intel_pm.c 188.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

55 56
static void gen9_init_clock_gating(struct drm_device *dev)
{
57 58
	struct drm_i915_private *dev_priv = dev->dev_private;

59 60 61 62
	/* WaEnableLbsSlaRetryTimerDecrement:skl */
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
}
63

64
static void skl_init_clock_gating(struct drm_device *dev)
65
{
66
	struct drm_i915_private *dev_priv = dev->dev_private;
67

68 69
	gen9_init_clock_gating(dev);

70 71 72
	if (INTEL_REVID(dev) == SKL_REVID_A0) {
		/*
		 * WaDisableSDEUnitClockGating:skl
73
		 * WaSetGAPSunitClckGateDisable:skl
74 75
		 */
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
76
			   GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
77 78
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
	}
79

80
	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
81 82 83 84
		/* WaDisableHDCInvalidation:skl */
		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
			   BDW_DISABLE_HDC_INVALIDATION);

85 86 87 88 89
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   I915_READ(FF_SLICE_CS_CHICKEN2) |
			   GEN9_TSG_BARRIER_ACK_DISABLE);
	}
90

91 92 93 94
	if (INTEL_REVID(dev) <= SKL_REVID_E0)
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);
95 96
}

97 98
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
99
	struct drm_i915_private *dev_priv = dev->dev_private;
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
138
	struct drm_i915_private *dev_priv = dev->dev_private;
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

164
	dev_priv->ips.r_t = dev_priv->mem_freq;
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
196
		dev_priv->ips.c_m = 0;
197
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
198
		dev_priv->ips.c_m = 1;
199
	} else {
200
		dev_priv->ips.c_m = 2;
201 202 203
	}
}

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

242
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

304 305 306
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

307
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
308
{
309 310
	struct drm_device *dev = dev_priv->dev;
	u32 val;
311

312 313
	if (IS_VALLEYVIEW(dev)) {
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
314 315
		if (IS_CHERRYVIEW(dev))
			chv_set_memory_pm5(dev_priv, enable);
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
	} else {
		return;
	}
333

334 335
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
336 337
}

338

339 340 341 342 343 344 345 346 347 348 349 350 351 352
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
353
static const int pessimal_latency_ns = 5000;
354

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

410
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

426
static int i830_get_fifo_size(struct drm_device *dev, int plane)
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

443
static int i845_get_fifo_size(struct drm_device *dev, int plane)
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
461 462 463 464 465
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
466 467
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
468 469 470 471 472
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
473 474
};
static const struct intel_watermark_params pineview_cursor_wm = {
475 476 477 478 479
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
480 481
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
482 483 484 485 486
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
487 488
};
static const struct intel_watermark_params g4x_wm_info = {
489 490 491 492 493
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
494 495
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
496 497 498 499 500
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
501 502
};
static const struct intel_watermark_params valleyview_wm_info = {
503 504 505 506 507
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
508 509
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
510 511 512 513 514
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
515 516
};
static const struct intel_watermark_params i965_cursor_wm_info = {
517 518 519 520 521
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
522 523
};
static const struct intel_watermark_params i945_wm_info = {
524 525 526 527 528
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
529 530
};
static const struct intel_watermark_params i915_wm_info = {
531 532 533 534 535
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
536
};
537
static const struct intel_watermark_params i830_a_wm_info = {
538 539 540 541 542
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
543
};
544 545 546 547 548 549 550
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
551
static const struct intel_watermark_params i845_wm_info = {
552 553 554 555 556
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
606 607 608 609 610 611 612 613 614 615 616

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

617 618 619 620 621 622 623
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

624
	for_each_crtc(dev, crtc) {
625
		if (intel_crtc_active(crtc)) {
626 627 628 629 630 631 632 633 634
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

635
static void pineview_update_wm(struct drm_crtc *unused_crtc)
636
{
637
	struct drm_device *dev = unused_crtc->dev;
638 639 640 641 642 643 644 645 646 647
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
648
		intel_set_memory_cxsr(dev_priv, false);
649 650 651 652 653
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
654
		const struct drm_display_mode *adjusted_mode;
655
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
656 657
		int clock;

658
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
659
		clock = adjusted_mode->crtc_clock;
660 661 662 663 664 665 666

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
667
		reg |= FW_WM(wm, SR);
668 669 670 671 672 673 674 675 676
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
677
		reg |= FW_WM(wm, CURSOR_SR);
678 679 680 681 682 683 684 685
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
686
		reg |= FW_WM(wm, HPLL_SR);
687 688 689 690 691 692 693 694
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
695
		reg |= FW_WM(wm, HPLL_CURSOR);
696 697 698
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

699
		intel_set_memory_cxsr(dev_priv, true);
700
	} else {
701
		intel_set_memory_cxsr(dev_priv, false);
702 703 704 705 706 707 708 709 710 711 712 713 714
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
715
	const struct drm_display_mode *adjusted_mode;
716 717 718 719 720
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
721
	if (!intel_crtc_active(crtc)) {
722 723 724 725 726
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

727
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
728
	clock = adjusted_mode->crtc_clock;
729
	htotal = adjusted_mode->crtc_htotal;
730
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
731
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
732 733 734 735 736 737 738 739 740 741 742 743

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
744
	line_time_us = max(htotal * 1000 / clock, 1);
745
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
746
	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
801
	const struct drm_display_mode *adjusted_mode;
802 803 804 805 806 807 808 809 810 811 812 813
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
814
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
815
	clock = adjusted_mode->crtc_clock;
816
	htotal = adjusted_mode->crtc_htotal;
817
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
818
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
819

820
	line_time_us = max(htotal * 1000 / clock, 1);
821 822 823 824 825 826 827 828 829 830 831
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
832
	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
833 834 835 836 837 838 839 840
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

841 842 843
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

844 845 846 847 848 849 850 851 852 853 854 855
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

856
	I915_WRITE(DSPFW1,
857 858 859 860
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
861
	I915_WRITE(DSPFW2,
862 863 864
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
865
	I915_WRITE(DSPFW3,
866
		   FW_WM(wm->sr.cursor, CURSOR_SR));
867 868 869

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
870 871
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
872
		I915_WRITE(DSPFW8_CHV,
873 874
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
875
		I915_WRITE(DSPFW9_CHV,
876 877
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
878
		I915_WRITE(DSPHOWM,
879 880 881 882 883 884 885 886 887 888
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
889 890
	} else {
		I915_WRITE(DSPFW7,
891 892
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
893
		I915_WRITE(DSPHOWM,
894 895 896 897 898 899 900
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
901 902 903 904
	}

	POSTING_READ(DSPFW1);

905 906 907
	dev_priv->wm.vlv = *wm;
}

908 909
#undef FW_WM_VLV

910
static uint8_t vlv_compute_drain_latency(struct drm_crtc *crtc,
911
					 struct drm_plane *plane)
912
{
913
	struct drm_device *dev = crtc->dev;
914 915 916
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int entries, prec_mult, drain_latency, pixel_size;
	int clock = intel_crtc->config->base.adjusted_mode.crtc_clock;
917
	const int high_precision = IS_CHERRYVIEW(dev) ? 16 : 64;
918

919 920 921 922 923 924 925
	/*
	 * FIXME the plane might have an fb
	 * but be invisible (eg. due to clipping)
	 */
	if (!intel_crtc->active || !plane->state->fb)
		return 0;

926
	if (WARN(clock == 0, "Pixel clock is zero!\n"))
927
		return 0;
928

929 930
	pixel_size = drm_format_plane_cpp(plane->state->fb->pixel_format, 0);

931
	if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
932
		return 0;
933

934
	entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
935

936 937
	prec_mult = high_precision;
	drain_latency = 64 * prec_mult * 4 / entries;
938

939 940 941
	if (drain_latency > DRAIN_LATENCY_MASK) {
		prec_mult /= 2;
		drain_latency = 64 * prec_mult * 4 / entries;
942 943
	}

944 945
	if (drain_latency > DRAIN_LATENCY_MASK)
		drain_latency = DRAIN_LATENCY_MASK;
946

947 948
	return drain_latency | (prec_mult == high_precision ?
				DDL_PRECISION_HIGH : DDL_PRECISION_LOW);
949 950
}

951 952 953
static int vlv_compute_wm(struct intel_crtc *crtc,
			  struct intel_plane *plane,
			  int fifo_size)
954
{
955
	int clock, entries, pixel_size;
956

957 958 959 960 961 962
	/*
	 * FIXME the plane might have an fb
	 * but be invisible (eg. due to clipping)
	 */
	if (!crtc->active || !plane->base.state->fb)
		return 0;
963

964 965
	pixel_size = drm_format_plane_cpp(plane->base.state->fb->pixel_format, 0);
	clock = crtc->config->base.adjusted_mode.crtc_clock;
966

967
	entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
968

969 970 971 972 973 974 975 976 977 978 979 980 981 982
	/*
	 * Set up the watermark such that we don't start issuing memory
	 * requests until we are within PND's max deadline value (256us).
	 * Idea being to be idle as long as possible while still taking
	 * advatange of PND's deadline scheduling. The limit of 8
	 * cachelines (used when the FIFO will anyway drain in less time
	 * than 256us) should match what we would be done if trickle
	 * feed were enabled.
	 */
	return fifo_size - clamp(DIV_ROUND_UP(256 * entries, 64), 0, fifo_size - 8);
}

static bool vlv_compute_sr_wm(struct drm_device *dev,
			      struct vlv_wm_values *wm)
983
{
984 985 986 987 988 989
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct drm_crtc *crtc;
	enum pipe pipe = INVALID_PIPE;
	int num_planes = 0;
	int fifo_size = 0;
	struct intel_plane *plane;
990

991
	wm->sr.cursor = wm->sr.plane = 0;
992

993 994 995 996 997 998 999 1000 1001
	crtc = single_enabled_crtc(dev);
	/* maxfifo not supported on pipe C */
	if (crtc && to_intel_crtc(crtc)->pipe != PIPE_C) {
		pipe = to_intel_crtc(crtc)->pipe;
		num_planes = !!wm->pipe[pipe].primary +
			!!wm->pipe[pipe].sprite[0] +
			!!wm->pipe[pipe].sprite[1];
		fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
	}
1002

1003 1004
	if (fifo_size == 0 || num_planes > 1)
		return false;
1005

1006 1007
	wm->sr.cursor = vlv_compute_wm(to_intel_crtc(crtc),
				       to_intel_plane(crtc->cursor), 0x3f);
1008

1009 1010 1011
	list_for_each_entry(plane, &dev->mode_config.plane_list, base.head) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;
1012

1013 1014
		if (plane->pipe != pipe)
			continue;
1015

1016 1017 1018 1019 1020 1021 1022
		wm->sr.plane = vlv_compute_wm(to_intel_crtc(crtc),
					      plane, fifo_size);
		if (wm->sr.plane != 0)
			break;
	}

	return true;
1023 1024
}

1025
static void valleyview_update_wm(struct drm_crtc *crtc)
1026 1027 1028
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1029 1030
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
1031
	bool cxsr_enabled;
1032
	struct vlv_wm_values wm = dev_priv->wm.vlv;
1033

1034 1035 1036 1037
	wm.ddl[pipe].primary = vlv_compute_drain_latency(crtc, crtc->primary);
	wm.pipe[pipe].primary = vlv_compute_wm(intel_crtc,
					       to_intel_plane(crtc->primary),
					       vlv_get_fifo_size(dev, pipe, 0));
1038

1039 1040 1041 1042
	wm.ddl[pipe].cursor = vlv_compute_drain_latency(crtc, crtc->cursor);
	wm.pipe[pipe].cursor = vlv_compute_wm(intel_crtc,
					      to_intel_plane(crtc->cursor),
					      0x3f);
1043

1044
	cxsr_enabled = vlv_compute_sr_wm(dev, &wm);
1045

1046 1047
	if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
		return;
1048

1049 1050 1051 1052
	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
		      wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.sr.plane, wm.sr.cursor);
1053

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	/*
	 * FIXME DDR DVFS introduces massive memory latencies which
	 * are not known to system agent so any deadline specified
	 * by the display may not be respected. To support DDR DVFS
	 * the watermark code needs to be rewritten to essentially
	 * bypass deadline mechanism and rely solely on the
	 * watermarks. For now disable DDR DVFS.
	 */
	if (IS_CHERRYVIEW(dev_priv))
		chv_set_memory_dvfs(dev_priv, false);

1065 1066
	if (!cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, false);
1067

1068
	vlv_write_wm_values(intel_crtc, &wm);
1069 1070 1071 1072 1073

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
}

1074 1075 1076 1077 1078 1079 1080 1081 1082
static void valleyview_update_sprite_wm(struct drm_plane *plane,
					struct drm_crtc *crtc,
					uint32_t sprite_width,
					uint32_t sprite_height,
					int pixel_size,
					bool enabled, bool scaled)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1083 1084
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
1085
	int sprite = to_intel_plane(plane)->plane;
1086
	bool cxsr_enabled;
1087
	struct vlv_wm_values wm = dev_priv->wm.vlv;
1088

1089
	if (enabled) {
1090
		wm.ddl[pipe].sprite[sprite] =
1091
			vlv_compute_drain_latency(crtc, plane);
1092 1093 1094 1095 1096 1097

		wm.pipe[pipe].sprite[sprite] =
			vlv_compute_wm(intel_crtc,
				       to_intel_plane(plane),
				       vlv_get_fifo_size(dev, pipe, sprite+1));
	} else {
1098
		wm.ddl[pipe].sprite[sprite] = 0;
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
		wm.pipe[pipe].sprite[sprite] = 0;
	}

	cxsr_enabled = vlv_compute_sr_wm(dev, &wm);

	if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
		return;

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: sprite %c=%d, "
		      "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
		      sprite_name(pipe, sprite),
		      wm.pipe[pipe].sprite[sprite],
		      wm.sr.plane, wm.sr.cursor);

	if (!cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, false);
1115

1116
	vlv_write_wm_values(intel_crtc, &wm);
1117 1118 1119

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1120 1121
}

1122 1123
#define single_plane_enabled(mask) is_power_of_2(mask)

1124
static void g4x_update_wm(struct drm_crtc *crtc)
1125
{
1126
	struct drm_device *dev = crtc->dev;
1127 1128 1129 1130 1131
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1132
	bool cxsr_enabled;
1133

1134
	if (g4x_compute_wm0(dev, PIPE_A,
1135 1136
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1137
			    &planea_wm, &cursora_wm))
1138
		enabled |= 1 << PIPE_A;
1139

1140
	if (g4x_compute_wm0(dev, PIPE_B,
1141 1142
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1143
			    &planeb_wm, &cursorb_wm))
1144
		enabled |= 1 << PIPE_B;
1145 1146 1147 1148 1149 1150

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1151
			     &plane_sr, &cursor_sr)) {
1152
		cxsr_enabled = true;
1153
	} else {
1154
		cxsr_enabled = false;
1155
		intel_set_memory_cxsr(dev_priv, false);
1156 1157
		plane_sr = cursor_sr = 0;
	}
1158

1159 1160
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1161 1162 1163 1164 1165
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1166 1167 1168 1169
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1170
	I915_WRITE(DSPFW2,
1171
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1172
		   FW_WM(cursora_wm, CURSORA));
1173 1174
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1175
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1176
		   FW_WM(cursor_sr, CURSOR_SR));
1177 1178 1179

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1180 1181
}

1182
static void i965_update_wm(struct drm_crtc *unused_crtc)
1183
{
1184
	struct drm_device *dev = unused_crtc->dev;
1185 1186 1187 1188
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1189
	bool cxsr_enabled;
1190 1191 1192 1193 1194 1195

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1196
		const struct drm_display_mode *adjusted_mode =
1197
			&to_intel_crtc(crtc)->config->base.adjusted_mode;
1198
		int clock = adjusted_mode->crtc_clock;
1199
		int htotal = adjusted_mode->crtc_htotal;
1200
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1201
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1202 1203 1204
		unsigned long line_time_us;
		int entries;

1205
		line_time_us = max(htotal * 1000 / clock, 1);
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1219
			pixel_size * crtc->cursor->state->crtc_w;
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1231
		cxsr_enabled = true;
1232
	} else {
1233
		cxsr_enabled = false;
1234
		/* Turn off self refresh if both pipes are enabled */
1235
		intel_set_memory_cxsr(dev_priv, false);
1236 1237 1238 1239 1240 1241
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1242 1243 1244 1245 1246 1247
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1248
	/* update cursor SR watermark */
1249
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1250 1251 1252

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1253 1254
}

1255 1256
#undef FW_WM

1257
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1258
{
1259
	struct drm_device *dev = unused_crtc->dev;
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1274
		wm_info = &i830_a_wm_info;
1275 1276 1277

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1278
	if (intel_crtc_active(crtc)) {
1279
		const struct drm_display_mode *adjusted_mode;
1280
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1281 1282 1283
		if (IS_GEN2(dev))
			cpp = 4;

1284
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1285
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1286
					       wm_info, fifo_size, cpp,
1287
					       pessimal_latency_ns);
1288
		enabled = crtc;
1289
	} else {
1290
		planea_wm = fifo_size - wm_info->guard_size;
1291 1292 1293 1294 1295 1296
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1297 1298 1299

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1300
	if (intel_crtc_active(crtc)) {
1301
		const struct drm_display_mode *adjusted_mode;
1302
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1303 1304 1305
		if (IS_GEN2(dev))
			cpp = 4;

1306
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1307
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1308
					       wm_info, fifo_size, cpp,
1309
					       pessimal_latency_ns);
1310 1311 1312 1313
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1314
	} else {
1315
		planeb_wm = fifo_size - wm_info->guard_size;
1316 1317 1318
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1319 1320 1321

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1322
	if (IS_I915GM(dev) && enabled) {
1323
		struct drm_i915_gem_object *obj;
1324

1325
		obj = intel_fb_obj(enabled->primary->state->fb);
1326 1327

		/* self-refresh seems busted with untiled */
1328
		if (obj->tiling_mode == I915_TILING_NONE)
1329 1330 1331
			enabled = NULL;
	}

1332 1333 1334 1335 1336 1337
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1338
	intel_set_memory_cxsr(dev_priv, false);
1339 1340 1341 1342 1343

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1344
		const struct drm_display_mode *adjusted_mode =
1345
			&to_intel_crtc(enabled)->config->base.adjusted_mode;
1346
		int clock = adjusted_mode->crtc_clock;
1347
		int htotal = adjusted_mode->crtc_htotal;
1348
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1349
		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1350 1351 1352
		unsigned long line_time_us;
		int entries;

1353
		line_time_us = max(htotal * 1000 / clock, 1);
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1384 1385
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1386 1387
}

1388
static void i845_update_wm(struct drm_crtc *unused_crtc)
1389
{
1390
	struct drm_device *dev = unused_crtc->dev;
1391 1392
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1393
	const struct drm_display_mode *adjusted_mode;
1394 1395 1396 1397 1398 1399 1400
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1401
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1402
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1403
				       &i845_wm_info,
1404
				       dev_priv->display.get_fifo_size(dev, 0),
1405
				       4, pessimal_latency_ns);
1406 1407 1408 1409 1410 1411 1412 1413
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1414 1415
static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
				    struct drm_crtc *crtc)
1416 1417
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1418
	uint32_t pixel_rate;
1419

1420
	pixel_rate = intel_crtc->config->base.adjusted_mode.crtc_clock;
1421 1422 1423 1424

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1425
	if (intel_crtc->config->pch_pfit.enabled) {
1426
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1427
		uint32_t pfit_size = intel_crtc->config->pch_pfit.size;
1428

1429 1430
		pipe_w = intel_crtc->config->pipe_src_w;
		pipe_h = intel_crtc->config->pipe_src_h;
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1445
/* latency must be in 0.1us units. */
1446
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1447 1448 1449 1450
			       uint32_t latency)
{
	uint64_t ret;

1451 1452 1453
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1454 1455 1456 1457 1458 1459
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1460
/* latency must be in 0.1us units. */
1461
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1462 1463 1464 1465 1466
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

1467 1468 1469
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1470 1471 1472 1473 1474 1475
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1476
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1477 1478 1479 1480 1481
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

1482 1483 1484 1485 1486 1487 1488 1489
struct skl_pipe_wm_parameters {
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate; /* in KHz */
	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
	struct intel_plane_wm_parameters cursor;
};

1490
struct ilk_pipe_wm_parameters {
1491 1492 1493
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate;
1494 1495 1496
	struct intel_plane_wm_parameters pri;
	struct intel_plane_wm_parameters spr;
	struct intel_plane_wm_parameters cur;
1497 1498
};

1499
struct ilk_wm_maximums {
1500 1501 1502 1503 1504 1505
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1506 1507 1508 1509 1510 1511 1512
/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

1513 1514 1515 1516
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1517
static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1518 1519
				   uint32_t mem_value,
				   bool is_lp)
1520
{
1521 1522
	uint32_t method1, method2;

1523
	if (!params->active || !params->pri.enabled)
1524 1525
		return 0;

1526
	method1 = ilk_wm_method1(params->pixel_rate,
1527
				 params->pri.bytes_per_pixel,
1528 1529 1530 1531 1532
				 mem_value);

	if (!is_lp)
		return method1;

1533
	method2 = ilk_wm_method2(params->pixel_rate,
1534
				 params->pipe_htotal,
1535 1536
				 params->pri.horiz_pixels,
				 params->pri.bytes_per_pixel,
1537 1538 1539
				 mem_value);

	return min(method1, method2);
1540 1541
}

1542 1543 1544 1545
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1546
static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1547 1548 1549 1550
				   uint32_t mem_value)
{
	uint32_t method1, method2;

1551
	if (!params->active || !params->spr.enabled)
1552 1553
		return 0;

1554
	method1 = ilk_wm_method1(params->pixel_rate,
1555
				 params->spr.bytes_per_pixel,
1556
				 mem_value);
1557
	method2 = ilk_wm_method2(params->pixel_rate,
1558
				 params->pipe_htotal,
1559 1560
				 params->spr.horiz_pixels,
				 params->spr.bytes_per_pixel,
1561 1562 1563 1564
				 mem_value);
	return min(method1, method2);
}

1565 1566 1567 1568
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1569
static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1570 1571
				   uint32_t mem_value)
{
1572
	if (!params->active || !params->cur.enabled)
1573 1574
		return 0;

1575
	return ilk_wm_method2(params->pixel_rate,
1576
			      params->pipe_htotal,
1577 1578
			      params->cur.horiz_pixels,
			      params->cur.bytes_per_pixel,
1579 1580 1581
			      mem_value);
}

1582
/* Only for WM_LP. */
1583
static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1584
				   uint32_t pri_val)
1585
{
1586
	if (!params->active || !params->pri.enabled)
1587 1588
		return 0;

1589
	return ilk_wm_fbc(pri_val,
1590 1591
			  params->pri.horiz_pixels,
			  params->pri.bytes_per_pixel);
1592 1593
}

1594 1595
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1596 1597 1598
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1599 1600 1601 1602 1603
		return 768;
	else
		return 512;
}

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1638 1639 1640
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1641
				     const struct intel_wm_config *config,
1642 1643 1644 1645 1646 1647
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1648
	if (is_sprite && !config->sprites_enabled)
1649 1650 1651
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1652
	if (level == 0 || config->num_pipes_active > 1) {
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1664
	if (config->sprites_enabled) {
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1676
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1677 1678 1679 1680
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1681 1682
				      int level,
				      const struct intel_wm_config *config)
1683 1684
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1685
	if (level > 0 && config->num_pipes_active > 1)
1686 1687 1688
		return 64;

	/* otherwise just report max that registers can hold */
1689
	return ilk_cursor_wm_reg_max(dev, level);
1690 1691
}

1692
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1693 1694 1695
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1696
				    struct ilk_wm_maximums *max)
1697
{
1698 1699 1700
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1701
	max->fbc = ilk_fbc_wm_reg_max(dev);
1702 1703
}

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1714
static bool ilk_validate_wm_level(int level,
1715
				  const struct ilk_wm_maximums *max,
1716
				  struct intel_wm_level *result)
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

1755
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1756
				 int level,
1757
				 const struct ilk_pipe_wm_parameters *p,
1758
				 struct intel_wm_level *result)
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
	result->enable = true;
}

1778 1779
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1780 1781
{
	struct drm_i915_private *dev_priv = dev->dev_private;
1782
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1783
	struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
1784
	u32 linetime, ips_linetime;
1785

1786
	if (!intel_crtc->active)
1787
		return 0;
1788

1789 1790 1791
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
1792 1793 1794
	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
				     mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1795
					 intel_ddi_get_cdclk_freq(dev_priv));
1796

1797 1798
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
1799 1800
}

1801
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
1802 1803 1804
{
	struct drm_i915_private *dev_priv = dev->dev_private;

1805 1806
	if (IS_GEN9(dev)) {
		uint32_t val;
1807
		int ret, i;
1808
		int level, max_level = ilk_wm_max_level(dev);
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

1851
		/*
1852 1853
		 * WaWmMemoryReadLatency:skl
		 *
1854 1855 1856 1857 1858 1859 1860 1861
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
1862 1863 1864 1865 1866
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
1867 1868 1869 1870 1871
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
1872 1873 1874
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
1875

1876 1877
				break;
			}
1878
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1879 1880 1881 1882 1883
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
1884 1885 1886 1887
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
1888 1889 1890 1891 1892 1893 1894
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
1895 1896 1897 1898 1899 1900 1901
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
1902 1903 1904
	}
}

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

1923
int ilk_wm_max_level(const struct drm_device *dev)
1924 1925
{
	/* how many WM levels are we expecting */
1926 1927 1928
	if (IS_GEN9(dev))
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1929
		return 4;
1930
	else if (INTEL_INFO(dev)->gen >= 6)
1931
		return 3;
1932
	else
1933 1934
		return 2;
}
1935

1936 1937
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
1938
				   const uint16_t wm[8])
1939 1940
{
	int level, max_level = ilk_wm_max_level(dev);
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

1951 1952 1953 1954 1955 1956 1957
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
1958 1959 1960 1961 1962 1963 1964 1965
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2003
static void ilk_setup_wm_latency(struct drm_device *dev)
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2016 2017 2018 2019

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2020 2021 2022

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2023 2024
}

2025 2026 2027 2028 2029 2030 2031 2032
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2033
static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2034
				      struct ilk_pipe_wm_parameters *p)
2035
{
2036 2037 2038 2039
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
2040

2041
	if (!intel_crtc->active)
2042
		return;
2043

2044
	p->active = true;
2045
	p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2046
	p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063

	if (crtc->primary->state->fb) {
		p->pri.enabled = true;
		p->pri.bytes_per_pixel =
			crtc->primary->state->fb->bits_per_pixel / 8;
	} else {
		p->pri.enabled = false;
		p->pri.bytes_per_pixel = 0;
	}

	if (crtc->cursor->state->fb) {
		p->cur.enabled = true;
		p->cur.bytes_per_pixel = 4;
	} else {
		p->cur.enabled = false;
		p->cur.bytes_per_pixel = 0;
	}
2064
	p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
2065
	p->cur.horiz_pixels = intel_crtc->base.cursor->state->crtc_w;
2066

2067
	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2068 2069
		struct intel_plane *intel_plane = to_intel_plane(plane);

2070
		if (intel_plane->pipe == pipe) {
2071
			p->spr = intel_plane->wm;
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
			break;
		}
	}
}

static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *intel_crtc;

	/* Compute the currently _active_ config */
2083
	for_each_intel_crtc(dev, intel_crtc) {
2084
		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2085

2086 2087
		if (!wm->pipe_enabled)
			continue;
2088

2089 2090 2091
		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
2092
	}
2093 2094
}

2095 2096
/* Compute new watermarks for the pipe */
static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2097
				  const struct ilk_pipe_wm_parameters *params,
2098 2099 2100
				  struct intel_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
2101
	const struct drm_i915_private *dev_priv = dev->dev_private;
2102 2103 2104 2105 2106 2107 2108
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = params->spr.enabled,
		.sprites_scaled = params->spr.scaled,
	};
2109
	struct ilk_wm_maximums max;
2110

2111 2112 2113 2114
	pipe_wm->pipe_enabled = params->active;
	pipe_wm->sprites_enabled = params->spr.enabled;
	pipe_wm->sprites_scaled = params->spr.scaled;

2115 2116 2117 2118 2119 2120 2121 2122
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
	if (params->spr.scaled)
		max_level = 0;

2123
	ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2124

2125
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2126
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2127

2128 2129 2130
	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

2131
	/* At least LP0 must be valid */
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
		return false;

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

		ilk_compute_wm_level(dev_priv, level, params, &wm);

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

	return true;
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2165 2166
	ret_wm->enable = true;

2167
	for_each_intel_crtc(dev, intel_crtc) {
2168 2169 2170 2171 2172
		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2173

2174 2175 2176 2177 2178
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2179
		if (!wm->enable)
2180
			ret_wm->enable = false;
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2193
			 const struct intel_wm_config *config,
2194
			 const struct ilk_wm_maximums *max,
2195 2196 2197
			 struct intel_pipe_wm *merged)
{
	int level, max_level = ilk_wm_max_level(dev);
2198
	int last_enabled_level = max_level;
2199

2200 2201 2202 2203 2204
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2205 2206
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2207 2208 2209 2210 2211 2212 2213

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2214 2215 2216 2217 2218
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2219 2220 2221 2222 2223 2224

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2225 2226
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2227 2228 2229
			wm->fbc_val = 0;
		}
	}
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2244 2245
}

2246 2247 2248 2249 2250 2251
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2252 2253 2254 2255 2256
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2257
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2258 2259 2260 2261 2262
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2263
static void ilk_compute_wm_results(struct drm_device *dev,
2264
				   const struct intel_pipe_wm *merged,
2265
				   enum intel_ddb_partitioning partitioning,
2266
				   struct ilk_wm_values *results)
2267
{
2268 2269
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2270

2271
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2272
	results->partitioning = partitioning;
2273

2274
	/* LP1+ register values */
2275
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2276
		const struct intel_wm_level *r;
2277

2278
		level = ilk_wm_lp_to_level(wm_lp, merged);
2279

2280
		r = &merged->wm[level];
2281

2282 2283 2284 2285 2286
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2287
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2288 2289 2290
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2291 2292 2293
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2294 2295 2296 2297 2298 2299 2300
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2301 2302 2303 2304
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2305 2306 2307 2308 2309
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2310
	}
2311

2312
	/* LP0 register values */
2313
	for_each_intel_crtc(dev, intel_crtc) {
2314 2315 2316 2317 2318 2319 2320 2321
		enum pipe pipe = intel_crtc->pipe;
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.wm[0];

		if (WARN_ON(!r->enable))
			continue;

		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2322

2323 2324 2325 2326
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2327 2328 2329
	}
}

2330 2331
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2332
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2333 2334
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2335
{
2336 2337
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2338

2339 2340 2341 2342 2343
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2344 2345
	}

2346 2347
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2348 2349 2350
			return r2;
		else
			return r1;
2351
	} else if (level1 > level2) {
2352 2353 2354 2355 2356 2357
		return r1;
	} else {
		return r2;
	}
}

2358 2359 2360 2361 2362 2363 2364 2365
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2366
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2367 2368
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2369 2370 2371 2372 2373
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2374
	for_each_pipe(dev_priv, pipe) {
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2418 2419
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2420
{
2421
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2422
	bool changed = false;
2423

2424 2425 2426
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2427
		changed = true;
2428 2429 2430 2431
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2432
		changed = true;
2433 2434 2435 2436
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2437
		changed = true;
2438
	}
2439

2440 2441 2442 2443
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2444

2445 2446 2447 2448 2449 2450 2451
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2452 2453
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2454 2455
{
	struct drm_device *dev = dev_priv->dev;
2456
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2457 2458 2459
	unsigned int dirty;
	uint32_t val;

2460
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2461 2462 2463 2464 2465
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2466
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2467
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2468
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2469
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2470
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2471 2472
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2473
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2474
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2475
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2476
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2477
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2478 2479
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2480
	if (dirty & WM_DIRTY_DDB) {
2481
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2496 2497
	}

2498
	if (dirty & WM_DIRTY_FBC) {
2499 2500 2501 2502 2503 2504 2505 2506
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2507 2508 2509 2510 2511
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2512 2513 2514 2515 2516
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2517

2518
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2519
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2520
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2521
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2522
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2523
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2524 2525

	dev_priv->wm.hw = *results;
2526 2527
}

2528 2529 2530 2531 2532 2533 2534
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */

static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
				   struct drm_crtc *for_crtc,
				   const struct intel_wm_config *config,
				   const struct skl_pipe_wm_parameters *params,
				   struct skl_ddb_entry *alloc /* out */)
{
	struct drm_crtc *crtc;
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;

	if (!params->active) {
		alloc->start = 0;
		alloc->end = 0;
		return;
	}

	ddb_size = SKL_DDB_SIZE;

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

	nth_active_pipe = 0;
	for_each_crtc(dev, crtc) {
2565
		if (!to_intel_crtc(crtc)->active)
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
			continue;

		if (crtc == for_crtc)
			break;

		nth_active_pipe++;
	}

	pipe_size = ddb_size / config->num_pipes_active;
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2576
	alloc->end = alloc->start + pipe_size;
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
}

static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
{
	if (config->num_pipes_active == 1)
		return 32;

	return 8;
}

2587 2588 2589 2590
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2591 2592
	if (entry->end)
		entry->end += 1;
2593 2594
}

2595 2596
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2597 2598 2599 2600 2601 2602
{
	enum pipe pipe;
	int plane;
	u32 val;

	for_each_pipe(dev_priv, pipe) {
2603
		for_each_plane(dev_priv, pipe, plane) {
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
		skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
	}
}

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
static unsigned int
skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
{
	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
				 const struct skl_pipe_wm_parameters *params)
{
	unsigned int total_data_rate = 0;
	int plane;

	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		total_data_rate += skl_plane_relative_data_rate(p);
	}

	return total_data_rate;
}

static void
skl_allocate_pipe_ddb(struct drm_crtc *crtc,
		      const struct intel_wm_config *config,
		      const struct skl_pipe_wm_parameters *params,
		      struct skl_ddb_allocation *ddb /* out */)
{
	struct drm_device *dev = crtc->dev;
2652
	struct drm_i915_private *dev_priv = dev->dev_private;
2653 2654
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
2655
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2656
	uint16_t alloc_size, start, cursor_blocks;
2657
	uint16_t minimum[I915_MAX_PLANES];
2658 2659 2660
	unsigned int total_data_rate;
	int plane;

2661 2662
	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
	alloc_size = skl_ddb_entry_size(alloc);
2663 2664 2665 2666 2667 2668 2669
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
		memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
		return;
	}

	cursor_blocks = skl_cursor_allocation(config);
2670 2671
	ddb->cursor[pipe].start = alloc->end - cursor_blocks;
	ddb->cursor[pipe].end = alloc->end;
2672 2673

	alloc_size -= cursor_blocks;
2674
	alloc->end -= cursor_blocks;
2675

2676
	/* 1. Allocate the mininum required blocks for each active plane */
2677
	for_each_plane(dev_priv, pipe, plane) {
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
		const struct intel_plane_wm_parameters *p;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		minimum[plane] = 8;
		alloc_size -= minimum[plane];
	}

2688
	/*
2689 2690
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
2691 2692 2693 2694 2695
	 *
	 * FIXME: we may not allocate every single block here.
	 */
	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);

2696
	start = alloc->start;
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;
		unsigned int data_rate;
		uint16_t plane_blocks;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		data_rate = skl_plane_relative_data_rate(p);

		/*
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
2712 2713 2714
		plane_blocks = minimum[plane];
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
2715 2716

		ddb->plane[pipe][plane].start = start;
2717
		ddb->plane[pipe][plane].end = start + plane_blocks;
2718 2719 2720 2721 2722 2723

		start += plane_blocks;
	}

}

2724
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2725 2726
{
	/* TODO: Take into account the scalers once we support them */
2727
	return config->base.adjusted_mode.crtc_clock;
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
 * for the read latency) and bytes_per_pixel should always be <= 8, so that
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

2744
	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
2745 2746 2747 2748 2749 2750 2751
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2752
			       uint64_t tiling, uint32_t latency)
2753
{
2754 2755 2756
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
2757 2758 2759 2760 2761

	if (latency == 0)
		return UINT_MAX;

	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

2772 2773
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
2774
				plane_blocks_per_line;
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804

	return ret;
}

static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
				       const struct intel_crtc *intel_crtc)
{
	struct drm_device *dev = intel_crtc->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	enum pipe pipe = intel_crtc->pipe;

	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
		   sizeof(new_ddb->plane[pipe])))
		return true;

	if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
		    sizeof(new_ddb->cursor[pipe])))
		return true;

	return false;
}

static void skl_compute_wm_global_parameters(struct drm_device *dev,
					     struct intel_wm_config *config)
{
	struct drm_crtc *crtc;
	struct drm_plane *plane;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2805
		config->num_pipes_active += to_intel_crtc(crtc)->active;
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822

	/* FIXME: I don't think we need those two global parameters on SKL */
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

		config->sprites_enabled |= intel_plane->wm.enabled;
		config->sprites_scaled |= intel_plane->wm.scaled;
	}
}

static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
					   struct skl_pipe_wm_parameters *p)
{
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
2823
	struct drm_framebuffer *fb;
2824 2825
	int i = 1; /* Index for sprite planes start */

2826
	p->active = intel_crtc->active;
2827
	if (p->active) {
2828 2829
		p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
		p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
2830

2831
		fb = crtc->primary->state->fb;
2832 2833 2834
		if (fb) {
			p->plane[0].enabled = true;
			p->plane[0].bytes_per_pixel = fb->bits_per_pixel / 8;
2835
			p->plane[0].tiling = fb->modifier[0];
2836 2837 2838 2839 2840 2841 2842
		} else {
			p->plane[0].enabled = false;
			p->plane[0].bytes_per_pixel = 0;
			p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
		}
		p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
		p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
2843

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
		fb = crtc->cursor->state->fb;
		if (fb) {
			p->cursor.enabled = true;
			p->cursor.bytes_per_pixel = fb->bits_per_pixel / 8;
			p->cursor.horiz_pixels = crtc->cursor->state->crtc_w;
			p->cursor.vert_pixels = crtc->cursor->state->crtc_h;
		} else {
			p->cursor.enabled = false;
			p->cursor.bytes_per_pixel = 0;
			p->cursor.horiz_pixels = 64;
			p->cursor.vert_pixels = 64;
		}
2856 2857 2858 2859 2860
	}

	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

2861 2862
		if (intel_plane->pipe == pipe &&
			plane->type == DRM_PLANE_TYPE_OVERLAY)
2863 2864 2865 2866
			p->plane[i++] = intel_plane->wm;
	}
}

2867 2868
static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				 struct skl_pipe_wm_parameters *p,
2869 2870
				 struct intel_plane_wm_parameters *p_params,
				 uint16_t ddb_allocation,
2871
				 int level,
2872 2873
				 uint16_t *out_blocks, /* out */
				 uint8_t *out_lines /* out */)
2874
{
2875 2876 2877 2878 2879
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
2880

2881
	if (latency == 0 || !p->active || !p_params->enabled)
2882 2883 2884 2885
		return false;

	method1 = skl_wm_method1(p->pixel_rate,
				 p_params->bytes_per_pixel,
2886
				 latency);
2887 2888 2889 2890
	method2 = skl_wm_method2(p->pixel_rate,
				 p->pipe_htotal,
				 p_params->horiz_pixels,
				 p_params->bytes_per_pixel,
2891
				 p_params->tiling,
2892
				 latency);
2893 2894 2895

	plane_bytes_per_line = p_params->horiz_pixels *
					p_params->bytes_per_pixel;
2896
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2897

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
	if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
	    p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
		uint32_t y_tile_minimum = plane_blocks_per_line * 4;
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
2908

2909 2910
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
2911

2912 2913 2914 2915 2916 2917 2918
	if (level >= 1 && level <= 7) {
		if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
		    p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
			res_lines += 4;
		else
			res_blocks++;
	}
2919

2920
	if (res_blocks >= ddb_allocation || res_lines > 31)
2921 2922 2923 2924
		return false;

	*out_blocks = res_blocks;
	*out_lines = res_lines;
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942

	return true;
}

static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
				 struct skl_ddb_allocation *ddb,
				 struct skl_pipe_wm_parameters *p,
				 enum pipe pipe,
				 int level,
				 int num_planes,
				 struct skl_wm_level *result)
{
	uint16_t ddb_blocks;
	int i;

	for (i = 0; i < num_planes; i++) {
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

2943 2944
		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
						p, &p->plane[i],
2945
						ddb_blocks,
2946
						level,
2947 2948 2949 2950 2951
						&result->plane_res_b[i],
						&result->plane_res_l[i]);
	}

	ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
2952 2953 2954
	result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
						 ddb_blocks, level,
						 &result->cursor_res_b,
2955 2956 2957
						 &result->cursor_res_l);
}

2958 2959 2960
static uint32_t
skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
{
2961
	if (!to_intel_crtc(crtc)->active)
2962 2963 2964 2965 2966 2967 2968 2969
		return 0;

	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);

}

static void skl_compute_transition_wm(struct drm_crtc *crtc,
				      struct skl_pipe_wm_parameters *params,
2970
				      struct skl_wm_level *trans_wm /* out */)
2971
{
2972 2973 2974
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int i;

2975 2976
	if (!params->active)
		return;
2977 2978 2979 2980 2981

	/* Until we know more, just disable transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		trans_wm->plane_en[i] = false;
	trans_wm->cursor_en = false;
2982 2983
}

2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
static void skl_compute_pipe_wm(struct drm_crtc *crtc,
				struct skl_ddb_allocation *ddb,
				struct skl_pipe_wm_parameters *params,
				struct skl_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
	const struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int level, max_level = ilk_wm_max_level(dev);

	for (level = 0; level <= max_level; level++) {
		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
				     level, intel_num_planes(intel_crtc),
				     &pipe_wm->wm[level]);
	}
	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);

3001
	skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm_parameters *p,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3012 3013
	uint32_t temp;
	int i;
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

		temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].cursor_res_b;

		if (p_wm->wm[level].cursor_en)
			temp |= PLANE_WM_EN;

		r->cursor[pipe][level] = temp;

	}

3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
	temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.cursor_res_b;
	if (p_wm->trans_wm.cursor_en)
		temp |= PLANE_WM_EN;

	r->cursor_trans[pipe] = temp;

3059 3060 3061
	r->wm_linetime[pipe] = p_wm->linetime;
}

3062 3063 3064 3065 3066 3067 3068 3069 3070
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3081 3082
		if (!new->dirty[pipe])
			continue;
3083

3084
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3085

3086 3087 3088 3089 3090 3091
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
				   new->cursor[pipe][level]);
3092
		}
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
		I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);

		for (i = 0; i < intel_num_planes(crtc); i++)
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
				    &new->ddb.cursor[pipe]);
3105 3106 3107
	}
}

3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3132 3133
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3134 3135 3136
{
	int plane;

3137 3138
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3139
	for_each_plane(dev_priv, pipe, plane) {
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
	bool reallocated[I915_MAX_PIPES] = {false, false, false};
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3189
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3214
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3215
			intel_wait_for_vblank(dev, pipe);
3216
			reallocated[pipe] = true;
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3239
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3240 3241 3242
	}
}

3243 3244 3245 3246 3247 3248 3249 3250 3251
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
			       struct skl_pipe_wm_parameters *params,
			       struct intel_wm_config *config,
			       struct skl_ddb_allocation *ddb, /* out */
			       struct skl_pipe_wm *pipe_wm /* out */)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	skl_compute_wm_pipe_parameters(crtc, params);
3252
	skl_allocate_pipe_ddb(crtc, config, params, ddb);
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);

	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
		return false;

	intel_crtc->wm.skl_active = *pipe_wm;
	return true;
}

static void skl_update_other_pipe_wm(struct drm_device *dev,
				     struct drm_crtc *crtc,
				     struct intel_wm_config *config,
				     struct skl_wm_values *r)
{
	struct intel_crtc *intel_crtc;
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);

	/*
	 * If the WM update hasn't changed the allocation for this_crtc (the
	 * crtc we are currently computing the new WM values for), other
	 * enabled crtcs will keep the same allocation and we don't need to
	 * recompute anything for them.
	 */
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
		return;

	/*
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
	 * other active pipes need new DDB allocation and WM values.
	 */
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
				base.head) {
		struct skl_pipe_wm_parameters params = {};
		struct skl_pipe_wm pipe_wm = {};
		bool wm_changed;

		if (this_crtc->pipe == intel_crtc->pipe)
			continue;

		if (!intel_crtc->active)
			continue;

		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
						&params, config,
						&r->ddb, &pipe_wm);

		/*
		 * If we end up re-computing the other pipe WM values, it's
		 * because it was really needed, so we expect the WM values to
		 * be different.
		 */
		WARN_ON(!wm_changed);

		skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
		r->dirty[intel_crtc->pipe] = true;
	}
}

static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_pipe_wm_parameters params = {};
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
	struct skl_pipe_wm pipe_wm = {};
	struct intel_wm_config config = {};

	memset(results, 0, sizeof(*results));

	skl_compute_wm_global_parameters(dev, &config);

	if (!skl_update_pipe_wm(crtc, &params, &config,
				&results->ddb, &pipe_wm))
		return;

	skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
	results->dirty[intel_crtc->pipe] = true;

	skl_update_other_pipe_wm(dev, crtc, &config, results);
	skl_write_wm_values(dev_priv, results);
3334
	skl_flush_wm_values(dev_priv, results);
3335 3336 3337

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3338 3339 3340 3341 3342 3343 3344 3345
}

static void
skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
{
	struct intel_plane *intel_plane = to_intel_plane(plane);
3346
	struct drm_framebuffer *fb = plane->state->fb;
3347 3348 3349 3350 3351 3352

	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
	intel_plane->wm.vert_pixels = sprite_height;
	intel_plane->wm.bytes_per_pixel = pixel_size;
3353 3354 3355 3356 3357 3358 3359
	intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
	/*
	 * Framebuffer can be NULL on plane disable, but it does not
	 * matter for watermarks if we assume no tiling in that case.
	 */
	if (fb)
		intel_plane->wm.tiling = fb->modifier[0];
3360 3361 3362 3363

	skl_update_wm(crtc);
}

3364
static void ilk_update_wm(struct drm_crtc *crtc)
3365
{
3366
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3367
	struct drm_device *dev = crtc->dev;
3368
	struct drm_i915_private *dev_priv = dev->dev_private;
3369 3370 3371
	struct ilk_wm_maximums max;
	struct ilk_pipe_wm_parameters params = {};
	struct ilk_wm_values results = {};
3372
	enum intel_ddb_partitioning partitioning;
3373
	struct intel_pipe_wm pipe_wm = {};
3374
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3375
	struct intel_wm_config config = {};
3376

3377
	ilk_compute_wm_parameters(crtc, &params);
3378 3379 3380 3381 3382

	intel_compute_pipe_wm(crtc, &params, &pipe_wm);

	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
		return;
3383

3384
	intel_crtc->wm.active = pipe_wm;
3385

3386 3387
	ilk_compute_wm_config(dev, &config);

3388
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3389
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3390 3391

	/* 5/6 split only in single pipe config on IVB+ */
3392 3393
	if (INTEL_INFO(dev)->gen >= 7 &&
	    config.num_pipes_active == 1 && config.sprites_enabled) {
3394
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3395
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3396

3397
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3398
	} else {
3399
		best_lp_wm = &lp_wm_1_2;
3400 3401
	}

3402
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3403
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3404

3405
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3406

3407
	ilk_write_wm_values(dev_priv, &results);
3408 3409
}

3410 3411 3412 3413 3414
static void
ilk_update_sprite_wm(struct drm_plane *plane,
		     struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
3415
{
3416
	struct drm_device *dev = plane->dev;
3417
	struct intel_plane *intel_plane = to_intel_plane(plane);
3418

3419 3420 3421
	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
3422
	intel_plane->wm.vert_pixels = sprite_width;
3423
	intel_plane->wm.bytes_per_pixel = pixel_size;
3424

3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
	/*
	 * IVB workaround: must disable low power watermarks for at least
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
	 * when scaling is disabled.
	 *
	 * WaCxSRDisabledForSpriteScaling:ivb
	 */
	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
		intel_wait_for_vblank(dev, intel_plane->pipe);

3435
	ilk_update_wm(crtc);
3436 3437
}

3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
			active->wm[level].cursor_en = is_enabled;
			active->wm[level].cursor_res_b =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].cursor_res_l =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
			active->trans_wm.cursor_en = is_enabled;
			active->trans_wm.cursor_res_b =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.cursor_res_l =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
		hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
	hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));

3508
	if (!intel_crtc->active)
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
		return;

	hw->dirty[pipe] = true;

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
		temp = hw->cursor[pipe][level];
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

	temp = hw->cursor_trans[pipe];
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
3536 3537
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3538 3539
	struct drm_crtc *crtc;

3540
	skl_ddb_get_hw_state(dev_priv, ddb);
3541 3542 3543 3544
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
}

3545 3546 3547 3548
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3549
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
	enum pipe pipe = intel_crtc->pipe;
	static const unsigned int wm0_pipe_reg[] = {
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3560
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3561
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3562

3563
	active->pipe_enabled = intel_crtc->active;
3564 3565

	if (active->pipe_enabled) {
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
}

void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3595
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3596 3597
	struct drm_crtc *crtc;

3598
	for_each_crtc(dev, crtc)
3599 3600 3601 3602 3603 3604 3605
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3606 3607 3608 3609
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
3610

3611
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3612 3613 3614 3615 3616
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3617 3618 3619 3620 3621

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
3654
void intel_update_watermarks(struct drm_crtc *crtc)
3655
{
3656
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3657 3658

	if (dev_priv->display.update_wm)
3659
		dev_priv->display.update_wm(crtc);
3660 3661
}

3662 3663
void intel_update_sprite_watermarks(struct drm_plane *plane,
				    struct drm_crtc *crtc,
3664 3665 3666
				    uint32_t sprite_width,
				    uint32_t sprite_height,
				    int pixel_size,
3667
				    bool enabled, bool scaled)
3668
{
3669
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3670 3671

	if (dev_priv->display.update_sprite_wm)
3672 3673
		dev_priv->display.update_sprite_wm(plane, crtc,
						   sprite_width, sprite_height,
3674
						   pixel_size, enabled, scaled);
3675 3676
}

3677 3678 3679 3680 3681 3682 3683 3684 3685
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

3686 3687 3688 3689 3690
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

3691 3692
	assert_spin_locked(&mchdev_lock);

3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

3710
static void ironlake_enable_drps(struct drm_device *dev)
3711 3712 3713 3714 3715
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

3716 3717
	spin_lock_irq(&mchdev_lock);

3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
		PXVFREQ_PX_SHIFT;

3741 3742
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
3743

3744 3745 3746
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

3763
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3764
		DRM_ERROR("stuck trying to change perf mode\n");
3765
	mdelay(1);
3766 3767 3768

	ironlake_set_drps(dev, fstart);

3769
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3770
		I915_READ(0x112e0);
3771 3772
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
3773
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
3774 3775

	spin_unlock_irq(&mchdev_lock);
3776 3777
}

3778
static void ironlake_disable_drps(struct drm_device *dev)
3779 3780
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3781 3782 3783 3784 3785
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
3786 3787 3788 3789 3790 3791 3792 3793 3794

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
3795
	ironlake_set_drps(dev, dev_priv->ips.fstart);
3796
	mdelay(1);
3797 3798
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
3799
	mdelay(1);
3800

3801
	spin_unlock_irq(&mchdev_lock);
3802 3803
}

3804 3805 3806 3807 3808
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
3809
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3810
{
3811
	u32 limits;
3812

3813 3814 3815 3816 3817 3818
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
3819 3820 3821 3822 3823 3824 3825 3826 3827
	if (IS_GEN9(dev_priv->dev)) {
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
3828 3829 3830 3831

	return limits;
}

3832 3833 3834
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
3835 3836
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
3837 3838 3839 3840

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
3841
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3842 3843 3844 3845
			new_power = BETWEEN;
		break;

	case BETWEEN:
3846
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3847
			new_power = LOW_POWER;
3848
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3849 3850 3851 3852
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
3853
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3854 3855 3856 3857
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
3858
	if (val == dev_priv->rps.min_freq_softlimit)
3859
		new_power = LOW_POWER;
3860
	if (val == dev_priv->rps.max_freq_softlimit)
3861 3862 3863 3864 3865 3866 3867 3868
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
3869 3870
		ei_up = 16000;
		threshold_up = 95;
3871 3872

		/* Downclock if less than 85% busy over 32ms */
3873 3874
		ei_down = 32000;
		threshold_down = 85;
3875 3876 3877 3878
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
3879 3880
		ei_up = 13000;
		threshold_up = 90;
3881 3882

		/* Downclock if less than 75% busy over 32ms */
3883 3884
		ei_down = 32000;
		threshold_down = 75;
3885 3886 3887 3888
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
3889 3890
		ei_up = 10000;
		threshold_up = 85;
3891 3892

		/* Downclock if less than 60% busy over 32ms */
3893 3894
		ei_down = 32000;
		threshold_down = 60;
3895 3896 3897
		break;
	}

3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
	I915_WRITE(GEN6_RP_UP_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));

	I915_WRITE(GEN6_RP_DOWN_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));

	 I915_WRITE(GEN6_RP_CONTROL,
		    GEN6_RP_MEDIA_TURBO |
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
		    GEN6_RP_MEDIA_IS_GFX |
		    GEN6_RP_ENABLE |
		    GEN6_RP_UP_BUSY_AVG |
		    GEN6_RP_DOWN_IDLE_AVG);

3916 3917 3918 3919
	dev_priv->rps.power = new_power;
	dev_priv->rps.last_adj = 0;
}

3920 3921 3922 3923 3924 3925 3926 3927 3928
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
		mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
	if (val < dev_priv->rps.max_freq_softlimit)
		mask |= GEN6_PM_RP_UP_THRESHOLD;

3929 3930 3931
	mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
	mask &= dev_priv->pm_rps_events;

3932
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
3933 3934
}

3935 3936 3937
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3938
static void gen6_set_rps(struct drm_device *dev, u8 val)
3939 3940
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3941

3942
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3943 3944
	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3945

C
Chris Wilson 已提交
3946 3947 3948 3949 3950
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
3951

3952 3953 3954 3955
		if (IS_GEN9(dev))
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
3956 3957 3958 3959 3960 3961 3962
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
3963
	}
3964 3965 3966 3967

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
3968
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
3969
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3970

3971 3972
	POSTING_READ(GEN6_RPNSWREQ);

3973
	dev_priv->rps.cur_freq = val;
3974
	trace_intel_gpu_freq_change(val * 50);
3975 3976
}

3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997
static void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
	WARN_ON(val < dev_priv->rps.min_freq_softlimit);

	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

	if (val != dev_priv->rps.cur_freq)
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);

	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
/* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
 *
 * * If Gfx is Idle, then
 * 1. Mask Turbo interrupts
 * 2. Bring up Gfx clock
 * 3. Change the freq to Rpn and wait till P-Unit updates freq
 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
 * 5. Unmask Turbo interrupts
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4009 4010
	struct drm_device *dev = dev_priv->dev;

4011 4012
	/* CHV and latest VLV don't need to force the gfx clock */
	if (IS_CHERRYVIEW(dev) || dev->pdev->revision >= 0xd) {
4013 4014 4015 4016
		valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
		return;
	}

4017 4018 4019 4020
	/*
	 * When we are idle.  Drop to min voltage state.
	 */

4021
	if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
4022 4023 4024
		return;

	/* Mask turbo interrupt so that they will not come in between */
4025 4026
	I915_WRITE(GEN6_PMINTRMSK,
		   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4027

4028
	vlv_force_gfx_clock(dev_priv, true);
4029

4030
	dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
4031 4032

	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
4033
					dev_priv->rps.min_freq_softlimit);
4034 4035

	if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
4036
				& GENFREQSTATUS) == 0, 100))
4037 4038
		DRM_ERROR("timed out waiting for Punit\n");

4039
	vlv_force_gfx_clock(dev_priv, false);
4040

4041 4042
	I915_WRITE(GEN6_PMINTRMSK,
		   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4043 4044
}

4045 4046
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
4047 4048
	struct drm_device *dev = dev_priv->dev;

4049
	mutex_lock(&dev_priv->rps.hw_lock);
4050
	if (dev_priv->rps.enabled) {
4051
		if (IS_VALLEYVIEW(dev))
4052
			vlv_set_rps_idle(dev_priv);
4053
		else
4054
			gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4055 4056
		dev_priv->rps.last_adj = 0;
	}
4057 4058 4059 4060 4061 4062
	mutex_unlock(&dev_priv->rps.hw_lock);
}

void gen6_rps_boost(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
4063
	if (dev_priv->rps.enabled) {
4064
		intel_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
4065 4066
		dev_priv->rps.last_adj = 0;
	}
4067 4068 4069
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4070
void intel_set_rps(struct drm_device *dev, u8 val)
4071
{
4072 4073 4074 4075
	if (IS_VALLEYVIEW(dev))
		valleyview_set_rps(dev, val);
	else
		gen6_set_rps(dev, val);
4076 4077
}

Z
Zhe Wang 已提交
4078 4079 4080 4081 4082
static void gen9_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4083
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4084 4085
}

4086
static void gen6_disable_rps(struct drm_device *dev)
4087 4088 4089 4090
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4091 4092 4093
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
}

4094 4095 4096 4097 4098 4099 4100
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4101 4102 4103 4104
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4105 4106
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4107
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4108

4109
	I915_WRITE(GEN6_RC_CONTROL, 0);
4110

4111
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4112 4113
}

B
Ben Widawsky 已提交
4114 4115
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
4116 4117 4118 4119 4120 4121
	if (IS_VALLEYVIEW(dev)) {
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4122 4123 4124 4125 4126 4127 4128 4129 4130
	if (HAS_RC6p(dev))
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
B
Ben Widawsky 已提交
4131 4132
}

I
Imre Deak 已提交
4133
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4134
{
4135 4136 4137 4138
	/* No RC6 before Ironlake */
	if (INTEL_INFO(dev)->gen < 5)
		return 0;

I
Imre Deak 已提交
4139 4140 4141 4142
	/* RC6 is only on Ironlake mobile not on desktop */
	if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
		return 0;

4143
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
4144 4145 4146
	if (enable_rc6 >= 0) {
		int mask;

4147
		if (HAS_RC6p(dev))
I
Imre Deak 已提交
4148 4149 4150 4151 4152 4153
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
4154 4155
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
4156 4157 4158

		return enable_rc6 & mask;
	}
4159

4160 4161 4162
	/* Disable RC6 on Ironlake */
	if (INTEL_INFO(dev)->gen == 5)
		return 0;
4163

4164
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
4165
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4166 4167

	return INTEL_RC6_ENABLE;
4168 4169
}

I
Imre Deak 已提交
4170 4171 4172 4173 4174
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

4175
static void gen6_init_rps_frequencies(struct drm_device *dev)
4176
{
4177 4178 4179 4180 4181 4182
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4183 4184
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
4185
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4186
	dev_priv->rps.rp0_freq		= (rp_state_cap >>  0) & 0xff;
4187
	dev_priv->rps.rp1_freq		= (rp_state_cap >>  8) & 0xff;
4188
	dev_priv->rps.min_freq		= (rp_state_cap >> 16) & 0xff;
4189 4190 4191 4192 4193 4194 4195
	if (IS_SKYLAKE(dev)) {
		/* Store the frequency values in 16.66 MHZ units, which is
		   the natural hardware unit for SKL */
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
	}
4196 4197 4198
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

4199 4200 4201 4202 4203 4204 4205
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
4206 4207 4208 4209
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
4210 4211
	}

4212 4213 4214 4215
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

4216 4217 4218
	if (dev_priv->rps.min_freq_softlimit == 0) {
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
			dev_priv->rps.min_freq_softlimit =
4219 4220
				/* max(RPe, 450 MHz) */
				max(dev_priv->rps.efficient_freq, (u8) 9);
4221 4222 4223 4224
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
4225 4226
}

J
Jesse Barnes 已提交
4227
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
Z
Zhe Wang 已提交
4228
static void gen9_enable_rps(struct drm_device *dev)
J
Jesse Barnes 已提交
4229 4230 4231 4232 4233
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4234 4235
	gen6_init_rps_frequencies(dev);

J
Jesse Barnes 已提交
4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
	I915_WRITE(GEN6_RPNSWREQ, 0xc800000);
	I915_WRITE(GEN6_RC_VIDEO_FREQ, 0xc800000);

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, 0x12060000);
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 0xe808);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 0x3bd08);
	I915_WRITE(GEN6_RP_UP_EI, 0x101d0);
	I915_WRITE(GEN6_RP_DOWN_EI, 0x55730);
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
	I915_WRITE(GEN6_PMINTRMSK, 0x6);
	I915_WRITE(GEN6_RP_CONTROL, GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_MODE | GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	gen6_enable_rps_interrupts(dev);

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen9_enable_rc6(struct drm_device *dev)
Z
Zhe Wang 已提交
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	uint32_t rc6_mask = 0;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4269
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */

4283 4284 4285 4286
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
4287 4288 4289 4290 4291 4292 4293 4294 4295
	/* 3a: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
			"on" : "off");
	I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				   GEN6_RC_CTL_EI_MODE(1) |
				   rc6_mask);

4296 4297 4298
	/* 3b: Enable Coarse Power Gating only when RC6 is enabled */
	I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? 3 : 0);

4299
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4300 4301 4302

}

4303 4304 4305
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4306
	struct intel_engine_cs *ring;
4307
	uint32_t rc6_mask = 0;
4308 4309 4310 4311 4312 4313 4314
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4315
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4316 4317 4318 4319

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4320 4321
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
4322 4323 4324 4325 4326 4327 4328 4329

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
4330 4331 4332 4333
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4334 4335 4336 4337

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4338
	intel_print_rc6_info(dev, rc6_mask);
4339 4340 4341 4342 4343 4344 4345 4346
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
4347 4348

	/* 4 Program defaults and thresholds for RPS*/
4349 4350 4351 4352
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4367 4368

	/* 5: Enable RPS */
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

4379 4380
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4381

4382
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4383 4384
}

4385
static void gen6_enable_rps(struct drm_device *dev)
4386
{
4387
	struct drm_i915_private *dev_priv = dev->dev_private;
4388
	struct intel_engine_cs *ring;
4389
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4390 4391
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
4392
	int i, ret;
4393

4394
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4395

4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4410
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4411

4412 4413
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
J
Jeff McGee 已提交
4414

4415 4416 4417 4418 4419 4420 4421 4422 4423
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

4424 4425
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4426 4427 4428

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4429
	if (IS_IVYBRIDGE(dev))
4430 4431 4432
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4433
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4434 4435
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

4436
	/* Check if we are enabling RC6 */
4437 4438 4439 4440
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

4441 4442 4443 4444
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4445

4446 4447 4448
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
4449

B
Ben Widawsky 已提交
4450
	intel_print_rc6_info(dev, rc6_mask);
4451 4452 4453 4454 4455 4456

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

4457 4458
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4459 4460
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
4461
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4462
	if (ret)
B
Ben Widawsky 已提交
4463
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4464 4465 4466 4467

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4468
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4469
				 (pcu_mbox & 0xff) * 50);
4470
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
4471 4472
	}

4473
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4474
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4475

4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

4490
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4491 4492
}

4493
static void __gen6_update_ring_freq(struct drm_device *dev)
4494
{
4495
	struct drm_i915_private *dev_priv = dev->dev_private;
4496
	int min_freq = 15;
4497 4498
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
4499
	int scaling_factor = 180;
4500
	struct cpufreq_policy *policy;
4501

4502
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4503

4504 4505 4506 4507 4508 4509 4510 4511 4512
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
4513
		max_ia_freq = tsc_khz;
4514
	}
4515 4516 4517 4518

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

4519
	min_ring_freq = I915_READ(DCLK) & 0xf;
4520 4521
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4522

4523 4524 4525 4526 4527
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
4528
	for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
4529
	     gpu_freq--) {
4530
		int diff = dev_priv->rps.max_freq - gpu_freq;
4531 4532
		unsigned int ia_freq = 0, ring_freq = 0;

4533 4534 4535 4536
		if (INTEL_INFO(dev)->gen >= 8) {
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
4537
			ring_freq = mult_frac(gpu_freq, 5, 4);
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
4554

B
Ben Widawsky 已提交
4555 4556
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4557 4558 4559
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
4560 4561 4562
	}
}

4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4575
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4576
{
4577
	struct drm_device *dev = dev_priv->dev;
4578 4579
	u32 val, rp0;

4580 4581
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4582

4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
		switch (INTEL_INFO(dev)->eu_total) {
		case 8:
				/* (2 * 4) config */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
				break;
		case 12:
				/* (2 * 6) config */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
				break;
		case 16:
				/* (2 * 8) config */
		default:
				/* Setting (2 * 8) Min RP0 for any other combination */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
				break;
		}
		rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
	} else {
		/* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
		rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_MAX_FREQ_MASK;
	}
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

4619 4620
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
4621
	struct drm_device *dev = dev_priv->dev;
4622 4623
	u32 val, rp1;

4624 4625 4626 4627 4628 4629 4630 4631 4632
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
		rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
	} else {
		/* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
		rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_MAX_FREQ_MASK);
	}
4633 4634 4635
	return rp1;
}

4636
static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4637
{
4638
	struct drm_device *dev = dev_priv->dev;
4639 4640
	u32 val, rpn;

4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
		rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);
	} else { /* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
		rpn = ((val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK);
	}

4651 4652 4653
	return rpn;
}

4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

4665
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4666 4667 4668
{
	u32 val, rp0;

4669
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

4682
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4683
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4684
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4685 4686 4687 4688 4689
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

4690
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4691
{
4692
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4693 4694
}

4695 4696 4697 4698 4699 4700 4701 4702 4703
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4725
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4726 4727 4728 4729 4730 4731
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
4732 4733

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4734 4735
}

4736 4737 4738 4739 4740 4741 4742 4743
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

4744 4745
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4746 4747 4748 4749 4750 4751 4752 4753
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
4754
								      I915_GTT_OFFSET_NONE,
4755 4756 4757 4758
								      pctx_size);
		goto out;
	}

4759 4760
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
4779
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4780 4781 4782
	dev_priv->vlv_pctx = pctx;
}

4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

4794 4795 4796
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4797
	u32 val;
4798 4799 4800 4801 4802

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
4816
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4817

4818 4819 4820
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4821
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4822 4823 4824 4825
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4826
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4827 4828
			 dev_priv->rps.efficient_freq);

4829 4830
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4831
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4832 4833
			 dev_priv->rps.rp1_freq);

4834 4835
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4836
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
			 dev_priv->rps.min_freq);

	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

4849 4850
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
4851
	struct drm_i915_private *dev_priv = dev->dev_private;
4852
	u32 val;
4853

4854
	cherryview_setup_pctx(dev);
4855 4856 4857

	mutex_lock(&dev_priv->rps.hw_lock);

4858 4859 4860 4861
	mutex_lock(&dev_priv->dpio_lock);
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
	mutex_unlock(&dev_priv->dpio_lock);

4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884
	switch ((val >> 2) & 0x7) {
	case 0:
	case 1:
		dev_priv->rps.cz_freq = 200;
		dev_priv->mem_freq = 1600;
		break;
	case 2:
		dev_priv->rps.cz_freq = 267;
		dev_priv->mem_freq = 1600;
		break;
	case 3:
		dev_priv->rps.cz_freq = 333;
		dev_priv->mem_freq = 2000;
		break;
	case 4:
		dev_priv->rps.cz_freq = 320;
		dev_priv->mem_freq = 1600;
		break;
	case 5:
		dev_priv->rps.cz_freq = 400;
		dev_priv->mem_freq = 1600;
		break;
	}
4885
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4886

4887 4888 4889
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4890
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4891 4892 4893 4894
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4895
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4896 4897
			 dev_priv->rps.efficient_freq);

4898 4899
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4900
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4901 4902
			 dev_priv->rps.rp1_freq);

4903 4904
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4905
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4906 4907
			 dev_priv->rps.min_freq);

4908 4909 4910 4911 4912 4913
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

4914 4915 4916 4917 4918 4919 4920 4921
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
4922 4923
}

4924 4925 4926 4927 4928
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

4929 4930 4931 4932
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
4933
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4949
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4950

4951 4952 4953
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4954 4955 4956 4957 4958 4959 4960 4961 4962
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

4963 4964
	/* TO threshold set to 1750 us ( 0x557 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
4978
		rc6_mode = GEN7_RC_CTL_TO_MODE;
4979 4980 4981

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

4982
	/* 4 Program defaults and thresholds for RPS*/
4983
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4984 4985 4986 4987 4988 4989 4990 4991 4992 4993
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4994
		   GEN6_RP_MEDIA_IS_GFX |
4995 4996 4997 4998 4999 5000
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5001 5002 5003
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5004
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5005 5006 5007 5008
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5009
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5010 5011 5012
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5013
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5014 5015 5016 5017
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

5018
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5019 5020
}

5021 5022 5023
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5024
	struct intel_engine_cs *ring;
5025
	u32 gtfifodbg, val, rc6_mode = 0;
5026 5027 5028 5029
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5030 5031
	valleyview_check_pctx(dev_priv);

5032
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5033 5034
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5035 5036 5037
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5038
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5039
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5040

5041 5042 5043
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5044
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

5067
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5068 5069

	/* allows RC6 residency counter to work */
5070
	I915_WRITE(VLV_COUNTER_CONTROL,
5071 5072
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5073 5074
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5075

5076
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5077
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5078 5079 5080

	intel_print_rc6_info(dev, rc6_mode);

5081
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5082

5083
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5084

5085 5086 5087
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5088
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5089 5090
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5091
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5092
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5093
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5094
			 dev_priv->rps.cur_freq);
5095

5096
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5097
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5098
			 dev_priv->rps.efficient_freq);
5099

5100
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5101

5102
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5103 5104
}

5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

5134
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5135 5136 5137 5138 5139 5140
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

5141 5142
	assert_spin_locked(&mchdev_lock);

5143
	diff1 = now - dev_priv->ips.last_time1;
5144 5145 5146 5147 5148 5149 5150

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
5151
		return dev_priv->ips.chipset_power;
5152 5153 5154 5155 5156 5157 5158 5159

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
5160 5161
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
5162 5163
		diff += total_count;
	} else {
5164
		diff = total_count - dev_priv->ips.last_count1;
5165 5166 5167
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5168 5169
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

5180 5181
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
5182

5183
	dev_priv->ips.chipset_power = ret;
5184 5185 5186 5187

	return ret;
}

5188 5189
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
5190
	struct drm_device *dev = dev_priv->dev;
5191 5192
	unsigned long val;

5193
	if (INTEL_INFO(dev)->gen != 5)
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5232
{
5233
	struct drm_device *dev = dev_priv->dev;
5234 5235 5236
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

5237
	if (INTEL_INFO(dev)->is_mobile)
5238 5239 5240
		return vm > 0 ? vm : 0;

	return vd;
5241 5242
}

5243
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5244
{
5245
	u64 now, diff, diffms;
5246 5247
	u32 count;

5248
	assert_spin_locked(&mchdev_lock);
5249

5250 5251 5252
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
5253 5254 5255 5256 5257 5258 5259

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

5260 5261
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
5262 5263
		diff += count;
	} else {
5264
		diff = count - dev_priv->ips.last_count2;
5265 5266
	}

5267 5268
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
5269 5270 5271 5272

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
5273
	dev_priv->ips.gfx_power = diff;
5274 5275
}

5276 5277
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
5278 5279 5280
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
5281 5282
		return;

5283
	spin_lock_irq(&mchdev_lock);
5284 5285 5286

	__i915_update_gfx_val(dev_priv);

5287
	spin_unlock_irq(&mchdev_lock);
5288 5289
}

5290
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5291 5292 5293 5294
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5295 5296
	assert_spin_locked(&mchdev_lock);

5297
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5317
	corr2 = (corr * dev_priv->ips.corr);
5318 5319 5320 5321

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5322
	__i915_update_gfx_val(dev_priv);
5323

5324
	return dev_priv->ips.gfx_power + state2;
5325 5326
}

5327 5328
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5329
	struct drm_device *dev = dev_priv->dev;
5330 5331
	unsigned long val;

5332
	if (INTEL_INFO(dev)->gen != 5)
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

5355
	spin_lock_irq(&mchdev_lock);
5356 5357 5358 5359
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5360 5361
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
5362 5363 5364 5365

	ret = chipset_val + graphics_val;

out_unlock:
5366
	spin_unlock_irq(&mchdev_lock);
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5382
	spin_lock_irq(&mchdev_lock);
5383 5384 5385 5386 5387 5388
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5389 5390
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
5391 5392

out_unlock:
5393
	spin_unlock_irq(&mchdev_lock);
5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5410
	spin_lock_irq(&mchdev_lock);
5411 5412 5413 5414 5415 5416
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5417 5418
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
5419 5420

out_unlock:
5421
	spin_unlock_irq(&mchdev_lock);
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
5435
	struct intel_engine_cs *ring;
5436
	bool ret = false;
5437
	int i;
5438

5439
	spin_lock_irq(&mchdev_lock);
5440 5441 5442 5443
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5444 5445
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
5446 5447

out_unlock:
5448
	spin_unlock_irq(&mchdev_lock);
5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5465
	spin_lock_irq(&mchdev_lock);
5466 5467 5468 5469 5470 5471
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5472
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5473

5474
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5475 5476 5477
		ret = false;

out_unlock:
5478
	spin_unlock_irq(&mchdev_lock);
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
5506 5507
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5508
	spin_lock_irq(&mchdev_lock);
5509
	i915_mch_dev = dev_priv;
5510
	spin_unlock_irq(&mchdev_lock);
5511 5512 5513 5514 5515 5516

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
5517
	spin_lock_irq(&mchdev_lock);
5518
	i915_mch_dev = NULL;
5519
	spin_unlock_irq(&mchdev_lock);
5520
}
5521

5522
static void intel_init_emon(struct drm_device *dev)
5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		I915_WRITE(PEW + (i * 4), 0);
	for (i = 0; i < 3; i++)
		I915_WRITE(DEW + (i * 4), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
		I915_WRITE(PXW + (i * 4), val);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
		I915_WRITE(PXWL + (i * 4), 0);

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

5590
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5591 5592
}

5593 5594
void intel_init_gt_powersave(struct drm_device *dev)
{
I
Imre Deak 已提交
5595 5596
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);

5597 5598 5599
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
5600
		valleyview_init_gt_powersave(dev);
5601 5602 5603 5604
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
5605 5606 5607
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
5608
		valleyview_cleanup_gt_powersave(dev);
5609 5610
}

5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624
static void gen6_suspend_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

	/*
	 * TODO: disable RPS interrupts on GEN9+ too once RPS support
	 * is added for it.
	 */
	if (INTEL_INFO(dev)->gen < 9)
		gen6_disable_rps_interrupts(dev);
}

5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

I
Imre Deak 已提交
5637 5638 5639
	if (INTEL_INFO(dev)->gen < 6)
		return;

5640
	gen6_suspend_rps(dev);
5641 5642 5643

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
5644 5645
}

5646 5647
void intel_disable_gt_powersave(struct drm_device *dev)
{
5648 5649
	struct drm_i915_private *dev_priv = dev->dev_private;

5650
	if (IS_IRONLAKE_M(dev)) {
5651
		ironlake_disable_drps(dev);
5652
	} else if (INTEL_INFO(dev)->gen >= 6) {
5653
		intel_suspend_gt_powersave(dev);
5654

5655
		mutex_lock(&dev_priv->rps.hw_lock);
Z
Zhe Wang 已提交
5656 5657 5658
		if (INTEL_INFO(dev)->gen >= 9)
			gen9_disable_rps(dev);
		else if (IS_CHERRYVIEW(dev))
5659 5660
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
5661 5662 5663
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
5664

5665
		dev_priv->rps.enabled = false;
5666
		mutex_unlock(&dev_priv->rps.hw_lock);
5667
	}
5668 5669
}

5670 5671 5672 5673 5674 5675 5676
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

5677
	mutex_lock(&dev_priv->rps.hw_lock);
5678

I
Imre Deak 已提交
5679 5680 5681 5682 5683 5684 5685
	/*
	 * TODO: reset/enable RPS interrupts on GEN9+ too, once RPS support is
	 * added for it.
	 */
	if (INTEL_INFO(dev)->gen < 9)
		gen6_reset_rps_interrupts(dev);

5686 5687 5688
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
5689
		valleyview_enable_rps(dev);
Z
Zhe Wang 已提交
5690
	} else if (INTEL_INFO(dev)->gen >= 9) {
J
Jesse Barnes 已提交
5691
		gen9_enable_rc6(dev);
Z
Zhe Wang 已提交
5692
		gen9_enable_rps(dev);
J
Jesse Barnes 已提交
5693
		__gen6_update_ring_freq(dev);
5694 5695
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
5696
		__gen6_update_ring_freq(dev);
5697 5698
	} else {
		gen6_enable_rps(dev);
5699
		__gen6_update_ring_freq(dev);
5700
	}
5701
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
5702 5703 5704 5705

	if (INTEL_INFO(dev)->gen < 9)
		gen6_enable_rps_interrupts(dev);

5706
	mutex_unlock(&dev_priv->rps.hw_lock);
5707 5708

	intel_runtime_pm_put(dev_priv);
5709 5710
}

5711 5712
void intel_enable_gt_powersave(struct drm_device *dev)
{
5713 5714
	struct drm_i915_private *dev_priv = dev->dev_private;

5715 5716 5717 5718
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev))
		return;

5719
	if (IS_IRONLAKE_M(dev)) {
5720
		mutex_lock(&dev->struct_mutex);
5721 5722
		ironlake_enable_drps(dev);
		intel_init_emon(dev);
5723
		mutex_unlock(&dev->struct_mutex);
5724
	} else if (INTEL_INFO(dev)->gen >= 6) {
5725 5726 5727 5728
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
5729 5730 5731 5732 5733 5734 5735
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
5736
		 */
5737 5738 5739
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
5740 5741 5742
	}
}

5743 5744 5745 5746
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5747 5748 5749 5750
	if (INTEL_INFO(dev)->gen < 6)
		return;

	gen6_suspend_rps(dev);
5751 5752 5753
	dev_priv->rps.enabled = false;
}

5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

5766 5767 5768 5769 5770
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;

5771
	for_each_pipe(dev_priv, pipe) {
5772 5773 5774
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
5775
		intel_flush_primary_plane(dev_priv, pipe);
5776 5777 5778
	}
}

5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

5793
static void ironlake_init_clock_gating(struct drm_device *dev)
5794 5795
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5796
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5797

5798 5799 5800 5801
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
5802 5803 5804
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5822
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5823 5824 5825
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
5826 5827

	ilk_init_lp_watermarks(dev);
5828 5829 5830 5831 5832 5833 5834 5835 5836

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
5837
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
5838 5839 5840 5841 5842 5843 5844 5845
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

5846 5847
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

5848 5849 5850 5851 5852 5853
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
5854

5855
	/* WaDisableRenderCachePipelinedFlush:ilk */
5856 5857
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5858

5859 5860 5861
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5862
	g4x_disable_trickle_feed(dev);
5863

5864 5865 5866 5867 5868 5869 5870
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
5871
	uint32_t val;
5872 5873 5874 5875 5876 5877

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
5878 5879 5880
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
5881 5882
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
5883 5884 5885
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
5886
	for_each_pipe(dev_priv, pipe) {
5887 5888 5889
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5890
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
5891
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5892 5893 5894
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5895 5896
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
5897
	/* WADP0ClockGatingDisable */
5898
	for_each_pipe(dev_priv, pipe) {
5899 5900 5901
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
5902 5903
}

5904 5905 5906 5907 5908 5909
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
5910 5911 5912
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
5913 5914
}

5915
static void gen6_init_clock_gating(struct drm_device *dev)
5916 5917
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5918
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5919

5920
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5921 5922 5923 5924 5925

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

5926
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5927 5928 5929
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

5930 5931 5932
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5933 5934 5935
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5936 5937 5938 5939
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5940 5941
	 */
	I915_WRITE(GEN6_GT_MODE,
5942
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5943

5944
	ilk_init_lp_watermarks(dev);
5945 5946

	I915_WRITE(CACHE_MODE_0,
5947
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
5963
	 *
5964 5965
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
5966 5967 5968 5969 5970
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

5971
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
5972 5973
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5974

5975 5976 5977 5978 5979 5980 5981 5982
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

5983 5984 5985 5986 5987 5988 5989 5990
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
5991 5992
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
5993 5994 5995 5996 5997 5998 5999
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6000 6001 6002 6003
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6004

6005
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6006

6007
	cpt_init_clock_gating(dev);
6008 6009

	gen6_check_mch_setup(dev);
6010 6011 6012 6013 6014 6015
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6016
	/*
6017
	 * WaVSThreadDispatchOverride:ivb,vlv
6018 6019 6020 6021
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6022 6023 6024 6025 6026 6027 6028 6029
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6042 6043 6044 6045 6046

	/* WADPOClockGatingDisable:hsw */
	I915_WRITE(_TRANSA_CHICKEN1,
		   I915_READ(_TRANSA_CHICKEN1) |
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6047 6048
}

6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6061
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
6062 6063
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6064
	enum pipe pipe;
B
Ben Widawsky 已提交
6065 6066 6067 6068

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);
6069

6070
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6071
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6072

6073
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6074 6075 6076
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6077
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6078
	for_each_pipe(dev_priv, pipe) {
6079
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6080
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6081
			   BDW_DPRS_MASK_VBLANK_SRD);
6082
	}
6083

6084 6085 6086 6087 6088
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6089

6090 6091
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6092 6093 6094 6095

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6096

6097
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
6098 6099
}

6100 6101 6102 6103
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6104
	ilk_init_lp_watermarks(dev);
6105

6106 6107 6108 6109 6110
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6111
	/* This is required by WaCatErrorRejectionIssue:hsw */
6112 6113 6114 6115
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6116 6117 6118
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6119

6120 6121 6122
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6123 6124 6125 6126
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6127
	/* WaDisable4x2SubspanOptimization:hsw */
6128 6129
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6130

6131 6132 6133
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6134 6135 6136 6137
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6138 6139
	 */
	I915_WRITE(GEN7_GT_MODE,
6140
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6141

6142 6143 6144 6145
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6146
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6147 6148
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6149 6150 6151
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6152

6153
	lpt_init_clock_gating(dev);
6154 6155
}

6156
static void ivybridge_init_clock_gating(struct drm_device *dev)
6157 6158
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6159
	uint32_t snpcr;
6160

6161
	ilk_init_lp_watermarks(dev);
6162

6163
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6164

6165
	/* WaDisableEarlyCull:ivb */
6166 6167 6168
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6169
	/* WaDisableBackToBackFlipFix:ivb */
6170 6171 6172 6173
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6174
	/* WaDisablePSDDualDispatchEnable:ivb */
6175 6176 6177 6178
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6179 6180 6181
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6182
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6183 6184 6185
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6186
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6187 6188 6189
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6190 6191 6192 6193
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6194 6195 6196 6197
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6198 6199
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6200
	}
6201

6202
	/* WaForceL3Serialization:ivb */
6203 6204 6205
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6206
	/*
6207
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6208
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6209 6210
	 */
	I915_WRITE(GEN6_UCGCTL2,
6211
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6212

6213
	/* This is required by WaCatErrorRejectionIssue:ivb */
6214 6215 6216 6217
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6218
	g4x_disable_trickle_feed(dev);
6219 6220

	gen7_setup_fixed_func_scheduler(dev_priv);
6221

6222 6223 6224 6225 6226
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6227

6228
	/* WaDisable4x2SubspanOptimization:ivb */
6229 6230
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6231

6232 6233 6234
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6235 6236 6237 6238
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6239 6240
	 */
	I915_WRITE(GEN7_GT_MODE,
6241
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6242

6243 6244 6245 6246
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6247

6248 6249
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
6250 6251

	gen6_check_mch_setup(dev);
6252 6253
}

6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
{
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	/*
	 * Disable trickle feed and enable pnd deadline calculation
	 */
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
	I915_WRITE(CBR1_VLV, 0);
}

6265
static void valleyview_init_clock_gating(struct drm_device *dev)
6266 6267 6268
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6269
	vlv_init_display_clock_gating(dev_priv);
6270

6271
	/* WaDisableEarlyCull:vlv */
6272 6273 6274
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6275
	/* WaDisableBackToBackFlipFix:vlv */
6276 6277 6278 6279
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6280
	/* WaPsdDispatchEnable:vlv */
6281
	/* WaDisablePSDDualDispatchEnable:vlv */
6282
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6283 6284
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6285

6286 6287 6288
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6289
	/* WaForceL3Serialization:vlv */
6290 6291 6292
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6293
	/* WaDisableDopClockGating:vlv */
6294 6295 6296
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6297
	/* This is required by WaCatErrorRejectionIssue:vlv */
6298 6299 6300 6301
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6302 6303
	gen7_setup_fixed_func_scheduler(dev_priv);

6304
	/*
6305
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6306
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6307 6308
	 */
	I915_WRITE(GEN6_UCGCTL2,
6309
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6310

6311 6312 6313 6314 6315
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6316

6317 6318 6319 6320
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6321 6322
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6323

6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

6335 6336 6337 6338 6339 6340
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6341
	/*
6342
	 * WaDisableVLVClockGating_VBIIssue:vlv
6343 6344 6345
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6346
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6347 6348
}

6349 6350 6351 6352
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6353
	vlv_init_display_clock_gating(dev_priv);
6354

6355 6356 6357 6358 6359
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6360 6361 6362 6363

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6364 6365 6366 6367

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6368 6369 6370 6371

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6372 6373
}

6374
static void g4x_init_clock_gating(struct drm_device *dev)
6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6390 6391 6392 6393

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6394

6395 6396 6397
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6398
	g4x_disable_trickle_feed(dev);
6399 6400
}

6401
static void crestline_init_clock_gating(struct drm_device *dev)
6402 6403 6404 6405 6406 6407 6408 6409
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
6410 6411
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6412 6413 6414

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6415 6416
}

6417
static void broadwater_init_clock_gating(struct drm_device *dev)
6418 6419 6420 6421 6422 6423 6424 6425 6426
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
6427 6428
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6429 6430 6431

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6432 6433
}

6434
static void gen3_init_clock_gating(struct drm_device *dev)
6435 6436 6437 6438 6439 6440 6441
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
6442 6443 6444

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6445 6446 6447

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6448 6449

	/* interrupts should cause a wake up from C3 */
6450
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6451 6452 6453

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6454 6455 6456

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6457 6458
}

6459
static void i85x_init_clock_gating(struct drm_device *dev)
6460 6461 6462 6463
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6464 6465 6466 6467

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6468 6469 6470

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6471 6472
}

6473
static void i830_init_clock_gating(struct drm_device *dev)
6474 6475 6476 6477
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6478 6479 6480 6481

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6482 6483 6484 6485 6486 6487
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6488 6489
	if (dev_priv->display.init_clock_gating)
		dev_priv->display.init_clock_gating(dev);
6490 6491
}

6492 6493 6494 6495 6496 6497
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

6498 6499 6500 6501 6502
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6503
	intel_fbc_init(dev_priv);
6504

6505 6506 6507 6508 6509 6510
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

6511
	/* For FIFO watermark updates */
6512
	if (INTEL_INFO(dev)->gen >= 9) {
6513 6514
		skl_setup_wm_latency(dev);

6515
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
6516 6517
		dev_priv->display.update_wm = skl_update_wm;
		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
6518
	} else if (HAS_PCH_SPLIT(dev)) {
6519
		ilk_setup_wm_latency(dev);
6520

6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
			dev_priv->display.update_wm = ilk_update_wm;
			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
6533
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6534
		else if (IS_GEN6(dev))
6535
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6536
		else if (IS_IVYBRIDGE(dev))
6537
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6538
		else if (IS_HASWELL(dev))
6539
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6540
		else if (INTEL_INFO(dev)->gen == 8)
6541
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6542
	} else if (IS_CHERRYVIEW(dev)) {
6543
		dev_priv->display.update_wm = valleyview_update_wm;
6544
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6545 6546
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
6547 6548
	} else if (IS_VALLEYVIEW(dev)) {
		dev_priv->display.update_wm = valleyview_update_wm;
6549
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
6563
			intel_set_memory_cxsr(dev_priv, false);
6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6581 6582 6583
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
6584
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
6585 6586
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
6587
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
6588 6589 6590 6591 6592 6593 6594 6595
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6596 6597 6598
	}
}

6599
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
6600
{
6601
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
6602 6603 6604 6605 6606 6607 6608

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
6609
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

6624
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
6625
{
6626
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
6646

6647
static int vlv_gpu_freq_div(unsigned int czclk_freq)
6648
{
6649 6650 6651 6652 6653 6654 6655 6656
	switch (czclk_freq) {
	case 200:
		return 10;
	case 267:
		return 12;
	case 320:
	case 333:
		return 16;
6657 6658
	case 400:
		return 20;
6659 6660 6661
	default:
		return -1;
	}
6662
}
6663

6664 6665 6666 6667 6668 6669 6670 6671 6672
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);

	div = vlv_gpu_freq_div(czclk_freq);
	if (div < 0)
		return div;

	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
6673 6674
}

6675
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6676
{
6677
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6678

6679 6680 6681
	mul = vlv_gpu_freq_div(czclk_freq);
	if (mul < 0)
		return mul;
6682

6683
	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
6684 6685
}

6686
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6687
{
6688
	int div, czclk_freq = dev_priv->rps.cz_freq;
6689

6690 6691 6692
	div = vlv_gpu_freq_div(czclk_freq) / 2;
	if (div < 0)
		return div;
6693

6694
	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
6695 6696
}

6697
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6698
{
6699
	int mul, czclk_freq = dev_priv->rps.cz_freq;
6700

6701 6702 6703
	mul = vlv_gpu_freq_div(czclk_freq) / 2;
	if (mul < 0)
		return mul;
6704

6705
	/* CHV needs even values */
6706
	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
6707 6708
}

6709
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
6710
{
6711 6712 6713
	if (IS_GEN9(dev_priv->dev))
		return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
	else if (IS_CHERRYVIEW(dev_priv->dev))
6714
		return chv_gpu_freq(dev_priv, val);
6715
	else if (IS_VALLEYVIEW(dev_priv->dev))
6716 6717 6718
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
6719 6720
}

6721 6722
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
6723 6724 6725
	if (IS_GEN9(dev_priv->dev))
		return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
	else if (IS_CHERRYVIEW(dev_priv->dev))
6726
		return chv_freq_opcode(dev_priv, val);
6727
	else if (IS_VALLEYVIEW(dev_priv->dev))
6728 6729 6730 6731
		return byt_freq_opcode(dev_priv, val);
	else
		return val / GT_FREQUENCY_MULTIPLIER;
}
6732

D
Daniel Vetter 已提交
6733
void intel_pm_setup(struct drm_device *dev)
6734 6735 6736
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
6737 6738
	mutex_init(&dev_priv->rps.hw_lock);

6739 6740
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
6741

6742
	dev_priv->pm.suspended = false;
6743
}