core.c 266.2 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
47 48
#include <linux/namei.h>
#include <linux/parser.h>
49
#include <linux/sched/clock.h>
50
#include <linux/sched/mm.h>
51 52
#include <linux/proc_ns.h>
#include <linux/mount.h>
T
Thomas Gleixner 已提交
53

54 55
#include "internal.h"

56 57
#include <asm/irq_regs.h>

58 59
typedef int (*remote_function_f)(void *);

60
struct remote_function_call {
61
	struct task_struct	*p;
62
	remote_function_f	func;
63 64
	void			*info;
	int			ret;
65 66 67 68 69 70 71 72
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
73 74 75 76 77 78 79 80 81 82 83
		/* -EAGAIN */
		if (task_cpu(p) != smp_processor_id())
			return;

		/*
		 * Now that we're on right CPU with IRQs disabled, we can test
		 * if we hit the right task without races.
		 */

		tfc->ret = -ESRCH; /* No such (running) process */
		if (p != current)
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
104
task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 106
{
	struct remote_function_call data = {
107 108 109
		.p	= p,
		.func	= func,
		.info	= info,
110
		.ret	= -EAGAIN,
111
	};
112
	int ret;
113

114 115 116 117 118
	do {
		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
		if (!ret)
			ret = data.ret;
	} while (ret == -EAGAIN);
119

120
	return ret;
121 122 123 124 125 126 127 128 129 130 131
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
132
static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 134
{
	struct remote_function_call data = {
135 136 137 138
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
139 140 141 142 143 144 145
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

146 147 148 149 150 151 152 153
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
154
{
155 156 157 158 159 160 161 162 163 164 165 166 167
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

168 169 170 171
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
172
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 174
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

194 195 196 197 198 199 200 201 202 203 204 205 206
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
207
	struct perf_event_context *ctx = event->ctx;
208 209
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210
	int ret = 0;
211

212
	lockdep_assert_irqs_disabled();
213

214
	perf_ctx_lock(cpuctx, task_ctx);
215 216 217 218 219
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
220
		if (ctx->task != current) {
221
			ret = -ESRCH;
222 223
			goto unlock;
		}
224 225 226 227 228 229 230 231 232 233 234 235 236

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
237 238 239
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240
	}
241

242
	efs->func(event, cpuctx, ctx, efs->data);
243
unlock:
244 245
	perf_ctx_unlock(cpuctx, task_ctx);

246
	return ret;
247 248 249
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
250 251
{
	struct perf_event_context *ctx = event->ctx;
252
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 254 255 256 257
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
258

P
Peter Zijlstra 已提交
259 260 261 262 263 264 265 266
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
267 268

	if (!task) {
269
		cpu_function_call(event->cpu, event_function, &efs);
270 271 272
		return;
	}

273 274 275
	if (task == TASK_TOMBSTONE)
		return;

276
again:
277
	if (!task_function_call(task, event_function, &efs))
278 279 280
		return;

	raw_spin_lock_irq(&ctx->lock);
281 282 283 284 285
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
286 287 288
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
289
	}
290 291 292 293 294
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	func(event, NULL, ctx, data);
295 296 297
	raw_spin_unlock_irq(&ctx->lock);
}

298 299 300 301 302 303 304 305 306 307 308
/*
 * Similar to event_function_call() + event_function(), but hard assumes IRQs
 * are already disabled and we're on the right CPU.
 */
static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct task_struct *task = READ_ONCE(ctx->task);
	struct perf_event_context *task_ctx = NULL;

309
	lockdep_assert_irqs_disabled();
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345

	if (task) {
		if (task == TASK_TOMBSTONE)
			return;

		task_ctx = ctx;
	}

	perf_ctx_lock(cpuctx, task_ctx);

	task = ctx->task;
	if (task == TASK_TOMBSTONE)
		goto unlock;

	if (task) {
		/*
		 * We must be either inactive or active and the right task,
		 * otherwise we're screwed, since we cannot IPI to somewhere
		 * else.
		 */
		if (ctx->is_active) {
			if (WARN_ON_ONCE(task != current))
				goto unlock;

			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
				goto unlock;
		}
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
	}

	func(event, cpuctx, ctx, data);
unlock:
	perf_ctx_unlock(cpuctx, task_ctx);
}

S
Stephane Eranian 已提交
346 347
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
348 349
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
350

351 352 353 354 355 356 357
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

358 359 360
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
361
	EVENT_TIME = 0x4,
362 363
	/* see ctx_resched() for details */
	EVENT_CPU = 0x8,
364 365 366
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
367 368 369 370
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
371 372 373 374 375 376 377

static void perf_sched_delayed(struct work_struct *work);
DEFINE_STATIC_KEY_FALSE(perf_sched_events);
static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;

S
Stephane Eranian 已提交
378
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380
static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
S
Stephane Eranian 已提交
381

382 383
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
384
static atomic_t nr_namespaces_events __read_mostly;
385
static atomic_t nr_task_events __read_mostly;
386
static atomic_t nr_freq_events __read_mostly;
387
static atomic_t nr_switch_events __read_mostly;
388

P
Peter Zijlstra 已提交
389 390 391
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;
392
static cpumask_var_t perf_online_mask;
P
Peter Zijlstra 已提交
393

394
/*
395
 * perf event paranoia level:
396 397
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
398
 *   1 - disallow cpu events for unpriv
399
 *   2 - disallow kernel profiling for unpriv
400
 */
401
int sysctl_perf_event_paranoid __read_mostly = 2;
402

403 404
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405 406

/*
407
 * max perf event sample rate
408
 */
409 410 411 412 413 414 415 416 417
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
418 419
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420

421
static void update_perf_cpu_limits(void)
422 423 424 425
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
426 427 428 429 430
	tmp = div_u64(tmp, 100);
	if (!tmp)
		tmp = 1;

	WRITE_ONCE(perf_sample_allowed_ns, tmp);
431
}
P
Peter Zijlstra 已提交
432

433 434
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
435 436 437 438
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
439
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
440 441 442 443

	if (ret || !write)
		return ret;

444 445 446 447 448 449 450
	/*
	 * If throttling is disabled don't allow the write:
	 */
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
451
	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 453 454 455 456 457 458 459 460 461 462 463
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
464
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 466 467 468

	if (ret || !write)
		return ret;

469 470
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0) {
471 472 473 474 475 476
		printk(KERN_WARNING
		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
		WRITE_ONCE(perf_sample_allowed_ns, 0);
	} else {
		update_perf_cpu_limits();
	}
P
Peter Zijlstra 已提交
477 478 479

	return 0;
}
480

481 482 483 484 485 486 487
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
488
static DEFINE_PER_CPU(u64, running_sample_length);
489

490 491 492
static u64 __report_avg;
static u64 __report_allowed;

493
static void perf_duration_warn(struct irq_work *w)
494
{
495
	printk_ratelimited(KERN_INFO
496 497 498 499
		"perf: interrupt took too long (%lld > %lld), lowering "
		"kernel.perf_event_max_sample_rate to %d\n",
		__report_avg, __report_allowed,
		sysctl_perf_event_sample_rate);
500 501 502 503 504 505
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
506 507 508 509
	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
	u64 running_len;
	u64 avg_len;
	u32 max;
510

511
	if (max_len == 0)
512 513
		return;

514 515 516 517 518
	/* Decay the counter by 1 average sample. */
	running_len = __this_cpu_read(running_sample_length);
	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
	running_len += sample_len_ns;
	__this_cpu_write(running_sample_length, running_len);
519 520

	/*
521 522
	 * Note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 524
	 * from having to maintain a count.
	 */
525 526
	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
	if (avg_len <= max_len)
527 528
		return;

529 530
	__report_avg = avg_len;
	__report_allowed = max_len;
531

532 533 534 535 536 537 538 539 540
	/*
	 * Compute a throttle threshold 25% below the current duration.
	 */
	avg_len += avg_len / 4;
	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
	if (avg_len < max)
		max /= (u32)avg_len;
	else
		max = 1;
541

542 543 544 545 546
	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
	WRITE_ONCE(max_samples_per_tick, max);

	sysctl_perf_event_sample_rate = max * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547

548
	if (!irq_work_queue(&perf_duration_work)) {
549
		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550
			     "kernel.perf_event_max_sample_rate to %d\n",
551
			     __report_avg, __report_allowed,
552 553
			     sysctl_perf_event_sample_rate);
	}
554 555
}

556
static atomic64_t perf_event_id;
557

558 559 560 561
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
562 563 564 565 566
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
567

568
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
569

570
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
571
{
572
	return "pmu";
T
Thomas Gleixner 已提交
573 574
}

575 576 577 578 579
static inline u64 perf_clock(void)
{
	return local_clock();
}

580 581 582 583 584
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
/*
 * State based event timekeeping...
 *
 * The basic idea is to use event->state to determine which (if any) time
 * fields to increment with the current delta. This means we only need to
 * update timestamps when we change state or when they are explicitly requested
 * (read).
 *
 * Event groups make things a little more complicated, but not terribly so. The
 * rules for a group are that if the group leader is OFF the entire group is
 * OFF, irrespecive of what the group member states are. This results in
 * __perf_effective_state().
 *
 * A futher ramification is that when a group leader flips between OFF and
 * !OFF, we need to update all group member times.
 *
 *
 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
 * need to make sure the relevant context time is updated before we try and
 * update our timestamps.
 */

static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event *event)
{
	struct perf_event *leader = event->group_leader;

	if (leader->state <= PERF_EVENT_STATE_OFF)
		return leader->state;

	return event->state;
}

static __always_inline void
__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
{
	enum perf_event_state state = __perf_effective_state(event);
	u64 delta = now - event->tstamp;

	*enabled = event->total_time_enabled;
	if (state >= PERF_EVENT_STATE_INACTIVE)
		*enabled += delta;

	*running = event->total_time_running;
	if (state >= PERF_EVENT_STATE_ACTIVE)
		*running += delta;
}

static void perf_event_update_time(struct perf_event *event)
{
	u64 now = perf_event_time(event);

	__perf_update_times(event, now, &event->total_time_enabled,
					&event->total_time_running);
	event->tstamp = now;
}

static void perf_event_update_sibling_time(struct perf_event *leader)
{
	struct perf_event *sibling;

	list_for_each_entry(sibling, &leader->sibling_list, group_entry)
		perf_event_update_time(sibling);
}

static void
perf_event_set_state(struct perf_event *event, enum perf_event_state state)
{
	if (event->state == state)
		return;

	perf_event_update_time(event);
	/*
	 * If a group leader gets enabled/disabled all its siblings
	 * are affected too.
	 */
	if ((event->state < 0) ^ (state < 0))
		perf_event_update_sibling_time(event);

	WRITE_ONCE(event->state, state);
}

S
Stephane Eranian 已提交
667 668 669 670 671 672 673 674
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
691 692 693 694
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
695
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
734 735
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
736
	/*
737 738
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
739
	 */
740
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
741 742
		return;

743
	cgrp = perf_cgroup_from_task(current, event->ctx);
744 745 746
	/*
	 * Do not update time when cgroup is not active
	 */
747
       if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
748
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
749 750 751
}

static inline void
752 753
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
754 755 756 757
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

758 759 760 761 762 763
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
764 765
		return;

766
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
767
	info = this_cpu_ptr(cgrp->info);
768
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
769 770
}

771 772
static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);

S
Stephane Eranian 已提交
773 774 775 776 777 778 779 780 781
#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
782
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
783 784
{
	struct perf_cpu_context *cpuctx;
785
	struct list_head *list;
S
Stephane Eranian 已提交
786 787 788
	unsigned long flags;

	/*
789 790
	 * Disable interrupts and preemption to avoid this CPU's
	 * cgrp_cpuctx_entry to change under us.
S
Stephane Eranian 已提交
791 792 793
	 */
	local_irq_save(flags);

794 795 796
	list = this_cpu_ptr(&cgrp_cpuctx_list);
	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
S
Stephane Eranian 已提交
797

798 799
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
800

801 802 803 804 805 806 807 808
		if (mode & PERF_CGROUP_SWOUT) {
			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
			/*
			 * must not be done before ctxswout due
			 * to event_filter_match() in event_sched_out()
			 */
			cpuctx->cgrp = NULL;
		}
S
Stephane Eranian 已提交
809

810 811 812 813 814 815 816 817 818 819 820 821
		if (mode & PERF_CGROUP_SWIN) {
			WARN_ON_ONCE(cpuctx->cgrp);
			/*
			 * set cgrp before ctxsw in to allow
			 * event_filter_match() to not have to pass
			 * task around
			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
			 * because cgorup events are only per-cpu
			 */
			cpuctx->cgrp = perf_cgroup_from_task(task,
							     &cpuctx->ctx);
			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
S
Stephane Eranian 已提交
822
		}
823 824
		perf_pmu_enable(cpuctx->ctx.pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
825 826 827 828 829
	}

	local_irq_restore(flags);
}

830 831
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
832
{
833 834 835
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

836
	rcu_read_lock();
837 838
	/*
	 * we come here when we know perf_cgroup_events > 0
839 840
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
841
	 */
842
	cgrp1 = perf_cgroup_from_task(task, NULL);
843
	cgrp2 = perf_cgroup_from_task(next, NULL);
844 845 846 847 848 849 850 851

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
852 853

	rcu_read_unlock();
S
Stephane Eranian 已提交
854 855
}

856 857
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
858
{
859 860 861
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

862
	rcu_read_lock();
863 864
	/*
	 * we come here when we know perf_cgroup_events > 0
865 866
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
867
	 */
868 869
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
870 871 872 873 874 875 876 877

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
878 879

	rcu_read_unlock();
S
Stephane Eranian 已提交
880 881 882 883 884 885 886 887
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
888 889
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
890

891
	if (!f.file)
S
Stephane Eranian 已提交
892 893
		return -EBADF;

A
Al Viro 已提交
894
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
895
					 &perf_event_cgrp_subsys);
896 897 898 899
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
913
out:
914
	fdput(f);
S
Stephane Eranian 已提交
915 916 917 918 919 920 921 922 923 924 925
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

926 927 928 929 930 931 932 933 934
/*
 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
 * cleared when last cgroup event is removed.
 */
static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
	struct perf_cpu_context *cpuctx;
935
	struct list_head *cpuctx_entry;
936 937 938 939 940 941 942 943 944 945 946 947 948

	if (!is_cgroup_event(event))
		return;

	if (add && ctx->nr_cgroups++)
		return;
	else if (!add && --ctx->nr_cgroups)
		return;
	/*
	 * Because cgroup events are always per-cpu events,
	 * this will always be called from the right CPU.
	 */
	cpuctx = __get_cpu_context(ctx);
949 950 951
	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
	/* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
	if (add) {
952 953
		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);

954
		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
955 956
		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
			cpuctx->cgrp = cgrp;
957 958
	} else {
		list_del(cpuctx_entry);
959
		cpuctx->cgrp = NULL;
960
	}
961 962
}

S
Stephane Eranian 已提交
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

987 988
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
989 990 991
{
}

992 993
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
1005 1006
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

1025 1026 1027 1028 1029 1030
static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
}

S
Stephane Eranian 已提交
1031 1032
#endif

1033 1034 1035 1036 1037 1038
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
1039
 * function must be called with interrupts disabled
1040
 */
1041
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1042 1043 1044 1045
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

1046
	lockdep_assert_irqs_disabled();
1047 1048 1049 1050

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
1051 1052
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
1053
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
1054 1055 1056
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
1057

P
Peter Zijlstra 已提交
1058
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1059 1060
}

1061
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1062
{
1063
	struct hrtimer *timer = &cpuctx->hrtimer;
1064
	struct pmu *pmu = cpuctx->ctx.pmu;
1065
	u64 interval;
1066 1067 1068 1069 1070

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

1071 1072 1073 1074
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
1075 1076 1077
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1078

1079
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1080

P
Peter Zijlstra 已提交
1081 1082
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1083
	timer->function = perf_mux_hrtimer_handler;
1084 1085
}

1086
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1087
{
1088
	struct hrtimer *timer = &cpuctx->hrtimer;
1089
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
1090
	unsigned long flags;
1091 1092 1093

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
1094
		return 0;
1095

P
Peter Zijlstra 已提交
1096 1097 1098 1099 1100 1101 1102
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1103

1104
	return 0;
1105 1106
}

P
Peter Zijlstra 已提交
1107
void perf_pmu_disable(struct pmu *pmu)
1108
{
P
Peter Zijlstra 已提交
1109 1110 1111
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
1112 1113
}

P
Peter Zijlstra 已提交
1114
void perf_pmu_enable(struct pmu *pmu)
1115
{
P
Peter Zijlstra 已提交
1116 1117 1118
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
1119 1120
}

1121
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1122 1123

/*
1124 1125 1126 1127
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
1128
 */
1129
static void perf_event_ctx_activate(struct perf_event_context *ctx)
1130
{
1131
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1132

1133
	lockdep_assert_irqs_disabled();
1134

1135 1136 1137 1138 1139 1140 1141
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
1142
	lockdep_assert_irqs_disabled();
1143 1144 1145 1146

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1147 1148
}

1149
static void get_ctx(struct perf_event_context *ctx)
1150
{
1151
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1152 1153
}

1154 1155 1156 1157 1158 1159 1160 1161 1162
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1163
static void put_ctx(struct perf_event_context *ctx)
1164
{
1165 1166 1167
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1168
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1169
			put_task_struct(ctx->task);
1170
		call_rcu(&ctx->rcu_head, free_ctx);
1171
	}
1172 1173
}

P
Peter Zijlstra 已提交
1174 1175 1176 1177 1178 1179 1180
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1181 1182 1183 1184
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1185 1186
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
1227
 *    cred_guard_mutex
P
Peter Zijlstra 已提交
1228 1229 1230
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1231
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1232 1233
 *	    perf_event::mmap_mutex
 *	    mmap_sem
1234 1235 1236 1237
 *
 *    cpu_hotplug_lock
 *      pmus_lock
 *	  cpuctx->mutex / perf_event_context::mutex
P
Peter Zijlstra 已提交
1238
 */
P
Peter Zijlstra 已提交
1239 1240
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1241 1242 1243 1244 1245
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
1246
	ctx = READ_ONCE(event->ctx);
P
Peter Zijlstra 已提交
1247 1248 1249 1250 1251 1252
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1253
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1254 1255 1256 1257 1258 1259 1260 1261 1262
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1263 1264 1265 1266 1267 1268
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1269 1270 1271 1272 1273 1274 1275
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1276 1277 1278 1279 1280 1281 1282
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1283
{
1284 1285 1286 1287 1288
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1289
		ctx->parent_ctx = NULL;
1290
	ctx->generation++;
1291 1292

	return parent_ctx;
1293 1294
}

1295 1296
static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
				enum pid_type type)
1297
{
1298
	u32 nr;
1299 1300 1301 1302 1303 1304
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

1305 1306 1307 1308 1309
	nr = __task_pid_nr_ns(p, type, event->ns);
	/* avoid -1 if it is idle thread or runs in another ns */
	if (!nr && !pid_alive(p))
		nr = -1;
	return nr;
1310 1311
}

1312
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1313
{
1314 1315
	return perf_event_pid_type(event, p, __PIDTYPE_TGID);
}
1316

1317 1318 1319
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	return perf_event_pid_type(event, p, PIDTYPE_PID);
1320 1321
}

1322
/*
1323
 * If we inherit events we want to return the parent event id
1324 1325
 * to userspace.
 */
1326
static u64 primary_event_id(struct perf_event *event)
1327
{
1328
	u64 id = event->id;
1329

1330 1331
	if (event->parent)
		id = event->parent->id;
1332 1333 1334 1335

	return id;
}

1336
/*
1337
 * Get the perf_event_context for a task and lock it.
1338
 *
1339 1340 1341
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1342
static struct perf_event_context *
P
Peter Zijlstra 已提交
1343
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1344
{
1345
	struct perf_event_context *ctx;
1346

P
Peter Zijlstra 已提交
1347
retry:
1348 1349 1350
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1351
	 * part of the read side critical section was irqs-enabled -- see
1352 1353 1354
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1355
	 * side critical section has interrupts disabled.
1356
	 */
1357
	local_irq_save(*flags);
1358
	rcu_read_lock();
P
Peter Zijlstra 已提交
1359
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1360 1361 1362 1363
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1364
		 * perf_event_task_sched_out, though the
1365 1366 1367 1368 1369 1370
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1371
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1372
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1373
			raw_spin_unlock(&ctx->lock);
1374
			rcu_read_unlock();
1375
			local_irq_restore(*flags);
1376 1377
			goto retry;
		}
1378

1379 1380
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1381
			raw_spin_unlock(&ctx->lock);
1382
			ctx = NULL;
P
Peter Zijlstra 已提交
1383 1384
		} else {
			WARN_ON_ONCE(ctx->task != task);
1385
		}
1386 1387
	}
	rcu_read_unlock();
1388 1389
	if (!ctx)
		local_irq_restore(*flags);
1390 1391 1392 1393 1394 1395 1396 1397
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1398 1399
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1400
{
1401
	struct perf_event_context *ctx;
1402 1403
	unsigned long flags;

P
Peter Zijlstra 已提交
1404
	ctx = perf_lock_task_context(task, ctxn, &flags);
1405 1406
	if (ctx) {
		++ctx->pin_count;
1407
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1408 1409 1410 1411
	}
	return ctx;
}

1412
static void perf_unpin_context(struct perf_event_context *ctx)
1413 1414 1415
{
	unsigned long flags;

1416
	raw_spin_lock_irqsave(&ctx->lock, flags);
1417
	--ctx->pin_count;
1418
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1419 1420
}

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1432 1433 1434
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1435 1436 1437 1438

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1439 1440 1441
	return ctx ? ctx->time : 0;
}

1442 1443 1444 1445 1446 1447 1448
static enum event_type_t get_event_type(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	enum event_type_t event_type;

	lockdep_assert_held(&ctx->lock);

1449 1450 1451 1452 1453 1454 1455
	/*
	 * It's 'group type', really, because if our group leader is
	 * pinned, so are we.
	 */
	if (event->group_leader != event)
		event = event->group_leader;

1456 1457 1458 1459 1460 1461 1462
	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
	if (!ctx->task)
		event_type |= EVENT_CPU;

	return event_type;
}

1463 1464 1465 1466 1467 1468 1469 1470 1471
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1472
/*
1473
 * Add a event from the lists for its context.
1474 1475
 * Must be called with ctx->mutex and ctx->lock held.
 */
1476
static void
1477
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1478
{
P
Peter Zijlstra 已提交
1479 1480
	lockdep_assert_held(&ctx->lock);

1481 1482
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1483

1484 1485
	event->tstamp = perf_event_time(event);

1486
	/*
1487 1488 1489
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1490
	 */
1491
	if (event->group_leader == event) {
1492 1493
		struct list_head *list;

1494
		event->group_caps = event->event_caps;
1495

1496 1497
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1498
	}
P
Peter Zijlstra 已提交
1499

1500
	list_update_cgroup_event(event, ctx, true);
S
Stephane Eranian 已提交
1501

1502 1503 1504
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1505
		ctx->nr_stat++;
1506 1507

	ctx->generation++;
1508 1509
}

J
Jiri Olsa 已提交
1510 1511 1512 1513 1514 1515 1516 1517 1518
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1519
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1535
		nr += nr_siblings;
1536 1537 1538 1539 1540 1541 1542
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1543
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1544 1545 1546 1547 1548 1549 1550
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1551 1552 1553 1554 1555 1556
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1557 1558 1559
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1560 1561 1562
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1563 1564 1565
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1566 1567 1568
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1569 1570 1571
	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
		size += sizeof(data->phys_addr);

1572 1573 1574
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1586 1587 1588 1589 1590 1591
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1592 1593 1594 1595 1596 1597
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1598 1599 1600
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1601 1602 1603 1604 1605 1606 1607 1608 1609
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1610
	event->id_header_size = size;
1611 1612
}

P
Peter Zijlstra 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1634 1635
static void perf_group_attach(struct perf_event *event)
{
1636
	struct perf_event *group_leader = event->group_leader, *pos;
1637

1638 1639
	lockdep_assert_held(&event->ctx->lock);

P
Peter Zijlstra 已提交
1640 1641 1642 1643 1644 1645
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1646 1647 1648 1649 1650
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1651 1652
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1653
	group_leader->group_caps &= event->event_caps;
1654 1655 1656

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1657 1658 1659 1660 1661

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1662 1663
}

1664
/*
1665
 * Remove a event from the lists for its context.
1666
 * Must be called with ctx->mutex and ctx->lock held.
1667
 */
1668
static void
1669
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1670
{
P
Peter Zijlstra 已提交
1671 1672 1673
	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1674 1675 1676 1677
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1678
		return;
1679 1680 1681

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1682
	list_update_cgroup_event(event, ctx, false);
S
Stephane Eranian 已提交
1683

1684 1685
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1686
		ctx->nr_stat--;
1687

1688
	list_del_rcu(&event->event_entry);
1689

1690 1691
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1692

1693 1694 1695 1696 1697 1698 1699 1700
	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
1701
		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1702 1703

	ctx->generation++;
1704 1705
}

1706
static void perf_group_detach(struct perf_event *event)
1707 1708
{
	struct perf_event *sibling, *tmp;
1709 1710
	struct list_head *list = NULL;

1711 1712
	lockdep_assert_held(&event->ctx->lock);

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1727
		goto out;
1728 1729 1730 1731
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1732

1733
	/*
1734 1735
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1736
	 * to whatever list we are on.
1737
	 */
1738
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1739 1740
		if (list)
			list_move_tail(&sibling->group_entry, list);
1741
		sibling->group_leader = sibling;
1742 1743

		/* Inherit group flags from the previous leader */
1744
		sibling->group_caps = event->group_caps;
P
Peter Zijlstra 已提交
1745 1746

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1747
	}
1748 1749 1750 1751 1752 1753

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1754 1755
}

1756 1757
static bool is_orphaned_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1758
	return event->state == PERF_EVENT_STATE_DEAD;
1759 1760
}

1761
static inline int __pmu_filter_match(struct perf_event *event)
1762 1763 1764 1765 1766
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
/*
 * Check whether we should attempt to schedule an event group based on
 * PMU-specific filtering. An event group can consist of HW and SW events,
 * potentially with a SW leader, so we must check all the filters, to
 * determine whether a group is schedulable:
 */
static inline int pmu_filter_match(struct perf_event *event)
{
	struct perf_event *child;

	if (!__pmu_filter_match(event))
		return 0;

	list_for_each_entry(child, &event->sibling_list, group_entry) {
		if (!__pmu_filter_match(child))
			return 0;
	}

	return 1;
}

1788 1789 1790
static inline int
event_filter_match(struct perf_event *event)
{
1791 1792
	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
	       perf_cgroup_match(event) && pmu_filter_match(event);
1793 1794
}

1795 1796
static void
event_sched_out(struct perf_event *event,
1797
		  struct perf_cpu_context *cpuctx,
1798
		  struct perf_event_context *ctx)
1799
{
1800
	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
P
Peter Zijlstra 已提交
1801 1802 1803 1804

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1805
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1806
		return;
1807

1808 1809
	perf_pmu_disable(event->pmu);

1810 1811
	event->pmu->del(event, 0);
	event->oncpu = -1;
1812

1813 1814
	if (event->pending_disable) {
		event->pending_disable = 0;
1815
		state = PERF_EVENT_STATE_OFF;
1816
	}
1817
	perf_event_set_state(event, state);
1818

1819
	if (!is_software_event(event))
1820
		cpuctx->active_oncpu--;
1821 1822
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1823 1824
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1825
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1826
		cpuctx->exclusive = 0;
1827 1828

	perf_pmu_enable(event->pmu);
1829 1830
}

1831
static void
1832
group_sched_out(struct perf_event *group_event,
1833
		struct perf_cpu_context *cpuctx,
1834
		struct perf_event_context *ctx)
1835
{
1836
	struct perf_event *event;
1837 1838 1839

	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
		return;
1840

1841 1842
	perf_pmu_disable(ctx->pmu);

1843
	event_sched_out(group_event, cpuctx, ctx);
1844 1845 1846 1847

	/*
	 * Schedule out siblings (if any):
	 */
1848 1849
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1850

1851 1852
	perf_pmu_enable(ctx->pmu);

1853
	if (group_event->attr.exclusive)
1854 1855 1856
		cpuctx->exclusive = 0;
}

1857
#define DETACH_GROUP	0x01UL
1858

T
Thomas Gleixner 已提交
1859
/*
1860
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1861
 *
1862
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1863 1864
 * remove it from the context list.
 */
1865 1866 1867 1868 1869
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1870
{
1871
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1872

1873 1874 1875 1876 1877
	if (ctx->is_active & EVENT_TIME) {
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

1878
	event_sched_out(event, cpuctx, ctx);
1879
	if (flags & DETACH_GROUP)
1880
		perf_group_detach(event);
1881
	list_del_event(event, ctx);
1882 1883

	if (!ctx->nr_events && ctx->is_active) {
1884
		ctx->is_active = 0;
1885 1886 1887 1888
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1889
	}
T
Thomas Gleixner 已提交
1890 1891 1892
}

/*
1893
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1894
 *
1895 1896
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1897 1898
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1899
 * When called from perf_event_exit_task, it's OK because the
1900
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1901
 */
1902
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1903
{
1904 1905 1906
	struct perf_event_context *ctx = event->ctx;

	lockdep_assert_held(&ctx->mutex);
T
Thomas Gleixner 已提交
1907

1908
	event_function_call(event, __perf_remove_from_context, (void *)flags);
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926

	/*
	 * The above event_function_call() can NO-OP when it hits
	 * TASK_TOMBSTONE. In that case we must already have been detached
	 * from the context (by perf_event_exit_event()) but the grouping
	 * might still be in-tact.
	 */
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	if ((flags & DETACH_GROUP) &&
	    (event->attach_state & PERF_ATTACH_GROUP)) {
		/*
		 * Since in that case we cannot possibly be scheduled, simply
		 * detach now.
		 */
		raw_spin_lock_irq(&ctx->lock);
		perf_group_detach(event);
		raw_spin_unlock_irq(&ctx->lock);
	}
T
Thomas Gleixner 已提交
1927 1928
}

1929
/*
1930
 * Cross CPU call to disable a performance event
1931
 */
1932 1933 1934 1935
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1936
{
1937 1938
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1939

1940 1941 1942 1943 1944
	if (ctx->is_active & EVENT_TIME) {
		update_context_time(ctx);
		update_cgrp_time_from_event(event);
	}

1945 1946 1947 1948
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
1949 1950

	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1951 1952
}

1953
/*
1954
 * Disable a event.
1955
 *
1956 1957
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1958
 * remains valid.  This condition is satisifed when called through
1959 1960
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1961 1962
 * goes to exit will block in perf_event_exit_event().
 *
1963
 * When called from perf_pending_event it's OK because event->ctx
1964
 * is the current context on this CPU and preemption is disabled,
1965
 * hence we can't get into perf_event_task_sched_out for this context.
1966
 */
P
Peter Zijlstra 已提交
1967
static void _perf_event_disable(struct perf_event *event)
1968
{
1969
	struct perf_event_context *ctx = event->ctx;
1970

1971
	raw_spin_lock_irq(&ctx->lock);
1972
	if (event->state <= PERF_EVENT_STATE_OFF) {
1973
		raw_spin_unlock_irq(&ctx->lock);
1974
		return;
1975
	}
1976
	raw_spin_unlock_irq(&ctx->lock);
1977

1978 1979 1980 1981 1982 1983
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1984
}
P
Peter Zijlstra 已提交
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1998
EXPORT_SYMBOL_GPL(perf_event_disable);
1999

2000 2001 2002 2003 2004 2005
void perf_event_disable_inatomic(struct perf_event *event)
{
	event->pending_disable = 1;
	irq_work_queue(&event->pending);
}

S
Stephane Eranian 已提交
2006
static void perf_set_shadow_time(struct perf_event *event,
2007
				 struct perf_event_context *ctx)
S
Stephane Eranian 已提交
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
2035
		perf_cgroup_set_shadow_time(event, event->tstamp);
S
Stephane Eranian 已提交
2036
	else
2037
		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
S
Stephane Eranian 已提交
2038 2039
}

P
Peter Zijlstra 已提交
2040 2041 2042
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
2043
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
2044

2045
static int
2046
event_sched_in(struct perf_event *event,
2047
		 struct perf_cpu_context *cpuctx,
2048
		 struct perf_event_context *ctx)
2049
{
2050
	int ret = 0;
2051

2052 2053
	lockdep_assert_held(&ctx->lock);

2054
	if (event->state <= PERF_EVENT_STATE_OFF)
2055 2056
		return 0;

2057 2058
	WRITE_ONCE(event->oncpu, smp_processor_id());
	/*
P
Peter Zijlstra 已提交
2059 2060 2061
	 * Order event::oncpu write to happen before the ACTIVE state is
	 * visible. This allows perf_event_{stop,read}() to observe the correct
	 * ->oncpu if it sees ACTIVE.
2062 2063
	 */
	smp_wmb();
2064
	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
P
Peter Zijlstra 已提交
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

2076 2077
	perf_pmu_disable(event->pmu);

2078
	perf_set_shadow_time(event, ctx);
2079

2080 2081
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
2082
	if (event->pmu->add(event, PERF_EF_START)) {
2083
		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2084
		event->oncpu = -1;
2085 2086
		ret = -EAGAIN;
		goto out;
2087 2088
	}

2089
	if (!is_software_event(event))
2090
		cpuctx->active_oncpu++;
2091 2092
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
2093 2094
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
2095

2096
	if (event->attr.exclusive)
2097 2098
		cpuctx->exclusive = 1;

2099 2100 2101 2102
out:
	perf_pmu_enable(event->pmu);

	return ret;
2103 2104
}

2105
static int
2106
group_sched_in(struct perf_event *group_event,
2107
	       struct perf_cpu_context *cpuctx,
2108
	       struct perf_event_context *ctx)
2109
{
2110
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
2111
	struct pmu *pmu = ctx->pmu;
2112

2113
	if (group_event->state == PERF_EVENT_STATE_OFF)
2114 2115
		return 0;

2116
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2117

2118
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
2119
		pmu->cancel_txn(pmu);
2120
		perf_mux_hrtimer_restart(cpuctx);
2121
		return -EAGAIN;
2122
	}
2123 2124 2125 2126

	/*
	 * Schedule in siblings as one group (if any):
	 */
2127
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2128
		if (event_sched_in(event, cpuctx, ctx)) {
2129
			partial_group = event;
2130 2131 2132 2133
			goto group_error;
		}
	}

2134
	if (!pmu->commit_txn(pmu))
2135
		return 0;
2136

2137 2138 2139 2140
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2141
	 * The events up to the failed event are scheduled out normally.
2142
	 */
2143 2144
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2145
			break;
2146

2147
		event_sched_out(event, cpuctx, ctx);
2148
	}
2149
	event_sched_out(group_event, cpuctx, ctx);
2150

P
Peter Zijlstra 已提交
2151
	pmu->cancel_txn(pmu);
2152

2153
	perf_mux_hrtimer_restart(cpuctx);
2154

2155 2156 2157
	return -EAGAIN;
}

2158
/*
2159
 * Work out whether we can put this event group on the CPU now.
2160
 */
2161
static int group_can_go_on(struct perf_event *event,
2162 2163 2164 2165
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2166
	 * Groups consisting entirely of software events can always go on.
2167
	 */
2168
	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2169 2170 2171
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2172
	 * events can go on.
2173 2174 2175 2176 2177
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2178
	 * events on the CPU, it can't go on.
2179
	 */
2180
	if (event->attr.exclusive && cpuctx->active_oncpu)
2181 2182 2183 2184 2185 2186 2187 2188
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2189 2190
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2191
{
2192
	list_add_event(event, ctx);
2193
	perf_group_attach(event);
2194 2195
}

2196 2197 2198
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type);
2199 2200 2201 2202 2203
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2204

2205
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2206 2207
			       struct perf_event_context *ctx,
			       enum event_type_t event_type)
2208 2209 2210 2211 2212 2213 2214
{
	if (!cpuctx->task_ctx)
		return;

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2215
	ctx_sched_out(ctx, cpuctx, event_type);
2216 2217
}

2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
/*
 * We want to maintain the following priority of scheduling:
 *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
 *  - task pinned (EVENT_PINNED)
 *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
 *  - task flexible (EVENT_FLEXIBLE).
 *
 * In order to avoid unscheduling and scheduling back in everything every
 * time an event is added, only do it for the groups of equal priority and
 * below.
 *
 * This can be called after a batch operation on task events, in which case
 * event_type is a bit mask of the types of events involved. For CPU events,
 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
 */
2245
static void ctx_resched(struct perf_cpu_context *cpuctx,
2246 2247
			struct perf_event_context *task_ctx,
			enum event_type_t event_type)
2248
{
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
	enum event_type_t ctx_event_type = event_type & EVENT_ALL;
	bool cpu_event = !!(event_type & EVENT_CPU);

	/*
	 * If pinned groups are involved, flexible groups also need to be
	 * scheduled out.
	 */
	if (event_type & EVENT_PINNED)
		event_type |= EVENT_FLEXIBLE;

2259 2260
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
		task_ctx_sched_out(cpuctx, task_ctx, event_type);

	/*
	 * Decide which cpu ctx groups to schedule out based on the types
	 * of events that caused rescheduling:
	 *  - EVENT_CPU: schedule out corresponding groups;
	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
	 *  - otherwise, do nothing more.
	 */
	if (cpu_event)
		cpu_ctx_sched_out(cpuctx, ctx_event_type);
	else if (ctx_event_type & EVENT_PINNED)
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2275 2276
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2277 2278
}

T
Thomas Gleixner 已提交
2279
/*
2280
 * Cross CPU call to install and enable a performance event
2281
 *
2282 2283
 * Very similar to remote_function() + event_function() but cannot assume that
 * things like ctx->is_active and cpuctx->task_ctx are set.
T
Thomas Gleixner 已提交
2284
 */
2285
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2286
{
2287 2288
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2289
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2290
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2291
	bool reprogram = true;
2292
	int ret = 0;
T
Thomas Gleixner 已提交
2293

2294
	raw_spin_lock(&cpuctx->ctx.lock);
2295
	if (ctx->task) {
2296 2297
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
2298

2299
		reprogram = (ctx->task == current);
2300

2301
		/*
2302 2303 2304 2305 2306
		 * If the task is running, it must be running on this CPU,
		 * otherwise we cannot reprogram things.
		 *
		 * If its not running, we don't care, ctx->lock will
		 * serialize against it becoming runnable.
2307
		 */
2308 2309 2310 2311
		if (task_curr(ctx->task) && !reprogram) {
			ret = -ESRCH;
			goto unlock;
		}
2312

2313
		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2314 2315
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2316
	}
2317

2318
	if (reprogram) {
2319 2320
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
		add_event_to_ctx(event, ctx);
2321
		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2322 2323 2324 2325
	} else {
		add_event_to_ctx(event, ctx);
	}

2326
unlock:
2327
	perf_ctx_unlock(cpuctx, task_ctx);
2328

2329
	return ret;
T
Thomas Gleixner 已提交
2330 2331 2332
}

/*
2333 2334 2335
 * Attach a performance event to a context.
 *
 * Very similar to event_function_call, see comment there.
T
Thomas Gleixner 已提交
2336 2337
 */
static void
2338 2339
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2340 2341
			int cpu)
{
2342
	struct task_struct *task = READ_ONCE(ctx->task);
2343

2344 2345
	lockdep_assert_held(&ctx->mutex);

2346 2347
	if (event->cpu != -1)
		event->cpu = cpu;
2348

2349 2350 2351 2352 2353 2354
	/*
	 * Ensures that if we can observe event->ctx, both the event and ctx
	 * will be 'complete'. See perf_iterate_sb_cpu().
	 */
	smp_store_release(&event->ctx, ctx);

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
	if (!task) {
		cpu_function_call(cpu, __perf_install_in_context, event);
		return;
	}

	/*
	 * Should not happen, we validate the ctx is still alive before calling.
	 */
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
		return;

2366 2367 2368
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
	 *
	 * Instead we use task_curr(), which tells us if the task is running.
	 * However, since we use task_curr() outside of rq::lock, we can race
	 * against the actual state. This means the result can be wrong.
	 *
	 * If we get a false positive, we retry, this is harmless.
	 *
	 * If we get a false negative, things are complicated. If we are after
	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
	 * value must be correct. If we're before, it doesn't matter since
	 * perf_event_context_sched_in() will program the counter.
	 *
	 * However, this hinges on the remote context switch having observed
	 * our task->perf_event_ctxp[] store, such that it will in fact take
	 * ctx::lock in perf_event_context_sched_in().
	 *
	 * We do this by task_function_call(), if the IPI fails to hit the task
	 * we know any future context switch of task must see the
	 * perf_event_ctpx[] store.
2388
	 */
2389

2390
	/*
2391 2392 2393 2394
	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
	 * task_cpu() load, such that if the IPI then does not find the task
	 * running, a future context switch of that task must observe the
	 * store.
2395
	 */
2396 2397 2398
	smp_mb();
again:
	if (!task_function_call(task, __perf_install_in_context, event))
2399 2400 2401 2402
		return;

	raw_spin_lock_irq(&ctx->lock);
	task = ctx->task;
2403
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2404 2405 2406 2407 2408
		/*
		 * Cannot happen because we already checked above (which also
		 * cannot happen), and we hold ctx->mutex, which serializes us
		 * against perf_event_exit_task_context().
		 */
2409 2410 2411
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2412
	/*
2413 2414
	 * If the task is not running, ctx->lock will avoid it becoming so,
	 * thus we can safely install the event.
2415
	 */
2416 2417 2418 2419 2420 2421
	if (task_curr(task)) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	add_event_to_ctx(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2422 2423
}

2424
/*
2425
 * Cross CPU call to enable a performance event
2426
 */
2427 2428 2429 2430
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2431
{
2432
	struct perf_event *leader = event->group_leader;
2433
	struct perf_event_context *task_ctx;
2434

P
Peter Zijlstra 已提交
2435 2436
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2437
		return;
2438

2439 2440 2441
	if (ctx->is_active)
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);

2442
	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2443

2444 2445 2446
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2447
	if (!event_filter_match(event)) {
2448
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2449
		return;
S
Stephane Eranian 已提交
2450
	}
2451

2452
	/*
2453
	 * If the event is in a group and isn't the group leader,
2454
	 * then don't put it on unless the group is on.
2455
	 */
2456 2457
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2458
		return;
2459
	}
2460

2461 2462 2463
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2464

2465
	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2466 2467
}

2468
/*
2469
 * Enable a event.
2470
 *
2471 2472
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2473
 * remains valid.  This condition is satisfied when called through
2474 2475
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2476
 */
P
Peter Zijlstra 已提交
2477
static void _perf_event_enable(struct perf_event *event)
2478
{
2479
	struct perf_event_context *ctx = event->ctx;
2480

2481
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2482 2483
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2484
		raw_spin_unlock_irq(&ctx->lock);
2485 2486 2487 2488
		return;
	}

	/*
2489
	 * If the event is in error state, clear that first.
2490 2491 2492 2493
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2494
	 */
2495 2496
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2497
	raw_spin_unlock_irq(&ctx->lock);
2498

2499
	event_function_call(event, __perf_event_enable, NULL);
2500
}
P
Peter Zijlstra 已提交
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2513
EXPORT_SYMBOL_GPL(perf_event_enable);
2514

2515 2516 2517 2518 2519
struct stop_event_data {
	struct perf_event	*event;
	unsigned int		restart;
};

2520 2521
static int __perf_event_stop(void *info)
{
2522 2523
	struct stop_event_data *sd = info;
	struct perf_event *event = sd->event;
2524

2525
	/* if it's already INACTIVE, do nothing */
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
		return 0;

	/* matches smp_wmb() in event_sched_in() */
	smp_rmb();

	/*
	 * There is a window with interrupts enabled before we get here,
	 * so we need to check again lest we try to stop another CPU's event.
	 */
	if (READ_ONCE(event->oncpu) != smp_processor_id())
		return -EAGAIN;

	event->pmu->stop(event, PERF_EF_UPDATE);

2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
	/*
	 * May race with the actual stop (through perf_pmu_output_stop()),
	 * but it is only used for events with AUX ring buffer, and such
	 * events will refuse to restart because of rb::aux_mmap_count==0,
	 * see comments in perf_aux_output_begin().
	 *
	 * Since this is happening on a event-local CPU, no trace is lost
	 * while restarting.
	 */
	if (sd->restart)
2551
		event->pmu->start(event, 0);
2552

2553 2554 2555
	return 0;
}

2556
static int perf_event_stop(struct perf_event *event, int restart)
2557 2558 2559
{
	struct stop_event_data sd = {
		.event		= event,
2560
		.restart	= restart,
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
	};
	int ret = 0;

	do {
		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
			return 0;

		/* matches smp_wmb() in event_sched_in() */
		smp_rmb();

		/*
		 * We only want to restart ACTIVE events, so if the event goes
		 * inactive here (event->oncpu==-1), there's nothing more to do;
		 * fall through with ret==-ENXIO.
		 */
		ret = cpu_function_call(READ_ONCE(event->oncpu),
					__perf_event_stop, &sd);
	} while (ret == -EAGAIN);

	return ret;
}

/*
 * In order to contain the amount of racy and tricky in the address filter
 * configuration management, it is a two part process:
 *
 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
 *      we update the addresses of corresponding vmas in
 *	event::addr_filters_offs array and bump the event::addr_filters_gen;
 * (p2) when an event is scheduled in (pmu::add), it calls
 *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
 *      if the generation has changed since the previous call.
 *
 * If (p1) happens while the event is active, we restart it to force (p2).
 *
 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
 *     pre-existing mappings, called once when new filters arrive via SET_FILTER
 *     ioctl;
 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
 *     registered mapping, called for every new mmap(), with mm::mmap_sem down
 *     for reading;
 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
 *     of exec.
 */
void perf_event_addr_filters_sync(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);

	if (!has_addr_filter(event))
		return;

	raw_spin_lock(&ifh->lock);
	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
		event->pmu->addr_filters_sync(event);
		event->hw.addr_filters_gen = event->addr_filters_gen;
	}
	raw_spin_unlock(&ifh->lock);
}
EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);

P
Peter Zijlstra 已提交
2621
static int _perf_event_refresh(struct perf_event *event, int refresh)
2622
{
2623
	/*
2624
	 * not supported on inherited events
2625
	 */
2626
	if (event->attr.inherit || !is_sampling_event(event))
2627 2628
		return -EINVAL;

2629
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2630
	_perf_event_enable(event);
2631 2632

	return 0;
2633
}
P
Peter Zijlstra 已提交
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2649
EXPORT_SYMBOL_GPL(perf_event_refresh);
2650

2651 2652 2653
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2654
{
2655
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2656
	struct perf_event *event;
2657

P
Peter Zijlstra 已提交
2658
	lockdep_assert_held(&ctx->lock);
2659

2660 2661 2662 2663 2664 2665 2666
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2667
		return;
2668 2669
	}

2670
	ctx->is_active &= ~event_type;
2671 2672 2673
	if (!(ctx->is_active & EVENT_ALL))
		ctx->is_active = 0;

2674 2675 2676 2677 2678
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2679

2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
	/*
	 * Always update time if it was set; not only when it changes.
	 * Otherwise we can 'forget' to update time for any but the last
	 * context we sched out. For example:
	 *
	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
	 *   ctx_sched_out(.event_type = EVENT_PINNED)
	 *
	 * would only update time for the pinned events.
	 */
2690 2691 2692 2693 2694 2695
	if (is_active & EVENT_TIME) {
		/* update (and stop) ctx time */
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

2696 2697
	is_active ^= ctx->is_active; /* changed bits */

2698
	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2699
		return;
2700

P
Peter Zijlstra 已提交
2701
	perf_pmu_disable(ctx->pmu);
2702
	if (is_active & EVENT_PINNED) {
2703 2704
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2705
	}
2706

2707
	if (is_active & EVENT_FLEXIBLE) {
2708
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2709
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2710
	}
P
Peter Zijlstra 已提交
2711
	perf_pmu_enable(ctx->pmu);
2712 2713
}

2714
/*
2715 2716 2717 2718 2719 2720
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2721
 */
2722 2723
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2724
{
2725 2726 2727
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2750 2751
}

2752 2753
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2754 2755 2756
{
	u64 value;

2757
	if (!event->attr.inherit_stat)
2758 2759 2760
		return;

	/*
2761
	 * Update the event value, we cannot use perf_event_read()
2762 2763
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2764
	 * we know the event must be on the current CPU, therefore we
2765 2766
	 * don't need to use it.
	 */
2767
	if (event->state == PERF_EVENT_STATE_ACTIVE)
2768
		event->pmu->read(event);
2769

2770
	perf_event_update_time(event);
2771 2772

	/*
2773
	 * In order to keep per-task stats reliable we need to flip the event
2774 2775
	 * values when we flip the contexts.
	 */
2776 2777 2778
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2779

2780 2781
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2782

2783
	/*
2784
	 * Since we swizzled the values, update the user visible data too.
2785
	 */
2786 2787
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2788 2789
}

2790 2791
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2792
{
2793
	struct perf_event *event, *next_event;
2794 2795 2796 2797

	if (!ctx->nr_stat)
		return;

2798 2799
	update_context_time(ctx);

2800 2801
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2802

2803 2804
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2805

2806 2807
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2808

2809
		__perf_event_sync_stat(event, next_event);
2810

2811 2812
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2813 2814 2815
	}
}

2816 2817
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2818
{
P
Peter Zijlstra 已提交
2819
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2820
	struct perf_event_context *next_ctx;
2821
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2822
	struct perf_cpu_context *cpuctx;
2823
	int do_switch = 1;
T
Thomas Gleixner 已提交
2824

P
Peter Zijlstra 已提交
2825 2826
	if (likely(!ctx))
		return;
2827

P
Peter Zijlstra 已提交
2828 2829
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2830 2831
		return;

2832
	rcu_read_lock();
P
Peter Zijlstra 已提交
2833
	next_ctx = next->perf_event_ctxp[ctxn];
2834 2835 2836 2837 2838 2839 2840
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2841
	if (!parent && !next_parent)
2842 2843 2844
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2845 2846 2847 2848 2849 2850 2851 2852 2853
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2854 2855
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2856
		if (context_equiv(ctx, next_ctx)) {
2857 2858
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2859 2860 2861

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2872
			do_switch = 0;
2873

2874
			perf_event_sync_stat(ctx, next_ctx);
2875
		}
2876 2877
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2878
	}
2879
unlock:
2880
	rcu_read_unlock();
2881

2882
	if (do_switch) {
2883
		raw_spin_lock(&ctx->lock);
2884
		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2885
		raw_spin_unlock(&ctx->lock);
2886
	}
T
Thomas Gleixner 已提交
2887 2888
}

2889 2890
static DEFINE_PER_CPU(struct list_head, sched_cb_list);

2891 2892
void perf_sched_cb_dec(struct pmu *pmu)
{
2893 2894
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

2895
	this_cpu_dec(perf_sched_cb_usages);
2896 2897 2898

	if (!--cpuctx->sched_cb_usage)
		list_del(&cpuctx->sched_cb_entry);
2899 2900
}

2901

2902 2903
void perf_sched_cb_inc(struct pmu *pmu)
{
2904 2905 2906 2907 2908
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	if (!cpuctx->sched_cb_usage++)
		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));

2909 2910 2911 2912 2913 2914
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
2915 2916 2917 2918
 *
 * This callback is relevant even to per-cpu events; for example multi event
 * PEBS requires this to provide PID/TID information. This requires we flush
 * all queued PEBS records before we context switch to a new task.
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;

	if (prev == next)
		return;

2930
	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2931
		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2932

2933 2934
		if (WARN_ON_ONCE(!pmu->sched_task))
			continue;
2935

2936 2937
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(pmu);
2938

2939
		pmu->sched_task(cpuctx->task_ctx, sched_in);
2940

2941 2942
		perf_pmu_enable(pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2943 2944 2945
	}
}

2946 2947 2948
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2963 2964
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2965 2966 2967
{
	int ctxn;

2968 2969 2970
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2971 2972 2973
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2974 2975
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2976 2977 2978 2979 2980 2981

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2982
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2983
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2984 2985
}

2986 2987 2988 2989 2990 2991 2992
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2993 2994
}

2995
static void
2996
ctx_pinned_sched_in(struct perf_event_context *ctx,
2997
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2998
{
2999
	struct perf_event *event;
T
Thomas Gleixner 已提交
3000

3001 3002
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
3003
			continue;
3004
		if (!event_filter_match(event))
3005 3006
			continue;

3007
		if (group_can_go_on(event, cpuctx, 1))
3008
			group_sched_in(event, cpuctx, ctx);
3009 3010 3011 3012 3013

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
3014 3015
		if (event->state == PERF_EVENT_STATE_INACTIVE)
			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3016
	}
3017 3018 3019 3020
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
3021
		      struct perf_cpu_context *cpuctx)
3022 3023 3024
{
	struct perf_event *event;
	int can_add_hw = 1;
3025

3026 3027 3028
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
3029
			continue;
3030 3031
		/*
		 * Listen to the 'cpu' scheduling filter constraint
3032
		 * of events:
3033
		 */
3034
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
3035 3036
			continue;

P
Peter Zijlstra 已提交
3037
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3038
			if (group_sched_in(event, cpuctx, ctx))
3039
				can_add_hw = 0;
P
Peter Zijlstra 已提交
3040
		}
T
Thomas Gleixner 已提交
3041
	}
3042 3043 3044 3045 3046
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3047 3048
	     enum event_type_t event_type,
	     struct task_struct *task)
3049
{
3050
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
3051 3052 3053
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
3054

3055
	if (likely(!ctx->nr_events))
3056
		return;
3057

3058
	ctx->is_active |= (event_type | EVENT_TIME);
3059 3060 3061 3062 3063 3064 3065
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

3066 3067 3068 3069 3070 3071 3072 3073 3074
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* start ctx time */
		now = perf_clock();
		ctx->timestamp = now;
		perf_cgroup_set_timestamp(task, ctx);
	}

3075 3076 3077 3078
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
3079
	if (is_active & EVENT_PINNED)
3080
		ctx_pinned_sched_in(ctx, cpuctx);
3081 3082

	/* Then walk through the lower prio flexible groups */
3083
	if (is_active & EVENT_FLEXIBLE)
3084
		ctx_flexible_sched_in(ctx, cpuctx);
3085 3086
}

3087
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3088 3089
			     enum event_type_t event_type,
			     struct task_struct *task)
3090 3091 3092
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
3093
	ctx_sched_in(ctx, cpuctx, event_type, task);
3094 3095
}

S
Stephane Eranian 已提交
3096 3097
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
3098
{
P
Peter Zijlstra 已提交
3099
	struct perf_cpu_context *cpuctx;
3100

P
Peter Zijlstra 已提交
3101
	cpuctx = __get_cpu_context(ctx);
3102 3103 3104
	if (cpuctx->task_ctx == ctx)
		return;

3105
	perf_ctx_lock(cpuctx, ctx);
3106 3107 3108 3109 3110 3111 3112
	/*
	 * We must check ctx->nr_events while holding ctx->lock, such
	 * that we serialize against perf_install_in_context().
	 */
	if (!ctx->nr_events)
		goto unlock;

P
Peter Zijlstra 已提交
3113
	perf_pmu_disable(ctx->pmu);
3114 3115 3116 3117
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
3118 3119 3120
	 *
	 * However, if task's ctx is not carrying any pinned
	 * events, no need to flip the cpuctx's events around.
3121
	 */
3122 3123
	if (!list_empty(&ctx->pinned_groups))
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3124
	perf_event_sched_in(cpuctx, ctx, task);
3125
	perf_pmu_enable(ctx->pmu);
3126 3127

unlock:
3128
	perf_ctx_unlock(cpuctx, ctx);
3129 3130
}

P
Peter Zijlstra 已提交
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
3142 3143
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
3144 3145 3146 3147
{
	struct perf_event_context *ctx;
	int ctxn;

3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
3158 3159 3160 3161 3162
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
3163
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
3164
	}
3165

3166 3167 3168
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

3169 3170
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
3171 3172
}

3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
3200
#define REDUCE_FLS(a, b)		\
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

3240 3241 3242
	if (!divisor)
		return dividend;

3243 3244 3245
	return div64_u64(dividend, divisor);
}

3246 3247 3248
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

3249
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3250
{
3251
	struct hw_perf_event *hwc = &event->hw;
3252
	s64 period, sample_period;
3253 3254
	s64 delta;

3255
	period = perf_calculate_period(event, nsec, count);
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
3266

3267
	if (local64_read(&hwc->period_left) > 8*sample_period) {
3268 3269 3270
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

3271
		local64_set(&hwc->period_left, 0);
3272 3273 3274

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
3275
	}
3276 3277
}

3278 3279 3280 3281 3282 3283 3284
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
3285
{
3286 3287
	struct perf_event *event;
	struct hw_perf_event *hwc;
3288
	u64 now, period = TICK_NSEC;
3289
	s64 delta;
3290

3291 3292 3293 3294 3295 3296
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3297 3298
		return;

3299
	raw_spin_lock(&ctx->lock);
3300
	perf_pmu_disable(ctx->pmu);
3301

3302
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3303
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3304 3305
			continue;

3306
		if (!event_filter_match(event))
3307 3308
			continue;

3309 3310
		perf_pmu_disable(event->pmu);

3311
		hwc = &event->hw;
3312

3313
		if (hwc->interrupts == MAX_INTERRUPTS) {
3314
			hwc->interrupts = 0;
3315
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3316
			event->pmu->start(event, 0);
3317 3318
		}

3319
		if (!event->attr.freq || !event->attr.sample_freq)
3320
			goto next;
3321

3322 3323 3324 3325 3326
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3327
		now = local64_read(&event->count);
3328 3329
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3330

3331 3332 3333
		/*
		 * restart the event
		 * reload only if value has changed
3334 3335 3336
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3337
		 */
3338
		if (delta > 0)
3339
			perf_adjust_period(event, period, delta, false);
3340 3341

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3342 3343
	next:
		perf_pmu_enable(event->pmu);
3344
	}
3345

3346
	perf_pmu_enable(ctx->pmu);
3347
	raw_spin_unlock(&ctx->lock);
3348 3349
}

3350
/*
3351
 * Round-robin a context's events:
3352
 */
3353
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3354
{
3355 3356 3357 3358 3359 3360
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3361 3362
}

3363
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3364
{
P
Peter Zijlstra 已提交
3365
	struct perf_event_context *ctx = NULL;
3366
	int rotate = 0;
3367

3368 3369 3370 3371
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3372

P
Peter Zijlstra 已提交
3373
	ctx = cpuctx->task_ctx;
3374 3375 3376 3377
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3378

3379
	if (!rotate)
3380 3381
		goto done;

3382
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3383
	perf_pmu_disable(cpuctx->ctx.pmu);
3384

3385 3386 3387
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3388

3389 3390 3391
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3392

3393
	perf_event_sched_in(cpuctx, ctx, current);
3394

3395 3396
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3397
done:
3398 3399

	return rotate;
3400 3401 3402 3403
}

void perf_event_task_tick(void)
{
3404 3405
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3406
	int throttled;
3407

3408
	lockdep_assert_irqs_disabled();
3409

3410 3411
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3412
	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3413

3414
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3415
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3416 3417
}

3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3428
	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3429 3430 3431 3432

	return 1;
}

3433
/*
3434
 * Enable all of a task's events that have been marked enable-on-exec.
3435 3436
 * This expects task == current.
 */
3437
static void perf_event_enable_on_exec(int ctxn)
3438
{
3439
	struct perf_event_context *ctx, *clone_ctx = NULL;
3440
	enum event_type_t event_type = 0;
3441
	struct perf_cpu_context *cpuctx;
3442
	struct perf_event *event;
3443 3444 3445 3446
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3447
	ctx = current->perf_event_ctxp[ctxn];
3448
	if (!ctx || !ctx->nr_events)
3449 3450
		goto out;

3451 3452
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
3453
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3454
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3455
		enabled |= event_enable_on_exec(event, ctx);
3456 3457
		event_type |= get_event_type(event);
	}
3458 3459

	/*
3460
	 * Unclone and reschedule this context if we enabled any event.
3461
	 */
3462
	if (enabled) {
3463
		clone_ctx = unclone_ctx(ctx);
3464
		ctx_resched(cpuctx, ctx, event_type);
3465 3466
	} else {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3467 3468
	}
	perf_ctx_unlock(cpuctx, ctx);
3469

P
Peter Zijlstra 已提交
3470
out:
3471
	local_irq_restore(flags);
3472 3473 3474

	if (clone_ctx)
		put_ctx(clone_ctx);
3475 3476
}

3477 3478 3479
struct perf_read_data {
	struct perf_event *event;
	bool group;
3480
	int ret;
3481 3482
};

3483
static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3484 3485 3486 3487
{
	u16 local_pkg, event_pkg;

	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3488 3489 3490 3491
		int local_cpu = smp_processor_id();

		event_pkg = topology_physical_package_id(event_cpu);
		local_pkg = topology_physical_package_id(local_cpu);
3492 3493 3494 3495 3496 3497 3498 3499

		if (event_pkg == local_pkg)
			return local_cpu;
	}

	return event_cpu;
}

T
Thomas Gleixner 已提交
3500
/*
3501
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3502
 */
3503
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3504
{
3505 3506
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3507
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3508
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3509
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3510

3511 3512 3513 3514
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3515 3516
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3517 3518 3519 3520
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3521
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
3522
	if (ctx->is_active & EVENT_TIME) {
3523
		update_context_time(ctx);
S
Stephane Eranian 已提交
3524 3525
		update_cgrp_time_from_event(event);
	}
3526

3527 3528 3529
	perf_event_update_time(event);
	if (data->group)
		perf_event_update_sibling_time(event);
P
Peter Zijlstra 已提交
3530

3531 3532
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3533

3534 3535 3536
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3537
		goto unlock;
3538 3539 3540 3541 3542
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3543 3544

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3545 3546 3547 3548 3549
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3550
			sub->pmu->read(sub);
3551
		}
3552
	}
3553 3554

	data->ret = pmu->commit_txn(pmu);
3555 3556

unlock:
3557
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3558 3559
}

P
Peter Zijlstra 已提交
3560 3561
static inline u64 perf_event_count(struct perf_event *event)
{
3562
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3563 3564
}

3565 3566 3567 3568 3569 3570 3571 3572
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
3573 3574
int perf_event_read_local(struct perf_event *event, u64 *value,
			  u64 *enabled, u64 *running)
3575 3576
{
	unsigned long flags;
3577
	int ret = 0;
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
3589 3590 3591 3592
	if (event->attr.inherit) {
		ret = -EOPNOTSUPP;
		goto out;
	}
3593

3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
	/* If this is a per-task event, it must be for current */
	if ((event->attach_state & PERF_ATTACH_TASK) &&
	    event->hw.target != current) {
		ret = -EINVAL;
		goto out;
	}

	/* If this is a per-CPU event, it must be for this CPU */
	if (!(event->attach_state & PERF_ATTACH_TASK) &&
	    event->cpu != smp_processor_id()) {
		ret = -EINVAL;
		goto out;
	}
3607 3608 3609 3610 3611 3612 3613 3614 3615

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

3616
	*value = local64_read(&event->count);
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
	if (enabled || running) {
		u64 now = event->shadow_ctx_time + perf_clock();
		u64 __enabled, __running;

		__perf_update_times(event, now, &__enabled, &__running);
		if (enabled)
			*enabled = __enabled;
		if (running)
			*running = __running;
	}
3627
out:
3628 3629
	local_irq_restore(flags);

3630
	return ret;
3631 3632
}

3633
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3634
{
P
Peter Zijlstra 已提交
3635
	enum perf_event_state state = READ_ONCE(event->state);
3636
	int event_cpu, ret = 0;
3637

T
Thomas Gleixner 已提交
3638
	/*
3639 3640
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3641
	 */
P
Peter Zijlstra 已提交
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
again:
	if (state == PERF_EVENT_STATE_ACTIVE) {
		struct perf_read_data data;

		/*
		 * Orders the ->state and ->oncpu loads such that if we see
		 * ACTIVE we must also see the right ->oncpu.
		 *
		 * Matches the smp_wmb() from event_sched_in().
		 */
		smp_rmb();
3653

3654 3655 3656 3657
		event_cpu = READ_ONCE(event->oncpu);
		if ((unsigned)event_cpu >= nr_cpu_ids)
			return 0;

P
Peter Zijlstra 已提交
3658 3659 3660 3661 3662 3663
		data = (struct perf_read_data){
			.event = event,
			.group = group,
			.ret = 0,
		};

3664 3665
		preempt_disable();
		event_cpu = __perf_event_read_cpu(event, event_cpu);
3666

3667 3668 3669 3670
		/*
		 * Purposely ignore the smp_call_function_single() return
		 * value.
		 *
3671
		 * If event_cpu isn't a valid CPU it means the event got
3672 3673 3674 3675 3676
		 * scheduled out and that will have updated the event count.
		 *
		 * Therefore, either way, we'll have an up-to-date event count
		 * after this.
		 */
3677 3678
		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
		preempt_enable();
3679
		ret = data.ret;
P
Peter Zijlstra 已提交
3680 3681

	} else if (state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3682 3683 3684
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3685
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
3686 3687 3688 3689 3690 3691
		state = event->state;
		if (state != PERF_EVENT_STATE_INACTIVE) {
			raw_spin_unlock_irqrestore(&ctx->lock, flags);
			goto again;
		}

3692
		/*
P
Peter Zijlstra 已提交
3693 3694
		 * May read while context is not active (e.g., thread is
		 * blocked), in that case we cannot update context time
3695
		 */
P
Peter Zijlstra 已提交
3696
		if (ctx->is_active & EVENT_TIME) {
3697
			update_context_time(ctx);
S
Stephane Eranian 已提交
3698 3699
			update_cgrp_time_from_event(event);
		}
P
Peter Zijlstra 已提交
3700

3701
		perf_event_update_time(event);
3702
		if (group)
3703
			perf_event_update_sibling_time(event);
3704
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3705
	}
3706 3707

	return ret;
T
Thomas Gleixner 已提交
3708 3709
}

3710
/*
3711
 * Initialize the perf_event context in a task_struct:
3712
 */
3713
static void __perf_event_init_context(struct perf_event_context *ctx)
3714
{
3715
	raw_spin_lock_init(&ctx->lock);
3716
	mutex_init(&ctx->mutex);
3717
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3718 3719
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3720 3721
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3737
	}
3738 3739 3740
	ctx->pmu = pmu;

	return ctx;
3741 3742
}

3743 3744 3745 3746
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
T
Thomas Gleixner 已提交
3747 3748

	rcu_read_lock();
3749
	if (!vpid)
T
Thomas Gleixner 已提交
3750 3751
		task = current;
	else
3752
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3753 3754 3755 3756 3757 3758 3759
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

3760 3761 3762
	return task;
}

3763 3764 3765
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3766
static struct perf_event_context *
3767 3768
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3769
{
3770
	struct perf_event_context *ctx, *clone_ctx = NULL;
3771
	struct perf_cpu_context *cpuctx;
3772
	void *task_ctx_data = NULL;
3773
	unsigned long flags;
P
Peter Zijlstra 已提交
3774
	int ctxn, err;
3775
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3776

3777
	if (!task) {
3778
		/* Must be root to operate on a CPU event: */
3779
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3780 3781
			return ERR_PTR(-EACCES);

P
Peter Zijlstra 已提交
3782
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3783
		ctx = &cpuctx->ctx;
3784
		get_ctx(ctx);
3785
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3786 3787 3788 3789

		return ctx;
	}

P
Peter Zijlstra 已提交
3790 3791 3792 3793 3794
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3795 3796 3797 3798 3799 3800 3801 3802
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3803
retry:
P
Peter Zijlstra 已提交
3804
	ctx = perf_lock_task_context(task, ctxn, &flags);
3805
	if (ctx) {
3806
		clone_ctx = unclone_ctx(ctx);
3807
		++ctx->pin_count;
3808 3809 3810 3811 3812

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3813
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3814 3815 3816

		if (clone_ctx)
			put_ctx(clone_ctx);
3817
	} else {
3818
		ctx = alloc_perf_context(pmu, task);
3819 3820 3821
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3822

3823 3824 3825 3826 3827
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3838
		else {
3839
			get_ctx(ctx);
3840
			++ctx->pin_count;
3841
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3842
		}
3843 3844 3845
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3846
			put_ctx(ctx);
3847 3848 3849 3850

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3851 3852 3853
		}
	}

3854
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3855
	return ctx;
3856

P
Peter Zijlstra 已提交
3857
errout:
3858
	kfree(task_ctx_data);
3859
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3860 3861
}

L
Li Zefan 已提交
3862
static void perf_event_free_filter(struct perf_event *event);
3863
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3864

3865
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3866
{
3867
	struct perf_event *event;
P
Peter Zijlstra 已提交
3868

3869 3870 3871
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3872
	perf_event_free_filter(event);
3873
	kfree(event);
P
Peter Zijlstra 已提交
3874 3875
}

3876 3877
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3878

3879 3880 3881 3882 3883 3884 3885 3886 3887
static void detach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_del_rcu(&event->sb_list);
	raw_spin_unlock(&pel->lock);
}

3888
static bool is_sb_event(struct perf_event *event)
3889
{
3890 3891
	struct perf_event_attr *attr = &event->attr;

3892
	if (event->parent)
3893
		return false;
3894 3895

	if (event->attach_state & PERF_ATTACH_TASK)
3896
		return false;
3897

3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
	    attr->comm || attr->comm_exec ||
	    attr->task ||
	    attr->context_switch)
		return true;
	return false;
}

static void unaccount_pmu_sb_event(struct perf_event *event)
{
	if (is_sb_event(event))
		detach_sb_event(event);
3910 3911
}

3912
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3913
{
3914 3915 3916 3917 3918 3919
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3920

3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
#ifdef CONFIG_NO_HZ_FULL
static DEFINE_SPINLOCK(nr_freq_lock);
#endif

static void unaccount_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	spin_lock(&nr_freq_lock);
	if (atomic_dec_and_test(&nr_freq_events))
		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void unaccount_freq_event(void)
{
	if (tick_nohz_full_enabled())
		unaccount_freq_event_nohz();
	else
		atomic_dec(&nr_freq_events);
}

3943 3944
static void unaccount_event(struct perf_event *event)
{
3945 3946
	bool dec = false;

3947 3948 3949 3950
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3951
		dec = true;
3952 3953 3954 3955
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
3956 3957
	if (event->attr.namespaces)
		atomic_dec(&nr_namespaces_events);
3958 3959
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3960
	if (event->attr.freq)
3961
		unaccount_freq_event();
3962
	if (event->attr.context_switch) {
3963
		dec = true;
3964 3965
		atomic_dec(&nr_switch_events);
	}
3966
	if (is_cgroup_event(event))
3967
		dec = true;
3968
	if (has_branch_stack(event))
3969 3970
		dec = true;

3971 3972 3973 3974
	if (dec) {
		if (!atomic_add_unless(&perf_sched_count, -1, 1))
			schedule_delayed_work(&perf_sched_work, HZ);
	}
3975 3976

	unaccount_event_cpu(event, event->cpu);
3977 3978

	unaccount_pmu_sb_event(event);
3979
}
3980

3981 3982 3983 3984 3985 3986 3987 3988
static void perf_sched_delayed(struct work_struct *work)
{
	mutex_lock(&perf_sched_mutex);
	if (atomic_dec_and_test(&perf_sched_count))
		static_branch_disable(&perf_sched_events);
	mutex_unlock(&perf_sched_mutex);
}

3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
3999
 * _free_event()), the latter -- before the first perf_install_in_context().
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
4048
	if ((e1->pmu == e2->pmu) &&
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

4074 4075 4076
static void perf_addr_filters_splice(struct perf_event *event,
				       struct list_head *head);

P
Peter Zijlstra 已提交
4077
static void _free_event(struct perf_event *event)
4078
{
4079
	irq_work_sync(&event->pending);
4080

4081
	unaccount_event(event);
4082

4083
	if (event->rb) {
4084 4085 4086 4087 4088 4089 4090
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
4091
		ring_buffer_attach(event, NULL);
4092
		mutex_unlock(&event->mmap_mutex);
4093 4094
	}

S
Stephane Eranian 已提交
4095 4096 4097
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
4098 4099 4100 4101 4102 4103
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);
4104 4105
	perf_addr_filters_splice(event, NULL);
	kfree(event->addr_filters_offs);
P
Peter Zijlstra 已提交
4106 4107 4108 4109 4110 4111 4112

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

4113 4114
	exclusive_event_destroy(event);
	module_put(event->pmu->module);
P
Peter Zijlstra 已提交
4115 4116

	call_rcu(&event->rcu_head, free_event_rcu);
4117 4118
}

P
Peter Zijlstra 已提交
4119 4120 4121 4122 4123
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
4124
{
P
Peter Zijlstra 已提交
4125 4126 4127 4128 4129 4130
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
4131

P
Peter Zijlstra 已提交
4132
	_free_event(event);
T
Thomas Gleixner 已提交
4133 4134
}

4135
/*
4136
 * Remove user event from the owner task.
4137
 */
4138
static void perf_remove_from_owner(struct perf_event *event)
4139
{
P
Peter Zijlstra 已提交
4140
	struct task_struct *owner;
4141

P
Peter Zijlstra 已提交
4142 4143
	rcu_read_lock();
	/*
4144 4145 4146
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
4147 4148
	 * owner->perf_event_mutex.
	 */
4149
	owner = READ_ONCE(event->owner);
P
Peter Zijlstra 已提交
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
4171 4172 4173 4174 4175 4176
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
4177
		if (event->owner) {
P
Peter Zijlstra 已提交
4178
			list_del_init(&event->owner_entry);
4179 4180
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
4181 4182 4183
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
4184 4185 4186 4187 4188 4189 4190
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
4201
	struct perf_event_context *ctx = event->ctx;
4202
	struct perf_event *child, *tmp;
4203
	LIST_HEAD(free_list);
4204

4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
	/*
	 * If we got here through err_file: fput(event_file); we will not have
	 * attached to a context yet.
	 */
	if (!ctx) {
		WARN_ON_ONCE(event->attach_state &
				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
		goto no_ctx;
	}

4215 4216
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
4217

4218
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
4219
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
4220
	perf_remove_from_context(event, DETACH_GROUP);
P
Peter Zijlstra 已提交
4221

P
Peter Zijlstra 已提交
4222
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
4223
	/*
4224
	 * Mark this event as STATE_DEAD, there is no external reference to it
P
Peter Zijlstra 已提交
4225
	 * anymore.
P
Peter Zijlstra 已提交
4226
	 *
P
Peter Zijlstra 已提交
4227 4228 4229
	 * Anybody acquiring event->child_mutex after the below loop _must_
	 * also see this, most importantly inherit_event() which will avoid
	 * placing more children on the list.
P
Peter Zijlstra 已提交
4230
	 *
4231 4232
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
4233
	 */
P
Peter Zijlstra 已提交
4234 4235 4236 4237
	event->state = PERF_EVENT_STATE_DEAD;
	raw_spin_unlock_irq(&ctx->lock);

	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
4238

4239 4240 4241
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
4242

4243 4244 4245 4246
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
4247
		ctx = READ_ONCE(child->ctx);
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
4276
			list_move(&child->child_list, &free_list);
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

4291 4292 4293 4294 4295
	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
		list_del(&child->child_list);
		free_event(child);
	}

4296 4297
no_ctx:
	put_event(event); /* Must be the 'last' reference */
P
Peter Zijlstra 已提交
4298 4299 4300 4301
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

4302 4303 4304
/*
 * Called when the last reference to the file is gone.
 */
4305 4306
static int perf_release(struct inode *inode, struct file *file)
{
4307
	perf_event_release_kernel(file->private_data);
4308
	return 0;
4309 4310
}

4311
static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4312
{
4313
	struct perf_event *child;
4314 4315
	u64 total = 0;

4316 4317 4318
	*enabled = 0;
	*running = 0;

4319
	mutex_lock(&event->child_mutex);
4320

4321
	(void)perf_event_read(event, false);
4322 4323
	total += perf_event_count(event);

4324 4325 4326 4327 4328 4329
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
4330
		(void)perf_event_read(child, false);
4331
		total += perf_event_count(child);
4332 4333 4334
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
4335
	mutex_unlock(&event->child_mutex);
4336 4337 4338

	return total;
}
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350

u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
{
	struct perf_event_context *ctx;
	u64 count;

	ctx = perf_event_ctx_lock(event);
	count = __perf_event_read_value(event, enabled, running);
	perf_event_ctx_unlock(event, ctx);

	return count;
}
4351
EXPORT_SYMBOL_GPL(perf_event_read_value);
4352

4353
static int __perf_read_group_add(struct perf_event *leader,
4354
					u64 read_format, u64 *values)
4355
{
4356
	struct perf_event_context *ctx = leader->ctx;
4357
	struct perf_event *sub;
4358
	unsigned long flags;
4359
	int n = 1; /* skip @nr */
4360
	int ret;
P
Peter Zijlstra 已提交
4361

4362 4363 4364
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
4365

4366 4367
	raw_spin_lock_irqsave(&ctx->lock, flags);

4368 4369 4370 4371 4372 4373 4374 4375 4376
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
4377

4378 4379 4380 4381 4382 4383 4384 4385 4386
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
4387 4388
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
4389

4390 4391 4392 4393 4394
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
4395

4396
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4397
	return 0;
4398
}
4399

4400 4401 4402 4403 4404
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
4405
	int ret;
4406
	u64 *values;
4407

4408
	lockdep_assert_held(&ctx->mutex);
4409

4410 4411 4412
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
4413

4414 4415 4416 4417 4418 4419 4420
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
4421

4422 4423 4424 4425 4426 4427 4428 4429 4430
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
4431

4432
	mutex_unlock(&leader->child_mutex);
4433

4434
	ret = event->read_size;
4435 4436
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4437
	goto out;
4438

4439 4440 4441
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4442
	kfree(values);
4443
	return ret;
4444 4445
}

4446
static int perf_read_one(struct perf_event *event,
4447 4448
				 u64 read_format, char __user *buf)
{
4449
	u64 enabled, running;
4450 4451 4452
	u64 values[4];
	int n = 0;

4453
	values[n++] = __perf_event_read_value(event, &enabled, &running);
4454 4455 4456 4457
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4458
	if (read_format & PERF_FORMAT_ID)
4459
		values[n++] = primary_event_id(event);
4460 4461 4462 4463 4464 4465 4466

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4467 4468 4469 4470
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

P
Peter Zijlstra 已提交
4471
	if (event->state > PERF_EVENT_STATE_EXIT)
4472 4473 4474 4475 4476 4477 4478 4479
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4480
/*
4481
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4482 4483
 */
static ssize_t
4484
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4485
{
4486
	u64 read_format = event->attr.read_format;
4487
	int ret;
T
Thomas Gleixner 已提交
4488

4489
	/*
4490
	 * Return end-of-file for a read on a event that is in
4491 4492 4493
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4494
	if (event->state == PERF_EVENT_STATE_ERROR)
4495 4496
		return 0;

4497
	if (count < event->read_size)
4498 4499
		return -ENOSPC;

4500
	WARN_ON_ONCE(event->ctx->parent_ctx);
4501
	if (read_format & PERF_FORMAT_GROUP)
4502
		ret = perf_read_group(event, read_format, buf);
4503
	else
4504
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4505

4506
	return ret;
T
Thomas Gleixner 已提交
4507 4508 4509 4510 4511
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4512
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4513 4514
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4515

P
Peter Zijlstra 已提交
4516
	ctx = perf_event_ctx_lock(event);
4517
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4518 4519 4520
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4521 4522 4523 4524
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4525
	struct perf_event *event = file->private_data;
4526
	struct ring_buffer *rb;
4527
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4528

4529
	poll_wait(file, &event->waitq, wait);
4530

4531
	if (is_event_hup(event))
4532
		return events;
P
Peter Zijlstra 已提交
4533

4534
	/*
4535 4536
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4537 4538
	 */
	mutex_lock(&event->mmap_mutex);
4539 4540
	rb = event->rb;
	if (rb)
4541
		events = atomic_xchg(&rb->poll, 0);
4542
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4543 4544 4545
	return events;
}

P
Peter Zijlstra 已提交
4546
static void _perf_event_reset(struct perf_event *event)
4547
{
4548
	(void)perf_event_read(event, false);
4549
	local64_set(&event->count, 0);
4550
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4551 4552
}

4553
/*
4554 4555
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4556
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4557
 * task existence requirements of perf_event_enable/disable.
4558
 */
4559 4560
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4561
{
4562
	struct perf_event *child;
P
Peter Zijlstra 已提交
4563

4564
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4565

4566 4567 4568
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4569
		func(child);
4570
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4571 4572
}

4573 4574
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4575
{
4576 4577
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4578

P
Peter Zijlstra 已提交
4579 4580
	lockdep_assert_held(&ctx->mutex);

4581
	event = event->group_leader;
4582

4583 4584
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4585
		perf_event_for_each_child(sibling, func);
4586 4587
}

4588 4589 4590 4591
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4592
{
4593
	u64 value = *((u64 *)info);
4594
	bool active;
4595

4596 4597
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4598
	} else {
4599 4600
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4601
	}
4602 4603 4604 4605

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
4606 4607 4608 4609 4610 4611 4612 4613
		/*
		 * We could be throttled; unthrottle now to avoid the tick
		 * trying to unthrottle while we already re-started the event.
		 */
		if (event->hw.interrupts == MAX_INTERRUPTS) {
			event->hw.interrupts = 0;
			perf_log_throttle(event, 1);
		}
4614 4615 4616 4617 4618 4619 4620 4621 4622
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4641
	event_function_call(event, __perf_event_period, &value);
4642

4643
	return 0;
4644 4645
}

4646 4647
static const struct file_operations perf_fops;

4648
static inline int perf_fget_light(int fd, struct fd *p)
4649
{
4650 4651 4652
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4653

4654 4655 4656
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4657
	}
4658 4659
	*p = f;
	return 0;
4660 4661 4662 4663
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4664
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4665
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4666

P
Peter Zijlstra 已提交
4667
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4668
{
4669
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4670
	u32 flags = arg;
4671 4672

	switch (cmd) {
4673
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4674
		func = _perf_event_enable;
4675
		break;
4676
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4677
		func = _perf_event_disable;
4678
		break;
4679
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4680
		func = _perf_event_reset;
4681
		break;
P
Peter Zijlstra 已提交
4682

4683
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4684
		return _perf_event_refresh(event, arg);
4685

4686 4687
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4688

4689 4690 4691 4692 4693 4694 4695 4696 4697
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4698
	case PERF_EVENT_IOC_SET_OUTPUT:
4699 4700 4701
	{
		int ret;
		if (arg != -1) {
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4712 4713 4714
		}
		return ret;
	}
4715

L
Li Zefan 已提交
4716 4717 4718
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4719 4720 4721
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
		struct ring_buffer *rb;

		rcu_read_lock();
		rb = rcu_dereference(event->rb);
		if (!rb || !rb->nr_pages) {
			rcu_read_unlock();
			return -EINVAL;
		}
		rb_toggle_paused(rb, !!arg);
		rcu_read_unlock();
		return 0;
	}
4735
	default:
P
Peter Zijlstra 已提交
4736
		return -ENOTTY;
4737
	}
P
Peter Zijlstra 已提交
4738 4739

	if (flags & PERF_IOC_FLAG_GROUP)
4740
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4741
	else
4742
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4743 4744

	return 0;
4745 4746
}

P
Peter Zijlstra 已提交
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4780
int perf_event_task_enable(void)
4781
{
P
Peter Zijlstra 已提交
4782
	struct perf_event_context *ctx;
4783
	struct perf_event *event;
4784

4785
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4786 4787 4788 4789 4790
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4791
	mutex_unlock(&current->perf_event_mutex);
4792 4793 4794 4795

	return 0;
}

4796
int perf_event_task_disable(void)
4797
{
P
Peter Zijlstra 已提交
4798
	struct perf_event_context *ctx;
4799
	struct perf_event *event;
4800

4801
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4802 4803 4804 4805 4806
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4807
	mutex_unlock(&current->perf_event_mutex);
4808 4809 4810 4811

	return 0;
}

4812
static int perf_event_index(struct perf_event *event)
4813
{
P
Peter Zijlstra 已提交
4814 4815 4816
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4817
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4818 4819
		return 0;

4820
	return event->pmu->event_idx(event);
4821 4822
}

4823
static void calc_timer_values(struct perf_event *event,
4824
				u64 *now,
4825 4826
				u64 *enabled,
				u64 *running)
4827
{
4828
	u64 ctx_time;
4829

4830 4831
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4832
	__perf_update_times(event, ctx_time, enabled, running);
4833 4834
}

4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4850 4851
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4852 4853 4854 4855 4856

unlock:
	rcu_read_unlock();
}

4857 4858
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4859 4860 4861
{
}

4862 4863 4864 4865 4866
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4867
void perf_event_update_userpage(struct perf_event *event)
4868
{
4869
	struct perf_event_mmap_page *userpg;
4870
	struct ring_buffer *rb;
4871
	u64 enabled, running, now;
4872 4873

	rcu_read_lock();
4874 4875 4876 4877
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4878 4879 4880 4881 4882 4883 4884 4885 4886
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4887
	calc_timer_values(event, &now, &enabled, &running);
4888

4889
	userpg = rb->user_page;
4890 4891 4892 4893 4894
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4895
	++userpg->lock;
4896
	barrier();
4897
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4898
	userpg->offset = perf_event_count(event);
4899
	if (userpg->index)
4900
		userpg->offset -= local64_read(&event->hw.prev_count);
4901

4902
	userpg->time_enabled = enabled +
4903
			atomic64_read(&event->child_total_time_enabled);
4904

4905
	userpg->time_running = running +
4906
			atomic64_read(&event->child_total_time_running);
4907

4908
	arch_perf_update_userpage(event, userpg, now);
4909

4910
	barrier();
4911
	++userpg->lock;
4912
	preempt_enable();
4913
unlock:
4914
	rcu_read_unlock();
4915 4916
}

4917
static int perf_mmap_fault(struct vm_fault *vmf)
4918
{
4919
	struct perf_event *event = vmf->vma->vm_file->private_data;
4920
	struct ring_buffer *rb;
4921 4922 4923 4924 4925 4926 4927 4928 4929
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4930 4931
	rb = rcu_dereference(event->rb);
	if (!rb)
4932 4933 4934 4935 4936
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4937
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4938 4939 4940 4941
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
4942
	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4943 4944 4945 4946 4947 4948 4949 4950 4951
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4952 4953 4954
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4955
	struct ring_buffer *old_rb = NULL;
4956 4957
	unsigned long flags;

4958 4959 4960 4961 4962 4963
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4964

4965 4966 4967 4968
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4969

4970 4971
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4972
	}
4973

4974
	if (rb) {
4975 4976 4977 4978 4979
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4980 4981 4982 4983 4984
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
	/*
	 * Avoid racing with perf_mmap_close(AUX): stop the event
	 * before swizzling the event::rb pointer; if it's getting
	 * unmapped, its aux_mmap_count will be 0 and it won't
	 * restart. See the comment in __perf_pmu_output_stop().
	 *
	 * Data will inevitably be lost when set_output is done in
	 * mid-air, but then again, whoever does it like this is
	 * not in for the data anyway.
	 */
	if (has_aux(event))
		perf_event_stop(event, 0);

4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
5009 5010 5011 5012 5013 5014 5015 5016
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
5017 5018 5019 5020
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
5021 5022 5023
	rcu_read_unlock();
}

5024
struct ring_buffer *ring_buffer_get(struct perf_event *event)
5025
{
5026
	struct ring_buffer *rb;
5027

5028
	rcu_read_lock();
5029 5030 5031 5032
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
5033 5034 5035
	}
	rcu_read_unlock();

5036
	return rb;
5037 5038
}

5039
void ring_buffer_put(struct ring_buffer *rb)
5040
{
5041
	if (!atomic_dec_and_test(&rb->refcount))
5042
		return;
5043

5044
	WARN_ON_ONCE(!list_empty(&rb->event_list));
5045

5046
	call_rcu(&rb->rcu_head, rb_free_rcu);
5047 5048 5049 5050
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
5051
	struct perf_event *event = vma->vm_file->private_data;
5052

5053
	atomic_inc(&event->mmap_count);
5054
	atomic_inc(&event->rb->mmap_count);
5055

5056 5057 5058
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

5059
	if (event->pmu->event_mapped)
5060
		event->pmu->event_mapped(event, vma->vm_mm);
5061 5062
}

5063 5064
static void perf_pmu_output_stop(struct perf_event *event);

5065 5066 5067 5068 5069 5070 5071 5072
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
5073 5074
static void perf_mmap_close(struct vm_area_struct *vma)
{
5075
	struct perf_event *event = vma->vm_file->private_data;
5076

5077
	struct ring_buffer *rb = ring_buffer_get(event);
5078 5079 5080
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
5081

5082
	if (event->pmu->event_unmapped)
5083
		event->pmu->event_unmapped(event, vma->vm_mm);
5084

5085 5086 5087 5088 5089 5090 5091
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5092 5093 5094 5095 5096 5097 5098 5099 5100
		/*
		 * Stop all AUX events that are writing to this buffer,
		 * so that we can free its AUX pages and corresponding PMU
		 * data. Note that after rb::aux_mmap_count dropped to zero,
		 * they won't start any more (see perf_aux_output_begin()).
		 */
		perf_pmu_output_stop(event);

		/* now it's safe to free the pages */
5101 5102 5103
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

5104
		/* this has to be the last one */
5105
		rb_free_aux(rb);
5106 5107
		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));

5108 5109 5110
		mutex_unlock(&event->mmap_mutex);
	}

5111 5112 5113
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5114
		goto out_put;
5115

5116
	ring_buffer_attach(event, NULL);
5117 5118 5119
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
5120 5121
	if (atomic_read(&rb->mmap_count))
		goto out_put;
5122

5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
5139

5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
5151 5152 5153
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

5154
		mutex_unlock(&event->mmap_mutex);
5155
		put_event(event);
5156

5157 5158 5159 5160 5161
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
5162
	}
5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

5178
out_put:
5179
	ring_buffer_put(rb); /* could be last */
5180 5181
}

5182
static const struct vm_operations_struct perf_mmap_vmops = {
5183
	.open		= perf_mmap_open,
5184
	.close		= perf_mmap_close, /* non mergable */
5185 5186
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
5187 5188 5189 5190
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
5191
	struct perf_event *event = file->private_data;
5192
	unsigned long user_locked, user_lock_limit;
5193
	struct user_struct *user = current_user();
5194
	unsigned long locked, lock_limit;
5195
	struct ring_buffer *rb = NULL;
5196 5197
	unsigned long vma_size;
	unsigned long nr_pages;
5198
	long user_extra = 0, extra = 0;
5199
	int ret = 0, flags = 0;
5200

5201 5202 5203
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
5204
	 * same rb.
5205 5206 5207 5208
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

5209
	if (!(vma->vm_flags & VM_SHARED))
5210
		return -EINVAL;
5211 5212

	vma_size = vma->vm_end - vma->vm_start;
5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

5236 5237
		aux_offset = READ_ONCE(rb->user_page->aux_offset);
		aux_size = READ_ONCE(rb->user_page->aux_size);
5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
5273

5274
	/*
5275
	 * If we have rb pages ensure they're a power-of-two number, so we
5276 5277
	 * can do bitmasks instead of modulo.
	 */
5278
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5279 5280
		return -EINVAL;

5281
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5282 5283
		return -EINVAL;

5284
	WARN_ON_ONCE(event->ctx->parent_ctx);
5285
again:
5286
	mutex_lock(&event->mmap_mutex);
5287
	if (event->rb) {
5288
		if (event->rb->nr_pages != nr_pages) {
5289
			ret = -EINVAL;
5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

5303 5304 5305
		goto unlock;
	}

5306
	user_extra = nr_pages + 1;
5307 5308

accounting:
5309
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
5310 5311 5312 5313 5314 5315

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

5316
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5317

5318 5319
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
5320

5321
	lock_limit = rlimit(RLIMIT_MEMLOCK);
5322
	lock_limit >>= PAGE_SHIFT;
5323
	locked = vma->vm_mm->pinned_vm + extra;
5324

5325 5326
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
5327 5328 5329
		ret = -EPERM;
		goto unlock;
	}
5330

5331
	WARN_ON(!rb && event->rb);
5332

5333
	if (vma->vm_flags & VM_WRITE)
5334
		flags |= RING_BUFFER_WRITABLE;
5335

5336
	if (!rb) {
5337 5338 5339
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
5340

5341 5342 5343 5344
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
5345

5346 5347 5348
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
5349

5350
		ring_buffer_attach(event, rb);
5351

5352 5353 5354
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
5355 5356
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
5357 5358 5359
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
5360

5361
unlock:
5362 5363 5364 5365
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

5366
		atomic_inc(&event->mmap_count);
5367 5368 5369 5370
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
5371
	mutex_unlock(&event->mmap_mutex);
5372

5373 5374 5375 5376
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
5377
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5378
	vma->vm_ops = &perf_mmap_vmops;
5379

5380
	if (event->pmu->event_mapped)
5381
		event->pmu->event_mapped(event, vma->vm_mm);
5382

5383
	return ret;
5384 5385
}

P
Peter Zijlstra 已提交
5386 5387
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
5388
	struct inode *inode = file_inode(filp);
5389
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
5390 5391
	int retval;

A
Al Viro 已提交
5392
	inode_lock(inode);
5393
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
5394
	inode_unlock(inode);
P
Peter Zijlstra 已提交
5395 5396 5397 5398 5399 5400 5401

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
5402
static const struct file_operations perf_fops = {
5403
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
5404 5405 5406
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
5407
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
5408
	.compat_ioctl		= perf_compat_ioctl,
5409
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
5410
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
5411 5412
};

5413
/*
5414
 * Perf event wakeup
5415 5416 5417 5418 5419
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

5420 5421 5422 5423 5424 5425 5426 5427
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

5428
void perf_event_wakeup(struct perf_event *event)
5429
{
5430
	ring_buffer_wakeup(event);
5431

5432
	if (event->pending_kill) {
5433
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5434
		event->pending_kill = 0;
5435
	}
5436 5437
}

5438
static void perf_pending_event(struct irq_work *entry)
5439
{
5440 5441
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
5442 5443 5444 5445 5446 5447 5448
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
5449

5450 5451
	if (event->pending_disable) {
		event->pending_disable = 0;
5452
		perf_event_disable_local(event);
5453 5454
	}

5455 5456 5457
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5458
	}
5459 5460 5461

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5462 5463
}

5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5485 5486 5487 5488 5489
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;
5490
	DECLARE_BITMAP(_mask, 64);
5491

5492 5493
	bitmap_from_u64(_mask, mask);
	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5494 5495 5496 5497 5498 5499 5500
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5501
static void perf_sample_regs_user(struct perf_regs *regs_user,
5502 5503
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5504
{
5505 5506
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5507
		regs_user->regs = regs;
5508 5509
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5510 5511 5512
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5513 5514 5515
	}
}

5516 5517 5518 5519 5520 5521 5522 5523
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5619 5620 5621
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5635
		data->time = perf_event_clock(event);
5636

5637
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5649 5650 5651
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5676 5677 5678

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5679 5680
}

5681 5682 5683
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5684 5685 5686 5687 5688
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5689
static void perf_output_read_one(struct perf_output_handle *handle,
5690 5691
				 struct perf_event *event,
				 u64 enabled, u64 running)
5692
{
5693
	u64 read_format = event->attr.read_format;
5694 5695 5696
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5697
	values[n++] = perf_event_count(event);
5698
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5699
		values[n++] = enabled +
5700
			atomic64_read(&event->child_total_time_enabled);
5701 5702
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5703
		values[n++] = running +
5704
			atomic64_read(&event->child_total_time_running);
5705 5706
	}
	if (read_format & PERF_FORMAT_ID)
5707
		values[n++] = primary_event_id(event);
5708

5709
	__output_copy(handle, values, n * sizeof(u64));
5710 5711 5712
}

static void perf_output_read_group(struct perf_output_handle *handle,
5713 5714
			    struct perf_event *event,
			    u64 enabled, u64 running)
5715
{
5716 5717
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5718 5719 5720 5721 5722 5723
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5724
		values[n++] = enabled;
5725 5726

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5727
		values[n++] = running;
5728

5729
	if (leader != event)
5730 5731
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5732
	values[n++] = perf_event_count(leader);
5733
	if (read_format & PERF_FORMAT_ID)
5734
		values[n++] = primary_event_id(leader);
5735

5736
	__output_copy(handle, values, n * sizeof(u64));
5737

5738
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5739 5740
		n = 0;

5741 5742
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5743 5744
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5745
		values[n++] = perf_event_count(sub);
5746
		if (read_format & PERF_FORMAT_ID)
5747
			values[n++] = primary_event_id(sub);
5748

5749
		__output_copy(handle, values, n * sizeof(u64));
5750 5751 5752
	}
}

5753 5754 5755
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5756 5757 5758 5759 5760 5761 5762
/*
 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
 *
 * The problem is that its both hard and excessively expensive to iterate the
 * child list, not to mention that its impossible to IPI the children running
 * on another CPU, from interrupt/NMI context.
 */
5763
static void perf_output_read(struct perf_output_handle *handle,
5764
			     struct perf_event *event)
5765
{
5766
	u64 enabled = 0, running = 0, now;
5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5778
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5779
		calc_timer_values(event, &now, &enabled, &running);
5780

5781
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5782
		perf_output_read_group(handle, event, enabled, running);
5783
	else
5784
		perf_output_read_one(handle, event, enabled, running);
5785 5786
}

5787 5788 5789
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5790
			struct perf_event *event)
5791 5792 5793 5794 5795
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5796 5797 5798
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5824
		perf_output_read(handle, event);
5825 5826 5827 5828 5829 5830 5831 5832 5833 5834

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5835
			__output_copy(handle, data->callchain, size);
5836 5837 5838 5839 5840 5841 5842
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862
		struct perf_raw_record *raw = data->raw;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;

			perf_output_put(handle, raw->size);
			do {
				if (frag->copy) {
					__output_custom(handle, frag->copy,
							frag->data, frag->size);
				} else {
					__output_copy(handle, frag->data,
						      frag->size);
				}
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);
			if (frag->pad)
				__output_skip(handle, NULL, frag->pad);
5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5874

5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5909

5910
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5911 5912 5913
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5914
	}
A
Andi Kleen 已提交
5915 5916 5917

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5918 5919 5920

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5921

A
Andi Kleen 已提交
5922 5923 5924
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5942 5943 5944
	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
		perf_output_put(handle, data->phys_addr);

5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5958 5959
}

5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
static u64 perf_virt_to_phys(u64 virt)
{
	u64 phys_addr = 0;
	struct page *p = NULL;

	if (!virt)
		return 0;

	if (virt >= TASK_SIZE) {
		/* If it's vmalloc()d memory, leave phys_addr as 0 */
		if (virt_addr_valid((void *)(uintptr_t)virt) &&
		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
	} else {
		/*
		 * Walking the pages tables for user address.
		 * Interrupts are disabled, so it prevents any tear down
		 * of the page tables.
		 * Try IRQ-safe __get_user_pages_fast first.
		 * If failed, leave phys_addr as 0.
		 */
		if ((current->mm != NULL) &&
		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;

		if (p)
			put_page(p);
	}

	return phys_addr;
}

5992 5993
void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5994
			 struct perf_event *event,
5995
			 struct pt_regs *regs)
5996
{
5997
	u64 sample_type = event->attr.sample_type;
5998

5999
	header->type = PERF_RECORD_SAMPLE;
6000
	header->size = sizeof(*header) + event->header_size;
6001 6002 6003

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
6004

6005
	__perf_event_header__init_id(header, data, event);
6006

6007
	if (sample_type & PERF_SAMPLE_IP)
6008 6009
		data->ip = perf_instruction_pointer(regs);

6010
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6011
		int size = 1;
6012

6013
		data->callchain = perf_callchain(event, regs);
6014 6015 6016 6017 6018

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
6019 6020
	}

6021
	if (sample_type & PERF_SAMPLE_RAW) {
6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
		struct perf_raw_record *raw = data->raw;
		int size;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;
			u32 sum = 0;

			do {
				sum += frag->size;
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);

			size = round_up(sum + sizeof(u32), sizeof(u64));
			raw->size = size - sizeof(u32);
			frag->pad = raw->size - sum;
		} else {
			size = sizeof(u64);
		}
6042

6043
		header->size += size;
6044
	}
6045 6046 6047 6048 6049 6050 6051 6052 6053

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
6054

6055
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6056 6057
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
6058

6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
6082
						     data->regs_user.regs);
6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
6110 6111 6112

	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
		data->phys_addr = perf_virt_to_phys(data->addr);
6113
}
6114

6115 6116 6117 6118 6119 6120 6121
static void __always_inline
__perf_event_output(struct perf_event *event,
		    struct perf_sample_data *data,
		    struct pt_regs *regs,
		    int (*output_begin)(struct perf_output_handle *,
					struct perf_event *,
					unsigned int))
6122 6123 6124
{
	struct perf_output_handle handle;
	struct perf_event_header header;
6125

6126 6127 6128
	/* protect the callchain buffers */
	rcu_read_lock();

6129
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
6130

6131
	if (output_begin(&handle, event, header.size))
6132
		goto exit;
6133

6134
	perf_output_sample(&handle, &header, data, event);
6135

6136
	perf_output_end(&handle);
6137 6138 6139

exit:
	rcu_read_unlock();
6140 6141
}

6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165
void
perf_event_output_forward(struct perf_event *event,
			 struct perf_sample_data *data,
			 struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_forward);
}

void
perf_event_output_backward(struct perf_event *event,
			   struct perf_sample_data *data,
			   struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_backward);
}

void
perf_event_output(struct perf_event *event,
		  struct perf_sample_data *data,
		  struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin);
}

6166
/*
6167
 * read event_id
6168 6169 6170 6171 6172 6173 6174 6175 6176 6177
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
6178
perf_event_read_event(struct perf_event *event,
6179 6180 6181
			struct task_struct *task)
{
	struct perf_output_handle handle;
6182
	struct perf_sample_data sample;
6183
	struct perf_read_event read_event = {
6184
		.header = {
6185
			.type = PERF_RECORD_READ,
6186
			.misc = 0,
6187
			.size = sizeof(read_event) + event->read_size,
6188
		},
6189 6190
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
6191
	};
6192
	int ret;
6193

6194
	perf_event_header__init_id(&read_event.header, &sample, event);
6195
	ret = perf_output_begin(&handle, event, read_event.header.size);
6196 6197 6198
	if (ret)
		return;

6199
	perf_output_put(&handle, read_event);
6200
	perf_output_read(&handle, event);
6201
	perf_event__output_id_sample(event, &handle, &sample);
6202

6203 6204 6205
	perf_output_end(&handle);
}

6206
typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6207 6208

static void
6209 6210
perf_iterate_ctx(struct perf_event_context *ctx,
		   perf_iterate_f output,
6211
		   void *data, bool all)
6212 6213 6214 6215
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6216 6217 6218 6219 6220 6221 6222
		if (!all) {
			if (event->state < PERF_EVENT_STATE_INACTIVE)
				continue;
			if (!event_filter_match(event))
				continue;
		}

6223
		output(event, data);
6224 6225 6226
	}
}

6227
static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6228 6229 6230 6231 6232
{
	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
	struct perf_event *event;

	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6233 6234 6235 6236 6237 6238 6239 6240
		/*
		 * Skip events that are not fully formed yet; ensure that
		 * if we observe event->ctx, both event and ctx will be
		 * complete enough. See perf_install_in_context().
		 */
		if (!smp_load_acquire(&event->ctx))
			continue;

6241 6242 6243 6244 6245 6246 6247 6248
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
		output(event, data);
	}
}

6249 6250 6251 6252 6253 6254
/*
 * Iterate all events that need to receive side-band events.
 *
 * For new callers; ensure that account_pmu_sb_event() includes
 * your event, otherwise it might not get delivered.
 */
6255
static void
6256
perf_iterate_sb(perf_iterate_f output, void *data,
6257 6258 6259 6260 6261
	       struct perf_event_context *task_ctx)
{
	struct perf_event_context *ctx;
	int ctxn;

6262 6263 6264
	rcu_read_lock();
	preempt_disable();

J
Jiri Olsa 已提交
6265
	/*
6266 6267
	 * If we have task_ctx != NULL we only notify the task context itself.
	 * The task_ctx is set only for EXIT events before releasing task
J
Jiri Olsa 已提交
6268 6269 6270
	 * context.
	 */
	if (task_ctx) {
6271 6272
		perf_iterate_ctx(task_ctx, output, data, false);
		goto done;
J
Jiri Olsa 已提交
6273 6274
	}

6275
	perf_iterate_sb_cpu(output, data);
6276 6277

	for_each_task_context_nr(ctxn) {
6278 6279
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
6280
			perf_iterate_ctx(ctx, output, data, false);
6281
	}
6282
done:
6283
	preempt_enable();
6284
	rcu_read_unlock();
6285 6286
}

6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315
/*
 * Clear all file-based filters at exec, they'll have to be
 * re-instated when/if these objects are mmapped again.
 */
static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;
	unsigned long flags;

	if (!has_addr_filter(event))
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (filter->inode) {
			event->addr_filters_offs[count] = 0;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6316
		perf_event_stop(event, 1);
6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331
}

void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctxn);

6332
		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6333 6334 6335 6336 6337
				   true);
	}
	rcu_read_unlock();
}

6338 6339 6340 6341 6342 6343 6344 6345 6346 6347
struct remote_output {
	struct ring_buffer	*rb;
	int			err;
};

static void __perf_event_output_stop(struct perf_event *event, void *data)
{
	struct perf_event *parent = event->parent;
	struct remote_output *ro = data;
	struct ring_buffer *rb = ro->rb;
6348 6349 6350
	struct stop_event_data sd = {
		.event	= event,
	};
6351 6352 6353 6354 6355 6356 6357 6358 6359

	if (!has_aux(event))
		return;

	if (!parent)
		parent = event;

	/*
	 * In case of inheritance, it will be the parent that links to the
6360 6361 6362 6363 6364 6365 6366
	 * ring-buffer, but it will be the child that's actually using it.
	 *
	 * We are using event::rb to determine if the event should be stopped,
	 * however this may race with ring_buffer_attach() (through set_output),
	 * which will make us skip the event that actually needs to be stopped.
	 * So ring_buffer_attach() has to stop an aux event before re-assigning
	 * its rb pointer.
6367 6368
	 */
	if (rcu_dereference(parent->rb) == rb)
6369
		ro->err = __perf_event_stop(&sd);
6370 6371 6372 6373 6374 6375
}

static int __perf_pmu_output_stop(void *info)
{
	struct perf_event *event = info;
	struct pmu *pmu = event->pmu;
6376
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6377 6378 6379 6380 6381
	struct remote_output ro = {
		.rb	= event->rb,
	};

	rcu_read_lock();
6382
	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6383
	if (cpuctx->task_ctx)
6384
		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6385
				   &ro, false);
6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418
	rcu_read_unlock();

	return ro.err;
}

static void perf_pmu_output_stop(struct perf_event *event)
{
	struct perf_event *iter;
	int err, cpu;

restart:
	rcu_read_lock();
	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
		/*
		 * For per-CPU events, we need to make sure that neither they
		 * nor their children are running; for cpu==-1 events it's
		 * sufficient to stop the event itself if it's active, since
		 * it can't have children.
		 */
		cpu = iter->cpu;
		if (cpu == -1)
			cpu = READ_ONCE(iter->oncpu);

		if (cpu == -1)
			continue;

		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
		if (err == -EAGAIN) {
			rcu_read_unlock();
			goto restart;
		}
	}
	rcu_read_unlock();
6419 6420
}

P
Peter Zijlstra 已提交
6421
/*
P
Peter Zijlstra 已提交
6422 6423
 * task tracking -- fork/exit
 *
6424
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
6425 6426
 */

P
Peter Zijlstra 已提交
6427
struct perf_task_event {
6428
	struct task_struct		*task;
6429
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
6430 6431 6432 6433 6434 6435

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
6436 6437
		u32				tid;
		u32				ptid;
6438
		u64				time;
6439
	} event_id;
P
Peter Zijlstra 已提交
6440 6441
};

6442 6443
static int perf_event_task_match(struct perf_event *event)
{
6444 6445 6446
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
6447 6448
}

6449
static void perf_event_task_output(struct perf_event *event,
6450
				   void *data)
P
Peter Zijlstra 已提交
6451
{
6452
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
6453
	struct perf_output_handle handle;
6454
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
6455
	struct task_struct *task = task_event->task;
6456
	int ret, size = task_event->event_id.header.size;
6457

6458 6459 6460
	if (!perf_event_task_match(event))
		return;

6461
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
6462

6463
	ret = perf_output_begin(&handle, event,
6464
				task_event->event_id.header.size);
6465
	if (ret)
6466
		goto out;
P
Peter Zijlstra 已提交
6467

6468 6469
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
6470

6471 6472
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
6473

6474 6475
	task_event->event_id.time = perf_event_clock(event);

6476
	perf_output_put(&handle, task_event->event_id);
6477

6478 6479
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
6480
	perf_output_end(&handle);
6481 6482
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
6483 6484
}

6485 6486
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
6487
			      int new)
P
Peter Zijlstra 已提交
6488
{
P
Peter Zijlstra 已提交
6489
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
6490

6491 6492 6493
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
6494 6495
		return;

P
Peter Zijlstra 已提交
6496
	task_event = (struct perf_task_event){
6497 6498
		.task	  = task,
		.task_ctx = task_ctx,
6499
		.event_id    = {
P
Peter Zijlstra 已提交
6500
			.header = {
6501
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6502
				.misc = 0,
6503
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
6504
			},
6505 6506
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
6507 6508
			/* .tid  */
			/* .ptid */
6509
			/* .time */
P
Peter Zijlstra 已提交
6510 6511 6512
		},
	};

6513
	perf_iterate_sb(perf_event_task_output,
6514 6515
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
6516 6517
}

6518
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
6519
{
6520
	perf_event_task(task, NULL, 1);
6521
	perf_event_namespaces(task);
P
Peter Zijlstra 已提交
6522 6523
}

6524 6525 6526 6527 6528
/*
 * comm tracking
 */

struct perf_comm_event {
6529 6530
	struct task_struct	*task;
	char			*comm;
6531 6532 6533 6534 6535 6536 6537
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
6538
	} event_id;
6539 6540
};

6541 6542 6543 6544 6545
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

6546
static void perf_event_comm_output(struct perf_event *event,
6547
				   void *data)
6548
{
6549
	struct perf_comm_event *comm_event = data;
6550
	struct perf_output_handle handle;
6551
	struct perf_sample_data sample;
6552
	int size = comm_event->event_id.header.size;
6553 6554
	int ret;

6555 6556 6557
	if (!perf_event_comm_match(event))
		return;

6558 6559
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6560
				comm_event->event_id.header.size);
6561 6562

	if (ret)
6563
		goto out;
6564

6565 6566
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6567

6568
	perf_output_put(&handle, comm_event->event_id);
6569
	__output_copy(&handle, comm_event->comm,
6570
				   comm_event->comm_size);
6571 6572 6573

	perf_event__output_id_sample(event, &handle, &sample);

6574
	perf_output_end(&handle);
6575 6576
out:
	comm_event->event_id.header.size = size;
6577 6578
}

6579
static void perf_event_comm_event(struct perf_comm_event *comm_event)
6580
{
6581
	char comm[TASK_COMM_LEN];
6582 6583
	unsigned int size;

6584
	memset(comm, 0, sizeof(comm));
6585
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6586
	size = ALIGN(strlen(comm)+1, sizeof(u64));
6587 6588 6589 6590

	comm_event->comm = comm;
	comm_event->comm_size = size;

6591
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
6592

6593
	perf_iterate_sb(perf_event_comm_output,
6594 6595
		       comm_event,
		       NULL);
6596 6597
}

6598
void perf_event_comm(struct task_struct *task, bool exec)
6599
{
6600 6601
	struct perf_comm_event comm_event;

6602
	if (!atomic_read(&nr_comm_events))
6603
		return;
6604

6605
	comm_event = (struct perf_comm_event){
6606
		.task	= task,
6607 6608
		/* .comm      */
		/* .comm_size */
6609
		.event_id  = {
6610
			.header = {
6611
				.type = PERF_RECORD_COMM,
6612
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6613 6614 6615 6616
				/* .size */
			},
			/* .pid */
			/* .tid */
6617 6618 6619
		},
	};

6620
	perf_event_comm_event(&comm_event);
6621 6622
}

6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650
/*
 * namespaces tracking
 */

struct perf_namespaces_event {
	struct task_struct		*task;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				nr_namespaces;
		struct perf_ns_link_info	link_info[NR_NAMESPACES];
	} event_id;
};

static int perf_event_namespaces_match(struct perf_event *event)
{
	return event->attr.namespaces;
}

static void perf_event_namespaces_output(struct perf_event *event,
					 void *data)
{
	struct perf_namespaces_event *namespaces_event = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
6651
	u16 header_size = namespaces_event->event_id.header.size;
6652 6653 6654 6655 6656 6657 6658 6659 6660 6661
	int ret;

	if (!perf_event_namespaces_match(event))
		return;

	perf_event_header__init_id(&namespaces_event->event_id.header,
				   &sample, event);
	ret = perf_output_begin(&handle, event,
				namespaces_event->event_id.header.size);
	if (ret)
6662
		goto out;
6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673

	namespaces_event->event_id.pid = perf_event_pid(event,
							namespaces_event->task);
	namespaces_event->event_id.tid = perf_event_tid(event,
							namespaces_event->task);

	perf_output_put(&handle, namespaces_event->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
6674 6675
out:
	namespaces_event->event_id.header.size = header_size;
6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690
}

static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
				   struct task_struct *task,
				   const struct proc_ns_operations *ns_ops)
{
	struct path ns_path;
	struct inode *ns_inode;
	void *error;

	error = ns_get_path(&ns_path, task, ns_ops);
	if (!error) {
		ns_inode = ns_path.dentry->d_inode;
		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
		ns_link_info->ino = ns_inode->i_ino;
6691
		path_put(&ns_path);
6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752
	}
}

void perf_event_namespaces(struct task_struct *task)
{
	struct perf_namespaces_event namespaces_event;
	struct perf_ns_link_info *ns_link_info;

	if (!atomic_read(&nr_namespaces_events))
		return;

	namespaces_event = (struct perf_namespaces_event){
		.task	= task,
		.event_id  = {
			.header = {
				.type = PERF_RECORD_NAMESPACES,
				.misc = 0,
				.size = sizeof(namespaces_event.event_id),
			},
			/* .pid */
			/* .tid */
			.nr_namespaces = NR_NAMESPACES,
			/* .link_info[NR_NAMESPACES] */
		},
	};

	ns_link_info = namespaces_event.event_id.link_info;

	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
			       task, &mntns_operations);

#ifdef CONFIG_USER_NS
	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
			       task, &userns_operations);
#endif
#ifdef CONFIG_NET_NS
	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
			       task, &netns_operations);
#endif
#ifdef CONFIG_UTS_NS
	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
			       task, &utsns_operations);
#endif
#ifdef CONFIG_IPC_NS
	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
			       task, &ipcns_operations);
#endif
#ifdef CONFIG_PID_NS
	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
			       task, &pidns_operations);
#endif
#ifdef CONFIG_CGROUPS
	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
			       task, &cgroupns_operations);
#endif

	perf_iterate_sb(perf_event_namespaces_output,
			&namespaces_event,
			NULL);
}

6753 6754 6755 6756 6757
/*
 * mmap tracking
 */

struct perf_mmap_event {
6758 6759 6760 6761
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
6762 6763 6764
	int			maj, min;
	u64			ino;
	u64			ino_generation;
6765
	u32			prot, flags;
6766 6767 6768 6769 6770 6771 6772 6773 6774

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
6775
	} event_id;
6776 6777
};

6778 6779 6780 6781 6782 6783 6784 6785
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
6786
	       (executable && (event->attr.mmap || event->attr.mmap2));
6787 6788
}

6789
static void perf_event_mmap_output(struct perf_event *event,
6790
				   void *data)
6791
{
6792
	struct perf_mmap_event *mmap_event = data;
6793
	struct perf_output_handle handle;
6794
	struct perf_sample_data sample;
6795
	int size = mmap_event->event_id.header.size;
6796
	int ret;
6797

6798 6799 6800
	if (!perf_event_mmap_match(event, data))
		return;

6801 6802 6803 6804 6805
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6806
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6807 6808
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6809 6810
	}

6811 6812
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6813
				mmap_event->event_id.header.size);
6814
	if (ret)
6815
		goto out;
6816

6817 6818
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
6819

6820
	perf_output_put(&handle, mmap_event->event_id);
6821 6822 6823 6824 6825 6826

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
6827 6828
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
6829 6830
	}

6831
	__output_copy(&handle, mmap_event->file_name,
6832
				   mmap_event->file_size);
6833 6834 6835

	perf_event__output_id_sample(event, &handle, &sample);

6836
	perf_output_end(&handle);
6837 6838
out:
	mmap_event->event_id.header.size = size;
6839 6840
}

6841
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6842
{
6843 6844
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
6845 6846
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
6847
	u32 prot = 0, flags = 0;
6848 6849 6850
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
6851
	char *name;
6852

6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873
	if (vma->vm_flags & VM_READ)
		prot |= PROT_READ;
	if (vma->vm_flags & VM_WRITE)
		prot |= PROT_WRITE;
	if (vma->vm_flags & VM_EXEC)
		prot |= PROT_EXEC;

	if (vma->vm_flags & VM_MAYSHARE)
		flags = MAP_SHARED;
	else
		flags = MAP_PRIVATE;

	if (vma->vm_flags & VM_DENYWRITE)
		flags |= MAP_DENYWRITE;
	if (vma->vm_flags & VM_MAYEXEC)
		flags |= MAP_EXECUTABLE;
	if (vma->vm_flags & VM_LOCKED)
		flags |= MAP_LOCKED;
	if (vma->vm_flags & VM_HUGETLB)
		flags |= MAP_HUGETLB;

6874
	if (file) {
6875 6876
		struct inode *inode;
		dev_t dev;
6877

6878
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6879
		if (!buf) {
6880 6881
			name = "//enomem";
			goto cpy_name;
6882
		}
6883
		/*
6884
		 * d_path() works from the end of the rb backwards, so we
6885 6886 6887
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6888
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6889
		if (IS_ERR(name)) {
6890 6891
			name = "//toolong";
			goto cpy_name;
6892
		}
6893 6894 6895 6896 6897 6898
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6899

6900
		goto got_name;
6901
	} else {
6902 6903 6904 6905 6906 6907
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6908
		name = (char *)arch_vma_name(vma);
6909 6910
		if (name)
			goto cpy_name;
6911

6912
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6913
				vma->vm_end >= vma->vm_mm->brk) {
6914 6915
			name = "[heap]";
			goto cpy_name;
6916 6917
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6918
				vma->vm_end >= vma->vm_mm->start_stack) {
6919 6920
			name = "[stack]";
			goto cpy_name;
6921 6922
		}

6923 6924
		name = "//anon";
		goto cpy_name;
6925 6926
	}

6927 6928 6929
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6930
got_name:
6931 6932 6933 6934 6935 6936 6937 6938
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6939 6940 6941

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6942 6943 6944 6945
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6946 6947
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6948

6949 6950 6951
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6952
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6953

6954
	perf_iterate_sb(perf_event_mmap_output,
6955 6956
		       mmap_event,
		       NULL);
6957

6958 6959 6960
	kfree(buf);
}

6961 6962 6963 6964 6965 6966 6967
/*
 * Check whether inode and address range match filter criteria.
 */
static bool perf_addr_filter_match(struct perf_addr_filter *filter,
				     struct file *file, unsigned long offset,
				     unsigned long size)
{
A
Al Viro 已提交
6968
	if (filter->inode != file_inode(file))
6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010
		return false;

	if (filter->offset > offset + size)
		return false;

	if (filter->offset + filter->size < offset)
		return false;

	return true;
}

static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct vm_area_struct *vma = data;
	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
	struct file *file = vma->vm_file;
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;

	if (!has_addr_filter(event))
		return;

	if (!file)
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (perf_addr_filter_match(filter, file, off,
					     vma->vm_end - vma->vm_start)) {
			event->addr_filters_offs[count] = vma->vm_start;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
7011
		perf_event_stop(event, 1);
7012 7013 7014 7015 7016 7017 7018 7019 7020 7021
}

/*
 * Adjust all task's events' filters to the new vma
 */
static void perf_addr_filters_adjust(struct vm_area_struct *vma)
{
	struct perf_event_context *ctx;
	int ctxn;

7022 7023 7024 7025 7026 7027 7028
	/*
	 * Data tracing isn't supported yet and as such there is no need
	 * to keep track of anything that isn't related to executable code:
	 */
	if (!(vma->vm_flags & VM_EXEC))
		return;

7029 7030 7031 7032 7033 7034
	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (!ctx)
			continue;

7035
		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7036 7037 7038 7039
	}
	rcu_read_unlock();
}

7040
void perf_event_mmap(struct vm_area_struct *vma)
7041
{
7042 7043
	struct perf_mmap_event mmap_event;

7044
	if (!atomic_read(&nr_mmap_events))
7045 7046 7047
		return;

	mmap_event = (struct perf_mmap_event){
7048
		.vma	= vma,
7049 7050
		/* .file_name */
		/* .file_size */
7051
		.event_id  = {
7052
			.header = {
7053
				.type = PERF_RECORD_MMAP,
7054
				.misc = PERF_RECORD_MISC_USER,
7055 7056 7057 7058
				/* .size */
			},
			/* .pid */
			/* .tid */
7059 7060
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
7061
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7062
		},
7063 7064 7065 7066
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
7067 7068
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
7069 7070
	};

7071
	perf_addr_filters_adjust(vma);
7072
	perf_event_mmap_event(&mmap_event);
7073 7074
}

A
Alexander Shishkin 已提交
7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

7222
	perf_iterate_sb(perf_event_switch_output,
7223 7224 7225 7226
		       &switch_event,
		       NULL);
}

7227 7228 7229 7230
/*
 * IRQ throttle logging
 */

7231
static void perf_log_throttle(struct perf_event *event, int enable)
7232 7233
{
	struct perf_output_handle handle;
7234
	struct perf_sample_data sample;
7235 7236 7237 7238 7239
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
7240
		u64				id;
7241
		u64				stream_id;
7242 7243
	} throttle_event = {
		.header = {
7244
			.type = PERF_RECORD_THROTTLE,
7245 7246 7247
			.misc = 0,
			.size = sizeof(throttle_event),
		},
7248
		.time		= perf_event_clock(event),
7249 7250
		.id		= primary_event_id(event),
		.stream_id	= event->id,
7251 7252
	};

7253
	if (enable)
7254
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7255

7256 7257 7258
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
7259
				throttle_event.header.size);
7260 7261 7262 7263
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
7264
	perf_event__output_id_sample(event, &handle, &sample);
7265 7266 7267
	perf_output_end(&handle);
}

7268 7269 7270 7271 7272
void perf_event_itrace_started(struct perf_event *event)
{
	event->attach_state |= PERF_ATTACH_ITRACE;
}

7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7288
	    event->attach_state & PERF_ATTACH_ITRACE)
7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7309 7310
static int
__perf_event_account_interrupt(struct perf_event *event, int throttle)
7311
{
7312
	struct hw_perf_event *hwc = &event->hw;
7313
	int ret = 0;
7314
	u64 seq;
7315

7316 7317 7318 7319 7320 7321 7322 7323 7324
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
7325
			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
P
Peter Zijlstra 已提交
7326 7327
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
7328 7329
			ret = 1;
		}
7330
	}
7331

7332
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
7333
		u64 now = perf_clock();
7334
		s64 delta = now - hwc->freq_time_stamp;
7335

7336
		hwc->freq_time_stamp = now;
7337

7338
		if (delta > 0 && delta < 2*TICK_NSEC)
7339
			perf_adjust_period(event, delta, hwc->last_period, true);
7340 7341
	}

7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368
	return ret;
}

int perf_event_account_interrupt(struct perf_event *event)
{
	return __perf_event_account_interrupt(event, 1);
}

/*
 * Generic event overflow handling, sampling.
 */

static int __perf_event_overflow(struct perf_event *event,
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
{
	int events = atomic_read(&event->event_limit);
	int ret = 0;

	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

	ret = __perf_event_account_interrupt(event, throttle);
7369

7370 7371
	/*
	 * XXX event_limit might not quite work as expected on inherited
7372
	 * events
7373 7374
	 */

7375 7376
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
7377
		ret = 1;
7378
		event->pending_kill = POLL_HUP;
7379 7380

		perf_event_disable_inatomic(event);
7381 7382
	}

7383
	READ_ONCE(event->overflow_handler)(event, data, regs);
7384

7385
	if (*perf_event_fasync(event) && event->pending_kill) {
7386 7387
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
7388 7389
	}

7390
	return ret;
7391 7392
}

7393
int perf_event_overflow(struct perf_event *event,
7394 7395
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
7396
{
7397
	return __perf_event_overflow(event, 1, data, regs);
7398 7399
}

7400
/*
7401
 * Generic software event infrastructure
7402 7403
 */

7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

7415
/*
7416 7417
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
7418 7419 7420 7421
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

7422
u64 perf_swevent_set_period(struct perf_event *event)
7423
{
7424
	struct hw_perf_event *hwc = &event->hw;
7425 7426 7427 7428 7429
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
7430 7431

again:
7432
	old = val = local64_read(&hwc->period_left);
7433 7434
	if (val < 0)
		return 0;
7435

7436 7437 7438
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
7439
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7440
		goto again;
7441

7442
	return nr;
7443 7444
}

7445
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7446
				    struct perf_sample_data *data,
7447
				    struct pt_regs *regs)
7448
{
7449
	struct hw_perf_event *hwc = &event->hw;
7450
	int throttle = 0;
7451

7452 7453
	if (!overflow)
		overflow = perf_swevent_set_period(event);
7454

7455 7456
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
7457

7458
	for (; overflow; overflow--) {
7459
		if (__perf_event_overflow(event, throttle,
7460
					    data, regs)) {
7461 7462 7463 7464 7465 7466
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
7467
		throttle = 1;
7468
	}
7469 7470
}

P
Peter Zijlstra 已提交
7471
static void perf_swevent_event(struct perf_event *event, u64 nr,
7472
			       struct perf_sample_data *data,
7473
			       struct pt_regs *regs)
7474
{
7475
	struct hw_perf_event *hwc = &event->hw;
7476

7477
	local64_add(nr, &event->count);
7478

7479 7480 7481
	if (!regs)
		return;

7482
	if (!is_sampling_event(event))
7483
		return;
7484

7485 7486 7487 7488 7489 7490
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

7491
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7492
		return perf_swevent_overflow(event, 1, data, regs);
7493

7494
	if (local64_add_negative(nr, &hwc->period_left))
7495
		return;
7496

7497
	perf_swevent_overflow(event, 0, data, regs);
7498 7499
}

7500 7501 7502
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
7503
	if (event->hw.state & PERF_HES_STOPPED)
7504
		return 1;
P
Peter Zijlstra 已提交
7505

7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

7517
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
7518
				enum perf_type_id type,
L
Li Zefan 已提交
7519 7520 7521
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
7522
{
7523
	if (event->attr.type != type)
7524
		return 0;
7525

7526
	if (event->attr.config != event_id)
7527 7528
		return 0;

7529 7530
	if (perf_exclude_event(event, regs))
		return 0;
7531 7532 7533 7534

	return 1;
}

7535 7536 7537 7538 7539 7540 7541
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

7542 7543
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7544
{
7545 7546 7547 7548
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
7549

7550 7551
/* For the read side: events when they trigger */
static inline struct hlist_head *
7552
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7553 7554
{
	struct swevent_hlist *hlist;
7555

7556
	hlist = rcu_dereference(swhash->swevent_hlist);
7557 7558 7559
	if (!hlist)
		return NULL;

7560 7561 7562 7563 7564
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
7565
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7566 7567 7568 7569 7570 7571 7572 7573 7574 7575
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
7576
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7577 7578 7579 7580 7581
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
7582 7583 7584
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7585
				    u64 nr,
7586 7587
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
7588
{
7589
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7590
	struct perf_event *event;
7591
	struct hlist_head *head;
7592

7593
	rcu_read_lock();
7594
	head = find_swevent_head_rcu(swhash, type, event_id);
7595 7596 7597
	if (!head)
		goto end;

7598
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
7599
		if (perf_swevent_match(event, type, event_id, data, regs))
7600
			perf_swevent_event(event, nr, data, regs);
7601
	}
7602 7603
end:
	rcu_read_unlock();
7604 7605
}

7606 7607
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

7608
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
7609
{
7610
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
7611

7612
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
7613
}
I
Ingo Molnar 已提交
7614
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
7615

7616
void perf_swevent_put_recursion_context(int rctx)
7617
{
7618
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7619

7620
	put_recursion_context(swhash->recursion, rctx);
7621
}
7622

7623
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7624
{
7625
	struct perf_sample_data data;
7626

7627
	if (WARN_ON_ONCE(!regs))
7628
		return;
7629

7630
	perf_sample_data_init(&data, addr, 0);
7631
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
7644 7645

	perf_swevent_put_recursion_context(rctx);
7646
fail:
7647
	preempt_enable_notrace();
7648 7649
}

7650
static void perf_swevent_read(struct perf_event *event)
7651 7652 7653
{
}

P
Peter Zijlstra 已提交
7654
static int perf_swevent_add(struct perf_event *event, int flags)
7655
{
7656
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7657
	struct hw_perf_event *hwc = &event->hw;
7658 7659
	struct hlist_head *head;

7660
	if (is_sampling_event(event)) {
7661
		hwc->last_period = hwc->sample_period;
7662
		perf_swevent_set_period(event);
7663
	}
7664

P
Peter Zijlstra 已提交
7665 7666
	hwc->state = !(flags & PERF_EF_START);

7667
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
7668
	if (WARN_ON_ONCE(!head))
7669 7670 7671
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
7672
	perf_event_update_userpage(event);
7673

7674 7675 7676
	return 0;
}

P
Peter Zijlstra 已提交
7677
static void perf_swevent_del(struct perf_event *event, int flags)
7678
{
7679
	hlist_del_rcu(&event->hlist_entry);
7680 7681
}

P
Peter Zijlstra 已提交
7682
static void perf_swevent_start(struct perf_event *event, int flags)
7683
{
P
Peter Zijlstra 已提交
7684
	event->hw.state = 0;
7685
}
I
Ingo Molnar 已提交
7686

P
Peter Zijlstra 已提交
7687
static void perf_swevent_stop(struct perf_event *event, int flags)
7688
{
P
Peter Zijlstra 已提交
7689
	event->hw.state = PERF_HES_STOPPED;
7690 7691
}

7692 7693
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
7694
swevent_hlist_deref(struct swevent_htable *swhash)
7695
{
7696 7697
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
7698 7699
}

7700
static void swevent_hlist_release(struct swevent_htable *swhash)
7701
{
7702
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7703

7704
	if (!hlist)
7705 7706
		return;

7707
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7708
	kfree_rcu(hlist, rcu_head);
7709 7710
}

7711
static void swevent_hlist_put_cpu(int cpu)
7712
{
7713
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7714

7715
	mutex_lock(&swhash->hlist_mutex);
7716

7717 7718
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
7719

7720
	mutex_unlock(&swhash->hlist_mutex);
7721 7722
}

7723
static void swevent_hlist_put(void)
7724 7725 7726 7727
{
	int cpu;

	for_each_possible_cpu(cpu)
7728
		swevent_hlist_put_cpu(cpu);
7729 7730
}

7731
static int swevent_hlist_get_cpu(int cpu)
7732
{
7733
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7734 7735
	int err = 0;

7736
	mutex_lock(&swhash->hlist_mutex);
7737 7738
	if (!swevent_hlist_deref(swhash) &&
	    cpumask_test_cpu(cpu, perf_online_mask)) {
7739 7740 7741 7742 7743 7744 7745
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
7746
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7747
	}
7748
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
7749
exit:
7750
	mutex_unlock(&swhash->hlist_mutex);
7751 7752 7753 7754

	return err;
}

7755
static int swevent_hlist_get(void)
7756
{
7757
	int err, cpu, failed_cpu;
7758

7759
	mutex_lock(&pmus_lock);
7760
	for_each_possible_cpu(cpu) {
7761
		err = swevent_hlist_get_cpu(cpu);
7762 7763 7764 7765 7766
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
7767
	mutex_unlock(&pmus_lock);
7768
	return 0;
P
Peter Zijlstra 已提交
7769
fail:
7770 7771 7772
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
7773
		swevent_hlist_put_cpu(cpu);
7774
	}
7775
	mutex_unlock(&pmus_lock);
7776 7777 7778
	return err;
}

7779
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7780

7781 7782 7783
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
7784

7785 7786
	WARN_ON(event->parent);

7787
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7788
	swevent_hlist_put();
7789 7790 7791 7792
}

static int perf_swevent_init(struct perf_event *event)
{
7793
	u64 event_id = event->attr.config;
7794 7795 7796 7797

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

7798 7799 7800 7801 7802 7803
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7804 7805 7806 7807 7808 7809 7810 7811 7812
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

7813
	if (event_id >= PERF_COUNT_SW_MAX)
7814 7815 7816 7817 7818
		return -ENOENT;

	if (!event->parent) {
		int err;

7819
		err = swevent_hlist_get();
7820 7821 7822
		if (err)
			return err;

7823
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7824 7825 7826 7827 7828 7829 7830
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
7831
	.task_ctx_nr	= perf_sw_context,
7832

7833 7834
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7835
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
7836 7837 7838 7839
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7840 7841 7842
	.read		= perf_swevent_read,
};

7843 7844
#ifdef CONFIG_EVENT_TRACING

7845 7846 7847
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
7848
	void *record = data->raw->frag.data;
7849

7850 7851 7852 7853
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

7854 7855 7856 7857 7858 7859 7860 7861 7862
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
7863 7864
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
7865 7866 7867 7868
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
7869 7870 7871 7872 7873 7874 7875 7876
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

7877 7878 7879 7880 7881
void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
			       struct trace_event_call *call, u64 count,
			       struct pt_regs *regs, struct hlist_head *head,
			       struct task_struct *task)
{
7882
	if (bpf_prog_array_valid(call)) {
7883
		*(struct pt_regs **)raw_data = regs;
7884
		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
7885 7886 7887 7888 7889
			perf_swevent_put_recursion_context(rctx);
			return;
		}
	}
	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7890
		      rctx, task);
7891 7892 7893
}
EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);

7894
void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7895
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7896
		   struct task_struct *task)
7897 7898
{
	struct perf_sample_data data;
7899
	struct perf_event *event;
7900

7901
	struct perf_raw_record raw = {
7902 7903 7904 7905
		.frag = {
			.size = entry_size,
			.data = record,
		},
7906 7907
	};

7908
	perf_sample_data_init(&data, 0, 0);
7909 7910
	data.raw = &raw;

7911 7912
	perf_trace_buf_update(record, event_type);

7913
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7914
		if (perf_tp_event_match(event, &data, regs))
7915
			perf_swevent_event(event, count, &data, regs);
7916
	}
7917

7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

7943
	perf_swevent_put_recursion_context(rctx);
7944 7945 7946
}
EXPORT_SYMBOL_GPL(perf_tp_event);

7947
static void tp_perf_event_destroy(struct perf_event *event)
7948
{
7949
	perf_trace_destroy(event);
7950 7951
}

7952
static int perf_tp_event_init(struct perf_event *event)
7953
{
7954 7955
	int err;

7956 7957 7958
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

7959 7960 7961 7962 7963 7964
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7965 7966
	err = perf_trace_init(event);
	if (err)
7967
		return err;
7968

7969
	event->destroy = tp_perf_event_destroy;
7970

7971 7972 7973 7974
	return 0;
}

static struct pmu perf_tracepoint = {
7975 7976
	.task_ctx_nr	= perf_sw_context,

7977
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
7978 7979 7980 7981
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7982 7983 7984 7985 7986
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
7987
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7988
}
L
Li Zefan 已提交
7989 7990 7991 7992 7993 7994

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7995 7996 7997 7998 7999 8000 8001
#ifdef CONFIG_BPF_SYSCALL
static void bpf_overflow_handler(struct perf_event *event,
				 struct perf_sample_data *data,
				 struct pt_regs *regs)
{
	struct bpf_perf_event_data_kern ctx = {
		.data = data,
8002
		.event = event,
8003 8004 8005
	};
	int ret = 0;

8006
	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8007 8008 8009 8010
	preempt_disable();
	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
		goto out;
	rcu_read_lock();
8011
	ret = BPF_PROG_RUN(event->prog, &ctx);
8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063
	rcu_read_unlock();
out:
	__this_cpu_dec(bpf_prog_active);
	preempt_enable();
	if (!ret)
		return;

	event->orig_overflow_handler(event, data, regs);
}

static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->overflow_handler_context)
		/* hw breakpoint or kernel counter */
		return -EINVAL;

	if (event->prog)
		return -EEXIST;

	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	event->prog = prog;
	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
	return 0;
}

static void perf_event_free_bpf_handler(struct perf_event *event)
{
	struct bpf_prog *prog = event->prog;

	if (!prog)
		return;

	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
	event->prog = NULL;
	bpf_prog_put(prog);
}
#else
static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	return -EOPNOTSUPP;
}
static void perf_event_free_bpf_handler(struct perf_event *event)
{
}
#endif

8064 8065
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
8066
	bool is_kprobe, is_tracepoint, is_syscall_tp;
8067
	struct bpf_prog *prog;
8068
	int ret;
8069 8070

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8071
		return perf_event_set_bpf_handler(event, prog_fd);
8072

8073 8074
	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8075 8076
	is_syscall_tp = is_syscall_trace_event(event->tp_event);
	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8077
		/* bpf programs can only be attached to u/kprobe or tracepoint */
8078 8079 8080 8081 8082 8083
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

8084
	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8085 8086
	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8087 8088 8089 8090 8091
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

8092
	if (is_tracepoint || is_syscall_tp) {
8093 8094 8095 8096 8097 8098 8099
		int off = trace_event_get_offsets(event->tp_event);

		if (prog->aux->max_ctx_offset > off) {
			bpf_prog_put(prog);
			return -EACCES;
		}
	}
8100

8101 8102 8103 8104
	ret = perf_event_attach_bpf_prog(event, prog);
	if (ret)
		bpf_prog_put(prog);
	return ret;
8105 8106 8107 8108
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
8109 8110
	if (event->attr.type != PERF_TYPE_TRACEPOINT) {
		perf_event_free_bpf_handler(event);
8111 8112
		return;
	}
8113
	perf_event_detach_bpf_prog(event);
8114 8115
}

8116
#else
L
Li Zefan 已提交
8117

8118
static inline void perf_tp_register(void)
8119 8120
{
}
L
Li Zefan 已提交
8121 8122 8123 8124 8125

static void perf_event_free_filter(struct perf_event *event)
{
}

8126 8127 8128 8129 8130 8131 8132 8133
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
8134
#endif /* CONFIG_EVENT_TRACING */
8135

8136
#ifdef CONFIG_HAVE_HW_BREAKPOINT
8137
void perf_bp_event(struct perf_event *bp, void *data)
8138
{
8139 8140 8141
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

8142
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8143

P
Peter Zijlstra 已提交
8144
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8145
		perf_swevent_event(bp, 1, &sample, regs);
8146 8147 8148
}
#endif

8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253
/*
 * Allocate a new address filter
 */
static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
{
	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
	struct perf_addr_filter *filter;

	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
	if (!filter)
		return NULL;

	INIT_LIST_HEAD(&filter->entry);
	list_add_tail(&filter->entry, filters);

	return filter;
}

static void free_filters_list(struct list_head *filters)
{
	struct perf_addr_filter *filter, *iter;

	list_for_each_entry_safe(filter, iter, filters, entry) {
		if (filter->inode)
			iput(filter->inode);
		list_del(&filter->entry);
		kfree(filter);
	}
}

/*
 * Free existing address filters and optionally install new ones
 */
static void perf_addr_filters_splice(struct perf_event *event,
				     struct list_head *head)
{
	unsigned long flags;
	LIST_HEAD(list);

	if (!has_addr_filter(event))
		return;

	/* don't bother with children, they don't have their own filters */
	if (event->parent)
		return;

	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);

	list_splice_init(&event->addr_filters.list, &list);
	if (head)
		list_splice(head, &event->addr_filters.list);

	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);

	free_filters_list(&list);
}

/*
 * Scan through mm's vmas and see if one of them matches the
 * @filter; if so, adjust filter's address range.
 * Called with mm::mmap_sem down for reading.
 */
static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
					    struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct file *file = vma->vm_file;
		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
		unsigned long vma_size = vma->vm_end - vma->vm_start;

		if (!file)
			continue;

		if (!perf_addr_filter_match(filter, file, off, vma_size))
			continue;

		return vma->vm_start;
	}

	return 0;
}

/*
 * Update event's address range filters based on the
 * task's existing mappings, if any.
 */
static void perf_event_addr_filters_apply(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct task_struct *task = READ_ONCE(event->ctx->task);
	struct perf_addr_filter *filter;
	struct mm_struct *mm = NULL;
	unsigned int count = 0;
	unsigned long flags;

	/*
	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
	 * will stop on the parent's child_mutex that our caller is also holding
	 */
	if (task == TASK_TOMBSTONE)
		return;

8254 8255 8256
	if (!ifh->nr_file_filters)
		return;

8257 8258 8259 8260 8261 8262 8263 8264 8265 8266
	mm = get_task_mm(event->ctx->task);
	if (!mm)
		goto restart;

	down_read(&mm->mmap_sem);

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		event->addr_filters_offs[count] = 0;

8267 8268 8269 8270 8271
		/*
		 * Adjust base offset if the filter is associated to a binary
		 * that needs to be mapped:
		 */
		if (filter->inode)
8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285
			event->addr_filters_offs[count] =
				perf_addr_filter_apply(filter, mm);

		count++;
	}

	event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	up_read(&mm->mmap_sem);

	mmput(mm);

restart:
8286
	perf_event_stop(event, 1);
8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307
}

/*
 * Address range filtering: limiting the data to certain
 * instruction address ranges. Filters are ioctl()ed to us from
 * userspace as ascii strings.
 *
 * Filter string format:
 *
 * ACTION RANGE_SPEC
 * where ACTION is one of the
 *  * "filter": limit the trace to this region
 *  * "start": start tracing from this address
 *  * "stop": stop tracing at this address/region;
 * RANGE_SPEC is
 *  * for kernel addresses: <start address>[/<size>]
 *  * for object files:     <start address>[/<size>]@</path/to/object/file>
 *
 * if <size> is not specified, the range is treated as a single address.
 */
enum {
8308
	IF_ACT_NONE = -1,
8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331
	IF_ACT_FILTER,
	IF_ACT_START,
	IF_ACT_STOP,
	IF_SRC_FILE,
	IF_SRC_KERNEL,
	IF_SRC_FILEADDR,
	IF_SRC_KERNELADDR,
};

enum {
	IF_STATE_ACTION = 0,
	IF_STATE_SOURCE,
	IF_STATE_END,
};

static const match_table_t if_tokens = {
	{ IF_ACT_FILTER,	"filter" },
	{ IF_ACT_START,		"start" },
	{ IF_ACT_STOP,		"stop" },
	{ IF_SRC_FILE,		"%u/%u@%s" },
	{ IF_SRC_KERNEL,	"%u/%u" },
	{ IF_SRC_FILEADDR,	"%u@%s" },
	{ IF_SRC_KERNELADDR,	"%u" },
8332
	{ IF_ACT_NONE,		NULL },
8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403
};

/*
 * Address filter string parser
 */
static int
perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
			     struct list_head *filters)
{
	struct perf_addr_filter *filter = NULL;
	char *start, *orig, *filename = NULL;
	struct path path;
	substring_t args[MAX_OPT_ARGS];
	int state = IF_STATE_ACTION, token;
	unsigned int kernel = 0;
	int ret = -EINVAL;

	orig = fstr = kstrdup(fstr, GFP_KERNEL);
	if (!fstr)
		return -ENOMEM;

	while ((start = strsep(&fstr, " ,\n")) != NULL) {
		ret = -EINVAL;

		if (!*start)
			continue;

		/* filter definition begins */
		if (state == IF_STATE_ACTION) {
			filter = perf_addr_filter_new(event, filters);
			if (!filter)
				goto fail;
		}

		token = match_token(start, if_tokens, args);
		switch (token) {
		case IF_ACT_FILTER:
		case IF_ACT_START:
			filter->filter = 1;

		case IF_ACT_STOP:
			if (state != IF_STATE_ACTION)
				goto fail;

			state = IF_STATE_SOURCE;
			break;

		case IF_SRC_KERNELADDR:
		case IF_SRC_KERNEL:
			kernel = 1;

		case IF_SRC_FILEADDR:
		case IF_SRC_FILE:
			if (state != IF_STATE_SOURCE)
				goto fail;

			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
				filter->range = 1;

			*args[0].to = 0;
			ret = kstrtoul(args[0].from, 0, &filter->offset);
			if (ret)
				goto fail;

			if (filter->range) {
				*args[1].to = 0;
				ret = kstrtoul(args[1].from, 0, &filter->size);
				if (ret)
					goto fail;
			}

8404 8405 8406 8407
			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
				int fpos = filter->range ? 2 : 1;

				filename = match_strdup(&args[fpos]);
8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426
				if (!filename) {
					ret = -ENOMEM;
					goto fail;
				}
			}

			state = IF_STATE_END;
			break;

		default:
			goto fail;
		}

		/*
		 * Filter definition is fully parsed, validate and install it.
		 * Make sure that it doesn't contradict itself or the event's
		 * attribute.
		 */
		if (state == IF_STATE_END) {
8427
			ret = -EINVAL;
8428 8429 8430 8431 8432 8433 8434
			if (kernel && event->attr.exclude_kernel)
				goto fail;

			if (!kernel) {
				if (!filename)
					goto fail;

8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446
				/*
				 * For now, we only support file-based filters
				 * in per-task events; doing so for CPU-wide
				 * events requires additional context switching
				 * trickery, since same object code will be
				 * mapped at different virtual addresses in
				 * different processes.
				 */
				ret = -EOPNOTSUPP;
				if (!event->ctx->task)
					goto fail_free_name;

8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461
				/* look up the path and grab its inode */
				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
				if (ret)
					goto fail_free_name;

				filter->inode = igrab(d_inode(path.dentry));
				path_put(&path);
				kfree(filename);
				filename = NULL;

				ret = -EINVAL;
				if (!filter->inode ||
				    !S_ISREG(filter->inode->i_mode))
					/* free_filters_list() will iput() */
					goto fail;
8462 8463

				event->addr_filters.nr_file_filters++;
8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504
			}

			/* ready to consume more filters */
			state = IF_STATE_ACTION;
			filter = NULL;
		}
	}

	if (state != IF_STATE_ACTION)
		goto fail;

	kfree(orig);

	return 0;

fail_free_name:
	kfree(filename);
fail:
	free_filters_list(filters);
	kfree(orig);

	return ret;
}

static int
perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
{
	LIST_HEAD(filters);
	int ret;

	/*
	 * Since this is called in perf_ioctl() path, we're already holding
	 * ctx::mutex.
	 */
	lockdep_assert_held(&event->ctx->mutex);

	if (WARN_ON_ONCE(event->parent))
		return -EINVAL;

	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
	if (ret)
8505
		goto fail_clear_files;
8506 8507

	ret = event->pmu->addr_filters_validate(&filters);
8508 8509
	if (ret)
		goto fail_free_filters;
8510 8511 8512 8513 8514 8515 8516

	/* remove existing filters, if any */
	perf_addr_filters_splice(event, &filters);

	/* install new filters */
	perf_event_for_each_child(event, perf_event_addr_filters_apply);

8517 8518 8519 8520 8521 8522 8523 8524
	return ret;

fail_free_filters:
	free_filters_list(&filters);

fail_clear_files:
	event->addr_filters.nr_file_filters = 0;

8525 8526 8527
	return ret;
}

8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550
static int
perf_tracepoint_set_filter(struct perf_event *event, char *filter_str)
{
	struct perf_event_context *ctx = event->ctx;
	int ret;

	/*
	 * Beware, here be dragons!!
	 *
	 * the tracepoint muck will deadlock against ctx->mutex, but the tracepoint
	 * stuff does not actually need it. So temporarily drop ctx->mutex. As per
	 * perf_event_ctx_lock() we already have a reference on ctx.
	 *
	 * This can result in event getting moved to a different ctx, but that
	 * does not affect the tracepoint state.
	 */
	mutex_unlock(&ctx->mutex);
	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
	mutex_lock(&ctx->mutex);

	return ret;
}

8551 8552 8553 8554 8555
static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret = -EINVAL;

8556 8557 8558
	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
	    !has_addr_filter(event))
8559 8560 8561 8562 8563 8564 8565 8566
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
	    event->attr.type == PERF_TYPE_TRACEPOINT)
8567
		ret = perf_tracepoint_set_filter(event, filter_str);
8568 8569
	else if (has_addr_filter(event))
		ret = perf_event_set_addr_filter(event, filter_str);
8570 8571 8572 8573 8574

	kfree(filter_str);
	return ret;
}

8575 8576 8577
/*
 * hrtimer based swevent callback
 */
8578

8579
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8580
{
8581 8582 8583 8584 8585
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
8586

8587
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
8588 8589 8590 8591

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

8592
	event->pmu->read(event);
8593

8594
	perf_sample_data_init(&data, 0, event->hw.last_period);
8595 8596 8597
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
8598
		if (!(event->attr.exclude_idle && is_idle_task(current)))
8599
			if (__perf_event_overflow(event, 1, &data, regs))
8600 8601
				ret = HRTIMER_NORESTART;
	}
8602

8603 8604
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8605

8606
	return ret;
8607 8608
}

8609
static void perf_swevent_start_hrtimer(struct perf_event *event)
8610
{
8611
	struct hw_perf_event *hwc = &event->hw;
8612 8613 8614 8615
	s64 period;

	if (!is_sampling_event(event))
		return;
8616

8617 8618 8619 8620
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
8621

8622 8623 8624 8625
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
8626 8627
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
8628
}
8629 8630

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8631
{
8632 8633
	struct hw_perf_event *hwc = &event->hw;

8634
	if (is_sampling_event(event)) {
8635
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
8636
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8637 8638 8639

		hrtimer_cancel(&hwc->hrtimer);
	}
8640 8641
}

P
Peter Zijlstra 已提交
8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
8662
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
8663 8664 8665 8666
		event->attr.freq = 0;
	}
}

8667 8668 8669 8670 8671
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
8672
{
8673 8674 8675
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
8676
	now = local_clock();
8677 8678
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
8679 8680
}

P
Peter Zijlstra 已提交
8681
static void cpu_clock_event_start(struct perf_event *event, int flags)
8682
{
P
Peter Zijlstra 已提交
8683
	local64_set(&event->hw.prev_count, local_clock());
8684 8685 8686
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8687
static void cpu_clock_event_stop(struct perf_event *event, int flags)
8688
{
8689 8690 8691
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
8692

P
Peter Zijlstra 已提交
8693 8694 8695 8696
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
8697
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
8698 8699 8700 8701 8702 8703 8704 8705 8706

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

8707 8708 8709 8710
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
8711

8712 8713 8714 8715 8716 8717 8718 8719
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

8720 8721 8722 8723 8724 8725
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8726 8727
	perf_swevent_init_hrtimer(event);

8728
	return 0;
8729 8730
}

8731
static struct pmu perf_cpu_clock = {
8732 8733
	.task_ctx_nr	= perf_sw_context,

8734 8735
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8736
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
8737 8738 8739 8740
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
8741 8742 8743 8744 8745 8746 8747 8748
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
8749
{
8750 8751
	u64 prev;
	s64 delta;
8752

8753 8754 8755 8756
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
8757

P
Peter Zijlstra 已提交
8758
static void task_clock_event_start(struct perf_event *event, int flags)
8759
{
P
Peter Zijlstra 已提交
8760
	local64_set(&event->hw.prev_count, event->ctx->time);
8761 8762 8763
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8764
static void task_clock_event_stop(struct perf_event *event, int flags)
8765 8766 8767
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
8768 8769 8770 8771 8772 8773
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
8774
	perf_event_update_userpage(event);
8775

P
Peter Zijlstra 已提交
8776 8777 8778 8779 8780 8781
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
8782 8783 8784 8785
}

static void task_clock_event_read(struct perf_event *event)
{
8786 8787 8788
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
8789 8790 8791 8792 8793

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
8794
{
8795 8796 8797 8798 8799 8800
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

8801 8802 8803 8804 8805 8806
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8807 8808
	perf_swevent_init_hrtimer(event);

8809
	return 0;
L
Li Zefan 已提交
8810 8811
}

8812
static struct pmu perf_task_clock = {
8813 8814
	.task_ctx_nr	= perf_sw_context,

8815 8816
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8817
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
8818 8819 8820 8821
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
8822 8823
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
8824

P
Peter Zijlstra 已提交
8825
static void perf_pmu_nop_void(struct pmu *pmu)
8826 8827
{
}
L
Li Zefan 已提交
8828

8829 8830 8831 8832
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
8833
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
8834
{
P
Peter Zijlstra 已提交
8835
	return 0;
L
Li Zefan 已提交
8836 8837
}

8838
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8839 8840

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
8841
{
8842 8843 8844 8845 8846
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8847
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
8848 8849
}

P
Peter Zijlstra 已提交
8850 8851
static int perf_pmu_commit_txn(struct pmu *pmu)
{
8852 8853 8854 8855 8856 8857 8858
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
8859 8860 8861
	perf_pmu_enable(pmu);
	return 0;
}
8862

P
Peter Zijlstra 已提交
8863
static void perf_pmu_cancel_txn(struct pmu *pmu)
8864
{
8865 8866 8867 8868 8869 8870 8871
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8872
	perf_pmu_enable(pmu);
8873 8874
}

8875 8876
static int perf_event_idx_default(struct perf_event *event)
{
8877
	return 0;
8878 8879
}

P
Peter Zijlstra 已提交
8880 8881 8882 8883
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
8884
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8885
{
P
Peter Zijlstra 已提交
8886
	struct pmu *pmu;
8887

P
Peter Zijlstra 已提交
8888 8889
	if (ctxn < 0)
		return NULL;
8890

P
Peter Zijlstra 已提交
8891 8892 8893 8894
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
8895

P
Peter Zijlstra 已提交
8896
	return NULL;
8897 8898
}

8899 8900
static void free_pmu_context(struct pmu *pmu)
{
8901 8902 8903 8904 8905 8906 8907 8908
	/*
	 * Static contexts such as perf_sw_context have a global lifetime
	 * and may be shared between different PMUs. Avoid freeing them
	 * when a single PMU is going away.
	 */
	if (pmu->task_ctx_nr > perf_invalid_context)
		return;

P
Peter Zijlstra 已提交
8909
	mutex_lock(&pmus_lock);
8910
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
8911
	mutex_unlock(&pmus_lock);
8912
}
8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926

/*
 * Let userspace know that this PMU supports address range filtering:
 */
static ssize_t nr_addr_filters_show(struct device *dev,
				    struct device_attribute *attr,
				    char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
}
DEVICE_ATTR_RO(nr_addr_filters);

P
Peter Zijlstra 已提交
8927
static struct idr pmu_idr;
8928

P
Peter Zijlstra 已提交
8929 8930 8931 8932 8933 8934 8935
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
8936
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
8937

8938 8939 8940 8941 8942 8943 8944 8945 8946 8947
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

8948 8949
static DEFINE_MUTEX(mux_interval_mutex);

8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

8969
	mutex_lock(&mux_interval_mutex);
8970 8971 8972
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
8973
	cpus_read_lock();
8974
	for_each_online_cpu(cpu) {
8975 8976 8977 8978
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

8979 8980
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8981
	}
8982
	cpus_read_unlock();
8983
	mutex_unlock(&mux_interval_mutex);
8984 8985 8986

	return count;
}
8987
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8988

8989 8990 8991 8992
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
8993
};
8994
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
8995 8996 8997 8998

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
8999
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

9015
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

9028 9029 9030 9031 9032 9033 9034
	/* For PMUs with address filters, throw in an extra attribute: */
	if (pmu->nr_addr_filters)
		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);

	if (ret)
		goto del_dev;

P
Peter Zijlstra 已提交
9035 9036 9037
out:
	return ret;

9038 9039 9040
del_dev:
	device_del(pmu->dev);

P
Peter Zijlstra 已提交
9041 9042 9043 9044 9045
free_dev:
	put_device(pmu->dev);
	goto out;
}

9046
static struct lock_class_key cpuctx_mutex;
9047
static struct lock_class_key cpuctx_lock;
9048

9049
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9050
{
P
Peter Zijlstra 已提交
9051
	int cpu, ret;
9052

9053
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
9054 9055 9056 9057
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
9058

P
Peter Zijlstra 已提交
9059 9060 9061 9062 9063 9064
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
9065 9066 9067
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
9068 9069 9070 9071 9072
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
9073 9074 9075 9076 9077 9078
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
9079
skip_type:
9080 9081 9082
	if (pmu->task_ctx_nr == perf_hw_context) {
		static int hw_context_taken = 0;

9083 9084 9085 9086 9087 9088 9089
		/*
		 * Other than systems with heterogeneous CPUs, it never makes
		 * sense for two PMUs to share perf_hw_context. PMUs which are
		 * uncore must use perf_invalid_context.
		 */
		if (WARN_ON_ONCE(hw_context_taken &&
		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9090 9091 9092 9093 9094
			pmu->task_ctx_nr = perf_invalid_context;

		hw_context_taken = 1;
	}

P
Peter Zijlstra 已提交
9095 9096 9097
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
9098

W
Wei Yongjun 已提交
9099
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
9100 9101
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
9102
		goto free_dev;
9103

P
Peter Zijlstra 已提交
9104 9105 9106 9107
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9108
		__perf_event_init_context(&cpuctx->ctx);
9109
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9110
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
9111
		cpuctx->ctx.pmu = pmu;
9112
		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9113

9114
		__perf_mux_hrtimer_init(cpuctx, cpu);
P
Peter Zijlstra 已提交
9115
	}
9116

P
Peter Zijlstra 已提交
9117
got_cpu_context:
P
Peter Zijlstra 已提交
9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
9129
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
9130 9131
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
9132
		}
9133
	}
9134

P
Peter Zijlstra 已提交
9135 9136 9137 9138 9139
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

9140 9141 9142
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

9143
	list_add_rcu(&pmu->entry, &pmus);
9144
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
9145 9146
	ret = 0;
unlock:
9147 9148
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
9149
	return ret;
P
Peter Zijlstra 已提交
9150

P
Peter Zijlstra 已提交
9151 9152 9153 9154
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
9155 9156 9157 9158
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
9159 9160 9161
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
9162
}
9163
EXPORT_SYMBOL_GPL(perf_pmu_register);
9164

9165
void perf_pmu_unregister(struct pmu *pmu)
9166
{
9167 9168
	int remove_device;

9169
	mutex_lock(&pmus_lock);
9170
	remove_device = pmu_bus_running;
9171 9172
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
9173

9174
	/*
P
Peter Zijlstra 已提交
9175 9176
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
9177
	 */
9178
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
9179
	synchronize_rcu();
9180

P
Peter Zijlstra 已提交
9181
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
9182 9183
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
9184 9185 9186 9187 9188 9189
	if (remove_device) {
		if (pmu->nr_addr_filters)
			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
		device_del(pmu->dev);
		put_device(pmu->dev);
	}
9190
	free_pmu_context(pmu);
9191
}
9192
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9193

9194 9195
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
9196
	struct perf_event_context *ctx = NULL;
9197 9198 9199 9200
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
9201

9202 9203 9204 9205 9206 9207 9208
	/*
	 * A number of pmu->event_init() methods iterate the sibling_list to,
	 * for example, validate if the group fits on the PMU. Therefore,
	 * if this is a sibling event, acquire the ctx->mutex to protect
	 * the sibling_list.
	 */
	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9209 9210 9211 9212 9213 9214
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
9215 9216 9217
		BUG_ON(!ctx);
	}

9218 9219
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
9220 9221 9222 9223

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

9224 9225 9226 9227 9228 9229
	if (ret)
		module_put(pmu->module);

	return ret;
}

9230
static struct pmu *perf_init_event(struct perf_event *event)
9231
{
D
Dan Carpenter 已提交
9232
	struct pmu *pmu;
9233
	int idx;
9234
	int ret;
9235 9236

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
9237

9238 9239 9240 9241 9242 9243 9244 9245
	/* Try parent's PMU first: */
	if (event->parent && event->parent->pmu) {
		pmu = event->parent->pmu;
		ret = perf_try_init_event(pmu, event);
		if (!ret)
			goto unlock;
	}

P
Peter Zijlstra 已提交
9246 9247 9248
	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
9249
	if (pmu) {
9250
		ret = perf_try_init_event(pmu, event);
9251 9252
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
9253
		goto unlock;
9254
	}
P
Peter Zijlstra 已提交
9255

9256
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9257
		ret = perf_try_init_event(pmu, event);
9258
		if (!ret)
P
Peter Zijlstra 已提交
9259
			goto unlock;
9260

9261 9262
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
9263
			goto unlock;
9264
		}
9265
	}
P
Peter Zijlstra 已提交
9266 9267
	pmu = ERR_PTR(-ENOENT);
unlock:
9268
	srcu_read_unlock(&pmus_srcu, idx);
9269

9270
	return pmu;
9271 9272
}

9273 9274 9275 9276 9277 9278 9279 9280 9281
static void attach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_add_rcu(&event->sb_list, &pel->list);
	raw_spin_unlock(&pel->lock);
}

9282 9283 9284 9285 9286 9287 9288
/*
 * We keep a list of all !task (and therefore per-cpu) events
 * that need to receive side-band records.
 *
 * This avoids having to scan all the various PMU per-cpu contexts
 * looking for them.
 */
9289 9290
static void account_pmu_sb_event(struct perf_event *event)
{
9291
	if (is_sb_event(event))
9292 9293 9294
		attach_sb_event(event);
}

9295 9296 9297 9298 9299 9300 9301 9302 9303
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324
/* Freq events need the tick to stay alive (see perf_event_task_tick). */
static void account_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	/* Lock so we don't race with concurrent unaccount */
	spin_lock(&nr_freq_lock);
	if (atomic_inc_return(&nr_freq_events) == 1)
		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void account_freq_event(void)
{
	if (tick_nohz_full_enabled())
		account_freq_event_nohz();
	else
		atomic_inc(&nr_freq_events);
}


9325 9326
static void account_event(struct perf_event *event)
{
9327 9328
	bool inc = false;

9329 9330 9331
	if (event->parent)
		return;

9332
	if (event->attach_state & PERF_ATTACH_TASK)
9333
		inc = true;
9334 9335 9336 9337
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
9338 9339
	if (event->attr.namespaces)
		atomic_inc(&nr_namespaces_events);
9340 9341
	if (event->attr.task)
		atomic_inc(&nr_task_events);
9342 9343
	if (event->attr.freq)
		account_freq_event();
9344 9345
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
9346
		inc = true;
9347
	}
9348
	if (has_branch_stack(event))
9349
		inc = true;
9350
	if (is_cgroup_event(event))
9351 9352
		inc = true;

9353
	if (inc) {
9354 9355 9356 9357 9358
		/*
		 * We need the mutex here because static_branch_enable()
		 * must complete *before* the perf_sched_count increment
		 * becomes visible.
		 */
9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379
		if (atomic_inc_not_zero(&perf_sched_count))
			goto enabled;

		mutex_lock(&perf_sched_mutex);
		if (!atomic_read(&perf_sched_count)) {
			static_branch_enable(&perf_sched_events);
			/*
			 * Guarantee that all CPUs observe they key change and
			 * call the perf scheduling hooks before proceeding to
			 * install events that need them.
			 */
			synchronize_sched();
		}
		/*
		 * Now that we have waited for the sync_sched(), allow further
		 * increments to by-pass the mutex.
		 */
		atomic_inc(&perf_sched_count);
		mutex_unlock(&perf_sched_mutex);
	}
enabled:
9380 9381

	account_event_cpu(event, event->cpu);
9382 9383

	account_pmu_sb_event(event);
9384 9385
}

T
Thomas Gleixner 已提交
9386
/*
9387
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
9388
 */
9389
static struct perf_event *
9390
perf_event_alloc(struct perf_event_attr *attr, int cpu,
9391 9392 9393
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
9394
		 perf_overflow_handler_t overflow_handler,
9395
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
9396
{
P
Peter Zijlstra 已提交
9397
	struct pmu *pmu;
9398 9399
	struct perf_event *event;
	struct hw_perf_event *hwc;
9400
	long err = -EINVAL;
T
Thomas Gleixner 已提交
9401

9402 9403 9404 9405 9406
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

9407
	event = kzalloc(sizeof(*event), GFP_KERNEL);
9408
	if (!event)
9409
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
9410

9411
	/*
9412
	 * Single events are their own group leaders, with an
9413 9414 9415
	 * empty sibling list:
	 */
	if (!group_leader)
9416
		group_leader = event;
9417

9418 9419
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
9420

9421 9422 9423
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
9424
	INIT_LIST_HEAD(&event->rb_entry);
9425
	INIT_LIST_HEAD(&event->active_entry);
9426
	INIT_LIST_HEAD(&event->addr_filters.list);
9427 9428
	INIT_HLIST_NODE(&event->hlist_entry);

9429

9430
	init_waitqueue_head(&event->waitq);
9431
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
9432

9433
	mutex_init(&event->mmap_mutex);
9434
	raw_spin_lock_init(&event->addr_filters.lock);
9435

9436
	atomic_long_set(&event->refcount, 1);
9437 9438 9439 9440 9441
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
9442

9443
	event->parent		= parent_event;
9444

9445
	event->ns		= get_pid_ns(task_active_pid_ns(current));
9446
	event->id		= atomic64_inc_return(&perf_event_id);
9447

9448
	event->state		= PERF_EVENT_STATE_INACTIVE;
9449

9450 9451 9452
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
9453 9454 9455
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
9456
		 */
9457
		event->hw.target = task;
9458 9459
	}

9460 9461 9462 9463
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

9464
	if (!overflow_handler && parent_event) {
9465
		overflow_handler = parent_event->overflow_handler;
9466
		context = parent_event->overflow_handler_context;
9467
#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479
		if (overflow_handler == bpf_overflow_handler) {
			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);

			if (IS_ERR(prog)) {
				err = PTR_ERR(prog);
				goto err_ns;
			}
			event->prog = prog;
			event->orig_overflow_handler =
				parent_event->orig_overflow_handler;
		}
#endif
9480
	}
9481

9482 9483 9484
	if (overflow_handler) {
		event->overflow_handler	= overflow_handler;
		event->overflow_handler_context = context;
9485 9486 9487
	} else if (is_write_backward(event)){
		event->overflow_handler = perf_event_output_backward;
		event->overflow_handler_context = NULL;
9488
	} else {
9489
		event->overflow_handler = perf_event_output_forward;
9490 9491
		event->overflow_handler_context = NULL;
	}
9492

J
Jiri Olsa 已提交
9493
	perf_event__state_init(event);
9494

9495
	pmu = NULL;
9496

9497
	hwc = &event->hw;
9498
	hwc->sample_period = attr->sample_period;
9499
	if (attr->freq && attr->sample_freq)
9500
		hwc->sample_period = 1;
9501
	hwc->last_period = hwc->sample_period;
9502

9503
	local64_set(&hwc->period_left, hwc->sample_period);
9504

9505
	/*
9506 9507
	 * We currently do not support PERF_SAMPLE_READ on inherited events.
	 * See perf_output_read().
9508
	 */
9509
	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9510
		goto err_ns;
9511 9512 9513

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
9514

9515 9516 9517 9518 9519 9520
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

9521
	pmu = perf_init_event(event);
D
Dan Carpenter 已提交
9522
	if (IS_ERR(pmu)) {
9523
		err = PTR_ERR(pmu);
9524
		goto err_ns;
I
Ingo Molnar 已提交
9525
	}
9526

9527 9528 9529 9530
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

9531 9532 9533 9534
	if (has_addr_filter(event)) {
		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
						   sizeof(unsigned long),
						   GFP_KERNEL);
9535 9536
		if (!event->addr_filters_offs) {
			err = -ENOMEM;
9537
			goto err_per_task;
9538
		}
9539 9540 9541 9542 9543

		/* force hw sync on the address filters */
		event->addr_filters_gen = 1;
	}

9544
	if (!event->parent) {
9545
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9546
			err = get_callchain_buffers(attr->sample_max_stack);
9547
			if (err)
9548
				goto err_addr_filters;
9549
		}
9550
	}
9551

9552 9553 9554
	/* symmetric to unaccount_event() in _free_event() */
	account_event(event);

9555
	return event;
9556

9557 9558 9559
err_addr_filters:
	kfree(event->addr_filters_offs);

9560 9561 9562
err_per_task:
	exclusive_event_destroy(event);

9563 9564 9565
err_pmu:
	if (event->destroy)
		event->destroy(event);
9566
	module_put(pmu->module);
9567
err_ns:
9568 9569
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
9570 9571 9572 9573 9574
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
9575 9576
}

9577 9578
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
9579 9580
{
	u32 size;
9581
	int ret;
9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
9606 9607 9608
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
9609 9610
	 */
	if (size > sizeof(*attr)) {
9611 9612 9613
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
9614

9615 9616
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
9617

9618
		for (; addr < end; addr++) {
9619 9620 9621 9622 9623 9624
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
9625
		size = sizeof(*attr);
9626 9627 9628 9629 9630 9631
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

9632 9633
	attr->size = size;

9634
	if (attr->__reserved_1)
9635 9636 9637 9638 9639 9640 9641 9642
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
9671 9672
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9673 9674
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
9675
	}
9676

9677
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9678
		ret = perf_reg_validate(attr->sample_regs_user);
9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
9697

9698 9699
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
9700 9701 9702 9703 9704 9705 9706 9707 9708
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

9709 9710
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9711
{
9712
	struct ring_buffer *rb = NULL;
9713 9714
	int ret = -EINVAL;

9715
	if (!output_event)
9716 9717
		goto set;

9718 9719
	/* don't allow circular references */
	if (event == output_event)
9720 9721
		goto out;

9722 9723 9724 9725 9726 9727 9728
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
9729
	 * If its not a per-cpu rb, it must be the same task.
9730 9731 9732 9733
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

9734 9735 9736 9737 9738 9739
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

9740 9741 9742 9743 9744 9745 9746
	/*
	 * Either writing ring buffer from beginning or from end.
	 * Mixing is not allowed.
	 */
	if (is_write_backward(output_event) != is_write_backward(event))
		goto out;

9747 9748 9749 9750 9751 9752 9753
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

9754
set:
9755
	mutex_lock(&event->mmap_mutex);
9756 9757 9758
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
9759

9760
	if (output_event) {
9761 9762 9763
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
9764
			goto unlock;
9765 9766
	}

9767
	ring_buffer_attach(event, rb);
9768

9769
	ret = 0;
9770 9771 9772
unlock:
	mutex_unlock(&event->mmap_mutex);

9773 9774 9775 9776
out:
	return ret;
}

P
Peter Zijlstra 已提交
9777 9778 9779 9780 9781 9782 9783 9784 9785
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853
/*
 * Variation on perf_event_ctx_lock_nested(), except we take two context
 * mutexes.
 */
static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event *group_leader,
			     struct perf_event_context *ctx)
{
	struct perf_event_context *gctx;

again:
	rcu_read_lock();
	gctx = READ_ONCE(group_leader->ctx);
	if (!atomic_inc_not_zero(&gctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

	mutex_lock_double(&gctx->mutex, &ctx->mutex);

	if (group_leader->ctx != gctx) {
		mutex_unlock(&ctx->mutex);
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
		goto again;
	}

	return gctx;
}

T
Thomas Gleixner 已提交
9854
/**
9855
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
9856
 *
9857
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
9858
 * @pid:		target pid
I
Ingo Molnar 已提交
9859
 * @cpu:		target cpu
9860
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
9861
 */
9862 9863
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
9864
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
9865
{
9866 9867
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
9868
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
9869
	struct perf_event_context *ctx, *uninitialized_var(gctx);
9870
	struct file *event_file = NULL;
9871
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
9872
	struct task_struct *task = NULL;
9873
	struct pmu *pmu;
9874
	int event_fd;
9875
	int move_group = 0;
9876
	int err;
9877
	int f_flags = O_RDWR;
9878
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
9879

9880
	/* for future expandability... */
S
Stephane Eranian 已提交
9881
	if (flags & ~PERF_FLAG_ALL)
9882 9883
		return -EINVAL;

9884 9885 9886
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
9887

9888 9889 9890 9891 9892
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

9893 9894 9895 9896 9897
	if (attr.namespaces) {
		if (!capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

9898
	if (attr.freq) {
9899
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9900
			return -EINVAL;
9901 9902 9903
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
9904 9905
	}

9906 9907 9908 9909 9910
	/* Only privileged users can get physical addresses */
	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
		return -EACCES;

9911 9912 9913
	if (!attr.sample_max_stack)
		attr.sample_max_stack = sysctl_perf_event_max_stack;

S
Stephane Eranian 已提交
9914 9915 9916 9917 9918 9919 9920 9921 9922
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

9923 9924 9925 9926
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
9927 9928 9929
	if (event_fd < 0)
		return event_fd;

9930
	if (group_fd != -1) {
9931 9932
		err = perf_fget_light(group_fd, &group);
		if (err)
9933
			goto err_fd;
9934
		group_leader = group.file->private_data;
9935 9936 9937 9938 9939 9940
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
9941
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9942 9943 9944 9945 9946 9947 9948
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

9949 9950 9951 9952 9953 9954
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

9955 9956 9957
	if (task) {
		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
		if (err)
9958
			goto err_task;
9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972

		/*
		 * Reuse ptrace permission checks for now.
		 *
		 * We must hold cred_guard_mutex across this and any potential
		 * perf_install_in_context() call for this new event to
		 * serialize against exec() altering our credentials (and the
		 * perf_event_exit_task() that could imply).
		 */
		err = -EACCES;
		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
			goto err_cred;
	}

9973 9974 9975
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

9976
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9977
				 NULL, NULL, cgroup_fd);
9978 9979
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
9980
		goto err_cred;
9981 9982
	}

9983 9984
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9985
			err = -EOPNOTSUPP;
9986 9987 9988 9989
			goto err_alloc;
		}
	}

9990 9991 9992 9993 9994
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
9995

9996 9997 9998 9999 10000 10001
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

10002 10003 10004
	if (pmu->task_ctx_nr == perf_sw_context)
		event->event_caps |= PERF_EV_CAP_SOFTWARE;

10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
10018
			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10019 10020 10021 10022 10023 10024 10025 10026
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
10027 10028 10029 10030

	/*
	 * Get the target context (task or percpu):
	 */
10031
	ctx = find_get_context(pmu, task, event);
10032 10033
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
10034
		goto err_alloc;
10035 10036
	}

10037 10038 10039 10040 10041
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

I
Ingo Molnar 已提交
10042
	/*
10043
	 * Look up the group leader (we will attach this event to it):
10044
	 */
10045
	if (group_leader) {
10046
		err = -EINVAL;
10047 10048

		/*
I
Ingo Molnar 已提交
10049 10050 10051 10052
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
10053
			goto err_context;
10054 10055 10056 10057 10058

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
10059
		/*
10060 10061 10062
		 * Make sure we're both events for the same CPU;
		 * grouping events for different CPUs is broken; since
		 * you can never concurrently schedule them anyhow.
10063
		 */
10064 10065
		if (group_leader->cpu != event->cpu)
			goto err_context;
10066

10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080
		/*
		 * Make sure we're both on the same task, or both
		 * per-CPU events.
		 */
		if (group_leader->ctx->task != ctx->task)
			goto err_context;

		/*
		 * Do not allow to attach to a group in a different task
		 * or CPU context. If we're moving SW events, we'll fix
		 * this up later, so allow that.
		 */
		if (!move_group && group_leader->ctx != ctx)
			goto err_context;
10081

10082 10083 10084
		/*
		 * Only a group leader can be exclusive or pinned
		 */
10085
		if (attr.exclusive || attr.pinned)
10086
			goto err_context;
10087 10088 10089 10090 10091
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
10092
			goto err_context;
10093
	}
T
Thomas Gleixner 已提交
10094

10095 10096
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
10097 10098
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
10099
		event_file = NULL;
10100
		goto err_context;
10101
	}
10102

10103
	if (move_group) {
10104 10105
		gctx = __perf_event_ctx_lock_double(group_leader, ctx);

10106 10107 10108 10109
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128

		/*
		 * Check if we raced against another sys_perf_event_open() call
		 * moving the software group underneath us.
		 */
		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
			/*
			 * If someone moved the group out from under us, check
			 * if this new event wound up on the same ctx, if so
			 * its the regular !move_group case, otherwise fail.
			 */
			if (gctx != ctx) {
				err = -EINVAL;
				goto err_locked;
			} else {
				perf_event_ctx_unlock(group_leader, gctx);
				move_group = 0;
			}
		}
10129 10130 10131 10132
	} else {
		mutex_lock(&ctx->mutex);
	}

10133 10134 10135 10136 10137
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
10138 10139 10140 10141 10142
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159
	if (!task) {
		/*
		 * Check if the @cpu we're creating an event for is online.
		 *
		 * We use the perf_cpu_context::ctx::mutex to serialize against
		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
		 */
		struct perf_cpu_context *cpuctx =
			container_of(ctx, struct perf_cpu_context, ctx);

		if (!cpuctx->online) {
			err = -ENODEV;
			goto err_locked;
		}
	}


10160 10161 10162 10163 10164 10165 10166
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
10167

10168 10169 10170
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
10171

10172 10173
	WARN_ON_ONCE(ctx->parent_ctx);

10174 10175 10176 10177 10178
	/*
	 * This is the point on no return; we cannot fail hereafter. This is
	 * where we start modifying current state.
	 */

10179
	if (move_group) {
P
Peter Zijlstra 已提交
10180 10181 10182 10183
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
10184
		perf_remove_from_context(group_leader, 0);
10185
		put_ctx(gctx);
J
Jiri Olsa 已提交
10186

10187 10188
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
10189
			perf_remove_from_context(sibling, 0);
10190 10191 10192
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
10193 10194 10195 10196
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
10197
		synchronize_rcu();
P
Peter Zijlstra 已提交
10198

10199 10200 10201 10202 10203 10204 10205 10206 10207 10208
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
10209 10210
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
10211
			perf_event__state_init(sibling);
10212
			perf_install_in_context(ctx, sibling, sibling->cpu);
10213 10214
			get_ctx(ctx);
		}
10215 10216 10217 10218 10219 10220 10221 10222 10223

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
10224 10225
	}

10226 10227 10228 10229 10230 10231 10232 10233 10234
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
10235 10236
	event->owner = current;

10237
	perf_install_in_context(ctx, event, event->cpu);
10238
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
10239

10240
	if (move_group)
10241
		perf_event_ctx_unlock(group_leader, gctx);
10242
	mutex_unlock(&ctx->mutex);
10243

10244 10245 10246 10247 10248
	if (task) {
		mutex_unlock(&task->signal->cred_guard_mutex);
		put_task_struct(task);
	}

10249 10250 10251
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
10252

10253 10254 10255 10256 10257 10258
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
10259
	fdput(group);
10260 10261
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
10262

10263 10264
err_locked:
	if (move_group)
10265
		perf_event_ctx_unlock(group_leader, gctx);
10266 10267 10268
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
10269
err_context:
10270
	perf_unpin_context(ctx);
10271
	put_ctx(ctx);
10272
err_alloc:
P
Peter Zijlstra 已提交
10273 10274 10275 10276 10277 10278
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
10279 10280 10281
err_cred:
	if (task)
		mutex_unlock(&task->signal->cred_guard_mutex);
10282
err_task:
P
Peter Zijlstra 已提交
10283 10284
	if (task)
		put_task_struct(task);
10285
err_group_fd:
10286
	fdput(group);
10287 10288
err_fd:
	put_unused_fd(event_fd);
10289
	return err;
T
Thomas Gleixner 已提交
10290 10291
}

10292 10293 10294 10295 10296
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
10297
 * @task: task to profile (NULL for percpu)
10298 10299 10300
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
10301
				 struct task_struct *task,
10302 10303
				 perf_overflow_handler_t overflow_handler,
				 void *context)
10304 10305
{
	struct perf_event_context *ctx;
10306
	struct perf_event *event;
10307
	int err;
10308

10309 10310 10311
	/*
	 * Get the target context (task or percpu):
	 */
10312

10313
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10314
				 overflow_handler, context, -1);
10315 10316 10317 10318
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
10319

10320
	/* Mark owner so we could distinguish it from user events. */
10321
	event->owner = TASK_TOMBSTONE;
10322

10323
	ctx = find_get_context(event->pmu, task, event);
10324 10325
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
10326
		goto err_free;
10327
	}
10328 10329 10330

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
10331 10332 10333 10334 10335
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350
	if (!task) {
		/*
		 * Check if the @cpu we're creating an event for is online.
		 *
		 * We use the perf_cpu_context::ctx::mutex to serialize against
		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
		 */
		struct perf_cpu_context *cpuctx =
			container_of(ctx, struct perf_cpu_context, ctx);
		if (!cpuctx->online) {
			err = -ENODEV;
			goto err_unlock;
		}
	}

10351 10352
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
10353
		goto err_unlock;
10354 10355
	}

10356
	perf_install_in_context(ctx, event, cpu);
10357
	perf_unpin_context(ctx);
10358 10359 10360 10361
	mutex_unlock(&ctx->mutex);

	return event;

10362 10363 10364 10365
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
10366 10367 10368
err_free:
	free_event(event);
err:
10369
	return ERR_PTR(err);
10370
}
10371
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10372

10373 10374 10375 10376 10377 10378 10379 10380 10381 10382
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
10383 10384 10385 10386 10387
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10388 10389
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
10390
		perf_remove_from_context(event, 0);
10391
		unaccount_event_cpu(event, src_cpu);
10392
		put_ctx(src_ctx);
10393
		list_add(&event->migrate_entry, &events);
10394 10395
	}

10396 10397 10398
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
10399 10400
	synchronize_rcu();

10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
10425 10426
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
10427 10428
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
10429
		account_event_cpu(event, dst_cpu);
10430 10431 10432 10433
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
10434
	mutex_unlock(&src_ctx->mutex);
10435 10436 10437
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

10438
static void sync_child_event(struct perf_event *child_event,
10439
			       struct task_struct *child)
10440
{
10441
	struct perf_event *parent_event = child_event->parent;
10442
	u64 child_val;
10443

10444 10445
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
10446

P
Peter Zijlstra 已提交
10447
	child_val = perf_event_count(child_event);
10448 10449 10450 10451

	/*
	 * Add back the child's count to the parent's count:
	 */
10452
	atomic64_add(child_val, &parent_event->child_count);
10453 10454 10455 10456
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
10457 10458
}

10459
static void
10460 10461 10462
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
10463
{
10464 10465
	struct perf_event *parent_event = child_event->parent;

10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
10478 10479 10480
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

10481
	if (parent_event)
10482 10483
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
10484
	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
10485
	raw_spin_unlock_irq(&child_ctx->lock);
10486

10487
	/*
10488
	 * Parent events are governed by their filedesc, retain them.
10489
	 */
10490
	if (!parent_event) {
10491
		perf_event_wakeup(child_event);
10492
		return;
10493
	}
10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
10514 10515
}

P
Peter Zijlstra 已提交
10516
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10517
{
10518
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10519 10520 10521
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
10522

10523
	child_ctx = perf_pin_task_context(child, ctxn);
10524
	if (!child_ctx)
10525 10526
		return;

10527
	/*
10528 10529 10530 10531 10532 10533 10534 10535
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
10536
	 */
10537
	mutex_lock(&child_ctx->mutex);
10538 10539

	/*
10540 10541 10542
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
10543
	 */
10544
	raw_spin_lock_irq(&child_ctx->lock);
10545
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10546

10547
	/*
10548 10549
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
10550
	 */
10551 10552 10553 10554
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
10555

10556
	clone_ctx = unclone_ctx(child_ctx);
10557
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
10558

10559 10560
	if (clone_ctx)
		put_ctx(clone_ctx);
10561

P
Peter Zijlstra 已提交
10562
	/*
10563 10564 10565
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
10566
	 */
10567
	perf_event_task(child, child_ctx, 0);
10568

10569
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10570
		perf_event_exit_event(child_event, child_ctx, child);
10571

10572 10573 10574
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
10575 10576
}

P
Peter Zijlstra 已提交
10577 10578
/*
 * When a child task exits, feed back event values to parent events.
10579 10580 10581
 *
 * Can be called with cred_guard_mutex held when called from
 * install_exec_creds().
P
Peter Zijlstra 已提交
10582 10583 10584
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
10585
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10586 10587
	int ctxn;

P
Peter Zijlstra 已提交
10588 10589 10590 10591 10592 10593 10594 10595 10596 10597
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
10598
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
10599 10600 10601
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
10602 10603
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
10604 10605 10606 10607 10608 10609 10610 10611

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
10612 10613
}

10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

10626
	put_event(parent);
10627

P
Peter Zijlstra 已提交
10628
	raw_spin_lock_irq(&ctx->lock);
10629
	perf_group_detach(event);
10630
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
10631
	raw_spin_unlock_irq(&ctx->lock);
10632 10633 10634
	free_event(event);
}

10635
/*
P
Peter Zijlstra 已提交
10636
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
10637
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
10638 10639 10640
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
10641
 */
10642
void perf_event_free_task(struct task_struct *task)
10643
{
P
Peter Zijlstra 已提交
10644
	struct perf_event_context *ctx;
10645
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10646
	int ctxn;
10647

P
Peter Zijlstra 已提交
10648 10649 10650 10651
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
10652

P
Peter Zijlstra 已提交
10653
		mutex_lock(&ctx->mutex);
10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664
		raw_spin_lock_irq(&ctx->lock);
		/*
		 * Destroy the task <-> ctx relation and mark the context dead.
		 *
		 * This is important because even though the task hasn't been
		 * exposed yet the context has been (through child_list).
		 */
		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
		put_task_struct(task); /* cannot be last */
		raw_spin_unlock_irq(&ctx->lock);
10665

10666
		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
P
Peter Zijlstra 已提交
10667
			perf_free_event(event, ctx);
10668

P
Peter Zijlstra 已提交
10669 10670 10671
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
	}
10672 10673
}

10674 10675 10676 10677 10678 10679 10680 10681
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

10682
struct file *perf_event_get(unsigned int fd)
10683
{
10684
	struct file *file;
10685

10686 10687 10688
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
10689

10690 10691 10692 10693
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
10694

10695
	return file;
10696 10697 10698 10699 10700 10701 10702 10703 10704 10705
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
10706
/*
10707 10708 10709 10710 10711 10712
 * Inherit a event from parent task to child task.
 *
 * Returns:
 *  - valid pointer on success
 *  - NULL for orphaned events
 *  - IS_ERR() on error
P
Peter Zijlstra 已提交
10713 10714 10715 10716 10717 10718 10719 10720 10721
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
10722
	enum perf_event_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
10723
	struct perf_event *child_event;
10724
	unsigned long flags;
P
Peter Zijlstra 已提交
10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
10737
					   child,
P
Peter Zijlstra 已提交
10738
					   group_leader, parent_event,
10739
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
10740 10741
	if (IS_ERR(child_event))
		return child_event;
10742

10743 10744 10745 10746 10747 10748 10749
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
10750 10751
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10752
		mutex_unlock(&parent_event->child_mutex);
10753 10754 10755 10756
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
10757 10758 10759 10760 10761 10762 10763
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
10764
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
10781 10782
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
10783

10784 10785 10786 10787
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
10788
	perf_event__id_header_size(child_event);
10789

P
Peter Zijlstra 已提交
10790 10791 10792
	/*
	 * Link it up in the child's context:
	 */
10793
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10794
	add_event_to_ctx(child_event, child_ctx);
10795
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10796 10797 10798 10799 10800 10801 10802 10803 10804 10805

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

10806 10807 10808 10809 10810 10811 10812 10813 10814 10815
/*
 * Inherits an event group.
 *
 * This will quietly suppress orphaned events; !inherit_event() is not an error.
 * This matches with perf_event_release_kernel() removing all child events.
 *
 * Returns:
 *  - 0 on success
 *  - <0 on error
 */
P
Peter Zijlstra 已提交
10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829
static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
10830 10831 10832 10833 10834
	/*
	 * @leader can be NULL here because of is_orphaned_event(). In this
	 * case inherit_event() will create individual events, similar to what
	 * perf_group_detach() would do anyway.
	 */
P
Peter Zijlstra 已提交
10835 10836 10837 10838 10839 10840 10841
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
10842 10843
}

10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854
/*
 * Creates the child task context and tries to inherit the event-group.
 *
 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
 * inherited_all set when we 'fail' to inherit an orphaned event; this is
 * consistent with perf_event_release_kernel() removing all child events.
 *
 * Returns:
 *  - 0 on success
 *  - <0 on error
 */
10855 10856 10857
static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
10858
		   struct task_struct *child, int ctxn,
10859 10860 10861
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
10862
	struct perf_event_context *child_ctx;
10863 10864 10865 10866

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
10867 10868
	}

10869
	child_ctx = child->perf_event_ctxp[ctxn];
10870 10871 10872 10873 10874 10875 10876
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
10877
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10878 10879
		if (!child_ctx)
			return -ENOMEM;
10880

P
Peter Zijlstra 已提交
10881
		child->perf_event_ctxp[ctxn] = child_ctx;
10882 10883 10884 10885 10886 10887 10888 10889 10890
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
10891 10892
}

10893
/*
10894
 * Initialize the perf_event context in task_struct
10895
 */
10896
static int perf_event_init_context(struct task_struct *child, int ctxn)
10897
{
10898
	struct perf_event_context *child_ctx, *parent_ctx;
10899 10900
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
10901
	struct task_struct *parent = current;
10902
	int inherited_all = 1;
10903
	unsigned long flags;
10904
	int ret = 0;
10905

P
Peter Zijlstra 已提交
10906
	if (likely(!parent->perf_event_ctxp[ctxn]))
10907 10908
		return 0;

10909
	/*
10910 10911
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
10912
	 */
P
Peter Zijlstra 已提交
10913
	parent_ctx = perf_pin_task_context(parent, ctxn);
10914 10915
	if (!parent_ctx)
		return 0;
10916

10917 10918 10919 10920 10921 10922 10923
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

10924 10925 10926 10927
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
10928
	mutex_lock(&parent_ctx->mutex);
10929 10930 10931 10932 10933

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
10934
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
10935 10936
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10937
		if (ret)
10938
			goto out_unlock;
10939
	}
10940

10941 10942 10943 10944 10945 10946 10947 10948 10949
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

10950
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
10951 10952
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10953
		if (ret)
10954
			goto out_unlock;
10955 10956
	}

10957 10958 10959
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
10960
	child_ctx = child->perf_event_ctxp[ctxn];
10961

10962
	if (child_ctx && inherited_all) {
10963 10964 10965
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
10966 10967 10968
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
10969
		 */
P
Peter Zijlstra 已提交
10970
		cloned_ctx = parent_ctx->parent_ctx;
10971 10972
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
10973
			child_ctx->parent_gen = parent_ctx->parent_gen;
10974 10975 10976 10977 10978
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
10979 10980
	}

P
Peter Zijlstra 已提交
10981
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10982
out_unlock:
10983
	mutex_unlock(&parent_ctx->mutex);
10984

10985
	perf_unpin_context(parent_ctx);
10986
	put_ctx(parent_ctx);
10987

10988
	return ret;
10989 10990
}

P
Peter Zijlstra 已提交
10991 10992 10993 10994 10995 10996 10997
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

10998 10999 11000 11001
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
11002 11003
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
11004 11005
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
11006
			return ret;
P
Peter Zijlstra 已提交
11007
		}
P
Peter Zijlstra 已提交
11008 11009 11010 11011 11012
	}

	return 0;
}

11013 11014
static void __init perf_event_init_all_cpus(void)
{
11015
	struct swevent_htable *swhash;
11016 11017
	int cpu;

11018 11019
	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);

11020
	for_each_possible_cpu(cpu) {
11021 11022
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
11023
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11024 11025 11026

		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11027

11028 11029 11030
#ifdef CONFIG_CGROUP_PERF
		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
#endif
11031
		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11032 11033 11034
	}
}

11035
void perf_swevent_init_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
11036
{
P
Peter Zijlstra 已提交
11037
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
11038

11039
	mutex_lock(&swhash->hlist_mutex);
11040
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11041 11042
		struct swevent_hlist *hlist;

11043 11044 11045
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11046
	}
11047
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
11048 11049
}

11050
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
11051
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
11052
{
P
Peter Zijlstra 已提交
11053
	struct perf_event_context *ctx = __info;
11054 11055
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
11056

11057
	raw_spin_lock(&ctx->lock);
11058
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11059
	list_for_each_entry(event, &ctx->event_list, event_entry)
11060
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11061
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
11062
}
P
Peter Zijlstra 已提交
11063 11064 11065

static void perf_event_exit_cpu_context(int cpu)
{
11066
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
11067 11068 11069
	struct perf_event_context *ctx;
	struct pmu *pmu;

11070 11071 11072 11073
	mutex_lock(&pmus_lock);
	list_for_each_entry(pmu, &pmus, entry) {
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		ctx = &cpuctx->ctx;
P
Peter Zijlstra 已提交
11074 11075 11076

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11077
		cpuctx->online = 0;
P
Peter Zijlstra 已提交
11078 11079
		mutex_unlock(&ctx->mutex);
	}
11080 11081
	cpumask_clear_cpu(cpu, perf_online_mask);
	mutex_unlock(&pmus_lock);
P
Peter Zijlstra 已提交
11082
}
11083 11084 11085 11086 11087
#else

static void perf_event_exit_cpu_context(int cpu) { }

#endif
P
Peter Zijlstra 已提交
11088

11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111
int perf_event_init_cpu(unsigned int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;

	perf_swevent_init_cpu(cpu);

	mutex_lock(&pmus_lock);
	cpumask_set_cpu(cpu, perf_online_mask);
	list_for_each_entry(pmu, &pmus, entry) {
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		ctx = &cpuctx->ctx;

		mutex_lock(&ctx->mutex);
		cpuctx->online = 1;
		mutex_unlock(&ctx->mutex);
	}
	mutex_unlock(&pmus_lock);

	return 0;
}

11112
int perf_event_exit_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
11113
{
P
Peter Zijlstra 已提交
11114
	perf_event_exit_cpu_context(cpu);
11115
	return 0;
T
Thomas Gleixner 已提交
11116 11117
}

P
Peter Zijlstra 已提交
11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

11138
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
11139
{
11140 11141
	int ret;

P
Peter Zijlstra 已提交
11142 11143
	idr_init(&pmu_idr);

11144
	perf_event_init_all_cpus();
11145
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
11146 11147 11148
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
11149
	perf_tp_register();
11150
	perf_event_init_cpu(smp_processor_id());
P
Peter Zijlstra 已提交
11151
	register_reboot_notifier(&perf_reboot_notifier);
11152 11153 11154

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11155

11156 11157 11158 11159 11160 11161
	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
11162
}
P
Peter Zijlstra 已提交
11163

11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}
11175
EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11176

P
Peter Zijlstra 已提交
11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
11204 11205

#ifdef CONFIG_CGROUP_PERF
11206 11207
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
11208 11209 11210
{
	struct perf_cgroup *jc;

11211
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

11224
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
11225
{
11226 11227
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
11228 11229 11230 11231 11232 11233 11234
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
11235
	rcu_read_lock();
S
Stephane Eranian 已提交
11236
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11237
	rcu_read_unlock();
S
Stephane Eranian 已提交
11238 11239 11240
	return 0;
}

11241
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
11242
{
11243
	struct task_struct *task;
11244
	struct cgroup_subsys_state *css;
11245

11246
	cgroup_taskset_for_each(task, css, tset)
11247
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
11248 11249
}

11250
struct cgroup_subsys perf_event_cgrp_subsys = {
11251 11252
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
11253
	.attach		= perf_cgroup_attach,
11254 11255 11256 11257 11258 11259
	/*
	 * Implicitly enable on dfl hierarchy so that perf events can
	 * always be filtered by cgroup2 path as long as perf_event
	 * controller is not mounted on a legacy hierarchy.
	 */
	.implicit_on_dfl = true,
11260
	.threaded	= true,
S
Stephane Eranian 已提交
11261 11262
};
#endif /* CONFIG_CGROUP_PERF */