299
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
8300 8301 8302 8303
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
8304
	ret = wait_for_atomic(COND, 50);
8305 8306 8307 8308 8309 8310 8311
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

8312 8313
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
8314 8315 8316 8317 8318
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
8319 8320
}

8321
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
8322
{
8323
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
8324 8325
}

8326
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
8327
{
8328 8329 8330 8331 8332
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
8333 8334
}

8335
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
8336
{
8337
	/* CHV needs even values */
8338
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
8339 8340
}

8341
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
8342
{
8343
	if (IS_GEN9(dev_priv))
8344 8345
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
8346
	else if (IS_CHERRYVIEW(dev_priv))
8347
		return chv_gpu_freq(dev_priv, val);
8348
	else if (IS_VALLEYVIEW(dev_priv))
8349 8350 8351
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
8352 8353
}

8354 8355
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
8356
	if (IS_GEN9(dev_priv))
8357 8358
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
8359
	else if (IS_CHERRYVIEW(dev_priv))
8360
		return chv_freq_opcode(dev_priv, val);
8361
	else if (IS_VALLEYVIEW(dev_priv))
8362 8363
		return byt_freq_opcode(dev_priv, val);
	else
8364
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
8365
}
8366

8367 8368
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
8369
	struct drm_i915_gem_request *req;
8370 8371 8372 8373 8374
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
8375
	struct drm_i915_gem_request *req = boost->req;
8376

8377
	if (!i915_gem_request_completed(req))
8378
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8379

8380
	i915_gem_request_put(req);
8381 8382 8383
	kfree(boost);
}

8384
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8385 8386 8387
{
	struct request_boost *boost;

8388
	if (req == NULL || INTEL_GEN(req->i915) < 6)
8389 8390
		return;

8391
	if (i915_gem_request_completed(req))
8392 8393
		return;

8394 8395 8396 8397
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

8398
	boost->req = i915_gem_request_get(req);
8399 8400

	INIT_WORK(&boost->work, __intel_rps_boost_work);
8401
	queue_work(req->i915->wq, &boost->work);
8402 8403
}

8404
void intel_pm_setup(struct drm_i915_private *dev_priv)
8405
{
D
Daniel Vetter 已提交
8406
	mutex_init(&dev_priv->rps.hw_lock);
8407
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
8408

8409 8410
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
8411
	INIT_LIST_HEAD(&dev_priv->rps.clients);
8412

8413
	dev_priv->pm.suspended = false;
8414
	atomic_set(&dev_priv->pm.wakeref_count, 0);
8415
}
8416

8417 8418 8419
static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
			     const i915_reg_t reg)
{
8420
	u32 lower, upper, tmp;
8421
	int loop = 2;
8422 8423 8424 8425 8426 8427 8428 8429 8430

	/* The register accessed do not need forcewake. We borrow
	 * uncore lock to prevent concurrent access to range reg.
	 */
	spin_lock_irq(&dev_priv->uncore.lock);

	/* vlv and chv residency counters are 40 bits in width.
	 * With a control bit, we can choose between upper or lower
	 * 32bit window into this counter.
8431 8432 8433 8434 8435
	 *
	 * Although we always use the counter in high-range mode elsewhere,
	 * userspace may attempt to read the value before rc6 is initialised,
	 * before we have set the default VLV_COUNTER_CONTROL value. So always
	 * set the high bit to be safe.
8436
	 */
8437 8438
	I915_WRITE_FW(VLV_COUNTER_CONTROL,
		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449
	upper = I915_READ_FW(reg);
	do {
		tmp = upper;

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
		lower = I915_READ_FW(reg);

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
		upper = I915_READ_FW(reg);
8450
	} while (upper != tmp && --loop);
8451

8452 8453 8454 8455 8456
	/* Everywhere else we always use VLV_COUNTER_CONTROL with the
	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
	 * now.
	 */

8457 8458 8459 8460 8461
	spin_unlock_irq(&dev_priv->uncore.lock);

	return lower | (u64)upper << 8;
}

8462 8463
u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
			   const i915_reg_t reg)
8464
{
8465
	u64 time_hw, units, div;
8466 8467 8468 8469 8470 8471 8472 8473

	if (!intel_enable_rc6())
		return 0;

	intel_runtime_pm_get(dev_priv);

	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8474
		units = 1000;
8475 8476
		div = dev_priv->czclk_freq;

8477
		time_hw = vlv_residency_raw(dev_priv, reg);
8478
	} else if (IS_GEN9_LP(dev_priv)) {
8479
		units = 1000;
8480 8481
		div = 1200;		/* 833.33ns */

8482 8483 8484 8485 8486 8487 8488
		time_hw = I915_READ(reg);
	} else {
		units = 128000; /* 1.28us */
		div = 100000;

		time_hw = I915_READ(reg);
	}
8489 8490

	intel_runtime_pm_put(dev_priv);
8491
	return DIV_ROUND_UP_ULL(time_hw * units, div);
8492
}