memcontrol.c 148.2 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
G
Glauber Costa 已提交
69
#include <net/tcp_memcontrol.h>
70
#include "slab.h"
B
Balbir Singh 已提交
71

72 73
#include <asm/uaccess.h>

74 75
#include <trace/events/vmscan.h>

76 77
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
78

79 80
struct mem_cgroup *root_mem_cgroup __read_mostly;

81
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
82

83 84 85
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

86
/* Whether the swap controller is active */
A
Andrew Morton 已提交
87
#ifdef CONFIG_MEMCG_SWAP
88 89
int do_swap_account __read_mostly;
#else
90
#define do_swap_account		0
91 92
#endif

93 94 95 96 97 98
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

99 100 101
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
102
	"rss_huge",
103
	"mapped_file",
104
	"dirty",
105
	"writeback",
106 107 108 109 110 111 112 113 114 115
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

116 117 118 119 120 121 122 123
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

124 125 126
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
148 149 150 151 152
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
153

154 155 156
/*
 * cgroup_event represents events which userspace want to receive.
 */
157
struct mem_cgroup_event {
158
	/*
159
	 * memcg which the event belongs to.
160
	 */
161
	struct mem_cgroup *memcg;
162 163 164 165 166 167 168 169
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
170 171 172 173 174
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
175
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
176
			      struct eventfd_ctx *eventfd, const char *args);
177 178 179 180 181
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
182
	void (*unregister_event)(struct mem_cgroup *memcg,
183
				 struct eventfd_ctx *eventfd);
184 185 186 187 188 189 190 191 192 193
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

194 195
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
196

197 198
/* Stuffs for move charges at task migration. */
/*
199
 * Types of charges to be moved.
200
 */
201 202 203
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
204

205 206
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
207
	spinlock_t	  lock; /* for from, to */
208 209
	struct mem_cgroup *from;
	struct mem_cgroup *to;
210
	unsigned long flags;
211
	unsigned long precharge;
212
	unsigned long moved_charge;
213
	unsigned long moved_swap;
214 215 216
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
217
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
218 219
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
220

221 222 223 224
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
225
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
226
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
227

228 229
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
230
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
231
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
232
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
233 234 235
	NR_CHARGE_TYPE,
};

236
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
237 238 239 240
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
241
	_KMEM,
G
Glauber Costa 已提交
242 243
};

244 245
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
246
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
247 248
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
249

250 251 252 253 254 255 256
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

257 258 259 260 261 262 263 264 265 266 267 268 269
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

270 271 272 273 274
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

275 276 277 278 279 280
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
281 282
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
283
	return memcg->css.id;
L
Li Zefan 已提交
284 285
}

286 287 288 289 290 291
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
 */
L
Li Zefan 已提交
292 293 294 295
static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

296
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
297 298 299
	return mem_cgroup_from_css(css);
}

300
#ifdef CONFIG_MEMCG_KMEM
301
/*
302
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
303 304 305 306 307
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
308
 *
309 310
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
311
 */
312 313
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
314

315 316 317 318 319 320 321 322 323 324 325 326 327
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

328 329 330 331 332 333
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
334
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
335 336
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
337
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
338 339 340
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
341
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
342

343 344 345 346 347 348
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
349
struct static_key memcg_kmem_enabled_key;
350
EXPORT_SYMBOL(memcg_kmem_enabled_key);
351 352 353

#endif /* CONFIG_MEMCG_KMEM */

354
static struct mem_cgroup_per_zone *
355
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
356
{
357 358 359
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

360
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
361 362
}

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 *
 * XXX: The above description of behavior on the default hierarchy isn't
 * strictly true yet as replace_page_cache_page() can modify the
 * association before @page is released even on the default hierarchy;
 * however, the current and planned usages don't mix the the two functions
 * and replace_page_cache_page() will soon be updated to make the invariant
 * actually true.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();

	memcg = page->mem_cgroup;

389
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
390 391 392 393 394 395
		memcg = root_mem_cgroup;

	rcu_read_unlock();
	return &memcg->css;
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

424
static struct mem_cgroup_per_zone *
425
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
426
{
427 428
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
429

430
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
431 432
}

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

448 449
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
450
					 unsigned long new_usage_in_excess)
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

480 481
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
482 483 484 485 486 487 488
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

489 490
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
491
{
492 493 494
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
495
	__mem_cgroup_remove_exceeded(mz, mctz);
496
	spin_unlock_irqrestore(&mctz->lock, flags);
497 498
}

499 500 501
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
502
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
503 504 505 506 507 508 509
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
510 511 512

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
513
	unsigned long excess;
514 515 516
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

517
	mctz = soft_limit_tree_from_page(page);
518 519 520 521 522
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
523
		mz = mem_cgroup_page_zoneinfo(memcg, page);
524
		excess = soft_limit_excess(memcg);
525 526 527 528 529
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
530 531 532
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
533 534
			/* if on-tree, remove it */
			if (mz->on_tree)
535
				__mem_cgroup_remove_exceeded(mz, mctz);
536 537 538 539
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
540
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
541
			spin_unlock_irqrestore(&mctz->lock, flags);
542 543 544 545 546 547 548
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
549 550
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
551

552 553 554 555
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
556
			mem_cgroup_remove_exceeded(mz, mctz);
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
579
	__mem_cgroup_remove_exceeded(mz, mctz);
580
	if (!soft_limit_excess(mz->memcg) ||
581
	    !css_tryget_online(&mz->memcg->css))
582 583 584 585 586 587 588 589 590 591
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

592
	spin_lock_irq(&mctz->lock);
593
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
594
	spin_unlock_irq(&mctz->lock);
595 596 597
	return mz;
}

598
/*
599 600
 * Return page count for single (non recursive) @memcg.
 *
601 602 603 604 605
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
606
 * a periodic synchronization of counter in memcg's counter.
607 608 609 610 611 612 613 614 615
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
616
 * common workload, threshold and synchronization as vmstat[] should be
617 618
 * implemented.
 */
619 620
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
621
{
622
	long val = 0;
623 624
	int cpu;

625
	/* Per-cpu values can be negative, use a signed accumulator */
626
	for_each_possible_cpu(cpu)
627
		val += per_cpu(memcg->stat->count[idx], cpu);
628 629 630 631 632 633
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
634 635 636
	return val;
}

637
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
638 639 640 641 642
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

643
	for_each_possible_cpu(cpu)
644
		val += per_cpu(memcg->stat->events[idx], cpu);
645 646 647
	return val;
}

648
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
649
					 struct page *page,
650
					 int nr_pages)
651
{
652 653 654 655
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
656
	if (PageAnon(page))
657
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
658
				nr_pages);
659
	else
660
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
661
				nr_pages);
662

663 664 665 666
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

667 668
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
669
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
670
	else {
671
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
672 673
		nr_pages = -nr_pages; /* for event */
	}
674

675
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
676 677
}

678 679 680
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
681
{
682
	unsigned long nr = 0;
683 684
	int zid;

685
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
686

687 688 689 690 691 692 693 694 695 696 697 698
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
699
}
700

701
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
702
			unsigned int lru_mask)
703
{
704
	unsigned long nr = 0;
705
	int nid;
706

707
	for_each_node_state(nid, N_MEMORY)
708 709
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
710 711
}

712 713
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
714 715 716
{
	unsigned long val, next;

717
	val = __this_cpu_read(memcg->stat->nr_page_events);
718
	next = __this_cpu_read(memcg->stat->targets[target]);
719
	/* from time_after() in jiffies.h */
720 721 722 723 724
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
725 726 727
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
728 729 730 731 732 733 734 735
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
736
	}
737
	return false;
738 739 740 741 742 743
}

/*
 * Check events in order.
 *
 */
744
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
745 746
{
	/* threshold event is triggered in finer grain than soft limit */
747 748
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
749
		bool do_softlimit;
750
		bool do_numainfo __maybe_unused;
751

752 753
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
754 755 756 757
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
758
		mem_cgroup_threshold(memcg);
759 760
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
761
#if MAX_NUMNODES > 1
762
		if (unlikely(do_numainfo))
763
			atomic_inc(&memcg->numainfo_events);
764
#endif
765
	}
766 767
}

768
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
769
{
770 771 772 773 774 775 776 777
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

778
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
779
}
M
Michal Hocko 已提交
780
EXPORT_SYMBOL(mem_cgroup_from_task);
781

782
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
783
{
784
	struct mem_cgroup *memcg = NULL;
785

786 787
	rcu_read_lock();
	do {
788 789 790 791 792 793
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
794
			memcg = root_mem_cgroup;
795 796 797 798 799
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
800
	} while (!css_tryget_online(&memcg->css));
801
	rcu_read_unlock();
802
	return memcg;
803 804
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
822
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
823
				   struct mem_cgroup *prev,
824
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
825
{
M
Michal Hocko 已提交
826
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
827
	struct cgroup_subsys_state *css = NULL;
828
	struct mem_cgroup *memcg = NULL;
829
	struct mem_cgroup *pos = NULL;
830

831 832
	if (mem_cgroup_disabled())
		return NULL;
833

834 835
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
836

837
	if (prev && !reclaim)
838
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
839

840 841
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
842
			goto out;
843
		return root;
844
	}
K
KAMEZAWA Hiroyuki 已提交
845

846
	rcu_read_lock();
M
Michal Hocko 已提交
847

848 849 850 851 852 853 854 855 856
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

857
		while (1) {
858
			pos = READ_ONCE(iter->position);
859 860
			if (!pos || css_tryget(&pos->css))
				break;
861
			/*
862 863 864 865 866 867
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
868
			 */
869 870
			(void)cmpxchg(&iter->position, pos, NULL);
		}
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
888
		}
K
KAMEZAWA Hiroyuki 已提交
889

890 891 892 893 894 895
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
896

897 898
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
899

900
		if (css_tryget(css)) {
901 902 903 904 905 906 907
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
908

909
			css_put(css);
910
		}
911

912
		memcg = NULL;
913
	}
914 915 916

	if (reclaim) {
		/*
917 918 919
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
920
		 */
921 922
		(void)cmpxchg(&iter->position, pos, memcg);

923 924 925 926 927 928 929
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
930
	}
931

932 933
out_unlock:
	rcu_read_unlock();
934
out:
935 936 937
	if (prev && prev != root)
		css_put(&prev->css);

938
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
939
}
K
KAMEZAWA Hiroyuki 已提交
940

941 942 943 944 945 946 947
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
948 949 950 951 952 953
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
954

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
				for (i = 0; i <= DEF_PRIORITY; i++) {
					iter = &mz->iter[i];
					cmpxchg(&iter->position,
						dead_memcg, NULL);
				}
			}
		}
	}
}

977 978 979 980 981 982
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
983
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
984
	     iter != NULL;				\
985
	     iter = mem_cgroup_iter(root, iter, NULL))
986

987
#define for_each_mem_cgroup(iter)			\
988
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
989
	     iter != NULL;				\
990
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
991

992 993 994
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
995
 * @memcg: memcg of the wanted lruvec
996 997 998 999 1000 1001 1002 1003 1004
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1005
	struct lruvec *lruvec;
1006

1007 1008 1009 1010
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1011

1012
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1023 1024 1025
}

/**
1026
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1027
 * @page: the page
1028
 * @zone: zone of the page
1029 1030 1031 1032
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1033
 */
1034
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1035 1036
{
	struct mem_cgroup_per_zone *mz;
1037
	struct mem_cgroup *memcg;
1038
	struct lruvec *lruvec;
1039

1040 1041 1042 1043
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1044

1045
	memcg = page->mem_cgroup;
1046
	/*
1047
	 * Swapcache readahead pages are added to the LRU - and
1048
	 * possibly migrated - before they are charged.
1049
	 */
1050 1051
	if (!memcg)
		memcg = root_mem_cgroup;
1052

1053
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1064
}
1065

1066
/**
1067 1068 1069 1070
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1071
 *
1072 1073
 * This function must be called when a page is added to or removed from an
 * lru list.
1074
 */
1075 1076
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1077 1078
{
	struct mem_cgroup_per_zone *mz;
1079
	unsigned long *lru_size;
1080 1081 1082 1083

	if (mem_cgroup_disabled())
		return;

1084 1085 1086 1087
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1088
}
1089

1090
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1091
{
1092
	struct mem_cgroup *task_memcg;
1093
	struct task_struct *p;
1094
	bool ret;
1095

1096
	p = find_lock_task_mm(task);
1097
	if (p) {
1098
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1099 1100 1101 1102 1103 1104 1105
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1106
		rcu_read_lock();
1107 1108
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1109
		rcu_read_unlock();
1110
	}
1111 1112
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1113 1114 1115
	return ret;
}

1116
/**
1117
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1118
 * @memcg: the memory cgroup
1119
 *
1120
 * Returns the maximum amount of memory @mem can be charged with, in
1121
 * pages.
1122
 */
1123
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1124
{
1125 1126 1127
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1128

1129
	count = page_counter_read(&memcg->memory);
1130
	limit = READ_ONCE(memcg->memory.limit);
1131 1132 1133
	if (count < limit)
		margin = limit - count;

1134
	if (do_memsw_account()) {
1135
		count = page_counter_read(&memcg->memsw);
1136
		limit = READ_ONCE(memcg->memsw.limit);
1137 1138 1139 1140 1141
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1142 1143
}

1144
/*
Q
Qiang Huang 已提交
1145
 * A routine for checking "mem" is under move_account() or not.
1146
 *
Q
Qiang Huang 已提交
1147 1148 1149
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1150
 */
1151
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1152
{
1153 1154
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1155
	bool ret = false;
1156 1157 1158 1159 1160 1161 1162 1163 1164
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1165

1166 1167
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1168 1169
unlock:
	spin_unlock(&mc.lock);
1170 1171 1172
	return ret;
}

1173
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1174 1175
{
	if (mc.moving_task && current != mc.moving_task) {
1176
		if (mem_cgroup_under_move(memcg)) {
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1189
#define K(x) ((x) << (PAGE_SHIFT-10))
1190
/**
1191
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1192 1193 1194 1195 1196 1197 1198 1199
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1200
	/* oom_info_lock ensures that parallel ooms do not interleave */
1201
	static DEFINE_MUTEX(oom_info_lock);
1202 1203
	struct mem_cgroup *iter;
	unsigned int i;
1204

1205
	mutex_lock(&oom_info_lock);
1206 1207
	rcu_read_lock();

1208 1209 1210 1211 1212 1213 1214 1215
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1216
	pr_cont_cgroup_path(memcg->css.cgroup);
1217
	pr_cont("\n");
1218 1219 1220

	rcu_read_unlock();

1221 1222 1223 1224 1225 1226 1227 1228 1229
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1230 1231

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1232 1233
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1234 1235 1236
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1237
			if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1238
				continue;
1239
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1240 1241 1242 1243 1244 1245 1246 1247 1248
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1249
	mutex_unlock(&oom_info_lock);
1250 1251
}

1252 1253 1254 1255
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1256
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1257 1258
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1259 1260
	struct mem_cgroup *iter;

1261
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1262
		num++;
1263 1264 1265
	return num;
}

D
David Rientjes 已提交
1266 1267 1268
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1269
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1270
{
1271
	unsigned long limit;
1272

1273
	limit = memcg->memory.limit;
1274
	if (mem_cgroup_swappiness(memcg)) {
1275
		unsigned long memsw_limit;
1276

1277 1278
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1279 1280
	}
	return limit;
D
David Rientjes 已提交
1281 1282
}

1283 1284
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1285
{
1286 1287 1288 1289 1290 1291
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
		.gfp_mask = gfp_mask,
		.order = order,
	};
1292 1293 1294 1295 1296 1297
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1298 1299
	mutex_lock(&oom_lock);

1300
	/*
1301 1302 1303
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1304
	 */
1305
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1306
		mark_oom_victim(current);
1307
		goto unlock;
1308 1309
	}

1310
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1311
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1312
	for_each_mem_cgroup_tree(iter, memcg) {
1313
		struct css_task_iter it;
1314 1315
		struct task_struct *task;

1316 1317
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1318
			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1329
				css_task_iter_end(&it);
1330 1331 1332
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1333
				goto unlock;
1334 1335 1336 1337
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1350
		}
1351
		css_task_iter_end(&it);
1352 1353
	}

1354 1355
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1356 1357
		oom_kill_process(&oc, chosen, points, totalpages, memcg,
				 "Memory cgroup out of memory");
1358 1359 1360
	}
unlock:
	mutex_unlock(&oom_lock);
1361 1362
}

1363 1364
#if MAX_NUMNODES > 1

1365 1366
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1367
 * @memcg: the target memcg
1368 1369 1370 1371 1372 1373 1374
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1375
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1376 1377
		int nid, bool noswap)
{
1378
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1379 1380 1381
		return true;
	if (noswap || !total_swap_pages)
		return false;
1382
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1383 1384 1385 1386
		return true;
	return false;

}
1387 1388 1389 1390 1391 1392 1393

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1394
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1395 1396
{
	int nid;
1397 1398 1399 1400
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1401
	if (!atomic_read(&memcg->numainfo_events))
1402
		return;
1403
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1404 1405 1406
		return;

	/* make a nodemask where this memcg uses memory from */
1407
	memcg->scan_nodes = node_states[N_MEMORY];
1408

1409
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1410

1411 1412
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1413
	}
1414

1415 1416
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1431
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1432 1433 1434
{
	int node;

1435 1436
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1437

1438
	node = next_node(node, memcg->scan_nodes);
1439
	if (node == MAX_NUMNODES)
1440
		node = first_node(memcg->scan_nodes);
1441 1442 1443 1444 1445 1446 1447 1448 1449
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1450
	memcg->last_scanned_node = node;
1451 1452 1453
	return node;
}
#else
1454
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1455 1456 1457 1458 1459
{
	return 0;
}
#endif

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1475
	excess = soft_limit_excess(root_memcg);
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1504
		if (!soft_limit_excess(root_memcg))
1505
			break;
1506
	}
1507 1508
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1509 1510
}

1511 1512 1513 1514 1515 1516
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1517 1518
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1519 1520 1521 1522
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1523
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1524
{
1525
	struct mem_cgroup *iter, *failed = NULL;
1526

1527 1528
	spin_lock(&memcg_oom_lock);

1529
	for_each_mem_cgroup_tree(iter, memcg) {
1530
		if (iter->oom_lock) {
1531 1532 1533 1534 1535
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1536 1537
			mem_cgroup_iter_break(memcg, iter);
			break;
1538 1539
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1540
	}
K
KAMEZAWA Hiroyuki 已提交
1541

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1553
		}
1554 1555
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1556 1557 1558 1559

	spin_unlock(&memcg_oom_lock);

	return !failed;
1560
}
1561

1562
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1563
{
K
KAMEZAWA Hiroyuki 已提交
1564 1565
	struct mem_cgroup *iter;

1566
	spin_lock(&memcg_oom_lock);
1567
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1568
	for_each_mem_cgroup_tree(iter, memcg)
1569
		iter->oom_lock = false;
1570
	spin_unlock(&memcg_oom_lock);
1571 1572
}

1573
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1574 1575 1576
{
	struct mem_cgroup *iter;

1577
	spin_lock(&memcg_oom_lock);
1578
	for_each_mem_cgroup_tree(iter, memcg)
1579 1580
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1581 1582
}

1583
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1584 1585 1586
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1587 1588
	/*
	 * When a new child is created while the hierarchy is under oom,
1589
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1590
	 */
1591
	spin_lock(&memcg_oom_lock);
1592
	for_each_mem_cgroup_tree(iter, memcg)
1593 1594 1595
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1596 1597
}

K
KAMEZAWA Hiroyuki 已提交
1598 1599
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1600
struct oom_wait_info {
1601
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1602 1603 1604 1605 1606 1607
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1608 1609
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1610 1611 1612
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1613
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1614

1615 1616
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1617 1618 1619 1620
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1621
static void memcg_oom_recover(struct mem_cgroup *memcg)
1622
{
1623 1624 1625 1626 1627 1628 1629 1630 1631
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1632
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1633 1634
}

1635
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1636
{
T
Tejun Heo 已提交
1637
	if (!current->memcg_may_oom)
1638
		return;
K
KAMEZAWA Hiroyuki 已提交
1639
	/*
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1652
	 */
1653
	css_get(&memcg->css);
T
Tejun Heo 已提交
1654 1655 1656
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1657 1658 1659 1660
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1661
 * @handle: actually kill/wait or just clean up the OOM state
1662
 *
1663 1664
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1665
 *
1666
 * Memcg supports userspace OOM handling where failed allocations must
1667 1668 1669 1670
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1671
 * the end of the page fault to complete the OOM handling.
1672 1673
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1674
 * completed, %false otherwise.
1675
 */
1676
bool mem_cgroup_oom_synchronize(bool handle)
1677
{
T
Tejun Heo 已提交
1678
	struct mem_cgroup *memcg = current->memcg_in_oom;
1679
	struct oom_wait_info owait;
1680
	bool locked;
1681 1682 1683

	/* OOM is global, do not handle */
	if (!memcg)
1684
		return false;
1685

1686
	if (!handle || oom_killer_disabled)
1687
		goto cleanup;
1688 1689 1690 1691 1692 1693

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1694

1695
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1706 1707
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1708
	} else {
1709
		schedule();
1710 1711 1712 1713 1714
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1715 1716 1717 1718 1719 1720 1721 1722
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1723
cleanup:
T
Tejun Heo 已提交
1724
	current->memcg_in_oom = NULL;
1725
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1726
	return true;
1727 1728
}

1729 1730 1731
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1732
 *
1733 1734 1735
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1736
 *
1737
 *   memcg = mem_cgroup_begin_page_stat(page);
1738 1739
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1740
 *   mem_cgroup_end_page_stat(memcg);
1741
 */
1742
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1743 1744
{
	struct mem_cgroup *memcg;
1745
	unsigned long flags;
1746

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
1759 1760 1761 1762
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
1763
again:
1764
	memcg = page->mem_cgroup;
1765
	if (unlikely(!memcg))
1766 1767
		return NULL;

Q
Qiang Huang 已提交
1768
	if (atomic_read(&memcg->moving_account) <= 0)
1769
		return memcg;
1770

1771
	spin_lock_irqsave(&memcg->move_lock, flags);
1772
	if (memcg != page->mem_cgroup) {
1773
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1774 1775
		goto again;
	}
1776 1777 1778 1779 1780 1781 1782 1783

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1784 1785

	return memcg;
1786
}
1787
EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1788

1789 1790 1791 1792
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
1793
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1794
{
1795 1796 1797 1798 1799 1800 1801 1802
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1803

1804
	rcu_read_unlock();
1805
}
1806
EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1807

1808 1809 1810 1811
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1812
#define CHARGE_BATCH	32U
1813 1814
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1815
	unsigned int nr_pages;
1816
	struct work_struct work;
1817
	unsigned long flags;
1818
#define FLUSHING_CACHED_CHARGE	0
1819 1820
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1821
static DEFINE_MUTEX(percpu_charge_mutex);
1822

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1833
 */
1834
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1835 1836
{
	struct memcg_stock_pcp *stock;
1837
	bool ret = false;
1838

1839
	if (nr_pages > CHARGE_BATCH)
1840
		return ret;
1841

1842
	stock = &get_cpu_var(memcg_stock);
1843
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1844
		stock->nr_pages -= nr_pages;
1845 1846
		ret = true;
	}
1847 1848 1849 1850 1851
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1852
 * Returns stocks cached in percpu and reset cached information.
1853 1854 1855 1856 1857
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1858
	if (stock->nr_pages) {
1859
		page_counter_uncharge(&old->memory, stock->nr_pages);
1860
		if (do_memsw_account())
1861
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1862
		css_put_many(&old->css, stock->nr_pages);
1863
		stock->nr_pages = 0;
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1874
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1875
	drain_stock(stock);
1876
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1877 1878 1879
}

/*
1880
 * Cache charges(val) to local per_cpu area.
1881
 * This will be consumed by consume_stock() function, later.
1882
 */
1883
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1884 1885 1886
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1887
	if (stock->cached != memcg) { /* reset if necessary */
1888
		drain_stock(stock);
1889
		stock->cached = memcg;
1890
	}
1891
	stock->nr_pages += nr_pages;
1892 1893 1894 1895
	put_cpu_var(memcg_stock);
}

/*
1896
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1897
 * of the hierarchy under it.
1898
 */
1899
static void drain_all_stock(struct mem_cgroup *root_memcg)
1900
{
1901
	int cpu, curcpu;
1902

1903 1904 1905
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1906 1907
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1908
	curcpu = get_cpu();
1909 1910
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1911
		struct mem_cgroup *memcg;
1912

1913 1914
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1915
			continue;
1916
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1917
			continue;
1918 1919 1920 1921 1922 1923
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1924
	}
1925
	put_cpu();
A
Andrew Morton 已提交
1926
	put_online_cpus();
1927
	mutex_unlock(&percpu_charge_mutex);
1928 1929
}

1930
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1931 1932 1933 1934 1935 1936
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1937
	if (action == CPU_ONLINE)
1938 1939
		return NOTIFY_OK;

1940
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1941
		return NOTIFY_OK;
1942

1943 1944 1945 1946 1947
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1968 1969 1970 1971 1972 1973 1974
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1975
	struct mem_cgroup *memcg;
1976 1977 1978 1979

	if (likely(!nr_pages))
		return;

1980 1981
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1982 1983 1984 1985
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1986 1987
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1988
{
1989
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1990
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1991
	struct mem_cgroup *mem_over_limit;
1992
	struct page_counter *counter;
1993
	unsigned long nr_reclaimed;
1994 1995
	bool may_swap = true;
	bool drained = false;
1996

1997
	if (mem_cgroup_is_root(memcg))
1998
		return 0;
1999
retry:
2000
	if (consume_stock(memcg, nr_pages))
2001
		return 0;
2002

2003
	if (!do_memsw_account() ||
2004 2005
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2006
			goto done_restock;
2007
		if (do_memsw_account())
2008 2009
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2010
	} else {
2011
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2012
		may_swap = false;
2013
	}
2014

2015 2016 2017 2018
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2019

2020 2021 2022 2023 2024 2025 2026 2027 2028
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
2029
		goto force;
2030 2031 2032 2033

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2034
	if (!gfpflags_allow_blocking(gfp_mask))
2035
		goto nomem;
2036

2037 2038
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2039 2040
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2041

2042
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2043
		goto retry;
2044

2045
	if (!drained) {
2046
		drain_all_stock(mem_over_limit);
2047 2048 2049 2050
		drained = true;
		goto retry;
	}

2051 2052
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2053 2054 2055 2056 2057 2058 2059 2060 2061
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2062
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2063 2064 2065 2066 2067 2068 2069 2070
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2071 2072 2073
	if (nr_retries--)
		goto retry;

2074
	if (gfp_mask & __GFP_NOFAIL)
2075
		goto force;
2076

2077
	if (fatal_signal_pending(current))
2078
		goto force;
2079

2080 2081
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2082 2083
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
2084
nomem:
2085
	if (!(gfp_mask & __GFP_NOFAIL))
2086
		return -ENOMEM;
2087 2088 2089 2090 2091 2092 2093
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2094
	if (do_memsw_account())
2095 2096 2097 2098
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2099 2100

done_restock:
2101
	css_get_many(&memcg->css, batch);
2102 2103
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2104

2105
	/*
2106 2107
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2108
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2109 2110 2111 2112
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2113 2114
	 */
	do {
2115
		if (page_counter_read(&memcg->memory) > memcg->high) {
2116 2117 2118 2119 2120
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2121
			current->memcg_nr_pages_over_high += batch;
2122 2123 2124
			set_notify_resume(current);
			break;
		}
2125
	} while ((memcg = parent_mem_cgroup(memcg)));
2126 2127

	return 0;
2128
}
2129

2130
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2131
{
2132 2133 2134
	if (mem_cgroup_is_root(memcg))
		return;

2135
	page_counter_uncharge(&memcg->memory, nr_pages);
2136
	if (do_memsw_account())
2137
		page_counter_uncharge(&memcg->memsw, nr_pages);
2138

2139
	css_put_many(&memcg->css, nr_pages);
2140 2141
}

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2173
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2174
			  bool lrucare)
2175
{
2176
	int isolated;
2177

2178
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2179 2180 2181 2182 2183

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2184 2185
	if (lrucare)
		lock_page_lru(page, &isolated);
2186

2187 2188
	/*
	 * Nobody should be changing or seriously looking at
2189
	 * page->mem_cgroup at this point:
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2201
	page->mem_cgroup = memcg;
2202

2203 2204
	if (lrucare)
		unlock_page_lru(page, isolated);
2205
}
2206

2207
#ifdef CONFIG_MEMCG_KMEM
2208
static int memcg_alloc_cache_id(void)
2209
{
2210 2211 2212
	int id, size;
	int err;

2213
	id = ida_simple_get(&memcg_cache_ida,
2214 2215 2216
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2217

2218
	if (id < memcg_nr_cache_ids)
2219 2220 2221 2222 2223 2224
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2225
	down_write(&memcg_cache_ids_sem);
2226 2227

	size = 2 * (id + 1);
2228 2229 2230 2231 2232
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2233
	err = memcg_update_all_caches(size);
2234 2235
	if (!err)
		err = memcg_update_all_list_lrus(size);
2236 2237 2238 2239 2240
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2241
	if (err) {
2242
		ida_simple_remove(&memcg_cache_ida, id);
2243 2244 2245 2246 2247 2248 2249
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2250
	ida_simple_remove(&memcg_cache_ida, id);
2251 2252
}

2253
struct memcg_kmem_cache_create_work {
2254 2255 2256 2257 2258
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2259
static void memcg_kmem_cache_create_func(struct work_struct *w)
2260
{
2261 2262
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2263 2264
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2265

2266
	memcg_create_kmem_cache(memcg, cachep);
2267

2268
	css_put(&memcg->css);
2269 2270 2271 2272 2273 2274
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2275 2276
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2277
{
2278
	struct memcg_kmem_cache_create_work *cw;
2279

2280
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2281
	if (!cw)
2282
		return;
2283 2284

	css_get(&memcg->css);
2285 2286 2287

	cw->memcg = memcg;
	cw->cachep = cachep;
2288
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2289 2290 2291 2292

	schedule_work(&cw->work);
}

2293 2294
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2295 2296 2297 2298
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2299
	 * in __memcg_schedule_kmem_cache_create will recurse.
2300 2301 2302 2303 2304 2305 2306
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2307
	current->memcg_kmem_skip_account = 1;
2308
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2309
	current->memcg_kmem_skip_account = 0;
2310
}
2311

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
V
Vladimir Davydov 已提交
2325
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2326 2327
{
	struct mem_cgroup *memcg;
2328
	struct kmem_cache *memcg_cachep;
2329
	int kmemcg_id;
2330

2331
	VM_BUG_ON(!is_root_cache(cachep));
2332

V
Vladimir Davydov 已提交
2333 2334 2335 2336 2337 2338
	if (cachep->flags & SLAB_ACCOUNT)
		gfp |= __GFP_ACCOUNT;

	if (!(gfp & __GFP_ACCOUNT))
		return cachep;

2339
	if (current->memcg_kmem_skip_account)
2340 2341
		return cachep;

2342
	memcg = get_mem_cgroup_from_mm(current->mm);
2343
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2344
	if (kmemcg_id < 0)
2345
		goto out;
2346

2347
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2348 2349
	if (likely(memcg_cachep))
		return memcg_cachep;
2350 2351 2352 2353 2354 2355 2356 2357 2358

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2359 2360 2361
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2362
	 */
2363
	memcg_schedule_kmem_cache_create(memcg, cachep);
2364
out:
2365
	css_put(&memcg->css);
2366
	return cachep;
2367 2368
}

2369 2370 2371
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2372
		css_put(&cachep->memcg_params.memcg->css);
2373 2374
}

2375 2376
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			      struct mem_cgroup *memcg)
2377
{
2378 2379
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2380 2381
	int ret;

2382
	if (!memcg_kmem_is_active(memcg))
2383
		return 0;
2384

2385 2386
	if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
		return -ENOMEM;
2387

2388 2389 2390 2391
	ret = try_charge(memcg, gfp, nr_pages);
	if (ret) {
		page_counter_uncharge(&memcg->kmem, nr_pages);
		return ret;
2392 2393
	}

2394
	page->mem_cgroup = memcg;
2395

2396
	return 0;
2397 2398
}

2399
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2400
{
2401 2402
	struct mem_cgroup *memcg;
	int ret;
2403

2404 2405
	memcg = get_mem_cgroup_from_mm(current->mm);
	ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2406
	css_put(&memcg->css);
2407
	return ret;
2408 2409
}

2410
void __memcg_kmem_uncharge(struct page *page, int order)
2411
{
2412
	struct mem_cgroup *memcg = page->mem_cgroup;
2413
	unsigned int nr_pages = 1 << order;
2414 2415 2416 2417

	if (!memcg)
		return;

2418
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2419

2420 2421
	page_counter_uncharge(&memcg->kmem, nr_pages);
	page_counter_uncharge(&memcg->memory, nr_pages);
2422
	if (do_memsw_account())
2423
		page_counter_uncharge(&memcg->memsw, nr_pages);
2424

2425
	page->mem_cgroup = NULL;
2426
	css_put_many(&memcg->css, nr_pages);
2427
}
2428 2429
#endif /* CONFIG_MEMCG_KMEM */

2430 2431 2432 2433
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2434 2435 2436
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2437
 */
2438
void mem_cgroup_split_huge_fixup(struct page *head)
2439
{
2440
	int i;
2441

2442 2443
	if (mem_cgroup_disabled())
		return;
2444

2445
	for (i = 1; i < HPAGE_PMD_NR; i++)
2446
		head[i].mem_cgroup = head->mem_cgroup;
2447

2448
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2449
		       HPAGE_PMD_NR);
2450
}
2451
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2452

A
Andrew Morton 已提交
2453
#ifdef CONFIG_MEMCG_SWAP
2454 2455
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2456
{
2457 2458
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2459
}
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2472
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2473 2474 2475
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2476
				struct mem_cgroup *from, struct mem_cgroup *to)
2477 2478 2479
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2480 2481
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2482 2483 2484

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2485
		mem_cgroup_swap_statistics(to, true);
2486 2487 2488 2489 2490 2491
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2492
				struct mem_cgroup *from, struct mem_cgroup *to)
2493 2494 2495
{
	return -EINVAL;
}
2496
#endif
K
KAMEZAWA Hiroyuki 已提交
2497

2498
static DEFINE_MUTEX(memcg_limit_mutex);
2499

2500
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2501
				   unsigned long limit)
2502
{
2503 2504 2505
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2506
	int retry_count;
2507
	int ret;
2508 2509 2510 2511 2512 2513

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2514 2515
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2516

2517
	oldusage = page_counter_read(&memcg->memory);
2518

2519
	do {
2520 2521 2522 2523
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2524 2525 2526 2527

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2528
			ret = -EINVAL;
2529 2530
			break;
		}
2531 2532 2533 2534
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2535 2536 2537 2538

		if (!ret)
			break;

2539 2540
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2541
		curusage = page_counter_read(&memcg->memory);
2542
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2543
		if (curusage >= oldusage)
2544 2545 2546
			retry_count--;
		else
			oldusage = curusage;
2547 2548
	} while (retry_count);

2549 2550
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2551

2552 2553 2554
	return ret;
}

L
Li Zefan 已提交
2555
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2556
					 unsigned long limit)
2557
{
2558 2559 2560
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2561
	int retry_count;
2562
	int ret;
2563

2564
	/* see mem_cgroup_resize_res_limit */
2565 2566 2567 2568 2569 2570
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2571 2572 2573 2574
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2575 2576 2577 2578

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2579 2580 2581
			ret = -EINVAL;
			break;
		}
2582 2583 2584 2585
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2586 2587 2588 2589

		if (!ret)
			break;

2590 2591
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2592
		curusage = page_counter_read(&memcg->memsw);
2593
		/* Usage is reduced ? */
2594
		if (curusage >= oldusage)
2595
			retry_count--;
2596 2597
		else
			oldusage = curusage;
2598 2599
	} while (retry_count);

2600 2601
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2602

2603 2604 2605
	return ret;
}

2606 2607 2608 2609 2610 2611 2612 2613 2614
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2615
	unsigned long excess;
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2640
		spin_lock_irq(&mctz->lock);
2641
		__mem_cgroup_remove_exceeded(mz, mctz);
2642 2643 2644 2645 2646 2647

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2648 2649 2650
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2651
		excess = soft_limit_excess(mz->memcg);
2652 2653 2654 2655 2656 2657 2658 2659 2660
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2661
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2662
		spin_unlock_irq(&mctz->lock);
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2680 2681 2682 2683 2684 2685
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2686 2687
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2688 2689
	bool ret;

2690
	/*
2691 2692 2693 2694
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
2695
	 */
2696 2697 2698 2699 2700 2701
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2702 2703
}

2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2714 2715
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2716
	/* try to free all pages in this cgroup */
2717
	while (nr_retries && page_counter_read(&memcg->memory)) {
2718
		int progress;
2719

2720 2721 2722
		if (signal_pending(current))
			return -EINTR;

2723 2724
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2725
		if (!progress) {
2726
			nr_retries--;
2727
			/* maybe some writeback is necessary */
2728
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2729
		}
2730 2731

	}
2732 2733

	return 0;
2734 2735
}

2736 2737 2738
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2739
{
2740
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2741

2742 2743
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2744
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2745 2746
}

2747 2748
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2749
{
2750
	return mem_cgroup_from_css(css)->use_hierarchy;
2751 2752
}

2753 2754
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2755 2756
{
	int retval = 0;
2757
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2758
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2759

2760
	mutex_lock(&memcg_create_mutex);
2761 2762 2763 2764

	if (memcg->use_hierarchy == val)
		goto out;

2765
	/*
2766
	 * If parent's use_hierarchy is set, we can't make any modifications
2767 2768 2769 2770 2771 2772
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2773
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2774
				(val == 1 || val == 0)) {
2775
		if (!memcg_has_children(memcg))
2776
			memcg->use_hierarchy = val;
2777 2778 2779 2780
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2781 2782

out:
2783
	mutex_unlock(&memcg_create_mutex);
2784 2785 2786 2787

	return retval;
}

2788 2789
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
2790 2791
{
	struct mem_cgroup *iter;
2792
	unsigned long val = 0;
2793 2794 2795 2796 2797 2798 2799

	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	return val;
}

2800
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2801
{
2802
	unsigned long val;
2803

2804 2805 2806 2807 2808 2809
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
2810
		if (!swap)
2811
			val = page_counter_read(&memcg->memory);
2812
		else
2813
			val = page_counter_read(&memcg->memsw);
2814
	}
2815
	return val;
2816 2817
}

2818 2819 2820 2821 2822 2823 2824
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2825

2826
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2827
			       struct cftype *cft)
B
Balbir Singh 已提交
2828
{
2829
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2830
	struct page_counter *counter;
2831

2832
	switch (MEMFILE_TYPE(cft->private)) {
2833
	case _MEM:
2834 2835
		counter = &memcg->memory;
		break;
2836
	case _MEMSWAP:
2837 2838
		counter = &memcg->memsw;
		break;
2839
	case _KMEM:
2840
		counter = &memcg->kmem;
2841
		break;
2842 2843 2844
	default:
		BUG();
	}
2845 2846 2847 2848

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2849
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2850
		if (counter == &memcg->memsw)
2851
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2864
}
2865 2866

#ifdef CONFIG_MEMCG_KMEM
2867 2868
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
2869 2870 2871 2872
{
	int err = 0;
	int memcg_id;

2873
	BUG_ON(memcg->kmemcg_id >= 0);
2874
	BUG_ON(memcg->kmem_acct_activated);
2875
	BUG_ON(memcg->kmem_acct_active);
2876

2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
2889
	mutex_lock(&memcg_create_mutex);
2890
	if (cgroup_is_populated(memcg->css.cgroup) ||
2891
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
2892 2893 2894 2895
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
2896

2897
	memcg_id = memcg_alloc_cache_id();
2898 2899 2900 2901 2902 2903
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
2904 2905
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
2906
	 */
2907
	err = page_counter_limit(&memcg->kmem, nr_pages);
2908 2909 2910 2911
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
2912 2913
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
2914 2915 2916
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2917
	memcg->kmemcg_id = memcg_id;
2918
	memcg->kmem_acct_activated = true;
2919
	memcg->kmem_acct_active = true;
2920
out:
2921 2922 2923 2924
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2925
				   unsigned long limit)
2926 2927 2928
{
	int ret;

2929
	mutex_lock(&memcg_limit_mutex);
2930
	if (!memcg_kmem_is_active(memcg))
2931
		ret = memcg_activate_kmem(memcg, limit);
2932
	else
2933 2934
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
2935 2936 2937
	return ret;
}

2938
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2939
{
2940
	int ret = 0;
2941
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2942

2943 2944
	if (!parent)
		return 0;
2945

2946
	mutex_lock(&memcg_limit_mutex);
2947
	/*
2948 2949
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
2950
	 */
2951
	if (memcg_kmem_is_active(parent))
2952 2953
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
2954
	return ret;
2955
}
2956 2957
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2958
				   unsigned long limit)
2959 2960 2961
{
	return -EINVAL;
}
2962
#endif /* CONFIG_MEMCG_KMEM */
2963

2964 2965 2966 2967
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2968 2969
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
2970
{
2971
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2972
	unsigned long nr_pages;
2973 2974
	int ret;

2975
	buf = strstrip(buf);
2976
	ret = page_counter_memparse(buf, "-1", &nr_pages);
2977 2978
	if (ret)
		return ret;
2979

2980
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2981
	case RES_LIMIT:
2982 2983 2984 2985
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2986 2987 2988
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2989
			break;
2990 2991
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2992
			break;
2993 2994 2995 2996
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
2997
		break;
2998 2999 3000
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3001 3002
		break;
	}
3003
	return ret ?: nbytes;
B
Balbir Singh 已提交
3004 3005
}

3006 3007
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3008
{
3009
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3010
	struct page_counter *counter;
3011

3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3025

3026
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3027
	case RES_MAX_USAGE:
3028
		page_counter_reset_watermark(counter);
3029 3030
		break;
	case RES_FAILCNT:
3031
		counter->failcnt = 0;
3032
		break;
3033 3034
	default:
		BUG();
3035
	}
3036

3037
	return nbytes;
3038 3039
}

3040
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3041 3042
					struct cftype *cft)
{
3043
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3044 3045
}

3046
#ifdef CONFIG_MMU
3047
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3048 3049
					struct cftype *cft, u64 val)
{
3050
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3051

3052
	if (val & ~MOVE_MASK)
3053
		return -EINVAL;
3054

3055
	/*
3056 3057 3058 3059
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3060
	 */
3061
	memcg->move_charge_at_immigrate = val;
3062 3063
	return 0;
}
3064
#else
3065
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3066 3067 3068 3069 3070
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3071

3072
#ifdef CONFIG_NUMA
3073
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3074
{
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3087
	int nid;
3088
	unsigned long nr;
3089
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3090

3091 3092 3093 3094 3095 3096 3097 3098 3099
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3100 3101
	}

3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3117 3118 3119 3120 3121 3122
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3123
static int memcg_stat_show(struct seq_file *m, void *v)
3124
{
3125
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3126
	unsigned long memory, memsw;
3127 3128
	struct mem_cgroup *mi;
	unsigned int i;
3129

3130 3131 3132 3133
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3134 3135
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3136
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3137
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3138
			continue;
3139
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3140
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3141
	}
L
Lee Schermerhorn 已提交
3142

3143 3144 3145 3146 3147 3148 3149 3150
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3151
	/* Hierarchical information */
3152 3153 3154 3155
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3156
	}
3157 3158
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3159
	if (do_memsw_account())
3160 3161
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3162

3163
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3164
		unsigned long long val = 0;
3165

3166
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3167
			continue;
3168 3169
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3170
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3188
	}
K
KAMEZAWA Hiroyuki 已提交
3189

K
KOSAKI Motohiro 已提交
3190 3191 3192 3193
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3194
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3195 3196 3197 3198 3199
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3200
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3201
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3202

3203 3204 3205 3206
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3207
			}
3208 3209 3210 3211
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3212 3213 3214
	}
#endif

3215 3216 3217
	return 0;
}

3218 3219
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3220
{
3221
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3222

3223
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3224 3225
}

3226 3227
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3228
{
3229
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3230

3231
	if (val > 100)
K
KOSAKI Motohiro 已提交
3232 3233
		return -EINVAL;

3234
	if (css->parent)
3235 3236 3237
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3238

K
KOSAKI Motohiro 已提交
3239 3240 3241
	return 0;
}

3242 3243 3244
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3245
	unsigned long usage;
3246 3247 3248 3249
	int i;

	rcu_read_lock();
	if (!swap)
3250
		t = rcu_dereference(memcg->thresholds.primary);
3251
	else
3252
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3253 3254 3255 3256

	if (!t)
		goto unlock;

3257
	usage = mem_cgroup_usage(memcg, swap);
3258 3259

	/*
3260
	 * current_threshold points to threshold just below or equal to usage.
3261 3262 3263
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3264
	i = t->current_threshold;
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3288
	t->current_threshold = i - 1;
3289 3290 3291 3292 3293 3294
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3295 3296
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3297
		if (do_memsw_account())
3298 3299 3300 3301
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3302 3303 3304 3305 3306 3307 3308
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3309 3310 3311 3312 3313 3314 3315
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3316 3317
}

3318
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3319 3320 3321
{
	struct mem_cgroup_eventfd_list *ev;

3322 3323
	spin_lock(&memcg_oom_lock);

3324
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3325
		eventfd_signal(ev->eventfd, 1);
3326 3327

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3328 3329 3330
	return 0;
}

3331
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3332
{
K
KAMEZAWA Hiroyuki 已提交
3333 3334
	struct mem_cgroup *iter;

3335
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3336
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3337 3338
}

3339
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3340
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3341
{
3342 3343
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3344 3345
	unsigned long threshold;
	unsigned long usage;
3346
	int i, size, ret;
3347

3348
	ret = page_counter_memparse(args, "-1", &threshold);
3349 3350 3351 3352
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3353

3354
	if (type == _MEM) {
3355
		thresholds = &memcg->thresholds;
3356
		usage = mem_cgroup_usage(memcg, false);
3357
	} else if (type == _MEMSWAP) {
3358
		thresholds = &memcg->memsw_thresholds;
3359
		usage = mem_cgroup_usage(memcg, true);
3360
	} else
3361 3362 3363
		BUG();

	/* Check if a threshold crossed before adding a new one */
3364
	if (thresholds->primary)
3365 3366
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3367
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3368 3369

	/* Allocate memory for new array of thresholds */
3370
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3371
			GFP_KERNEL);
3372
	if (!new) {
3373 3374 3375
		ret = -ENOMEM;
		goto unlock;
	}
3376
	new->size = size;
3377 3378

	/* Copy thresholds (if any) to new array */
3379 3380
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3381
				sizeof(struct mem_cgroup_threshold));
3382 3383
	}

3384
	/* Add new threshold */
3385 3386
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3387 3388

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3389
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3390 3391 3392
			compare_thresholds, NULL);

	/* Find current threshold */
3393
	new->current_threshold = -1;
3394
	for (i = 0; i < size; i++) {
3395
		if (new->entries[i].threshold <= usage) {
3396
			/*
3397 3398
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3399 3400
			 * it here.
			 */
3401
			++new->current_threshold;
3402 3403
		} else
			break;
3404 3405
	}

3406 3407 3408 3409 3410
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3411

3412
	/* To be sure that nobody uses thresholds */
3413 3414 3415 3416 3417 3418 3419 3420
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3421
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3422 3423
	struct eventfd_ctx *eventfd, const char *args)
{
3424
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3425 3426
}

3427
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3428 3429
	struct eventfd_ctx *eventfd, const char *args)
{
3430
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3431 3432
}

3433
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3434
	struct eventfd_ctx *eventfd, enum res_type type)
3435
{
3436 3437
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3438
	unsigned long usage;
3439
	int i, j, size;
3440 3441

	mutex_lock(&memcg->thresholds_lock);
3442 3443

	if (type == _MEM) {
3444
		thresholds = &memcg->thresholds;
3445
		usage = mem_cgroup_usage(memcg, false);
3446
	} else if (type == _MEMSWAP) {
3447
		thresholds = &memcg->memsw_thresholds;
3448
		usage = mem_cgroup_usage(memcg, true);
3449
	} else
3450 3451
		BUG();

3452 3453 3454
	if (!thresholds->primary)
		goto unlock;

3455 3456 3457 3458
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3459 3460 3461
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3462 3463 3464
			size++;
	}

3465
	new = thresholds->spare;
3466

3467 3468
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3469 3470
		kfree(new);
		new = NULL;
3471
		goto swap_buffers;
3472 3473
	}

3474
	new->size = size;
3475 3476

	/* Copy thresholds and find current threshold */
3477 3478 3479
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3480 3481
			continue;

3482
		new->entries[j] = thresholds->primary->entries[i];
3483
		if (new->entries[j].threshold <= usage) {
3484
			/*
3485
			 * new->current_threshold will not be used
3486 3487 3488
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3489
			++new->current_threshold;
3490 3491 3492 3493
		}
		j++;
	}

3494
swap_buffers:
3495 3496
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3497 3498 3499 3500 3501 3502
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3503
	rcu_assign_pointer(thresholds->primary, new);
3504

3505
	/* To be sure that nobody uses thresholds */
3506
	synchronize_rcu();
3507
unlock:
3508 3509
	mutex_unlock(&memcg->thresholds_lock);
}
3510

3511
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3512 3513
	struct eventfd_ctx *eventfd)
{
3514
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3515 3516
}

3517
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3518 3519
	struct eventfd_ctx *eventfd)
{
3520
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3521 3522
}

3523
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3524
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3525 3526 3527 3528 3529 3530 3531
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3532
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3533 3534 3535 3536 3537

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3538
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3539
		eventfd_signal(eventfd, 1);
3540
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3541 3542 3543 3544

	return 0;
}

3545
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3546
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3547 3548 3549
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3550
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3551

3552
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3553 3554 3555 3556 3557 3558
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3559
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3560 3561
}

3562
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3563
{
3564
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3565

3566
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3567
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3568 3569 3570
	return 0;
}

3571
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3572 3573
	struct cftype *cft, u64 val)
{
3574
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3575 3576

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3577
	if (!css->parent || !((val == 0) || (val == 1)))
3578 3579
		return -EINVAL;

3580
	memcg->oom_kill_disable = val;
3581
	if (!val)
3582
		memcg_oom_recover(memcg);
3583

3584 3585 3586
	return 0;
}

A
Andrew Morton 已提交
3587
#ifdef CONFIG_MEMCG_KMEM
3588
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3589
{
3590 3591 3592 3593 3594
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
3595

3596
	return tcp_init_cgroup(memcg, ss);
3597
}
3598

3599 3600
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
3601 3602 3603 3604
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
	if (!memcg->kmem_acct_active)
		return;

	/*
	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
	 * guarantees no cache will be created for this cgroup after we are
	 * done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_acct_active = false;

	memcg_deactivate_kmem_caches(memcg);
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
3643 3644
}

3645
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3646
{
3647 3648 3649 3650 3651
	if (memcg->kmem_acct_activated) {
		memcg_destroy_kmem_caches(memcg);
		static_key_slow_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
3652
	tcp_destroy_cgroup(memcg);
3653
}
3654
#else
3655
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3656 3657 3658
{
	return 0;
}
G
Glauber Costa 已提交
3659

3660 3661 3662 3663
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
}

3664 3665 3666
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
3667 3668
#endif

3669 3670 3671 3672 3673 3674 3675
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3686 3687 3688 3689 3690
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3701 3702 3703
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3704 3705
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3706 3707 3708
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3709 3710 3711
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3712
 *
3713 3714 3715 3716 3717
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3718
 */
3719 3720 3721
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3722 3723 3724 3725 3726 3727 3728 3729
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3730 3731 3732
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3733 3734 3735 3736 3737

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3738
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3739 3740 3741 3742
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3754 3755 3756 3757
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3758 3759
#endif	/* CONFIG_CGROUP_WRITEBACK */

3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3773 3774 3775 3776 3777
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3778
static void memcg_event_remove(struct work_struct *work)
3779
{
3780 3781
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3782
	struct mem_cgroup *memcg = event->memcg;
3783 3784 3785

	remove_wait_queue(event->wqh, &event->wait);

3786
	event->unregister_event(memcg, event->eventfd);
3787 3788 3789 3790 3791 3792

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3793
	css_put(&memcg->css);
3794 3795 3796 3797 3798 3799 3800
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3801 3802
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3803
{
3804 3805
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3806
	struct mem_cgroup *memcg = event->memcg;
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3819
		spin_lock(&memcg->event_list_lock);
3820 3821 3822 3823 3824 3825 3826 3827
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3828
		spin_unlock(&memcg->event_list_lock);
3829 3830 3831 3832 3833
	}

	return 0;
}

3834
static void memcg_event_ptable_queue_proc(struct file *file,
3835 3836
		wait_queue_head_t *wqh, poll_table *pt)
{
3837 3838
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3839 3840 3841 3842 3843 3844

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3845 3846
 * DO NOT USE IN NEW FILES.
 *
3847 3848 3849 3850 3851
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3852 3853
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3854
{
3855
	struct cgroup_subsys_state *css = of_css(of);
3856
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3857
	struct mem_cgroup_event *event;
3858 3859 3860 3861
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3862
	const char *name;
3863 3864 3865
	char *endp;
	int ret;

3866 3867 3868
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3869 3870
	if (*endp != ' ')
		return -EINVAL;
3871
	buf = endp + 1;
3872

3873
	cfd = simple_strtoul(buf, &endp, 10);
3874 3875
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3876
	buf = endp + 1;
3877 3878 3879 3880 3881

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3882
	event->memcg = memcg;
3883
	INIT_LIST_HEAD(&event->list);
3884 3885 3886
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3912 3913 3914 3915 3916
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3917 3918
	 *
	 * DO NOT ADD NEW FILES.
3919
	 */
A
Al Viro 已提交
3920
	name = cfile.file->f_path.dentry->d_name.name;
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3932 3933
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3934 3935 3936 3937 3938
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3939
	/*
3940 3941 3942
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3943
	 */
A
Al Viro 已提交
3944
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3945
					       &memory_cgrp_subsys);
3946
	ret = -EINVAL;
3947
	if (IS_ERR(cfile_css))
3948
		goto out_put_cfile;
3949 3950
	if (cfile_css != css) {
		css_put(cfile_css);
3951
		goto out_put_cfile;
3952
	}
3953

3954
	ret = event->register_event(memcg, event->eventfd, buf);
3955 3956 3957 3958 3959
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3960 3961 3962
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3963 3964 3965 3966

	fdput(cfile);
	fdput(efile);

3967
	return nbytes;
3968 3969

out_put_css:
3970
	css_put(css);
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3983
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3984
	{
3985
		.name = "usage_in_bytes",
3986
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3987
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3988
	},
3989 3990
	{
		.name = "max_usage_in_bytes",
3991
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3992
		.write = mem_cgroup_reset,
3993
		.read_u64 = mem_cgroup_read_u64,
3994
	},
B
Balbir Singh 已提交
3995
	{
3996
		.name = "limit_in_bytes",
3997
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3998
		.write = mem_cgroup_write,
3999
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4000
	},
4001 4002 4003
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4004
		.write = mem_cgroup_write,
4005
		.read_u64 = mem_cgroup_read_u64,
4006
	},
B
Balbir Singh 已提交
4007 4008
	{
		.name = "failcnt",
4009
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4010
		.write = mem_cgroup_reset,
4011
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4012
	},
4013 4014
	{
		.name = "stat",
4015
		.seq_show = memcg_stat_show,
4016
	},
4017 4018
	{
		.name = "force_empty",
4019
		.write = mem_cgroup_force_empty_write,
4020
	},
4021 4022 4023 4024 4025
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4026
	{
4027
		.name = "cgroup.event_control",		/* XXX: for compat */
4028
		.write = memcg_write_event_control,
4029
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4030
	},
K
KOSAKI Motohiro 已提交
4031 4032 4033 4034 4035
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4036 4037 4038 4039 4040
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4041 4042
	{
		.name = "oom_control",
4043
		.seq_show = mem_cgroup_oom_control_read,
4044
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4045 4046
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4047 4048 4049
	{
		.name = "pressure_level",
	},
4050 4051 4052
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4053
		.seq_show = memcg_numa_stat_show,
4054 4055
	},
#endif
4056 4057 4058 4059
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4060
		.write = mem_cgroup_write,
4061
		.read_u64 = mem_cgroup_read_u64,
4062 4063 4064 4065
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4066
		.read_u64 = mem_cgroup_read_u64,
4067 4068 4069 4070
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4071
		.write = mem_cgroup_reset,
4072
		.read_u64 = mem_cgroup_read_u64,
4073 4074 4075 4076
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4077
		.write = mem_cgroup_reset,
4078
		.read_u64 = mem_cgroup_read_u64,
4079
	},
4080 4081 4082
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4083 4084 4085 4086
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4087 4088
	},
#endif
4089
#endif
4090
	{ },	/* terminate */
4091
};
4092

4093
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4094 4095
{
	struct mem_cgroup_per_node *pn;
4096
	struct mem_cgroup_per_zone *mz;
4097
	int zone, tmp = node;
4098 4099 4100 4101 4102 4103 4104 4105
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4106 4107
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4108
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4109 4110
	if (!pn)
		return 1;
4111 4112 4113

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4114
		lruvec_init(&mz->lruvec);
4115 4116
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4117
		mz->memcg = memcg;
4118
	}
4119
	memcg->nodeinfo[node] = pn;
4120 4121 4122
	return 0;
}

4123
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4124
{
4125
	kfree(memcg->nodeinfo[node]);
4126 4127
}

4128 4129
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4130
	struct mem_cgroup *memcg;
4131
	size_t size;
4132

4133 4134
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4135

4136
	memcg = kzalloc(size, GFP_KERNEL);
4137
	if (!memcg)
4138 4139
		return NULL;

4140 4141
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4142
		goto out_free;
T
Tejun Heo 已提交
4143 4144 4145 4146

	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto out_free_stat;

4147
	return memcg;
4148

T
Tejun Heo 已提交
4149 4150
out_free_stat:
	free_percpu(memcg->stat);
4151
out_free:
4152
	kfree(memcg);
4153
	return NULL;
4154 4155
}

4156
/*
4157 4158 4159 4160 4161 4162 4163 4164
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4165
 */
4166 4167

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4168
{
4169
	int node;
4170

4171 4172
	cancel_work_sync(&memcg->high_work);

4173
	mem_cgroup_remove_from_trees(memcg);
4174 4175 4176 4177 4178

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);
T
Tejun Heo 已提交
4179
	memcg_wb_domain_exit(memcg);
4180
	kfree(memcg);
4181
}
4182

L
Li Zefan 已提交
4183
static struct cgroup_subsys_state * __ref
4184
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4185
{
4186
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4187
	long error = -ENOMEM;
4188
	int node;
B
Balbir Singh 已提交
4189

4190 4191
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4192
		return ERR_PTR(error);
4193

B
Bob Liu 已提交
4194
	for_each_node(node)
4195
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4196
			goto free_out;
4197

4198
	/* root ? */
4199
	if (parent_css == NULL) {
4200
		root_mem_cgroup = memcg;
4201
		page_counter_init(&memcg->memory, NULL);
4202
		memcg->high = PAGE_COUNTER_MAX;
4203
		memcg->soft_limit = PAGE_COUNTER_MAX;
4204 4205
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4206
	}
4207

4208
	INIT_WORK(&memcg->high_work, high_work_func);
4209 4210 4211 4212 4213
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4214
	vmpressure_init(&memcg->vmpressure);
4215 4216
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4217 4218 4219
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4220 4221
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
4222 4223 4224
#endif
#ifdef CONFIG_INET
	memcg->socket_pressure = jiffies;
4225
#endif
4226 4227 4228 4229 4230 4231 4232 4233
	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4234
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4235
{
4236
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4237
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4238
	int ret;
4239

4240
	if (css->id > MEM_CGROUP_ID_MAX)
4241 4242
		return -ENOSPC;

T
Tejun Heo 已提交
4243
	if (!parent)
4244 4245
		return 0;

4246
	mutex_lock(&memcg_create_mutex);
4247 4248 4249 4250 4251 4252

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4253
		page_counter_init(&memcg->memory, &parent->memory);
4254
		memcg->high = PAGE_COUNTER_MAX;
4255
		memcg->soft_limit = PAGE_COUNTER_MAX;
4256 4257
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4258

4259
		/*
4260 4261
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4262
		 */
4263
	} else {
4264
		page_counter_init(&memcg->memory, NULL);
4265
		memcg->high = PAGE_COUNTER_MAX;
4266
		memcg->soft_limit = PAGE_COUNTER_MAX;
4267 4268
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4269 4270 4271 4272 4273
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4274
		if (parent != root_mem_cgroup)
4275
			memory_cgrp_subsys.broken_hierarchy = true;
4276
	}
4277
	mutex_unlock(&memcg_create_mutex);
4278

4279 4280 4281 4282
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

4283 4284 4285 4286 4287
#ifdef CONFIG_INET
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
		static_key_slow_inc(&memcg_sockets_enabled_key);
#endif

4288 4289 4290 4291 4292 4293 4294 4295
	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4296 4297
}

4298
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4299
{
4300
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4301
	struct mem_cgroup_event *event, *tmp;
4302 4303 4304 4305 4306 4307

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4308 4309
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4310 4311 4312
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4313
	spin_unlock(&memcg->event_list_lock);
4314

4315
	vmpressure_cleanup(&memcg->vmpressure);
4316 4317

	memcg_deactivate_kmem(memcg);
4318 4319

	wb_memcg_offline(memcg);
4320 4321
}

4322 4323 4324 4325 4326 4327 4328
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4329
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4330
{
4331
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4332

4333
	memcg_destroy_kmem(memcg);
4334 4335 4336 4337
#ifdef CONFIG_INET
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
		static_key_slow_dec(&memcg_sockets_enabled_key);
#endif
4338
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4339 4340
}

4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4358 4359 4360
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4361 4362
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4363
	memcg->soft_limit = PAGE_COUNTER_MAX;
4364
	memcg_wb_domain_size_changed(memcg);
4365 4366
}

4367
#ifdef CONFIG_MMU
4368
/* Handlers for move charge at task migration. */
4369
static int mem_cgroup_do_precharge(unsigned long count)
4370
{
4371
	int ret;
4372

4373 4374
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4375
	if (!ret) {
4376 4377 4378
		mc.precharge += count;
		return ret;
	}
4379 4380

	/* Try charges one by one with reclaim */
4381
	while (count--) {
4382
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4383 4384
		if (ret)
			return ret;
4385
		mc.precharge++;
4386
		cond_resched();
4387
	}
4388
	return 0;
4389 4390 4391
}

/**
4392
 * get_mctgt_type - get target type of moving charge
4393 4394 4395
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4396
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4397 4398 4399 4400 4401 4402
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4403 4404 4405
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4406 4407 4408 4409 4410
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4411
	swp_entry_t	ent;
4412 4413 4414
};

enum mc_target_type {
4415
	MC_TARGET_NONE = 0,
4416
	MC_TARGET_PAGE,
4417
	MC_TARGET_SWAP,
4418 4419
};

D
Daisuke Nishimura 已提交
4420 4421
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4422
{
D
Daisuke Nishimura 已提交
4423
	struct page *page = vm_normal_page(vma, addr, ptent);
4424

D
Daisuke Nishimura 已提交
4425 4426 4427
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4428
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4429
			return NULL;
4430 4431 4432 4433
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4434 4435 4436 4437 4438 4439
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4440
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4441 4442 4443 4444 4445 4446
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4447
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4448
		return NULL;
4449 4450 4451 4452
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4453
	page = find_get_page(swap_address_space(ent), ent.val);
4454
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4455 4456 4457 4458
		entry->val = ent.val;

	return page;
}
4459 4460 4461 4462 4463 4464 4465
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4466

4467 4468 4469 4470 4471 4472 4473 4474 4475
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4476
	if (!(mc.flags & MOVE_FILE))
4477 4478 4479
		return NULL;

	mapping = vma->vm_file->f_mapping;
4480
	pgoff = linear_page_index(vma, addr);
4481 4482

	/* page is moved even if it's not RSS of this task(page-faulted). */
4483 4484
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4485 4486 4487 4488
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4489
			if (do_memsw_account())
4490 4491 4492 4493 4494 4495 4496
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4497
#endif
4498 4499 4500
	return page;
}

4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
 * - page is not on LRU (isolate_page() is useful.)
 * - compound_lock is held when nr_pages > 1
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
	int ret;
4522
	bool anon;
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
	if (nr_pages > 1 && !PageTransHuge(page))
		goto out;

	/*
4537 4538
	 * Prevent mem_cgroup_replace_page() from looking at
	 * page->mem_cgroup of its source page while we change it.
4539 4540 4541 4542 4543 4544 4545 4546
	 */
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4547 4548
	anon = PageAnon(page);

4549 4550
	spin_lock_irqsave(&from->move_lock, flags);

4551
	if (!anon && page_mapped(page)) {
4552 4553 4554 4555 4556 4557
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
	memcg_check_events(to, page);
	mem_cgroup_charge_statistics(from, page, -nr_pages);
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4605
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4606 4607 4608
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4609
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4610 4611 4612 4613 4614 4615
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4616
	else if (pte_none(ptent))
4617
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4618 4619

	if (!page && !ent.val)
4620
		return ret;
4621 4622
	if (page) {
		/*
4623
		 * Do only loose check w/o serialization.
4624
		 * mem_cgroup_move_account() checks the page is valid or
4625
		 * not under LRU exclusion.
4626
		 */
4627
		if (page->mem_cgroup == mc.from) {
4628 4629 4630 4631 4632 4633 4634
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4635 4636
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4637
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4638 4639 4640
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4641 4642 4643 4644
	}
	return ret;
}

4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4658
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4659
	if (!(mc.flags & MOVE_ANON))
4660
		return ret;
4661
	if (page->mem_cgroup == mc.from) {
4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4678 4679 4680 4681
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4682
	struct vm_area_struct *vma = walk->vma;
4683 4684 4685
	pte_t *pte;
	spinlock_t *ptl;

4686
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4687 4688
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4689
		spin_unlock(ptl);
4690
		return 0;
4691
	}
4692

4693 4694
	if (pmd_trans_unstable(pmd))
		return 0;
4695 4696
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4697
		if (get_mctgt_type(vma, addr, *pte, NULL))
4698 4699 4700 4701
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4702 4703 4704
	return 0;
}

4705 4706 4707 4708
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4709 4710 4711 4712
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4713
	down_read(&mm->mmap_sem);
4714
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4715
	up_read(&mm->mmap_sem);
4716 4717 4718 4719 4720 4721 4722 4723 4724

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4725 4726 4727 4728 4729
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4730 4731
}

4732 4733
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4734
{
4735 4736 4737
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4738
	/* we must uncharge all the leftover precharges from mc.to */
4739
	if (mc.precharge) {
4740
		cancel_charge(mc.to, mc.precharge);
4741 4742 4743 4744 4745 4746 4747
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4748
		cancel_charge(mc.from, mc.moved_charge);
4749
		mc.moved_charge = 0;
4750
	}
4751 4752 4753
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4754
		if (!mem_cgroup_is_root(mc.from))
4755
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4756

4757
		/*
4758 4759
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4760
		 */
4761
		if (!mem_cgroup_is_root(mc.to))
4762 4763
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4764
		css_put_many(&mc.from->css, mc.moved_swap);
4765

L
Li Zefan 已提交
4766
		/* we've already done css_get(mc.to) */
4767 4768
		mc.moved_swap = 0;
	}
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4782
	spin_lock(&mc.lock);
4783 4784
	mc.from = NULL;
	mc.to = NULL;
4785
	spin_unlock(&mc.lock);
4786 4787
}

4788
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4789
{
4790
	struct cgroup_subsys_state *css;
4791
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4792
	struct mem_cgroup *from;
4793
	struct task_struct *leader, *p;
4794
	struct mm_struct *mm;
4795
	unsigned long move_flags;
4796
	int ret = 0;
4797

4798 4799
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4800 4801
		return 0;

4802 4803 4804 4805 4806 4807 4808
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4809
	cgroup_taskset_for_each_leader(leader, css, tset) {
4810 4811
		WARN_ON_ONCE(p);
		p = leader;
4812
		memcg = mem_cgroup_from_css(css);
4813 4814 4815 4816
	}
	if (!p)
		return 0;

4817 4818 4819 4820 4821 4822 4823 4824 4825
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4851
	}
4852
	mmput(mm);
4853 4854 4855
	return ret;
}

4856
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4857
{
4858 4859
	if (mc.to)
		mem_cgroup_clear_mc();
4860 4861
}

4862 4863 4864
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4865
{
4866
	int ret = 0;
4867
	struct vm_area_struct *vma = walk->vma;
4868 4869
	pte_t *pte;
	spinlock_t *ptl;
4870 4871 4872
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4873

4874 4875 4876 4877 4878 4879 4880 4881 4882 4883
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
4884
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4885
		if (mc.precharge < HPAGE_PMD_NR) {
4886
			spin_unlock(ptl);
4887 4888 4889 4890 4891 4892 4893
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
4894
							     mc.from, mc.to)) {
4895 4896 4897 4898 4899 4900 4901
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4902
		spin_unlock(ptl);
4903
		return 0;
4904 4905
	}

4906 4907
	if (pmd_trans_unstable(pmd))
		return 0;
4908 4909 4910 4911
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4912
		swp_entry_t ent;
4913 4914 4915 4916

		if (!mc.precharge)
			break;

4917
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4918 4919 4920 4921
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
4922
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4923
				mc.precharge--;
4924 4925
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4926 4927
			}
			putback_lru_page(page);
4928
put:			/* get_mctgt_type() gets the page */
4929 4930
			put_page(page);
			break;
4931 4932
		case MC_TARGET_SWAP:
			ent = target.ent;
4933
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4934
				mc.precharge--;
4935 4936 4937
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4938
			break;
4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4953
		ret = mem_cgroup_do_precharge(1);
4954 4955 4956 4957 4958 4959 4960 4961 4962
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
4963 4964 4965 4966
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
4967 4968

	lru_add_drain_all();
4969 4970 4971 4972 4973 4974 4975
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4989 4990 4991 4992 4993
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4994
	up_read(&mm->mmap_sem);
4995
	atomic_dec(&mc.from->moving_account);
4996 4997
}

4998
static void mem_cgroup_move_task(struct cgroup_taskset *tset)
B
Balbir Singh 已提交
4999
{
5000 5001
	struct cgroup_subsys_state *css;
	struct task_struct *p = cgroup_taskset_first(tset, &css);
5002
	struct mm_struct *mm = get_task_mm(p);
5003 5004

	if (mm) {
5005 5006
		if (mc.to)
			mem_cgroup_move_charge(mm);
5007 5008
		mmput(mm);
	}
5009 5010
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5011
}
5012
#else	/* !CONFIG_MMU */
5013
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5014 5015 5016
{
	return 0;
}
5017
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5018 5019
{
}
5020
static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5021 5022 5023
{
}
#endif
B
Balbir Singh 已提交
5024

5025 5026
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5027 5028
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5029
 */
5030
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5031 5032
{
	/*
5033
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5034 5035 5036
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5037
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5038 5039 5040
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5041 5042
}

5043 5044 5045
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5046 5047 5048
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5049 5050 5051 5052 5053
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5054
	unsigned long low = READ_ONCE(memcg->low);
5055 5056

	if (low == PAGE_COUNTER_MAX)
5057
		seq_puts(m, "max\n");
5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5072
	err = page_counter_memparse(buf, "max", &low);
5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5084
	unsigned long high = READ_ONCE(memcg->high);
5085 5086

	if (high == PAGE_COUNTER_MAX)
5087
		seq_puts(m, "max\n");
5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
5102
	err = page_counter_memparse(buf, "max", &high);
5103 5104 5105 5106 5107
	if (err)
		return err;

	memcg->high = high;

5108
	memcg_wb_domain_size_changed(memcg);
5109 5110 5111 5112 5113 5114
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5115
	unsigned long max = READ_ONCE(memcg->memory.limit);
5116 5117

	if (max == PAGE_COUNTER_MAX)
5118
		seq_puts(m, "max\n");
5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
5133
	err = page_counter_memparse(buf, "max", &max);
5134 5135 5136 5137 5138 5139 5140
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

5141
	memcg_wb_domain_size_changed(memcg);
5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
5160
		.flags = CFTYPE_NOT_ON_ROOT,
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5184
		.file_offset = offsetof(struct mem_cgroup, events_file),
5185 5186 5187 5188 5189
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5190
struct cgroup_subsys memory_cgrp_subsys = {
5191
	.css_alloc = mem_cgroup_css_alloc,
5192
	.css_online = mem_cgroup_css_online,
5193
	.css_offline = mem_cgroup_css_offline,
5194
	.css_released = mem_cgroup_css_released,
5195
	.css_free = mem_cgroup_css_free,
5196
	.css_reset = mem_cgroup_css_reset,
5197 5198
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5199
	.attach = mem_cgroup_move_task,
5200
	.bind = mem_cgroup_bind,
5201 5202
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5203
	.early_init = 0,
B
Balbir Singh 已提交
5204
};
5205

5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5228
	if (page_counter_read(&memcg->memory) >= memcg->low)
5229 5230 5231 5232 5233 5234 5235 5236
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5237
		if (page_counter_read(&memcg->memory) >= memcg->low)
5238 5239 5240 5241 5242
			return false;
	}
	return true;
}

5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5278
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5279
		if (page->mem_cgroup)
5280
			goto out;
5281

5282
		if (do_memsw_account()) {
5283 5284 5285 5286 5287 5288 5289 5290 5291
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5344 5345
	commit_charge(page, memcg, lrucare);

5346 5347 5348 5349 5350
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5351 5352 5353 5354
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5355

5356
	if (do_memsw_account() && PageSwapCache(page)) {
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5396 5397 5398 5399
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5400
	unsigned long nr_pages = nr_anon + nr_file;
5401 5402
	unsigned long flags;

5403
	if (!mem_cgroup_is_root(memcg)) {
5404
		page_counter_uncharge(&memcg->memory, nr_pages);
5405
		if (do_memsw_account())
5406
			page_counter_uncharge(&memcg->memsw, nr_pages);
5407 5408
		memcg_oom_recover(memcg);
	}
5409 5410 5411 5412 5413 5414

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5415
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5416 5417
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5418 5419

	if (!mem_cgroup_is_root(memcg))
5420
		css_put_many(&memcg->css, nr_pages);
5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5443
		if (!page->mem_cgroup)
5444 5445 5446 5447
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5448
		 * page->mem_cgroup at this point, we have fully
5449
		 * exclusive access to the page.
5450 5451
		 */

5452
		if (memcg != page->mem_cgroup) {
5453
			if (memcg) {
5454 5455 5456
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5457
			}
5458
			memcg = page->mem_cgroup;
5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5472
		page->mem_cgroup = NULL;
5473 5474 5475 5476 5477

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5478 5479
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5480 5481
}

5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5494
	/* Don't touch page->lru of any random page, pre-check: */
5495
	if (!page->mem_cgroup)
5496 5497
		return;

5498 5499 5500
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5501

5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5513

5514 5515
	if (!list_empty(page_list))
		uncharge_list(page_list);
5516 5517 5518
}

/**
5519
 * mem_cgroup_replace_page - migrate a charge to another page
5520 5521 5522 5523 5524 5525
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
5526
 * Either or both pages might be on the LRU already.
5527
 */
5528
void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5529
{
5530
	struct mem_cgroup *memcg;
5531 5532 5533 5534 5535
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5536 5537
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5538 5539 5540 5541 5542

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5543
	if (newpage->mem_cgroup)
5544 5545
		return;

5546
	/* Swapcache readahead pages can get replaced before being charged */
5547
	memcg = oldpage->mem_cgroup;
5548
	if (!memcg)
5549 5550
		return;

5551
	lock_page_lru(oldpage, &isolated);
5552
	oldpage->mem_cgroup = NULL;
5553
	unlock_page_lru(oldpage, isolated);
5554

5555
	commit_charge(newpage, memcg, true);
5556 5557
}

5558
#ifdef CONFIG_INET
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582

struct static_key memcg_sockets_enabled_key;
EXPORT_SYMBOL(memcg_sockets_enabled_key);

void sock_update_memcg(struct sock *sk)
{
	struct mem_cgroup *memcg;

	/* Socket cloning can throw us here with sk_cgrp already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5583 5584 5585 5586 5587 5588 5589
	if (memcg == root_mem_cgroup)
		goto out;
#ifdef CONFIG_MEMCG_KMEM
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcp_mem.active)
		goto out;
#endif
	if (css_tryget_online(&memcg->css))
5590
		sk->sk_memcg = memcg;
5591
out:
5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611
	rcu_read_unlock();
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	WARN_ON(!sk->sk_memcg);
	css_put(&sk->sk_memcg->css);
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5612
	gfp_t gfp_mask = GFP_KERNEL;
5613

5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
#ifdef CONFIG_MEMCG_KMEM
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		struct page_counter *counter;

		if (page_counter_try_charge(&memcg->tcp_mem.memory_allocated,
					    nr_pages, &counter)) {
			memcg->tcp_mem.memory_pressure = 0;
			return true;
		}
		page_counter_charge(&memcg->tcp_mem.memory_allocated, nr_pages);
		memcg->tcp_mem.memory_pressure = 1;
		return false;
5626
	}
5627 5628 5629 5630 5631 5632 5633 5634 5635
#endif
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5636 5637 5638 5639 5640 5641 5642 5643 5644 5645
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5646 5647 5648 5649 5650 5651 5652 5653 5654
#ifdef CONFIG_MEMCG_KMEM
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		page_counter_uncharge(&memcg->tcp_mem.memory_allocated,
				      nr_pages);
		return;
	}
#endif
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5655 5656
}

5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
#endif /* CONFIG_INET */

static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5672

5673
/*
5674 5675 5676 5677 5678 5679
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5680 5681 5682
 */
static int __init mem_cgroup_init(void)
{
5683 5684
	int cpu, node;

5685
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5708 5709 5710
	return 0;
}
subsys_initcall(mem_cgroup_init);
5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5728
	if (!do_memsw_account())
5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5746 5747 5748 5749 5750 5751 5752
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767
	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5768
	if (!do_memsw_account())
5769 5770 5771 5772
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5773
	memcg = mem_cgroup_from_id(id);
5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838
	if (memcg) {
		if (!mem_cgroup_is_root(memcg))
			page_counter_uncharge(&memcg->memsw, 1);
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */