memcontrol.c 154.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/sched/mm.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
41
#include <linux/pagemap.h>
42
#include <linux/smp.h>
43
#include <linux/page-flags.h>
44
#include <linux/backing-dev.h>
45 46
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
47
#include <linux/limits.h>
48
#include <linux/export.h>
49
#include <linux/mutex.h>
50
#include <linux/rbtree.h>
51
#include <linux/slab.h>
52
#include <linux/swap.h>
53
#include <linux/swapops.h>
54
#include <linux/spinlock.h>
55
#include <linux/eventfd.h>
56
#include <linux/poll.h>
57
#include <linux/sort.h>
58
#include <linux/fs.h>
59
#include <linux/seq_file.h>
60
#include <linux/vmpressure.h>
61
#include <linux/mm_inline.h>
62
#include <linux/swap_cgroup.h>
63
#include <linux/cpu.h>
64
#include <linux/oom.h>
65
#include <linux/lockdep.h>
66
#include <linux/file.h>
67
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
68
#include "internal.h"
G
Glauber Costa 已提交
69
#include <net/sock.h>
M
Michal Hocko 已提交
70
#include <net/ip.h>
71
#include "slab.h"
B
Balbir Singh 已提交
72

73
#include <linux/uaccess.h>
74

75 76
#include <trace/events/vmscan.h>

77 78
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
79

80 81
struct mem_cgroup *root_mem_cgroup __read_mostly;

82
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
83

84 85 86
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

87 88 89
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

90
/* Whether the swap controller is active */
A
Andrew Morton 已提交
91
#ifdef CONFIG_MEMCG_SWAP
92 93
int do_swap_account __read_mostly;
#else
94
#define do_swap_account		0
95 96
#endif

97 98 99 100 101 102
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

103 104 105
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
106
	"rss_huge",
107
	"shmem",
108
	"mapped_file",
109
	"dirty",
110
	"writeback",
111 112 113 114 115 116 117 118 119 120
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

121 122 123 124 125 126 127 128
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

129 130 131
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
132

133 134 135 136 137
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

138
struct mem_cgroup_tree_per_node {
139 140 141 142 143 144 145 146 147 148
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
149 150 151 152 153
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
154

155 156 157
/*
 * cgroup_event represents events which userspace want to receive.
 */
158
struct mem_cgroup_event {
159
	/*
160
	 * memcg which the event belongs to.
161
	 */
162
	struct mem_cgroup *memcg;
163 164 165 166 167 168 169 170
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
171 172 173 174 175
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
176
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
177
			      struct eventfd_ctx *eventfd, const char *args);
178 179 180 181 182
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
183
	void (*unregister_event)(struct mem_cgroup *memcg,
184
				 struct eventfd_ctx *eventfd);
185 186 187 188 189 190 191 192 193 194
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

195 196
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
197

198 199
/* Stuffs for move charges at task migration. */
/*
200
 * Types of charges to be moved.
201
 */
202 203 204
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
205

206 207
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
208
	spinlock_t	  lock; /* for from, to */
209
	struct mm_struct  *mm;
210 211
	struct mem_cgroup *from;
	struct mem_cgroup *to;
212
	unsigned long flags;
213
	unsigned long precharge;
214
	unsigned long moved_charge;
215
	unsigned long moved_swap;
216 217 218
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
219
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
220 221
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
222

223 224 225 226
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
227
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
228
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
229

230 231
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
232
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
233
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
234
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
235 236 237
	NR_CHARGE_TYPE,
};

238
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
239 240 241 242
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
243
	_KMEM,
V
Vladimir Davydov 已提交
244
	_TCP,
G
Glauber Costa 已提交
245 246
};

247 248
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
249
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
250 251
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
252

253 254 255 256 257 258 259 260 261 262 263 264 265
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

266 267 268 269 270
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

271
#ifndef CONFIG_SLOB
272
/*
273
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
274 275 276 277 278
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
279
 *
280 281
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
282
 */
283 284
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
285

286 287 288 289 290 291 292 293 294 295 296 297 298
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

299 300 301 302 303 304
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
305
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
306 307
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
308
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
309 310 311
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
312
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
313

314 315 316 317 318 319
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
320
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
321
EXPORT_SYMBOL(memcg_kmem_enabled_key);
322

323 324
struct workqueue_struct *memcg_kmem_cache_wq;

325
#endif /* !CONFIG_SLOB */
326

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

344
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
345 346 347 348 349
		memcg = root_mem_cgroup;

	return &memcg->css;
}

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

378 379
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
380
{
381
	int nid = page_to_nid(page);
382

383
	return memcg->nodeinfo[nid];
384 385
}

386 387
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
388
{
389
	return soft_limit_tree.rb_tree_per_node[nid];
390 391
}

392
static struct mem_cgroup_tree_per_node *
393 394 395 396
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

397
	return soft_limit_tree.rb_tree_per_node[nid];
398 399
}

400 401
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
402
					 unsigned long new_usage_in_excess)
403 404 405
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
406
	struct mem_cgroup_per_node *mz_node;
407 408 409 410 411 412 413 414 415

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
416
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

432 433
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
434 435 436 437 438 439 440
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

441 442
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
443
{
444 445 446
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
447
	__mem_cgroup_remove_exceeded(mz, mctz);
448
	spin_unlock_irqrestore(&mctz->lock, flags);
449 450
}

451 452 453
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
454
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
455 456 457 458 459 460 461
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
462 463 464

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
465
	unsigned long excess;
466 467
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
468

469
	mctz = soft_limit_tree_from_page(page);
470 471
	if (!mctz)
		return;
472 473 474 475 476
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
477
		mz = mem_cgroup_page_nodeinfo(memcg, page);
478
		excess = soft_limit_excess(memcg);
479 480 481 482 483
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
484 485 486
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
487 488
			/* if on-tree, remove it */
			if (mz->on_tree)
489
				__mem_cgroup_remove_exceeded(mz, mctz);
490 491 492 493
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
494
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
495
			spin_unlock_irqrestore(&mctz->lock, flags);
496 497 498 499 500 501
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
502 503 504
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
505

506
	for_each_node(nid) {
507 508
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
509 510
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
511 512 513
	}
}

514 515
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
516 517
{
	struct rb_node *rightmost = NULL;
518
	struct mem_cgroup_per_node *mz;
519 520 521 522 523 524 525

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

526
	mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
527 528 529 530 531
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
532
	__mem_cgroup_remove_exceeded(mz, mctz);
533
	if (!soft_limit_excess(mz->memcg) ||
534
	    !css_tryget_online(&mz->memcg->css))
535 536 537 538 539
		goto retry;
done:
	return mz;
}

540 541
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
542
{
543
	struct mem_cgroup_per_node *mz;
544

545
	spin_lock_irq(&mctz->lock);
546
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
547
	spin_unlock_irq(&mctz->lock);
548 549 550
	return mz;
}

551
/*
552 553
 * Return page count for single (non recursive) @memcg.
 *
554 555 556 557 558
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
559
 * a periodic synchronization of counter in memcg's counter.
560 561 562 563 564 565 566 567 568
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
569
 * common workload, threshold and synchronization as vmstat[] should be
570 571
 * implemented.
 */
572

573
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
574 575 576 577 578
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

579
	for_each_possible_cpu(cpu)
580
		val += per_cpu(memcg->stat->events[idx], cpu);
581 582 583
	return val;
}

584
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
585
					 struct page *page,
586
					 bool compound, int nr_pages)
587
{
588 589 590 591
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
592
	if (PageAnon(page))
593
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
594
				nr_pages);
595
	else {
596
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
597
				nr_pages);
598 599 600 601
		if (PageSwapBacked(page))
			__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SHMEM],
				       nr_pages);
	}
602

603 604
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
605 606
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);
607
	}
608

609 610
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
611
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
612
	else {
613
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
614 615
		nr_pages = -nr_pages; /* for event */
	}
616

617
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
618 619
}

620 621
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
622
{
623
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
624
	unsigned long nr = 0;
625
	enum lru_list lru;
626

627
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
628

629 630 631
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
632
		nr += mem_cgroup_get_lru_size(lruvec, lru);
633 634
	}
	return nr;
635
}
636

637
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
638
			unsigned int lru_mask)
639
{
640
	unsigned long nr = 0;
641
	int nid;
642

643
	for_each_node_state(nid, N_MEMORY)
644 645
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
646 647
}

648 649
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
650 651 652
{
	unsigned long val, next;

653
	val = __this_cpu_read(memcg->stat->nr_page_events);
654
	next = __this_cpu_read(memcg->stat->targets[target]);
655
	/* from time_after() in jiffies.h */
656 657 658 659 660
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
661 662 663
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
664 665 666 667 668 669 670 671
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
672
	}
673
	return false;
674 675 676 677 678 679
}

/*
 * Check events in order.
 *
 */
680
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
681 682
{
	/* threshold event is triggered in finer grain than soft limit */
683 684
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
685
		bool do_softlimit;
686
		bool do_numainfo __maybe_unused;
687

688 689
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
690 691 692 693
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
694
		mem_cgroup_threshold(memcg);
695 696
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
697
#if MAX_NUMNODES > 1
698
		if (unlikely(do_numainfo))
699
			atomic_inc(&memcg->numainfo_events);
700
#endif
701
	}
702 703
}

704
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
705
{
706 707 708 709 710 711 712 713
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

714
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
715
}
M
Michal Hocko 已提交
716
EXPORT_SYMBOL(mem_cgroup_from_task);
717

718
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
719
{
720
	struct mem_cgroup *memcg = NULL;
721

722 723
	rcu_read_lock();
	do {
724 725 726 727 728 729
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
730
			memcg = root_mem_cgroup;
731 732 733 734 735
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
736
	} while (!css_tryget_online(&memcg->css));
737
	rcu_read_unlock();
738
	return memcg;
739 740
}

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
758
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
759
				   struct mem_cgroup *prev,
760
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
761
{
M
Michal Hocko 已提交
762
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
763
	struct cgroup_subsys_state *css = NULL;
764
	struct mem_cgroup *memcg = NULL;
765
	struct mem_cgroup *pos = NULL;
766

767 768
	if (mem_cgroup_disabled())
		return NULL;
769

770 771
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
772

773
	if (prev && !reclaim)
774
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
775

776 777
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
778
			goto out;
779
		return root;
780
	}
K
KAMEZAWA Hiroyuki 已提交
781

782
	rcu_read_lock();
M
Michal Hocko 已提交
783

784
	if (reclaim) {
785
		struct mem_cgroup_per_node *mz;
786

787
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
788 789 790 791 792
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

793
		while (1) {
794
			pos = READ_ONCE(iter->position);
795 796
			if (!pos || css_tryget(&pos->css))
				break;
797
			/*
798 799 800 801 802 803
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
804
			 */
805 806
			(void)cmpxchg(&iter->position, pos, NULL);
		}
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
824
		}
K
KAMEZAWA Hiroyuki 已提交
825

826 827 828 829 830 831
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
832

833 834
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
835

836 837
		if (css_tryget(css))
			break;
838

839
		memcg = NULL;
840
	}
841 842 843

	if (reclaim) {
		/*
844 845 846
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
847
		 */
848 849
		(void)cmpxchg(&iter->position, pos, memcg);

850 851 852 853 854 855 856
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
857
	}
858

859 860
out_unlock:
	rcu_read_unlock();
861
out:
862 863 864
	if (prev && prev != root)
		css_put(&prev->css);

865
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
866
}
K
KAMEZAWA Hiroyuki 已提交
867

868 869 870 871 872 873 874
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
875 876 877 878 879 880
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
881

882 883 884 885
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
886 887
	struct mem_cgroup_per_node *mz;
	int nid;
888 889 890 891
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
892 893 894 895 896
			mz = mem_cgroup_nodeinfo(memcg, nid);
			for (i = 0; i <= DEF_PRIORITY; i++) {
				iter = &mz->iter[i];
				cmpxchg(&iter->position,
					dead_memcg, NULL);
897 898 899 900 901
			}
		}
	}
}

902 903 904 905 906 907
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
908
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
909
	     iter != NULL;				\
910
	     iter = mem_cgroup_iter(root, iter, NULL))
911

912
#define for_each_mem_cgroup(iter)			\
913
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
914
	     iter != NULL;				\
915
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
916

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

		css_task_iter_start(&iter->css, &it);
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

954
/**
955
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
956
 * @page: the page
957
 * @zone: zone of the page
958 959 960 961
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
962
 */
M
Mel Gorman 已提交
963
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
964
{
965
	struct mem_cgroup_per_node *mz;
966
	struct mem_cgroup *memcg;
967
	struct lruvec *lruvec;
968

969
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
970
		lruvec = &pgdat->lruvec;
971 972
		goto out;
	}
973

974
	memcg = page->mem_cgroup;
975
	/*
976
	 * Swapcache readahead pages are added to the LRU - and
977
	 * possibly migrated - before they are charged.
978
	 */
979 980
	if (!memcg)
		memcg = root_mem_cgroup;
981

982
	mz = mem_cgroup_page_nodeinfo(memcg, page);
983 984 985 986 987 988 989
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
990 991
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
992
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
993
}
994

995
/**
996 997 998
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
999
 * @zid: zone id of the accounted pages
1000
 * @nr_pages: positive when adding or negative when removing
1001
 *
1002 1003 1004
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1005
 */
1006
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1007
				int zid, int nr_pages)
1008
{
1009
	struct mem_cgroup_per_node *mz;
1010
	unsigned long *lru_size;
1011
	long size;
1012 1013 1014 1015

	if (mem_cgroup_disabled())
		return;

1016
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1017
	lru_size = &mz->lru_zone_size[zid][lru];
1018 1019 1020 1021 1022

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1023 1024 1025
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1026 1027 1028 1029 1030 1031
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1032
}
1033

1034
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1035
{
1036
	struct mem_cgroup *task_memcg;
1037
	struct task_struct *p;
1038
	bool ret;
1039

1040
	p = find_lock_task_mm(task);
1041
	if (p) {
1042
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1043 1044 1045 1046 1047 1048 1049
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1050
		rcu_read_lock();
1051 1052
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1053
		rcu_read_unlock();
1054
	}
1055 1056
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1057 1058 1059
	return ret;
}

1060
/**
1061
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1062
 * @memcg: the memory cgroup
1063
 *
1064
 * Returns the maximum amount of memory @mem can be charged with, in
1065
 * pages.
1066
 */
1067
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1068
{
1069 1070 1071
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1072

1073
	count = page_counter_read(&memcg->memory);
1074
	limit = READ_ONCE(memcg->memory.limit);
1075 1076 1077
	if (count < limit)
		margin = limit - count;

1078
	if (do_memsw_account()) {
1079
		count = page_counter_read(&memcg->memsw);
1080
		limit = READ_ONCE(memcg->memsw.limit);
1081 1082
		if (count <= limit)
			margin = min(margin, limit - count);
1083 1084
		else
			margin = 0;
1085 1086 1087
	}

	return margin;
1088 1089
}

1090
/*
Q
Qiang Huang 已提交
1091
 * A routine for checking "mem" is under move_account() or not.
1092
 *
Q
Qiang Huang 已提交
1093 1094 1095
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1096
 */
1097
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1098
{
1099 1100
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1101
	bool ret = false;
1102 1103 1104 1105 1106 1107 1108 1109 1110
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1111

1112 1113
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1114 1115
unlock:
	spin_unlock(&mc.lock);
1116 1117 1118
	return ret;
}

1119
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1120 1121
{
	if (mc.moving_task && current != mc.moving_task) {
1122
		if (mem_cgroup_under_move(memcg)) {
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1135
#define K(x) ((x) << (PAGE_SHIFT-10))
1136
/**
1137
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1138 1139 1140 1141 1142 1143 1144 1145
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1146 1147
	struct mem_cgroup *iter;
	unsigned int i;
1148 1149 1150

	rcu_read_lock();

1151 1152 1153 1154 1155 1156 1157 1158
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1159
	pr_cont_cgroup_path(memcg->css.cgroup);
1160
	pr_cont("\n");
1161 1162 1163

	rcu_read_unlock();

1164 1165 1166 1167 1168 1169 1170 1171 1172
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1173 1174

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1175 1176
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1177 1178 1179
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1180
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1181
				continue;
1182
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1183 1184 1185 1186 1187 1188 1189 1190 1191
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1192 1193
}

1194 1195 1196 1197
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1198
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1199 1200
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1201 1202
	struct mem_cgroup *iter;

1203
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1204
		num++;
1205 1206 1207
	return num;
}

D
David Rientjes 已提交
1208 1209 1210
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1211
unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1212
{
1213
	unsigned long limit;
1214

1215
	limit = memcg->memory.limit;
1216
	if (mem_cgroup_swappiness(memcg)) {
1217
		unsigned long memsw_limit;
1218
		unsigned long swap_limit;
1219

1220
		memsw_limit = memcg->memsw.limit;
1221 1222 1223
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1224 1225
	}
	return limit;
D
David Rientjes 已提交
1226 1227
}

1228
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1229
				     int order)
1230
{
1231 1232 1233
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1234
		.memcg = memcg,
1235 1236 1237
		.gfp_mask = gfp_mask,
		.order = order,
	};
1238
	bool ret;
1239

1240
	mutex_lock(&oom_lock);
1241
	ret = out_of_memory(&oc);
1242
	mutex_unlock(&oom_lock);
1243
	return ret;
1244 1245
}

1246 1247
#if MAX_NUMNODES > 1

1248 1249
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1250
 * @memcg: the target memcg
1251 1252 1253 1254 1255 1256 1257
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1258
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1259 1260
		int nid, bool noswap)
{
1261
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1262 1263 1264
		return true;
	if (noswap || !total_swap_pages)
		return false;
1265
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1266 1267 1268 1269
		return true;
	return false;

}
1270 1271 1272 1273 1274 1275 1276

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1277
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1278 1279
{
	int nid;
1280 1281 1282 1283
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1284
	if (!atomic_read(&memcg->numainfo_events))
1285
		return;
1286
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1287 1288 1289
		return;

	/* make a nodemask where this memcg uses memory from */
1290
	memcg->scan_nodes = node_states[N_MEMORY];
1291

1292
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1293

1294 1295
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1296
	}
1297

1298 1299
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1314
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1315 1316 1317
{
	int node;

1318 1319
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1320

1321
	node = next_node_in(node, memcg->scan_nodes);
1322
	/*
1323 1324 1325
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1326 1327 1328 1329
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1330
	memcg->last_scanned_node = node;
1331 1332 1333
	return node;
}
#else
1334
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1335 1336 1337 1338 1339
{
	return 0;
}
#endif

1340
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1341
				   pg_data_t *pgdat,
1342 1343 1344 1345 1346 1347 1348 1349 1350
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1351
		.pgdat = pgdat,
1352 1353 1354
		.priority = 0,
	};

1355
	excess = soft_limit_excess(root_memcg);
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1381
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1382
					pgdat, &nr_scanned);
1383
		*total_scanned += nr_scanned;
1384
		if (!soft_limit_excess(root_memcg))
1385
			break;
1386
	}
1387 1388
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1389 1390
}

1391 1392 1393 1394 1395 1396
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1397 1398
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1399 1400 1401 1402
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1403
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1404
{
1405
	struct mem_cgroup *iter, *failed = NULL;
1406

1407 1408
	spin_lock(&memcg_oom_lock);

1409
	for_each_mem_cgroup_tree(iter, memcg) {
1410
		if (iter->oom_lock) {
1411 1412 1413 1414 1415
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1416 1417
			mem_cgroup_iter_break(memcg, iter);
			break;
1418 1419
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1420
	}
K
KAMEZAWA Hiroyuki 已提交
1421

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1433
		}
1434 1435
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1436 1437 1438 1439

	spin_unlock(&memcg_oom_lock);

	return !failed;
1440
}
1441

1442
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1443
{
K
KAMEZAWA Hiroyuki 已提交
1444 1445
	struct mem_cgroup *iter;

1446
	spin_lock(&memcg_oom_lock);
1447
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1448
	for_each_mem_cgroup_tree(iter, memcg)
1449
		iter->oom_lock = false;
1450
	spin_unlock(&memcg_oom_lock);
1451 1452
}

1453
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1454 1455 1456
{
	struct mem_cgroup *iter;

1457
	spin_lock(&memcg_oom_lock);
1458
	for_each_mem_cgroup_tree(iter, memcg)
1459 1460
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1461 1462
}

1463
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1464 1465 1466
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1467 1468
	/*
	 * When a new child is created while the hierarchy is under oom,
1469
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1470
	 */
1471
	spin_lock(&memcg_oom_lock);
1472
	for_each_mem_cgroup_tree(iter, memcg)
1473 1474 1475
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1476 1477
}

K
KAMEZAWA Hiroyuki 已提交
1478 1479
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1480
struct oom_wait_info {
1481
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1482 1483 1484 1485 1486 1487
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1488 1489
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1490 1491 1492
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1493
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1494

1495 1496
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1497 1498 1499 1500
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1501
static void memcg_oom_recover(struct mem_cgroup *memcg)
1502
{
1503 1504 1505 1506 1507 1508 1509 1510 1511
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1512
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1513 1514
}

1515
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1516
{
1517
	if (!current->memcg_may_oom)
1518
		return;
K
KAMEZAWA Hiroyuki 已提交
1519
	/*
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1532
	 */
1533
	css_get(&memcg->css);
T
Tejun Heo 已提交
1534 1535 1536
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1537 1538 1539 1540
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1541
 * @handle: actually kill/wait or just clean up the OOM state
1542
 *
1543 1544
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1545
 *
1546
 * Memcg supports userspace OOM handling where failed allocations must
1547 1548 1549 1550
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1551
 * the end of the page fault to complete the OOM handling.
1552 1553
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1554
 * completed, %false otherwise.
1555
 */
1556
bool mem_cgroup_oom_synchronize(bool handle)
1557
{
T
Tejun Heo 已提交
1558
	struct mem_cgroup *memcg = current->memcg_in_oom;
1559
	struct oom_wait_info owait;
1560
	bool locked;
1561 1562 1563

	/* OOM is global, do not handle */
	if (!memcg)
1564
		return false;
1565

1566
	if (!handle)
1567
		goto cleanup;
1568 1569 1570 1571 1572 1573

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1574

1575
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1586 1587
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1588
	} else {
1589
		schedule();
1590 1591 1592 1593 1594
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1595 1596 1597 1598 1599 1600 1601 1602
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1603
cleanup:
T
Tejun Heo 已提交
1604
	current->memcg_in_oom = NULL;
1605
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1606
	return true;
1607 1608
}

1609
/**
1610 1611
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1612
 *
1613 1614
 * This function protects unlocked LRU pages from being moved to
 * another cgroup and stabilizes their page->mem_cgroup binding.
1615
 */
J
Johannes Weiner 已提交
1616
void lock_page_memcg(struct page *page)
1617 1618
{
	struct mem_cgroup *memcg;
1619
	unsigned long flags;
1620

1621 1622 1623 1624 1625
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 */
1626 1627 1628
	rcu_read_lock();

	if (mem_cgroup_disabled())
J
Johannes Weiner 已提交
1629
		return;
1630
again:
1631
	memcg = page->mem_cgroup;
1632
	if (unlikely(!memcg))
J
Johannes Weiner 已提交
1633
		return;
1634

Q
Qiang Huang 已提交
1635
	if (atomic_read(&memcg->moving_account) <= 0)
J
Johannes Weiner 已提交
1636
		return;
1637

1638
	spin_lock_irqsave(&memcg->move_lock, flags);
1639
	if (memcg != page->mem_cgroup) {
1640
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1641 1642
		goto again;
	}
1643 1644 1645 1646

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1647
	 * the task who has the lock for unlock_page_memcg().
1648 1649 1650
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1651

J
Johannes Weiner 已提交
1652
	return;
1653
}
1654
EXPORT_SYMBOL(lock_page_memcg);
1655

1656
/**
1657
 * unlock_page_memcg - unlock a page->mem_cgroup binding
J
Johannes Weiner 已提交
1658
 * @page: the page
1659
 */
J
Johannes Weiner 已提交
1660
void unlock_page_memcg(struct page *page)
1661
{
J
Johannes Weiner 已提交
1662 1663
	struct mem_cgroup *memcg = page->mem_cgroup;

1664 1665 1666 1667 1668 1669 1670 1671
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1672

1673
	rcu_read_unlock();
1674
}
1675
EXPORT_SYMBOL(unlock_page_memcg);
1676

1677 1678 1679 1680
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1681
#define CHARGE_BATCH	32U
1682 1683
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1684
	unsigned int nr_pages;
1685
	struct work_struct work;
1686
	unsigned long flags;
1687
#define FLUSHING_CACHED_CHARGE	0
1688 1689
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1690
static DEFINE_MUTEX(percpu_charge_mutex);
1691

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1702
 */
1703
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1704 1705
{
	struct memcg_stock_pcp *stock;
1706
	unsigned long flags;
1707
	bool ret = false;
1708

1709
	if (nr_pages > CHARGE_BATCH)
1710
		return ret;
1711

1712 1713 1714
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1715
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1716
		stock->nr_pages -= nr_pages;
1717 1718
		ret = true;
	}
1719 1720 1721

	local_irq_restore(flags);

1722 1723 1724 1725
	return ret;
}

/*
1726
 * Returns stocks cached in percpu and reset cached information.
1727 1728 1729 1730 1731
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1732
	if (stock->nr_pages) {
1733
		page_counter_uncharge(&old->memory, stock->nr_pages);
1734
		if (do_memsw_account())
1735
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1736
		css_put_many(&old->css, stock->nr_pages);
1737
		stock->nr_pages = 0;
1738 1739 1740 1741 1742 1743
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
1744 1745 1746 1747 1748 1749
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1750
	drain_stock(stock);
1751
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1752 1753

	local_irq_restore(flags);
1754 1755 1756
}

/*
1757
 * Cache charges(val) to local per_cpu area.
1758
 * This will be consumed by consume_stock() function, later.
1759
 */
1760
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1761
{
1762 1763 1764 1765
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
1766

1767
	stock = this_cpu_ptr(&memcg_stock);
1768
	if (stock->cached != memcg) { /* reset if necessary */
1769
		drain_stock(stock);
1770
		stock->cached = memcg;
1771
	}
1772
	stock->nr_pages += nr_pages;
1773 1774

	local_irq_restore(flags);
1775 1776 1777
}

/*
1778
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1779
 * of the hierarchy under it.
1780
 */
1781
static void drain_all_stock(struct mem_cgroup *root_memcg)
1782
{
1783
	int cpu, curcpu;
1784

1785 1786 1787
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1788 1789
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1790
	curcpu = get_cpu();
1791 1792
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1793
		struct mem_cgroup *memcg;
1794

1795 1796
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1797
			continue;
1798
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1799
			continue;
1800 1801 1802 1803 1804 1805
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1806
	}
1807
	put_cpu();
A
Andrew Morton 已提交
1808
	put_online_cpus();
1809
	mutex_unlock(&percpu_charge_mutex);
1810 1811
}

1812
static int memcg_hotplug_cpu_dead(unsigned int cpu)
1813 1814 1815 1816 1817
{
	struct memcg_stock_pcp *stock;

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
1818
	return 0;
1819 1820
}

1821 1822 1823 1824 1825 1826 1827
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
1828
		mem_cgroup_event(memcg, MEMCG_HIGH);
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1841 1842 1843 1844 1845 1846 1847
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1848
	struct mem_cgroup *memcg;
1849 1850 1851 1852

	if (likely(!nr_pages))
		return;

1853 1854
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1855 1856 1857 1858
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1859 1860
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1861
{
1862
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1863
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1864
	struct mem_cgroup *mem_over_limit;
1865
	struct page_counter *counter;
1866
	unsigned long nr_reclaimed;
1867 1868
	bool may_swap = true;
	bool drained = false;
1869

1870
	if (mem_cgroup_is_root(memcg))
1871
		return 0;
1872
retry:
1873
	if (consume_stock(memcg, nr_pages))
1874
		return 0;
1875

1876
	if (!do_memsw_account() ||
1877 1878
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1879
			goto done_restock;
1880
		if (do_memsw_account())
1881 1882
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1883
	} else {
1884
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1885
		may_swap = false;
1886
	}
1887

1888 1889 1890 1891
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1892

1893 1894 1895 1896 1897 1898 1899 1900 1901
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1902
		goto force;
1903

1904 1905 1906 1907 1908 1909 1910 1911 1912
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

1913 1914 1915
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1916
	if (!gfpflags_allow_blocking(gfp_mask))
1917
		goto nomem;
1918

1919
	mem_cgroup_event(mem_over_limit, MEMCG_MAX);
1920

1921 1922
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
1923

1924
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1925
		goto retry;
1926

1927
	if (!drained) {
1928
		drain_all_stock(mem_over_limit);
1929 1930 1931 1932
		drained = true;
		goto retry;
	}

1933 1934
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
1935 1936 1937 1938 1939 1940 1941 1942 1943
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
1944
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1945 1946 1947 1948 1949 1950 1951 1952
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

1953 1954 1955
	if (nr_retries--)
		goto retry;

1956
	if (gfp_mask & __GFP_NOFAIL)
1957
		goto force;
1958

1959
	if (fatal_signal_pending(current))
1960
		goto force;
1961

1962
	mem_cgroup_event(mem_over_limit, MEMCG_OOM);
1963

1964 1965
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
1966
nomem:
1967
	if (!(gfp_mask & __GFP_NOFAIL))
1968
		return -ENOMEM;
1969 1970 1971 1972 1973 1974 1975
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
1976
	if (do_memsw_account())
1977 1978 1979 1980
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
1981 1982

done_restock:
1983
	css_get_many(&memcg->css, batch);
1984 1985
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
1986

1987
	/*
1988 1989
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
1990
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
1991 1992 1993 1994
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
1995 1996
	 */
	do {
1997
		if (page_counter_read(&memcg->memory) > memcg->high) {
1998 1999 2000 2001 2002
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2003
			current->memcg_nr_pages_over_high += batch;
2004 2005 2006
			set_notify_resume(current);
			break;
		}
2007
	} while ((memcg = parent_mem_cgroup(memcg)));
2008 2009

	return 0;
2010
}
2011

2012
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2013
{
2014 2015 2016
	if (mem_cgroup_is_root(memcg))
		return;

2017
	page_counter_uncharge(&memcg->memory, nr_pages);
2018
	if (do_memsw_account())
2019
		page_counter_uncharge(&memcg->memsw, nr_pages);
2020

2021
	css_put_many(&memcg->css, nr_pages);
2022 2023
}

2024 2025 2026 2027
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

2028
	spin_lock_irq(zone_lru_lock(zone));
2029 2030 2031
	if (PageLRU(page)) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2032
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2047
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2048 2049 2050 2051
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2052
	spin_unlock_irq(zone_lru_lock(zone));
2053 2054
}

2055
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2056
			  bool lrucare)
2057
{
2058
	int isolated;
2059

2060
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2061 2062 2063 2064 2065

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2066 2067
	if (lrucare)
		lock_page_lru(page, &isolated);
2068

2069 2070
	/*
	 * Nobody should be changing or seriously looking at
2071
	 * page->mem_cgroup at this point:
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2083
	page->mem_cgroup = memcg;
2084

2085 2086
	if (lrucare)
		unlock_page_lru(page, isolated);
2087
}
2088

2089
#ifndef CONFIG_SLOB
2090
static int memcg_alloc_cache_id(void)
2091
{
2092 2093 2094
	int id, size;
	int err;

2095
	id = ida_simple_get(&memcg_cache_ida,
2096 2097 2098
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2099

2100
	if (id < memcg_nr_cache_ids)
2101 2102 2103 2104 2105 2106
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2107
	down_write(&memcg_cache_ids_sem);
2108 2109

	size = 2 * (id + 1);
2110 2111 2112 2113 2114
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2115
	err = memcg_update_all_caches(size);
2116 2117
	if (!err)
		err = memcg_update_all_list_lrus(size);
2118 2119 2120 2121 2122
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2123
	if (err) {
2124
		ida_simple_remove(&memcg_cache_ida, id);
2125 2126 2127 2128 2129 2130 2131
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2132
	ida_simple_remove(&memcg_cache_ida, id);
2133 2134
}

2135
struct memcg_kmem_cache_create_work {
2136 2137 2138 2139 2140
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2141
static void memcg_kmem_cache_create_func(struct work_struct *w)
2142
{
2143 2144
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2145 2146
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2147

2148
	memcg_create_kmem_cache(memcg, cachep);
2149

2150
	css_put(&memcg->css);
2151 2152 2153 2154 2155 2156
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2157 2158
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2159
{
2160
	struct memcg_kmem_cache_create_work *cw;
2161

2162
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2163
	if (!cw)
2164
		return;
2165 2166

	css_get(&memcg->css);
2167 2168 2169

	cw->memcg = memcg;
	cw->cachep = cachep;
2170
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2171

2172
	queue_work(memcg_kmem_cache_wq, &cw->work);
2173 2174
}

2175 2176
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2177 2178 2179 2180
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2181
	 * in __memcg_schedule_kmem_cache_create will recurse.
2182 2183 2184 2185 2186 2187 2188
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2189
	current->memcg_kmem_skip_account = 1;
2190
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2191
	current->memcg_kmem_skip_account = 0;
2192
}
2193

2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2205 2206 2207
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2208 2209 2210
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2211
 *
2212 2213 2214 2215
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2216
 */
2217
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2218 2219
{
	struct mem_cgroup *memcg;
2220
	struct kmem_cache *memcg_cachep;
2221
	int kmemcg_id;
2222

2223
	VM_BUG_ON(!is_root_cache(cachep));
2224

2225
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2226 2227
		return cachep;

2228
	if (current->memcg_kmem_skip_account)
2229 2230
		return cachep;

2231
	memcg = get_mem_cgroup_from_mm(current->mm);
2232
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2233
	if (kmemcg_id < 0)
2234
		goto out;
2235

2236
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2237 2238
	if (likely(memcg_cachep))
		return memcg_cachep;
2239 2240 2241 2242 2243 2244 2245 2246 2247

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2248 2249 2250
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2251
	 */
2252
	memcg_schedule_kmem_cache_create(memcg, cachep);
2253
out:
2254
	css_put(&memcg->css);
2255
	return cachep;
2256 2257
}

2258 2259 2260 2261 2262
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2263 2264
{
	if (!is_root_cache(cachep))
2265
		css_put(&cachep->memcg_params.memcg->css);
2266 2267
}

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
/**
 * memcg_kmem_charge: charge a kmem page
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			    struct mem_cgroup *memcg)
2279
{
2280 2281
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2282 2283
	int ret;

2284
	ret = try_charge(memcg, gfp, nr_pages);
2285
	if (ret)
2286
		return ret;
2287 2288 2289 2290 2291

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2292 2293
	}

2294
	page->mem_cgroup = memcg;
2295

2296
	return 0;
2297 2298
}

2299 2300 2301 2302 2303 2304 2305 2306 2307
/**
 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2308
{
2309
	struct mem_cgroup *memcg;
2310
	int ret = 0;
2311

2312 2313 2314
	if (memcg_kmem_bypass())
		return 0;

2315
	memcg = get_mem_cgroup_from_mm(current->mm);
2316
	if (!mem_cgroup_is_root(memcg)) {
2317
		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2318 2319 2320
		if (!ret)
			__SetPageKmemcg(page);
	}
2321
	css_put(&memcg->css);
2322
	return ret;
2323
}
2324 2325 2326 2327 2328 2329
/**
 * memcg_kmem_uncharge: uncharge a kmem page
 * @page: page to uncharge
 * @order: allocation order
 */
void memcg_kmem_uncharge(struct page *page, int order)
2330
{
2331
	struct mem_cgroup *memcg = page->mem_cgroup;
2332
	unsigned int nr_pages = 1 << order;
2333 2334 2335 2336

	if (!memcg)
		return;

2337
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2338

2339 2340 2341
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2342
	page_counter_uncharge(&memcg->memory, nr_pages);
2343
	if (do_memsw_account())
2344
		page_counter_uncharge(&memcg->memsw, nr_pages);
2345

2346
	page->mem_cgroup = NULL;
2347 2348 2349 2350 2351

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2352
	css_put_many(&memcg->css, nr_pages);
2353
}
2354
#endif /* !CONFIG_SLOB */
2355

2356 2357 2358 2359
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2360
 * zone_lru_lock and migration entries setup in all page mappings.
2361
 */
2362
void mem_cgroup_split_huge_fixup(struct page *head)
2363
{
2364
	int i;
2365

2366 2367
	if (mem_cgroup_disabled())
		return;
2368

2369
	for (i = 1; i < HPAGE_PMD_NR; i++)
2370
		head[i].mem_cgroup = head->mem_cgroup;
2371

2372
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2373
		       HPAGE_PMD_NR);
2374
}
2375
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2376

A
Andrew Morton 已提交
2377
#ifdef CONFIG_MEMCG_SWAP
2378 2379
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2380
{
2381 2382
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2383
}
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2396
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2397 2398 2399
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2400
				struct mem_cgroup *from, struct mem_cgroup *to)
2401 2402 2403
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2404 2405
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2406 2407 2408

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2409
		mem_cgroup_swap_statistics(to, true);
2410 2411 2412 2413 2414 2415
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2416
				struct mem_cgroup *from, struct mem_cgroup *to)
2417 2418 2419
{
	return -EINVAL;
}
2420
#endif
K
KAMEZAWA Hiroyuki 已提交
2421

2422
static DEFINE_MUTEX(memcg_limit_mutex);
2423

2424
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2425
				   unsigned long limit)
2426
{
2427 2428 2429
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2430
	int retry_count;
2431
	int ret;
2432 2433 2434 2435 2436 2437

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2438 2439
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2440

2441
	oldusage = page_counter_read(&memcg->memory);
2442

2443
	do {
2444 2445 2446 2447
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2448 2449 2450 2451

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2452
			ret = -EINVAL;
2453 2454
			break;
		}
2455 2456 2457 2458
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2459 2460 2461 2462

		if (!ret)
			break;

2463 2464
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2465
		curusage = page_counter_read(&memcg->memory);
2466
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2467
		if (curusage >= oldusage)
2468 2469 2470
			retry_count--;
		else
			oldusage = curusage;
2471 2472
	} while (retry_count);

2473 2474
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2475

2476 2477 2478
	return ret;
}

L
Li Zefan 已提交
2479
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2480
					 unsigned long limit)
2481
{
2482 2483 2484
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2485
	int retry_count;
2486
	int ret;
2487

2488
	/* see mem_cgroup_resize_res_limit */
2489 2490 2491 2492 2493 2494
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2495 2496 2497 2498
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2499 2500 2501 2502

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2503 2504 2505
			ret = -EINVAL;
			break;
		}
2506 2507 2508 2509
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2510 2511 2512 2513

		if (!ret)
			break;

2514 2515
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2516
		curusage = page_counter_read(&memcg->memsw);
2517
		/* Usage is reduced ? */
2518
		if (curusage >= oldusage)
2519
			retry_count--;
2520 2521
		else
			oldusage = curusage;
2522 2523
	} while (retry_count);

2524 2525
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2526

2527 2528 2529
	return ret;
}

2530
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2531 2532 2533 2534
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
2535
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2536 2537
	unsigned long reclaimed;
	int loop = 0;
2538
	struct mem_cgroup_tree_per_node *mctz;
2539
	unsigned long excess;
2540 2541 2542 2543 2544
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

2545
	mctz = soft_limit_tree_node(pgdat->node_id);
2546 2547 2548 2549 2550 2551

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
2552
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2553 2554
		return 0;

2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
2569
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2570 2571 2572
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2573
		spin_lock_irq(&mctz->lock);
2574
		__mem_cgroup_remove_exceeded(mz, mctz);
2575 2576 2577 2578 2579 2580

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2581 2582 2583
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2584
		excess = soft_limit_excess(mz->memcg);
2585 2586 2587 2588 2589 2590 2591 2592 2593
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2594
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2595
		spin_unlock_irq(&mctz->lock);
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2613 2614 2615 2616 2617 2618
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2619 2620
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2621 2622 2623 2624 2625 2626
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2627 2628
}

2629
/*
2630
 * Reclaims as many pages from the given memcg as possible.
2631 2632 2633 2634 2635 2636 2637
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2638 2639
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2640
	/* try to free all pages in this cgroup */
2641
	while (nr_retries && page_counter_read(&memcg->memory)) {
2642
		int progress;
2643

2644 2645 2646
		if (signal_pending(current))
			return -EINTR;

2647 2648
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2649
		if (!progress) {
2650
			nr_retries--;
2651
			/* maybe some writeback is necessary */
2652
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2653
		}
2654 2655

	}
2656 2657

	return 0;
2658 2659
}

2660 2661 2662
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2663
{
2664
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2665

2666 2667
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2668
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2669 2670
}

2671 2672
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2673
{
2674
	return mem_cgroup_from_css(css)->use_hierarchy;
2675 2676
}

2677 2678
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2679 2680
{
	int retval = 0;
2681
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2682
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2683

2684
	if (memcg->use_hierarchy == val)
2685
		return 0;
2686

2687
	/*
2688
	 * If parent's use_hierarchy is set, we can't make any modifications
2689 2690 2691 2692 2693 2694
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2695
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2696
				(val == 1 || val == 0)) {
2697
		if (!memcg_has_children(memcg))
2698
			memcg->use_hierarchy = val;
2699 2700 2701 2702
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2703

2704 2705 2706
	return retval;
}

2707
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2708 2709
{
	struct mem_cgroup *iter;
2710
	int i;
2711

2712
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2713

2714 2715 2716 2717
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
			stat[i] += mem_cgroup_read_stat(iter, i);
	}
2718 2719
}

2720
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2721 2722
{
	struct mem_cgroup *iter;
2723
	int i;
2724

2725
	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2726

2727 2728 2729 2730
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_EVENTS; i++)
			events[i] += mem_cgroup_read_events(iter, i);
	}
2731 2732
}

2733
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2734
{
2735
	unsigned long val = 0;
2736

2737
	if (mem_cgroup_is_root(memcg)) {
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_CACHE);
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_RSS);
			if (swap)
				val += mem_cgroup_read_stat(iter,
						MEM_CGROUP_STAT_SWAP);
		}
2749
	} else {
2750
		if (!swap)
2751
			val = page_counter_read(&memcg->memory);
2752
		else
2753
			val = page_counter_read(&memcg->memsw);
2754
	}
2755
	return val;
2756 2757
}

2758 2759 2760 2761 2762 2763 2764
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2765

2766
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2767
			       struct cftype *cft)
B
Balbir Singh 已提交
2768
{
2769
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2770
	struct page_counter *counter;
2771

2772
	switch (MEMFILE_TYPE(cft->private)) {
2773
	case _MEM:
2774 2775
		counter = &memcg->memory;
		break;
2776
	case _MEMSWAP:
2777 2778
		counter = &memcg->memsw;
		break;
2779
	case _KMEM:
2780
		counter = &memcg->kmem;
2781
		break;
V
Vladimir Davydov 已提交
2782
	case _TCP:
2783
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2784
		break;
2785 2786 2787
	default:
		BUG();
	}
2788 2789 2790 2791

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2792
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2793
		if (counter == &memcg->memsw)
2794
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2807
}
2808

2809
#ifndef CONFIG_SLOB
2810
static int memcg_online_kmem(struct mem_cgroup *memcg)
2811 2812 2813
{
	int memcg_id;

2814 2815 2816
	if (cgroup_memory_nokmem)
		return 0;

2817
	BUG_ON(memcg->kmemcg_id >= 0);
2818
	BUG_ON(memcg->kmem_state);
2819

2820
	memcg_id = memcg_alloc_cache_id();
2821 2822
	if (memcg_id < 0)
		return memcg_id;
2823

2824
	static_branch_inc(&memcg_kmem_enabled_key);
2825
	/*
2826
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2827
	 * kmemcg_id. Setting the id after enabling static branching will
2828 2829 2830
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2831
	memcg->kmemcg_id = memcg_id;
2832
	memcg->kmem_state = KMEM_ONLINE;
2833
	INIT_LIST_HEAD(&memcg->kmem_caches);
2834 2835

	return 0;
2836 2837
}

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
2871
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2872 2873 2874 2875 2876 2877 2878
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
2879 2880
	rcu_read_unlock();

2881 2882 2883 2884 2885 2886 2887
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2888 2889 2890 2891
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2892 2893 2894 2895 2896 2897
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2898
#else
2899
static int memcg_online_kmem(struct mem_cgroup *memcg)
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2911
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2912
				   unsigned long limit)
2913
{
2914
	int ret;
2915 2916 2917 2918 2919

	mutex_lock(&memcg_limit_mutex);
	ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2920
}
2921

V
Vladimir Davydov 已提交
2922 2923 2924 2925 2926 2927
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2928
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2929 2930 2931
	if (ret)
		goto out;

2932
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2933 2934 2935
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
2936 2937 2938
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
2939 2940 2941 2942 2943 2944
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
2945
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
2946 2947 2948 2949
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
2950
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
2951 2952 2953 2954 2955 2956
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

2957 2958 2959 2960
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2961 2962
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
2963
{
2964
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2965
	unsigned long nr_pages;
2966 2967
	int ret;

2968
	buf = strstrip(buf);
2969
	ret = page_counter_memparse(buf, "-1", &nr_pages);
2970 2971
	if (ret)
		return ret;
2972

2973
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2974
	case RES_LIMIT:
2975 2976 2977 2978
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2979 2980 2981
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2982
			break;
2983 2984
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2985
			break;
2986 2987 2988
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
2989 2990 2991
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
2992
		}
2993
		break;
2994 2995 2996
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
2997 2998
		break;
	}
2999
	return ret ?: nbytes;
B
Balbir Singh 已提交
3000 3001
}

3002 3003
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3004
{
3005
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3006
	struct page_counter *counter;
3007

3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3018
	case _TCP:
3019
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3020
		break;
3021 3022 3023
	default:
		BUG();
	}
3024

3025
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3026
	case RES_MAX_USAGE:
3027
		page_counter_reset_watermark(counter);
3028 3029
		break;
	case RES_FAILCNT:
3030
		counter->failcnt = 0;
3031
		break;
3032 3033
	default:
		BUG();
3034
	}
3035

3036
	return nbytes;
3037 3038
}

3039
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3040 3041
					struct cftype *cft)
{
3042
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3043 3044
}

3045
#ifdef CONFIG_MMU
3046
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3047 3048
					struct cftype *cft, u64 val)
{
3049
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3050

3051
	if (val & ~MOVE_MASK)
3052
		return -EINVAL;
3053

3054
	/*
3055 3056 3057 3058
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3059
	 */
3060
	memcg->move_charge_at_immigrate = val;
3061 3062
	return 0;
}
3063
#else
3064
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3065 3066 3067 3068 3069
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3070

3071
#ifdef CONFIG_NUMA
3072
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3073
{
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3086
	int nid;
3087
	unsigned long nr;
3088
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3089

3090 3091 3092 3093 3094 3095 3096 3097 3098
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3099 3100
	}

3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3116 3117 3118 3119 3120 3121
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3122
static int memcg_stat_show(struct seq_file *m, void *v)
3123
{
3124
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3125
	unsigned long memory, memsw;
3126 3127
	struct mem_cgroup *mi;
	unsigned int i;
3128

3129 3130 3131 3132
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3133 3134
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3135
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3136
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3137
			continue;
3138
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3139
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3140
	}
L
Lee Schermerhorn 已提交
3141

3142 3143 3144 3145 3146 3147 3148 3149
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3150
	/* Hierarchical information */
3151 3152 3153 3154
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3155
	}
3156 3157
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3158
	if (do_memsw_account())
3159 3160
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3161

3162
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3163
		unsigned long long val = 0;
3164

3165
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3166
			continue;
3167 3168
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3169
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3187
	}
K
KAMEZAWA Hiroyuki 已提交
3188

K
KOSAKI Motohiro 已提交
3189 3190
#ifdef CONFIG_DEBUG_VM
	{
3191 3192
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3193
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3194 3195 3196
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3197 3198 3199
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3200

3201 3202 3203 3204 3205
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3206 3207 3208 3209
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3210 3211 3212
	}
#endif

3213 3214 3215
	return 0;
}

3216 3217
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3218
{
3219
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3220

3221
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3222 3223
}

3224 3225
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3226
{
3227
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3228

3229
	if (val > 100)
K
KOSAKI Motohiro 已提交
3230 3231
		return -EINVAL;

3232
	if (css->parent)
3233 3234 3235
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3236

K
KOSAKI Motohiro 已提交
3237 3238 3239
	return 0;
}

3240 3241 3242
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3243
	unsigned long usage;
3244 3245 3246 3247
	int i;

	rcu_read_lock();
	if (!swap)
3248
		t = rcu_dereference(memcg->thresholds.primary);
3249
	else
3250
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3251 3252 3253 3254

	if (!t)
		goto unlock;

3255
	usage = mem_cgroup_usage(memcg, swap);
3256 3257

	/*
3258
	 * current_threshold points to threshold just below or equal to usage.
3259 3260 3261
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3262
	i = t->current_threshold;
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3286
	t->current_threshold = i - 1;
3287 3288 3289 3290 3291 3292
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3293 3294
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3295
		if (do_memsw_account())
3296 3297 3298 3299
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3300 3301 3302 3303 3304 3305 3306
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3307 3308 3309 3310 3311 3312 3313
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3314 3315
}

3316
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3317 3318 3319
{
	struct mem_cgroup_eventfd_list *ev;

3320 3321
	spin_lock(&memcg_oom_lock);

3322
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3323
		eventfd_signal(ev->eventfd, 1);
3324 3325

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3326 3327 3328
	return 0;
}

3329
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3330
{
K
KAMEZAWA Hiroyuki 已提交
3331 3332
	struct mem_cgroup *iter;

3333
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3334
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3335 3336
}

3337
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3338
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3339
{
3340 3341
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3342 3343
	unsigned long threshold;
	unsigned long usage;
3344
	int i, size, ret;
3345

3346
	ret = page_counter_memparse(args, "-1", &threshold);
3347 3348 3349 3350
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3351

3352
	if (type == _MEM) {
3353
		thresholds = &memcg->thresholds;
3354
		usage = mem_cgroup_usage(memcg, false);
3355
	} else if (type == _MEMSWAP) {
3356
		thresholds = &memcg->memsw_thresholds;
3357
		usage = mem_cgroup_usage(memcg, true);
3358
	} else
3359 3360 3361
		BUG();

	/* Check if a threshold crossed before adding a new one */
3362
	if (thresholds->primary)
3363 3364
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3365
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3366 3367

	/* Allocate memory for new array of thresholds */
3368
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3369
			GFP_KERNEL);
3370
	if (!new) {
3371 3372 3373
		ret = -ENOMEM;
		goto unlock;
	}
3374
	new->size = size;
3375 3376

	/* Copy thresholds (if any) to new array */
3377 3378
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3379
				sizeof(struct mem_cgroup_threshold));
3380 3381
	}

3382
	/* Add new threshold */
3383 3384
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3385 3386

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3387
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3388 3389 3390
			compare_thresholds, NULL);

	/* Find current threshold */
3391
	new->current_threshold = -1;
3392
	for (i = 0; i < size; i++) {
3393
		if (new->entries[i].threshold <= usage) {
3394
			/*
3395 3396
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3397 3398
			 * it here.
			 */
3399
			++new->current_threshold;
3400 3401
		} else
			break;
3402 3403
	}

3404 3405 3406 3407 3408
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3409

3410
	/* To be sure that nobody uses thresholds */
3411 3412 3413 3414 3415 3416 3417 3418
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3419
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3420 3421
	struct eventfd_ctx *eventfd, const char *args)
{
3422
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3423 3424
}

3425
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3426 3427
	struct eventfd_ctx *eventfd, const char *args)
{
3428
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3429 3430
}

3431
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3432
	struct eventfd_ctx *eventfd, enum res_type type)
3433
{
3434 3435
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3436
	unsigned long usage;
3437
	int i, j, size;
3438 3439

	mutex_lock(&memcg->thresholds_lock);
3440 3441

	if (type == _MEM) {
3442
		thresholds = &memcg->thresholds;
3443
		usage = mem_cgroup_usage(memcg, false);
3444
	} else if (type == _MEMSWAP) {
3445
		thresholds = &memcg->memsw_thresholds;
3446
		usage = mem_cgroup_usage(memcg, true);
3447
	} else
3448 3449
		BUG();

3450 3451 3452
	if (!thresholds->primary)
		goto unlock;

3453 3454 3455 3456
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3457 3458 3459
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3460 3461 3462
			size++;
	}

3463
	new = thresholds->spare;
3464

3465 3466
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3467 3468
		kfree(new);
		new = NULL;
3469
		goto swap_buffers;
3470 3471
	}

3472
	new->size = size;
3473 3474

	/* Copy thresholds and find current threshold */
3475 3476 3477
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3478 3479
			continue;

3480
		new->entries[j] = thresholds->primary->entries[i];
3481
		if (new->entries[j].threshold <= usage) {
3482
			/*
3483
			 * new->current_threshold will not be used
3484 3485 3486
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3487
			++new->current_threshold;
3488 3489 3490 3491
		}
		j++;
	}

3492
swap_buffers:
3493 3494
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3495

3496
	rcu_assign_pointer(thresholds->primary, new);
3497

3498
	/* To be sure that nobody uses thresholds */
3499
	synchronize_rcu();
3500 3501 3502 3503 3504 3505

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3506
unlock:
3507 3508
	mutex_unlock(&memcg->thresholds_lock);
}
3509

3510
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3511 3512
	struct eventfd_ctx *eventfd)
{
3513
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3514 3515
}

3516
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3517 3518
	struct eventfd_ctx *eventfd)
{
3519
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3520 3521
}

3522
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3523
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3524 3525 3526 3527 3528 3529 3530
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3531
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3532 3533 3534 3535 3536

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3537
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3538
		eventfd_signal(eventfd, 1);
3539
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3540 3541 3542 3543

	return 0;
}

3544
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3545
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3546 3547 3548
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3549
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3550

3551
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3552 3553 3554 3555 3556 3557
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3558
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3559 3560
}

3561
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3562
{
3563
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3564

3565
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3566
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3567 3568 3569
	return 0;
}

3570
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3571 3572
	struct cftype *cft, u64 val)
{
3573
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3574 3575

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3576
	if (!css->parent || !((val == 0) || (val == 1)))
3577 3578
		return -EINVAL;

3579
	memcg->oom_kill_disable = val;
3580
	if (!val)
3581
		memcg_oom_recover(memcg);
3582

3583 3584 3585
	return 0;
}

3586 3587 3588 3589 3590 3591 3592
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3603 3604 3605 3606 3607
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3618 3619 3620
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3621 3622
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3623 3624 3625
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3626 3627 3628
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3629
 *
3630 3631 3632 3633 3634
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3635
 */
3636 3637 3638
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3639 3640 3641 3642 3643 3644 3645 3646
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3647 3648 3649
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3650 3651 3652 3653 3654

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3655
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3656 3657 3658 3659
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3671 3672 3673 3674
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3675 3676
#endif	/* CONFIG_CGROUP_WRITEBACK */

3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3690 3691 3692 3693 3694
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3695
static void memcg_event_remove(struct work_struct *work)
3696
{
3697 3698
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3699
	struct mem_cgroup *memcg = event->memcg;
3700 3701 3702

	remove_wait_queue(event->wqh, &event->wait);

3703
	event->unregister_event(memcg, event->eventfd);
3704 3705 3706 3707 3708 3709

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3710
	css_put(&memcg->css);
3711 3712 3713 3714 3715 3716 3717
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3718 3719
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3720
{
3721 3722
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3723
	struct mem_cgroup *memcg = event->memcg;
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3736
		spin_lock(&memcg->event_list_lock);
3737 3738 3739 3740 3741 3742 3743 3744
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3745
		spin_unlock(&memcg->event_list_lock);
3746 3747 3748 3749 3750
	}

	return 0;
}

3751
static void memcg_event_ptable_queue_proc(struct file *file,
3752 3753
		wait_queue_head_t *wqh, poll_table *pt)
{
3754 3755
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3756 3757 3758 3759 3760 3761

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3762 3763
 * DO NOT USE IN NEW FILES.
 *
3764 3765 3766 3767 3768
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3769 3770
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3771
{
3772
	struct cgroup_subsys_state *css = of_css(of);
3773
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3774
	struct mem_cgroup_event *event;
3775 3776 3777 3778
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3779
	const char *name;
3780 3781 3782
	char *endp;
	int ret;

3783 3784 3785
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3786 3787
	if (*endp != ' ')
		return -EINVAL;
3788
	buf = endp + 1;
3789

3790
	cfd = simple_strtoul(buf, &endp, 10);
3791 3792
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3793
	buf = endp + 1;
3794 3795 3796 3797 3798

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3799
	event->memcg = memcg;
3800
	INIT_LIST_HEAD(&event->list);
3801 3802 3803
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3829 3830 3831 3832 3833
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3834 3835
	 *
	 * DO NOT ADD NEW FILES.
3836
	 */
A
Al Viro 已提交
3837
	name = cfile.file->f_path.dentry->d_name.name;
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3849 3850
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3851 3852 3853 3854 3855
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3856
	/*
3857 3858 3859
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3860
	 */
A
Al Viro 已提交
3861
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3862
					       &memory_cgrp_subsys);
3863
	ret = -EINVAL;
3864
	if (IS_ERR(cfile_css))
3865
		goto out_put_cfile;
3866 3867
	if (cfile_css != css) {
		css_put(cfile_css);
3868
		goto out_put_cfile;
3869
	}
3870

3871
	ret = event->register_event(memcg, event->eventfd, buf);
3872 3873 3874 3875 3876
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3877 3878 3879
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3880 3881 3882 3883

	fdput(cfile);
	fdput(efile);

3884
	return nbytes;
3885 3886

out_put_css:
3887
	css_put(css);
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3900
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3901
	{
3902
		.name = "usage_in_bytes",
3903
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3904
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3905
	},
3906 3907
	{
		.name = "max_usage_in_bytes",
3908
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3909
		.write = mem_cgroup_reset,
3910
		.read_u64 = mem_cgroup_read_u64,
3911
	},
B
Balbir Singh 已提交
3912
	{
3913
		.name = "limit_in_bytes",
3914
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3915
		.write = mem_cgroup_write,
3916
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3917
	},
3918 3919 3920
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3921
		.write = mem_cgroup_write,
3922
		.read_u64 = mem_cgroup_read_u64,
3923
	},
B
Balbir Singh 已提交
3924 3925
	{
		.name = "failcnt",
3926
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3927
		.write = mem_cgroup_reset,
3928
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3929
	},
3930 3931
	{
		.name = "stat",
3932
		.seq_show = memcg_stat_show,
3933
	},
3934 3935
	{
		.name = "force_empty",
3936
		.write = mem_cgroup_force_empty_write,
3937
	},
3938 3939 3940 3941 3942
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
3943
	{
3944
		.name = "cgroup.event_control",		/* XXX: for compat */
3945
		.write = memcg_write_event_control,
3946
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3947
	},
K
KOSAKI Motohiro 已提交
3948 3949 3950 3951 3952
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3953 3954 3955 3956 3957
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3958 3959
	{
		.name = "oom_control",
3960
		.seq_show = mem_cgroup_oom_control_read,
3961
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3962 3963
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
3964 3965 3966
	{
		.name = "pressure_level",
	},
3967 3968 3969
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
3970
		.seq_show = memcg_numa_stat_show,
3971 3972
	},
#endif
3973 3974 3975
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3976
		.write = mem_cgroup_write,
3977
		.read_u64 = mem_cgroup_read_u64,
3978 3979 3980 3981
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3982
		.read_u64 = mem_cgroup_read_u64,
3983 3984 3985 3986
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3987
		.write = mem_cgroup_reset,
3988
		.read_u64 = mem_cgroup_read_u64,
3989 3990 3991 3992
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3993
		.write = mem_cgroup_reset,
3994
		.read_u64 = mem_cgroup_read_u64,
3995
	},
3996 3997 3998
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
3999 4000 4001
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4002
		.seq_show = memcg_slab_show,
4003 4004
	},
#endif
V
Vladimir Davydov 已提交
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4028
	{ },	/* terminate */
4029
};
4030

4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4057
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4058
{
4059
	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4060
	atomic_add(n, &memcg->id.ref);
4061 4062
}

4063
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4064
{
4065
	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4066
	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4067 4068 4069 4070 4071 4072 4073 4074
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4097
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4098 4099
{
	struct mem_cgroup_per_node *pn;
4100
	int tmp = node;
4101 4102 4103 4104 4105 4106 4107 4108
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4109 4110
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4111
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4112 4113
	if (!pn)
		return 1;
4114

4115 4116 4117 4118 4119
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4120
	memcg->nodeinfo[node] = pn;
4121 4122 4123
	return 0;
}

4124
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4125
{
4126
	kfree(memcg->nodeinfo[node]);
4127 4128
}

4129
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4130
{
4131
	int node;
4132

4133
	for_each_node(node)
4134
		free_mem_cgroup_per_node_info(memcg, node);
4135
	free_percpu(memcg->stat);
4136
	kfree(memcg);
4137
}
4138

4139 4140 4141 4142 4143 4144
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

4145
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4146
{
4147
	struct mem_cgroup *memcg;
4148
	size_t size;
4149
	int node;
B
Balbir Singh 已提交
4150

4151 4152 4153 4154
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4155
	if (!memcg)
4156 4157
		return NULL;

4158 4159 4160 4161 4162 4163
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4164 4165 4166
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4167

B
Bob Liu 已提交
4168
	for_each_node(node)
4169
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4170
			goto fail;
4171

4172 4173
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4174

4175
	INIT_WORK(&memcg->high_work, high_work_func);
4176 4177 4178 4179
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4180
	vmpressure_init(&memcg->vmpressure);
4181 4182
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4183
	memcg->socket_pressure = jiffies;
4184
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4185 4186
	memcg->kmemcg_id = -1;
#endif
4187 4188 4189
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4190
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4191 4192
	return memcg;
fail:
4193 4194
	if (memcg->id.id > 0)
		idr_remove(&mem_cgroup_idr, memcg->id.id);
4195
	__mem_cgroup_free(memcg);
4196
	return NULL;
4197 4198
}

4199 4200
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4201
{
4202 4203 4204
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4205

4206 4207 4208
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4209

4210 4211 4212 4213 4214 4215 4216 4217
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4218
		page_counter_init(&memcg->memory, &parent->memory);
4219
		page_counter_init(&memcg->swap, &parent->swap);
4220 4221
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4222
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4223
	} else {
4224
		page_counter_init(&memcg->memory, NULL);
4225
		page_counter_init(&memcg->swap, NULL);
4226 4227
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4228
		page_counter_init(&memcg->tcpmem, NULL);
4229 4230 4231 4232 4233
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4234
		if (parent != root_mem_cgroup)
4235
			memory_cgrp_subsys.broken_hierarchy = true;
4236
	}
4237

4238 4239 4240 4241 4242 4243
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4244
	error = memcg_online_kmem(memcg);
4245 4246
	if (error)
		goto fail;
4247

4248
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4249
		static_branch_inc(&memcg_sockets_enabled_key);
4250

4251 4252 4253
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
4254
	return ERR_PTR(-ENOMEM);
4255 4256
}

4257
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4258
{
4259 4260
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4261
	/* Online state pins memcg ID, memcg ID pins CSS */
4262
	atomic_set(&memcg->id.ref, 1);
4263
	css_get(css);
4264
	return 0;
B
Balbir Singh 已提交
4265 4266
}

4267
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4268
{
4269
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4270
	struct mem_cgroup_event *event, *tmp;
4271 4272 4273 4274 4275 4276

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4277 4278
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4279 4280 4281
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4282
	spin_unlock(&memcg->event_list_lock);
4283

4284
	memcg_offline_kmem(memcg);
4285
	wb_memcg_offline(memcg);
4286 4287

	mem_cgroup_id_put(memcg);
4288 4289
}

4290 4291 4292 4293 4294 4295 4296
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4297
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4298
{
4299
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4300

4301
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4302
		static_branch_dec(&memcg_sockets_enabled_key);
4303

4304
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4305
		static_branch_dec(&memcg_sockets_enabled_key);
4306

4307 4308 4309
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4310
	memcg_free_kmem(memcg);
4311
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4312 4313
}

4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4331 4332 4333 4334 4335
	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4336 4337
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4338
	memcg->soft_limit = PAGE_COUNTER_MAX;
4339
	memcg_wb_domain_size_changed(memcg);
4340 4341
}

4342
#ifdef CONFIG_MMU
4343
/* Handlers for move charge at task migration. */
4344
static int mem_cgroup_do_precharge(unsigned long count)
4345
{
4346
	int ret;
4347

4348 4349
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4350
	if (!ret) {
4351 4352 4353
		mc.precharge += count;
		return ret;
	}
4354

4355
	/* Try charges one by one with reclaim, but do not retry */
4356
	while (count--) {
4357
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4358 4359
		if (ret)
			return ret;
4360
		mc.precharge++;
4361
		cond_resched();
4362
	}
4363
	return 0;
4364 4365 4366 4367
}

union mc_target {
	struct page	*page;
4368
	swp_entry_t	ent;
4369 4370 4371
};

enum mc_target_type {
4372
	MC_TARGET_NONE = 0,
4373
	MC_TARGET_PAGE,
4374
	MC_TARGET_SWAP,
4375 4376
};

D
Daisuke Nishimura 已提交
4377 4378
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4379
{
D
Daisuke Nishimura 已提交
4380
	struct page *page = vm_normal_page(vma, addr, ptent);
4381

D
Daisuke Nishimura 已提交
4382 4383 4384
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4385
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4386
			return NULL;
4387 4388 4389 4390
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4391 4392 4393 4394 4395 4396
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4397
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4398
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4399
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4400 4401 4402 4403
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4404
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4405
		return NULL;
4406 4407 4408 4409
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4410
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4411
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4412 4413 4414 4415
		entry->val = ent.val;

	return page;
}
4416 4417
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4418
			pte_t ptent, swp_entry_t *entry)
4419 4420 4421 4422
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4423

4424 4425 4426 4427 4428 4429 4430 4431 4432
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4433
	if (!(mc.flags & MOVE_FILE))
4434 4435 4436
		return NULL;

	mapping = vma->vm_file->f_mapping;
4437
	pgoff = linear_page_index(vma, addr);
4438 4439

	/* page is moved even if it's not RSS of this task(page-faulted). */
4440 4441
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4442 4443 4444 4445
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4446
			if (do_memsw_account())
4447
				*entry = swp;
4448 4449
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
4450 4451 4452 4453 4454
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4455
#endif
4456 4457 4458
	return page;
}

4459 4460 4461
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4462
 * @compound: charge the page as compound or small page
4463 4464 4465
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4466
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4467 4468 4469 4470 4471
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4472
				   bool compound,
4473 4474 4475 4476
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4477
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4478
	int ret;
4479
	bool anon;
4480 4481 4482

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4483
	VM_BUG_ON(compound && !PageTransHuge(page));
4484 4485

	/*
4486
	 * Prevent mem_cgroup_migrate() from looking at
4487
	 * page->mem_cgroup of its source page while we change it.
4488
	 */
4489
	ret = -EBUSY;
4490 4491 4492 4493 4494 4495 4496
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4497 4498
	anon = PageAnon(page);

4499 4500
	spin_lock_irqsave(&from->move_lock, flags);

4501
	if (!anon && page_mapped(page)) {
4502 4503 4504 4505 4506 4507
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4544
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4545
	memcg_check_events(to, page);
4546
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4547 4548 4549 4550 4551 4552 4553 4554
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
 *
 * Called with pte lock held.
 */

4574
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4575 4576 4577
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4578
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4579 4580 4581 4582 4583
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4584
		page = mc_handle_swap_pte(vma, ptent, &ent);
4585
	else if (pte_none(ptent))
4586
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4587 4588

	if (!page && !ent.val)
4589
		return ret;
4590 4591
	if (page) {
		/*
4592
		 * Do only loose check w/o serialization.
4593
		 * mem_cgroup_move_account() checks the page is valid or
4594
		 * not under LRU exclusion.
4595
		 */
4596
		if (page->mem_cgroup == mc.from) {
4597 4598 4599 4600 4601 4602 4603
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4604 4605
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4606
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4607 4608 4609
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4610 4611 4612 4613
	}
	return ret;
}

4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4627
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4628
	if (!(mc.flags & MOVE_ANON))
4629
		return ret;
4630
	if (page->mem_cgroup == mc.from) {
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4647 4648 4649 4650
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4651
	struct vm_area_struct *vma = walk->vma;
4652 4653 4654
	pte_t *pte;
	spinlock_t *ptl;

4655 4656
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4657 4658
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4659
		spin_unlock(ptl);
4660
		return 0;
4661
	}
4662

4663 4664
	if (pmd_trans_unstable(pmd))
		return 0;
4665 4666
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4667
		if (get_mctgt_type(vma, addr, *pte, NULL))
4668 4669 4670 4671
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4672 4673 4674
	return 0;
}

4675 4676 4677 4678
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4679 4680 4681 4682
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4683
	down_read(&mm->mmap_sem);
4684 4685
	walk_page_range(0, mm->highest_vm_end,
			&mem_cgroup_count_precharge_walk);
4686
	up_read(&mm->mmap_sem);
4687 4688 4689 4690 4691 4692 4693 4694 4695

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4696 4697 4698 4699 4700
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4701 4702
}

4703 4704
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4705
{
4706 4707 4708
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4709
	/* we must uncharge all the leftover precharges from mc.to */
4710
	if (mc.precharge) {
4711
		cancel_charge(mc.to, mc.precharge);
4712 4713 4714 4715 4716 4717 4718
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4719
		cancel_charge(mc.from, mc.moved_charge);
4720
		mc.moved_charge = 0;
4721
	}
4722 4723 4724
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4725
		if (!mem_cgroup_is_root(mc.from))
4726
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4727

4728 4729
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

4730
		/*
4731 4732
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4733
		 */
4734
		if (!mem_cgroup_is_root(mc.to))
4735 4736
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4737 4738
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
4739

4740 4741
		mc.moved_swap = 0;
	}
4742 4743 4744 4745 4746 4747 4748
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
4749 4750
	struct mm_struct *mm = mc.mm;

4751 4752 4753 4754 4755 4756
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4757
	spin_lock(&mc.lock);
4758 4759
	mc.from = NULL;
	mc.to = NULL;
4760
	mc.mm = NULL;
4761
	spin_unlock(&mc.lock);
4762 4763

	mmput(mm);
4764 4765
}

4766
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4767
{
4768
	struct cgroup_subsys_state *css;
4769
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4770
	struct mem_cgroup *from;
4771
	struct task_struct *leader, *p;
4772
	struct mm_struct *mm;
4773
	unsigned long move_flags;
4774
	int ret = 0;
4775

4776 4777
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4778 4779
		return 0;

4780 4781 4782 4783 4784 4785 4786
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4787
	cgroup_taskset_for_each_leader(leader, css, tset) {
4788 4789
		WARN_ON_ONCE(p);
		p = leader;
4790
		memcg = mem_cgroup_from_css(css);
4791 4792 4793 4794
	}
	if (!p)
		return 0;

4795 4796 4797 4798 4799 4800 4801 4802 4803
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
4820
		mc.mm = mm;
4821 4822 4823 4824 4825 4826 4827 4828 4829
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4830 4831
	} else {
		mmput(mm);
4832 4833 4834 4835
	}
	return ret;
}

4836
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4837
{
4838 4839
	if (mc.to)
		mem_cgroup_clear_mc();
4840 4841
}

4842 4843 4844
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4845
{
4846
	int ret = 0;
4847
	struct vm_area_struct *vma = walk->vma;
4848 4849
	pte_t *pte;
	spinlock_t *ptl;
4850 4851 4852
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4853

4854 4855
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4856
		if (mc.precharge < HPAGE_PMD_NR) {
4857
			spin_unlock(ptl);
4858 4859 4860 4861 4862 4863
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4864
				if (!mem_cgroup_move_account(page, true,
4865
							     mc.from, mc.to)) {
4866 4867 4868 4869 4870 4871 4872
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4873
		spin_unlock(ptl);
4874
		return 0;
4875 4876
	}

4877 4878
	if (pmd_trans_unstable(pmd))
		return 0;
4879 4880 4881 4882
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4883
		swp_entry_t ent;
4884 4885 4886 4887

		if (!mc.precharge)
			break;

4888
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4889 4890
		case MC_TARGET_PAGE:
			page = target.page;
4891 4892 4893 4894 4895 4896 4897 4898
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4899 4900
			if (isolate_lru_page(page))
				goto put;
4901 4902
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4903
				mc.precharge--;
4904 4905
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4906 4907
			}
			putback_lru_page(page);
4908
put:			/* get_mctgt_type() gets the page */
4909 4910
			put_page(page);
			break;
4911 4912
		case MC_TARGET_SWAP:
			ent = target.ent;
4913
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4914
				mc.precharge--;
4915 4916 4917
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4918
			break;
4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4933
		ret = mem_cgroup_do_precharge(1);
4934 4935 4936 4937 4938 4939 4940
		if (!ret)
			goto retry;
	}

	return ret;
}

4941
static void mem_cgroup_move_charge(void)
4942
{
4943 4944
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
4945
		.mm = mc.mm,
4946
	};
4947 4948

	lru_add_drain_all();
4949
	/*
4950 4951 4952
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
4953 4954 4955
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4956
retry:
4957
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4969 4970 4971 4972
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
4973 4974
	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);

4975
	up_read(&mc.mm->mmap_sem);
4976
	atomic_dec(&mc.from->moving_account);
4977 4978
}

4979
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
4980
{
4981 4982
	if (mc.to) {
		mem_cgroup_move_charge();
4983
		mem_cgroup_clear_mc();
4984
	}
B
Balbir Singh 已提交
4985
}
4986
#else	/* !CONFIG_MMU */
4987
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4988 4989 4990
{
	return 0;
}
4991
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4992 4993
{
}
4994
static void mem_cgroup_move_task(void)
4995 4996 4997
{
}
#endif
B
Balbir Singh 已提交
4998

4999 5000
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5001 5002
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5003
 */
5004
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5005 5006
{
	/*
5007
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5008 5009 5010
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5011
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5012 5013 5014
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5015 5016
}

5017 5018 5019
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5020 5021 5022
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5023 5024 5025 5026 5027
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5028
	unsigned long low = READ_ONCE(memcg->low);
5029 5030

	if (low == PAGE_COUNTER_MAX)
5031
		seq_puts(m, "max\n");
5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5046
	err = page_counter_memparse(buf, "max", &low);
5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5058
	unsigned long high = READ_ONCE(memcg->high);
5059 5060

	if (high == PAGE_COUNTER_MAX)
5061
		seq_puts(m, "max\n");
5062 5063 5064 5065 5066 5067 5068 5069 5070 5071
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5072
	unsigned long nr_pages;
5073 5074 5075 5076
	unsigned long high;
	int err;

	buf = strstrip(buf);
5077
	err = page_counter_memparse(buf, "max", &high);
5078 5079 5080 5081 5082
	if (err)
		return err;

	memcg->high = high;

5083 5084 5085 5086 5087
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5088
	memcg_wb_domain_size_changed(memcg);
5089 5090 5091 5092 5093 5094
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5095
	unsigned long max = READ_ONCE(memcg->memory.limit);
5096 5097

	if (max == PAGE_COUNTER_MAX)
5098
		seq_puts(m, "max\n");
5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5109 5110
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5111 5112 5113 5114
	unsigned long max;
	int err;

	buf = strstrip(buf);
5115
	err = page_counter_memparse(buf, "max", &max);
5116 5117 5118
	if (err)
		return err;

5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
	xchg(&memcg->memory.limit, max);

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

5145
		mem_cgroup_event(memcg, MEMCG_OOM);
5146 5147 5148
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5149

5150
	memcg_wb_domain_size_changed(memcg);
5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

5166 5167 5168
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5169 5170
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[MEMCG_NR_EVENTS];
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5184 5185 5186
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5187
	seq_printf(m, "anon %llu\n",
5188
		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5189
	seq_printf(m, "file %llu\n",
5190
		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5191
	seq_printf(m, "kernel_stack %llu\n",
5192
		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5193 5194 5195
	seq_printf(m, "slab %llu\n",
		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5196
	seq_printf(m, "sock %llu\n",
5197
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5198

5199 5200
	seq_printf(m, "shmem %llu\n",
		   (u64)stat[MEM_CGROUP_STAT_SHMEM] * PAGE_SIZE);
5201
	seq_printf(m, "file_mapped %llu\n",
5202
		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5203
	seq_printf(m, "file_dirty %llu\n",
5204
		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5205
	seq_printf(m, "file_writeback %llu\n",
5206
		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5218 5219 5220 5221 5222
	seq_printf(m, "slab_reclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
	seq_printf(m, "slab_unreclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);

5223 5224 5225
	/* Accumulated memory events */

	seq_printf(m, "pgfault %lu\n",
5226
		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5227
	seq_printf(m, "pgmajfault %lu\n",
5228
		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5229

5230 5231 5232 5233 5234 5235 5236
	seq_printf(m, "workingset_refault %lu\n",
		   stat[MEMCG_WORKINGSET_REFAULT]);
	seq_printf(m, "workingset_activate %lu\n",
		   stat[MEMCG_WORKINGSET_ACTIVATE]);
	seq_printf(m, "workingset_nodereclaim %lu\n",
		   stat[MEMCG_WORKINGSET_NODERECLAIM]);

5237 5238 5239
	return 0;
}

5240 5241 5242
static struct cftype memory_files[] = {
	{
		.name = "current",
5243
		.flags = CFTYPE_NOT_ON_ROOT,
5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5267
		.file_offset = offsetof(struct mem_cgroup, events_file),
5268 5269
		.seq_show = memory_events_show,
	},
5270 5271 5272 5273 5274
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5275 5276 5277
	{ }	/* terminate */
};

5278
struct cgroup_subsys memory_cgrp_subsys = {
5279
	.css_alloc = mem_cgroup_css_alloc,
5280
	.css_online = mem_cgroup_css_online,
5281
	.css_offline = mem_cgroup_css_offline,
5282
	.css_released = mem_cgroup_css_released,
5283
	.css_free = mem_cgroup_css_free,
5284
	.css_reset = mem_cgroup_css_reset,
5285 5286
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5287
	.post_attach = mem_cgroup_move_task,
5288
	.bind = mem_cgroup_bind,
5289 5290
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5291
	.early_init = 0,
B
Balbir Singh 已提交
5292
};
5293

5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5316
	if (page_counter_read(&memcg->memory) >= memcg->low)
5317 5318 5319 5320 5321 5322 5323 5324
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5325
		if (page_counter_read(&memcg->memory) >= memcg->low)
5326 5327 5328 5329 5330
			return false;
	}
	return true;
}

5331 5332 5333 5334 5335 5336
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5337
 * @compound: charge the page as compound or small page
5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5350 5351
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5352 5353
{
	struct mem_cgroup *memcg = NULL;
5354
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5368
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5369
		if (page->mem_cgroup)
5370
			goto out;
5371

5372
		if (do_swap_account) {
5373 5374 5375 5376 5377 5378 5379 5380 5381
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5400
 * @compound: charge the page as compound or small page
5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5413
			      bool lrucare, bool compound)
5414
{
5415
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5430 5431 5432
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5433
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5434 5435
	memcg_check_events(memcg, page);
	local_irq_enable();
5436

5437
	if (do_memsw_account() && PageSwapCache(page)) {
5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
5452
 * @compound: charge the page as compound or small page
5453 5454 5455
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5456 5457
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5458
{
5459
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5474 5475
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
5476 5477
			   unsigned long nr_kmem, unsigned long nr_huge,
			   unsigned long nr_shmem, struct page *dummy_page)
5478
{
5479
	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5480 5481
	unsigned long flags;

5482
	if (!mem_cgroup_is_root(memcg)) {
5483
		page_counter_uncharge(&memcg->memory, nr_pages);
5484
		if (do_memsw_account())
5485
			page_counter_uncharge(&memcg->memsw, nr_pages);
5486 5487
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
			page_counter_uncharge(&memcg->kmem, nr_kmem);
5488 5489
		memcg_oom_recover(memcg);
	}
5490 5491 5492 5493 5494

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5495
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_SHMEM], nr_shmem);
5496
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5497
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5498 5499
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5500 5501

	if (!mem_cgroup_is_root(memcg))
5502
		css_put_many(&memcg->css, nr_pages);
5503 5504 5505 5506 5507
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
5508
	unsigned long nr_shmem = 0;
5509 5510 5511
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
5512
	unsigned long nr_kmem = 0;
5513 5514 5515 5516
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

5517 5518 5519 5520
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
5521 5522 5523 5524 5525 5526 5527 5528
	next = page_list->next;
	do {
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5529
		if (!page->mem_cgroup)
5530 5531 5532 5533
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5534
		 * page->mem_cgroup at this point, we have fully
5535
		 * exclusive access to the page.
5536 5537
		 */

5538
		if (memcg != page->mem_cgroup) {
5539
			if (memcg) {
5540
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5541 5542 5543
					       nr_kmem, nr_huge, nr_shmem, page);
				pgpgout = nr_anon = nr_file = nr_kmem = 0;
				nr_huge = nr_shmem = 0;
5544
			}
5545
			memcg = page->mem_cgroup;
5546 5547
		}

5548 5549
		if (!PageKmemcg(page)) {
			unsigned int nr_pages = 1;
5550

5551 5552 5553 5554 5555 5556
			if (PageTransHuge(page)) {
				nr_pages <<= compound_order(page);
				nr_huge += nr_pages;
			}
			if (PageAnon(page))
				nr_anon += nr_pages;
5557
			else {
5558
				nr_file += nr_pages;
5559 5560 5561
				if (PageSwapBacked(page))
					nr_shmem += nr_pages;
			}
5562
			pgpgout++;
5563
		} else {
5564
			nr_kmem += 1 << compound_order(page);
5565 5566
			__ClearPageKmemcg(page);
		}
5567

5568
		page->mem_cgroup = NULL;
5569 5570 5571
	} while (next != page_list);

	if (memcg)
5572
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5573
			       nr_kmem, nr_huge, nr_shmem, page);
5574 5575
}

5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5588
	/* Don't touch page->lru of any random page, pre-check: */
5589
	if (!page->mem_cgroup)
5590 5591
		return;

5592 5593 5594
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5595

5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5607

5608 5609
	if (!list_empty(page_list))
		uncharge_list(page_list);
5610 5611 5612
}

/**
5613 5614 5615
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5616
 *
5617 5618
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5619 5620 5621
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5622
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5623
{
5624
	struct mem_cgroup *memcg;
5625 5626
	unsigned int nr_pages;
	bool compound;
5627
	unsigned long flags;
5628 5629 5630 5631

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5632 5633
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5634 5635 5636 5637 5638

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5639
	if (newpage->mem_cgroup)
5640 5641
		return;

5642
	/* Swapcache readahead pages can get replaced before being charged */
5643
	memcg = oldpage->mem_cgroup;
5644
	if (!memcg)
5645 5646
		return;

5647 5648 5649 5650 5651 5652 5653 5654
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5655

5656
	commit_charge(newpage, memcg, false);
5657

5658
	local_irq_save(flags);
5659 5660
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
5661
	local_irq_restore(flags);
5662 5663
}

5664
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5665 5666
EXPORT_SYMBOL(memcg_sockets_enabled_key);

5667
void mem_cgroup_sk_alloc(struct sock *sk)
5668 5669 5670
{
	struct mem_cgroup *memcg;

5671 5672 5673 5674 5675
	if (!mem_cgroup_sockets_enabled)
		return;

	/*
	 * Socket cloning can throw us here with sk_memcg already
5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5691 5692
	if (memcg == root_mem_cgroup)
		goto out;
5693
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5694 5695
		goto out;
	if (css_tryget_online(&memcg->css))
5696
		sk->sk_memcg = memcg;
5697
out:
5698 5699 5700
	rcu_read_unlock();
}

5701
void mem_cgroup_sk_free(struct sock *sk)
5702
{
5703 5704
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5717
	gfp_t gfp_mask = GFP_KERNEL;
5718

5719
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5720
		struct page_counter *fail;
5721

5722 5723
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5724 5725
			return true;
		}
5726 5727
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5728
		return false;
5729
	}
5730

5731 5732 5733 5734
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5735 5736
	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);

5737 5738 5739 5740
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5741 5742 5743 5744 5745 5746 5747 5748 5749 5750
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5751
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5752
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5753 5754
		return;
	}
5755

5756 5757
	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);

5758 5759
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5760 5761
}

5762 5763 5764 5765 5766 5767 5768 5769 5770
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5771 5772
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5773 5774 5775 5776
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5777

5778
/*
5779 5780
 * subsys_initcall() for memory controller.
 *
5781 5782 5783 5784
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
5785 5786 5787
 */
static int __init mem_cgroup_init(void)
{
5788 5789
	int cpu, node;

5790 5791 5792
#ifndef CONFIG_SLOB
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
5793 5794 5795
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
5796
	 */
5797 5798
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
5799 5800
#endif

5801 5802
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

5814 5815
		rtpn->rb_root = RB_ROOT;
		spin_lock_init(&rtpn->lock);
5816 5817 5818
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5819 5820 5821
	return 0;
}
subsys_initcall(mem_cgroup_init);
5822 5823

#ifdef CONFIG_MEMCG_SWAP
5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
	while (!atomic_inc_not_zero(&memcg->id.ref)) {
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

5842 5843 5844 5845 5846 5847 5848 5849 5850
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
5851
	struct mem_cgroup *memcg, *swap_memcg;
5852 5853 5854 5855 5856
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5857
	if (!do_memsw_account())
5858 5859 5860 5861 5862 5863 5864 5865
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

5866 5867 5868 5869 5870 5871 5872
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5873
	VM_BUG_ON_PAGE(oldid, page);
5874
	mem_cgroup_swap_statistics(swap_memcg, true);
5875 5876 5877 5878 5879 5880

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5881 5882 5883 5884 5885 5886
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
			page_counter_charge(&swap_memcg->memsw, 1);
		page_counter_uncharge(&memcg->memsw, 1);
	}

5887 5888 5889 5890 5891 5892 5893
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5894
	mem_cgroup_charge_statistics(memcg, page, false, -1);
5895
	memcg_check_events(memcg, page);
5896 5897 5898

	if (!mem_cgroup_is_root(memcg))
		css_put(&memcg->css);
5899 5900
}

5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924
/*
 * mem_cgroup_try_charge_swap - try charging a swap entry
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
 * Try to charge @entry to the memcg that @page belongs to.
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	struct page_counter *counter;
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

5925 5926
	memcg = mem_cgroup_id_get_online(memcg);

5927
	if (!mem_cgroup_is_root(memcg) &&
5928 5929
	    !page_counter_try_charge(&memcg->swap, 1, &counter)) {
		mem_cgroup_id_put(memcg);
5930
		return -ENOMEM;
5931
	}
5932 5933 5934 5935 5936 5937 5938 5939

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	return 0;
}

5940 5941 5942 5943
/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
5944
 * Drop the swap charge associated with @entry.
5945 5946 5947 5948 5949 5950
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5951
	if (!do_swap_account)
5952 5953 5954 5955
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5956
	memcg = mem_cgroup_from_id(id);
5957
	if (memcg) {
5958 5959 5960 5961 5962 5963
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
				page_counter_uncharge(&memcg->swap, 1);
			else
				page_counter_uncharge(&memcg->memsw, 1);
		}
5964
		mem_cgroup_swap_statistics(memcg, false);
5965
		mem_cgroup_id_put(memcg);
5966 5967 5968 5969
	}
	rcu_read_unlock();
}

5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6110 6111
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6112 6113 6114 6115 6116 6117 6118 6119
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */