memcontrol.c 119.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include "internal.h"
B
Balbir Singh 已提交
51

52 53
#include <asm/uaccess.h>

54 55
#include <trace/events/vmscan.h>

56 57
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
58
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
59

60
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
61
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
62 63 64 65 66 67
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

68 69 70 71 72 73 74 75 76
/*
 * Per memcg event counter is incremented at every pagein/pageout. This counter
 * is used for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 *
 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 */
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
77

78 79 80 81 82 83 84 85
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
86
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
87
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
88 89
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_EVENTS,	/* incremented at every  pagein/pageout */
92 93 94 95 96 97 98 99

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
};

100 101 102 103
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
104 105 106
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
107 108
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
109 110

	struct zone_reclaim_stat reclaim_stat;
111 112 113 114
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
115 116
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
117 118 119 120 121 122 123 124 125 126 127 128
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

149 150 151 152 153
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
154
/* For threshold */
155 156
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
157
	int current_threshold;
158 159 160 161 162
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
163 164 165 166 167 168 169 170 171 172 173 174

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
175 176 177 178 179
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
180 181

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
182
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
183

B
Balbir Singh 已提交
184 185 186 187 188 189 190
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
191 192 193
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
194 195 196 197 198 199 200
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
201 202 203 204
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
205 206 207 208
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
209
	struct mem_cgroup_lru_info info;
210

K
KOSAKI Motohiro 已提交
211 212 213 214 215
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

216
	/*
217
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
218
	 * reclaimed from.
219
	 */
K
KAMEZAWA Hiroyuki 已提交
220
	int last_scanned_child;
221 222 223 224
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
225
	atomic_t	oom_lock;
226
	atomic_t	refcnt;
227

K
KOSAKI Motohiro 已提交
228
	unsigned int	swappiness;
229 230
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
231

232 233 234
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

235 236 237 238
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
239
	struct mem_cgroup_thresholds thresholds;
240

241
	/* thresholds for mem+swap usage. RCU-protected */
242
	struct mem_cgroup_thresholds memsw_thresholds;
243

K
KAMEZAWA Hiroyuki 已提交
244 245 246
	/* For oom notifier event fd */
	struct list_head oom_notify;

247 248 249 250 251
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
252
	/*
253
	 * percpu counter.
254
	 */
255
	struct mem_cgroup_stat_cpu *stat;
B
Balbir Singh 已提交
256 257
};

258 259 260 261 262 263
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
264
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
265
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
266 267 268
	NR_MOVE_TYPE,
};

269 270 271 272 273
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
274
	unsigned long moved_charge;
275
	unsigned long moved_swap;
276 277 278 279 280
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
281

D
Daisuke Nishimura 已提交
282 283 284 285 286 287
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

288 289 290 291 292 293
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

294 295 296 297 298 299 300
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

301 302 303
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
304
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
305
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
306
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
307
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
308 309 310
	NR_CHARGE_TYPE,
};

311 312 313 314
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
315 316
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
317

318 319 320
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
321
#define _OOM_TYPE		(2)
322 323 324
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
325 326
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
327

328 329 330 331 332 333 334
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
335 336
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
337

338 339
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
340
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
341
static void drain_all_stock_async(void);
342

343 344 345 346 347 348
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

349 350 351 352 353
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
383
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
384
				struct mem_cgroup_per_zone *mz,
385 386
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
387 388 389 390 391 392 393 394
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

395 396 397
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
414 415 416 417 418 419 420 421 422 423 424 425 426
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

427 428 429 430 431 432
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
433
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
434 435 436 437 438 439
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
440
	unsigned long long excess;
441 442
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
443 444
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
445 446 447
	mctz = soft_limit_tree_from_page(page);

	/*
448 449
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
450
	 */
451 452
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
453
		excess = res_counter_soft_limit_excess(&mem->res);
454 455 456 457
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
458
		if (excess || mz->on_tree) {
459 460 461 462 463
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
464 465
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
466
			 */
467
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
468 469
			spin_unlock(&mctz->lock);
		}
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

488 489 490 491 492 493 494 495 496
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
497
	struct mem_cgroup_per_zone *mz;
498 499

retry:
500
	mz = NULL;
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

	for_each_possible_cpu(cpu)
		val += per_cpu(mem->stat->count[idx], cpu);
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

550 551 552 553
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
554
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
555 556
}

557 558 559
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
560
{
561
	int val = (charge) ? 1 : -1;
562

563 564
	preempt_disable();

565
	if (PageCgroupCache(pc))
566
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
567
	else
568
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
569 570

	if (charge)
571
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
572
	else
573
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
574
	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
575

576
	preempt_enable();
577 578
}

K
KAMEZAWA Hiroyuki 已提交
579
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
580
					enum lru_list idx)
581 582 583 584 585 586 587 588 589 590 591
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
592 593
}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
	s64 val;

	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);

	return !(val & ((1 << event_mask_shift) - 1));
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
		mem_cgroup_threshold(mem);
		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
			mem_cgroup_update_tree(mem, page);
	}
}

617
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
618 619 620 621 622 623
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

624
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
625
{
626 627 628 629 630 631 632 633
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

634 635 636 637
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

638 639 640
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
641 642 643

	if (!mm)
		return NULL;
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

694 695 696 697 698
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
712

K
KAMEZAWA Hiroyuki 已提交
713 714 715 716
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
717

718
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
719 720 721
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
722
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
723
		return;
724
	VM_BUG_ON(!pc->mem_cgroup);
725 726 727 728
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
729
	mz = page_cgroup_zoneinfo(pc);
730
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
731 732 733
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
734 735
	list_del_init(&pc->lru);
	return;
736 737
}

K
KAMEZAWA Hiroyuki 已提交
738
void mem_cgroup_del_lru(struct page *page)
739
{
K
KAMEZAWA Hiroyuki 已提交
740 741
	mem_cgroup_del_lru_list(page, page_lru(page));
}
742

K
KAMEZAWA Hiroyuki 已提交
743 744 745 746
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
747

748
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
749
		return;
750

K
KAMEZAWA Hiroyuki 已提交
751
	pc = lookup_page_cgroup(page);
752 753 754 755
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
756
	smp_rmb();
757 758
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
759 760 761
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
762 763
}

K
KAMEZAWA Hiroyuki 已提交
764
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
765
{
K
KAMEZAWA Hiroyuki 已提交
766 767
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
768

769
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
770 771
		return;
	pc = lookup_page_cgroup(page);
772
	VM_BUG_ON(PageCgroupAcctLRU(pc));
773 774 775 776
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
777 778
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
779
		return;
780

K
KAMEZAWA Hiroyuki 已提交
781
	mz = page_cgroup_zoneinfo(pc);
782
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
783 784 785
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
786 787
	list_add(&pc->lru, &mz->lists[lru]);
}
788

K
KAMEZAWA Hiroyuki 已提交
789
/*
790 791 792 793 794
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
795
 */
796
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
797
{
798 799 800 801 802 803 804 805 806 807 808 809
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
810 811
}

812 813 814 815 816 817 818 819
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
820
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
821 822 823 824 825
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
826 827 828
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
829
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
830 831 832
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
833 834
}

835 836 837
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
838
	struct mem_cgroup *curr = NULL;
839 840

	task_lock(task);
841 842 843
	rcu_read_lock();
	curr = try_get_mem_cgroup_from_mm(task->mm);
	rcu_read_unlock();
844
	task_unlock(task);
845 846
	if (!curr)
		return 0;
847 848 849 850 851 852 853
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
854 855 856 857
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
858 859 860
	return ret;
}

861
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
862 863 864
{
	unsigned long active;
	unsigned long inactive;
865 866
	unsigned long gb;
	unsigned long inactive_ratio;
867

K
KAMEZAWA Hiroyuki 已提交
868 869
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
870

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
898 899 900 901 902
		return 1;

	return 0;
}

903 904 905 906 907 908 909 910 911 912 913
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

914 915 916 917 918 919 920 921 922 923 924
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
945 946 947 948 949 950 951 952
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
953 954 955 956 957 958 959
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

960 961 962 963 964
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
965
					int active, int file)
966 967 968 969 970 971
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
972
	struct page_cgroup *pc, *tmp;
973 974 975
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
976
	int lru = LRU_FILE * file + active;
977
	int ret;
978

979
	BUG_ON(!mem_cont);
980
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
981
	src = &mz->lists[lru];
982

983 984
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
985
		if (scan >= nr_to_scan)
986
			break;
K
KAMEZAWA Hiroyuki 已提交
987 988

		page = pc->page;
989 990
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
991
		if (unlikely(!PageLRU(page)))
992 993
			continue;

H
Hugh Dickins 已提交
994
		scan++;
995 996 997
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
998
			list_move(&page->lru, dst);
999
			mem_cgroup_del_lru(page);
1000
			nr_taken++;
1001 1002 1003 1004 1005 1006 1007
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1008 1009 1010 1011
		}
	}

	*scanned = scan;
1012 1013 1014 1015

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1016 1017 1018
	return nr_taken;
}

1019 1020 1021
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
/* A routine for testing mem is not under move_account */

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
	bool ret = false;

	if (from == mem || to == mem)
		return true;

	if (!from || !to || !mem->use_hierarchy)
		return false;

	rcu_read_lock();
	if (css_tryget(&from->css)) {
		ret = css_is_ancestor(&from->css, &mem->css);
		css_put(&from->css);
	}
	if (!ret && css_tryget(&to->css)) {
		ret = css_is_ancestor(&to->css,	&mem->css);
		css_put(&to->css);
	}
	rcu_read_unlock();
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1093 1094 1095 1096 1097 1098
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
1099 1100

/**
1101
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1120
	if (!memcg || !p)
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

D
David Rientjes 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

	limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
			total_swap_pages;
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1196
/*
K
KAMEZAWA Hiroyuki 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1239 1240
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1241 1242 1243
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1244 1245
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1246 1247
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1248
						struct zone *zone,
1249 1250
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1251
{
K
KAMEZAWA Hiroyuki 已提交
1252 1253 1254
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1255 1256
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1257 1258
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1259

1260 1261 1262 1263
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1264
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1265
		victim = mem_cgroup_select_victim(root_mem);
1266
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1267
			loop++;
1268 1269
			if (loop >= 1)
				drain_all_stock_async();
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1293
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1294 1295
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1296 1297
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1298
		/* we use swappiness of local cgroup */
1299 1300 1301 1302 1303 1304 1305
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
				noswap, get_swappiness(victim), zone,
				zone->zone_pgdat->node_id);
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1306
		css_put(&victim->css);
1307 1308 1309 1310 1311 1312 1313
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1314
		total += ret;
1315 1316 1317 1318
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1319
			return 1 + total;
1320
	}
K
KAMEZAWA Hiroyuki 已提交
1321
	return total;
1322 1323
}

K
KAMEZAWA Hiroyuki 已提交
1324
static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1325
{
K
KAMEZAWA Hiroyuki 已提交
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	int *val = (int *)data;
	int x;
	/*
	 * Logically, we can stop scanning immediately when we find
	 * a memcg is already locked. But condidering unlock ops and
	 * creation/removal of memcg, scan-all is simple operation.
	 */
	x = atomic_inc_return(&mem->oom_lock);
	*val = max(x, *val);
	return 0;
}
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
	int lock_count = 0;
1344

K
KAMEZAWA Hiroyuki 已提交
1345 1346 1347 1348 1349
	mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);

	if (lock_count == 1)
		return true;
	return false;
1350
}
1351

K
KAMEZAWA Hiroyuki 已提交
1352
static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1353
{
K
KAMEZAWA Hiroyuki 已提交
1354 1355 1356 1357 1358 1359
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
	atomic_add_unless(&mem->oom_lock, -1, 0);
1360 1361 1362
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1363 1364 1365 1366 1367 1368 1369 1370
static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL,	mem_cgroup_oom_unlock_cb);
}

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1407 1408
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1409
	if (atomic_read(&mem->oom_lock))
1410 1411 1412
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1413 1414 1415 1416
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1417
{
K
KAMEZAWA Hiroyuki 已提交
1418
	struct oom_wait_info owait;
1419
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1420

K
KAMEZAWA Hiroyuki 已提交
1421 1422 1423 1424 1425
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1426
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1427 1428 1429 1430 1431 1432 1433 1434
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1435 1436 1437 1438
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1439
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1440 1441
	mutex_unlock(&memcg_oom_mutex);

1442 1443
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1444
		mem_cgroup_out_of_memory(mem, mask);
1445
	} else {
K
KAMEZAWA Hiroyuki 已提交
1446
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1447
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1448 1449 1450
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1451
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1452 1453 1454 1455 1456 1457 1458
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1459 1460
}

1461 1462 1463 1464
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
 */
1465
void mem_cgroup_update_file_mapped(struct page *page, int val)
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (unlikely(!pc))
		return;

	lock_page_cgroup(pc);
	mem = pc->mem_cgroup;
1476
	if (!mem || !PageCgroupUsed(pc))
1477 1478 1479
		goto done;

	/*
1480
	 * Preemption is already disabled. We can use __this_cpu_xxx
1481
	 */
1482 1483 1484 1485 1486 1487 1488
	if (val > 0) {
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		SetPageCgroupFileMapped(pc);
	} else {
		__this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		ClearPageCgroupFileMapped(pc);
	}
1489 1490 1491 1492

done:
	unlock_page_cgroup(pc);
}
1493

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1555
 * This will be consumed by consume_stock() function, later.
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

	if (action != CPU_DEAD)
		return NOTIFY_OK;
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				int csize, bool oom_check)
{
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);

	if (csize > PAGE_SIZE) /* change csize and retry */
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
					gfp_mask, flags);
	/*
	 * try_to_free_mem_cgroup_pages() might not give us a full
	 * picture of reclaim. Some pages are reclaimed and might be
	 * moved to swap cache or just unmapped from the cgroup.
	 * Check the limit again to see if the reclaim reduced the
	 * current usage of the cgroup before giving up
	 */
	if (ret || mem_cgroup_check_under_limit(mem_over_limit))
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

1688 1689 1690
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1691
 */
1692
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1693
		gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1694
{
1695 1696 1697
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
1698
	int csize = CHARGE_SIZE;
1699

K
KAMEZAWA Hiroyuki 已提交
1700 1701 1702 1703 1704 1705 1706 1707
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
1708

1709
	/*
1710 1711
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1712 1713 1714
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
1715 1716 1717 1718
	if (*memcg) {
		mem = *memcg;
		css_get(&mem->css);
	} else {
1719
		mem = try_get_mem_cgroup_from_mm(mm);
1720 1721
		if (unlikely(!mem))
			return 0;
1722
		*memcg = mem;
1723
	}
1724

1725
	VM_BUG_ON(css_is_removed(&mem->css));
1726 1727
	if (mem_cgroup_is_root(mem))
		goto done;
1728

1729 1730
	do {
		bool oom_check;
1731

1732
		if (consume_stock(mem))
1733 1734 1735 1736
			goto done; /* don't need to fill stock */
		/* If killed, bypass charge */
		if (fatal_signal_pending(current))
			goto bypass;
1737

1738 1739 1740 1741
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1742
		}
1743

1744
		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1745

1746 1747 1748 1749 1750 1751 1752 1753 1754
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
			csize = PAGE_SIZE;
			break;
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
1755 1756
			if (!oom)
				goto nomem;
1757 1758 1759 1760
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
1761
			goto bypass;
1762
		}
1763 1764
	} while (ret != CHARGE_OK);

1765 1766
	if (csize > PAGE_SIZE)
		refill_stock(mem, csize - PAGE_SIZE);
1767
done:
1768 1769 1770 1771
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
1772
bypass:
1773 1774
	if (mem)
		css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
1775 1776
	*memcg = NULL;
	return 0;
1777
}
1778

1779 1780 1781 1782 1783
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
1784 1785
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
1786 1787
{
	if (!mem_cgroup_is_root(mem)) {
1788
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1789
		if (do_swap_account)
1790 1791 1792 1793
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_put(&mem->css, (int)count);
1794
	}
1795 1796 1797 1798 1799 1800
	/* we don't need css_put for root */
}

static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
{
	__mem_cgroup_cancel_charge(mem, 1);
1801 1802
}

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

1822
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1823
{
1824
	struct mem_cgroup *mem = NULL;
1825
	struct page_cgroup *pc;
1826
	unsigned short id;
1827 1828
	swp_entry_t ent;

1829 1830 1831
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
1832
	lock_page_cgroup(pc);
1833
	if (PageCgroupUsed(pc)) {
1834
		mem = pc->mem_cgroup;
1835 1836
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
1837
	} else if (PageSwapCache(page)) {
1838
		ent.val = page_private(page);
1839 1840 1841 1842 1843 1844
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
1845
	}
1846
	unlock_page_cgroup(pc);
1847 1848 1849
	return mem;
}

1850
/*
1851
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1862 1863 1864 1865

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
1866
		mem_cgroup_cancel_charge(mem);
1867
		return;
1868
	}
1869

1870
	pc->mem_cgroup = mem;
1871 1872 1873 1874 1875 1876 1877
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
1878
	smp_wmb();
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
1892

K
KAMEZAWA Hiroyuki 已提交
1893
	mem_cgroup_charge_statistics(mem, pc, true);
1894 1895

	unlock_page_cgroup(pc);
1896 1897 1898 1899 1900
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
1901
	memcg_check_events(mem, pc->page);
1902
}
1903

1904
/**
1905
 * __mem_cgroup_move_account - move account of the page
1906 1907 1908
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
1909
 * @uncharge: whether we should call uncharge and css_put against @from.
1910 1911
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
1912
 * - page is not on LRU (isolate_page() is useful.)
1913
 * - the pc is locked, used, and ->mem_cgroup points to @from.
1914
 *
1915 1916 1917 1918
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
1919 1920
 */

1921
static void __mem_cgroup_move_account(struct page_cgroup *pc,
1922
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1923 1924
{
	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1925
	VM_BUG_ON(PageLRU(pc->page));
1926 1927 1928
	VM_BUG_ON(!PageCgroupLocked(pc));
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
1929

1930
	if (PageCgroupFileMapped(pc)) {
1931 1932 1933 1934 1935
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
1936
	}
1937 1938 1939 1940
	mem_cgroup_charge_statistics(from, pc, false);
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
		mem_cgroup_cancel_charge(from);
1941

1942
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
1943 1944
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
1945 1946 1947
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
1948 1949 1950
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
1951
	 */
1952 1953 1954 1955 1956 1957 1958
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
1959
		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1960 1961 1962 1963
{
	int ret = -EINVAL;
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1964
		__mem_cgroup_move_account(pc, from, to, uncharge);
1965 1966 1967
		ret = 0;
	}
	unlock_page_cgroup(pc);
1968 1969 1970 1971 1972
	/*
	 * check events
	 */
	memcg_check_events(to, pc->page);
	memcg_check_events(from, pc->page);
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1984
	struct page *page = pc->page;
1985 1986 1987 1988 1989 1990 1991 1992 1993
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

1994 1995 1996 1997 1998
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
K
KAMEZAWA Hiroyuki 已提交
1999

2000
	parent = mem_cgroup_from_cont(pcg);
2001
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
2002
	if (ret || !parent)
2003
		goto put_back;
2004

2005 2006 2007
	ret = mem_cgroup_move_account(pc, child, parent, true);
	if (ret)
		mem_cgroup_cancel_charge(parent);
2008
put_back:
K
KAMEZAWA Hiroyuki 已提交
2009
	putback_lru_page(page);
2010
put:
2011
	put_page(page);
2012
out:
2013 2014 2015
	return ret;
}

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
2037
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
2038
	if (ret || !mem)
2039 2040 2041
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
2042 2043 2044
	return 0;
}

2045 2046
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2047
{
2048
	if (mem_cgroup_disabled())
2049
		return 0;
2050 2051
	if (PageCompound(page))
		return 0;
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2063
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2064
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
2065 2066
}

D
Daisuke Nishimura 已提交
2067 2068 2069 2070
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2071 2072
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2073
{
2074 2075 2076
	struct mem_cgroup *mem = NULL;
	int ret;

2077
	if (mem_cgroup_disabled())
2078
		return 0;
2079 2080
	if (PageCompound(page))
		return 0;
2081 2082 2083 2084 2085 2086 2087 2088
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2089 2090
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2091 2092 2093 2094
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2095 2096 2097 2098 2099 2100 2101

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2102 2103
			return 0;
		}
2104
		unlock_page_cgroup(pc);
2105 2106
	}

2107
	if (unlikely(!mm && !mem))
2108
		mm = &init_mm;
2109

2110 2111
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
2112
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
2113

D
Daisuke Nishimura 已提交
2114 2115 2116 2117 2118 2119 2120 2121 2122
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
2123 2124

	return ret;
2125 2126
}

2127 2128 2129
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2130
 * struct page_cgroup is acquired. This refcnt will be consumed by
2131 2132
 * "commit()" or removed by "cancel()"
 */
2133 2134 2135 2136 2137
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2138
	int ret;
2139

2140
	if (mem_cgroup_disabled())
2141 2142 2143 2144 2145 2146
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2147 2148 2149
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2150 2151
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2152
		goto charge_cur_mm;
2153
	mem = try_get_mem_cgroup_from_page(page);
2154 2155
	if (!mem)
		goto charge_cur_mm;
2156
	*ptr = mem;
2157
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2158 2159 2160
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
2161 2162 2163
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2164
	return __mem_cgroup_try_charge(mm, mask, ptr, true);
2165 2166
}

D
Daisuke Nishimura 已提交
2167 2168 2169
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2170 2171 2172
{
	struct page_cgroup *pc;

2173
	if (mem_cgroup_disabled())
2174 2175 2176
		return;
	if (!ptr)
		return;
2177
	cgroup_exclude_rmdir(&ptr->css);
2178
	pc = lookup_page_cgroup(page);
2179
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
2180
	__mem_cgroup_commit_charge(ptr, pc, ctype);
2181
	mem_cgroup_lru_add_after_commit_swapcache(page);
2182 2183 2184
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2185 2186 2187
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2188
	 */
2189
	if (do_swap_account && PageSwapCache(page)) {
2190
		swp_entry_t ent = {.val = page_private(page)};
2191
		unsigned short id;
2192
		struct mem_cgroup *memcg;
2193 2194 2195 2196

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2197
		if (memcg) {
2198 2199 2200 2201
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2202
			if (!mem_cgroup_is_root(memcg))
2203
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2204
			mem_cgroup_swap_statistics(memcg, false);
2205 2206
			mem_cgroup_put(memcg);
		}
2207
		rcu_read_unlock();
2208
	}
2209 2210 2211 2212 2213 2214
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2215 2216
}

D
Daisuke Nishimura 已提交
2217 2218 2219 2220 2221 2222
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2223 2224
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2225
	if (mem_cgroup_disabled())
2226 2227 2228
		return;
	if (!mem)
		return;
2229
	mem_cgroup_cancel_charge(mem);
2230 2231
}

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
static void
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (uncharge_memsw)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2276 2277
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2278 2279
	return;
}
2280

2281
/*
2282
 * uncharge if !page_mapped(page)
2283
 */
2284
static struct mem_cgroup *
2285
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2286
{
H
Hugh Dickins 已提交
2287
	struct page_cgroup *pc;
2288
	struct mem_cgroup *mem = NULL;
2289
	struct mem_cgroup_per_zone *mz;
2290

2291
	if (mem_cgroup_disabled())
2292
		return NULL;
2293

K
KAMEZAWA Hiroyuki 已提交
2294
	if (PageSwapCache(page))
2295
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2296

2297
	/*
2298
	 * Check if our page_cgroup is valid
2299
	 */
2300 2301
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2302
		return NULL;
2303

2304
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2305

2306 2307
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2308 2309 2310 2311 2312
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2313
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2314 2315
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2327
	}
K
KAMEZAWA Hiroyuki 已提交
2328

2329 2330
	if (!mem_cgroup_is_root(mem))
		__do_uncharge(mem, ctype);
2331 2332
	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		mem_cgroup_swap_statistics(mem, true);
K
KAMEZAWA Hiroyuki 已提交
2333
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
2334

2335
	ClearPageCgroupUsed(pc);
2336 2337 2338 2339 2340 2341
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2342

2343
	mz = page_cgroup_zoneinfo(pc);
2344
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
2345

2346
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2347 2348 2349
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
2350

2351
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2352 2353 2354

unlock_out:
	unlock_page_cgroup(pc);
2355
	return NULL;
2356 2357
}

2358 2359
void mem_cgroup_uncharge_page(struct page *page)
{
2360 2361 2362 2363 2364
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2365 2366 2367 2368 2369 2370
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2371
	VM_BUG_ON(page->mapping);
2372 2373 2374
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2415
	memcg_oom_recover(batch->memcg);
2416 2417 2418 2419
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2420
#ifdef CONFIG_SWAP
2421
/*
2422
 * called after __delete_from_swap_cache() and drop "page" account.
2423 2424
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2425 2426
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2427 2428
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2429 2430 2431 2432 2433 2434
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2435 2436

	/* record memcg information */
K
KAMEZAWA Hiroyuki 已提交
2437
	if (do_swap_account && swapout && memcg) {
2438
		swap_cgroup_record(ent, css_id(&memcg->css));
2439 2440
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
2441
	if (swapout && memcg)
K
KAMEZAWA Hiroyuki 已提交
2442
		css_put(&memcg->css);
2443
}
2444
#endif
2445 2446 2447 2448 2449 2450 2451

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2452
{
2453
	struct mem_cgroup *memcg;
2454
	unsigned short id;
2455 2456 2457 2458

	if (!do_swap_account)
		return;

2459 2460 2461
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2462
	if (memcg) {
2463 2464 2465 2466
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2467
		if (!mem_cgroup_is_root(memcg))
2468
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2469
		mem_cgroup_swap_statistics(memcg, false);
2470 2471
		mem_cgroup_put(memcg);
	}
2472
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2473
}
2474 2475 2476 2477 2478 2479

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2480
 * @need_fixup: whether we should fixup res_counters and refcounts.
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2491
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2492 2493 2494 2495 2496 2497 2498 2499
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2500
		mem_cgroup_swap_statistics(to, true);
2501
		/*
2502 2503 2504 2505 2506 2507
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2508 2509
		 */
		mem_cgroup_get(to);
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
			css_put(&to->css);
		}
2522 2523 2524 2525 2526 2527
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2528
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2529 2530 2531
{
	return -EINVAL;
}
2532
#endif
K
KAMEZAWA Hiroyuki 已提交
2533

2534
/*
2535 2536
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2537
 */
2538 2539
int mem_cgroup_prepare_migration(struct page *page,
	struct page *newpage, struct mem_cgroup **ptr)
2540 2541
{
	struct page_cgroup *pc;
2542
	struct mem_cgroup *mem = NULL;
2543
	enum charge_type ctype;
2544
	int ret = 0;
2545

2546
	if (mem_cgroup_disabled())
2547 2548
		return 0;

2549 2550 2551
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2552 2553
		mem = pc->mem_cgroup;
		css_get(&mem->css);
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
2585
	}
2586
	unlock_page_cgroup(pc);
2587 2588 2589 2590 2591 2592
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
2593

A
Andrea Arcangeli 已提交
2594
	*ptr = mem;
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
2608
	}
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
	__mem_cgroup_commit_charge(mem, pc, ctype);
2623
	return ret;
2624
}
2625

2626
/* remove redundant charge if migration failed*/
2627
void mem_cgroup_end_migration(struct mem_cgroup *mem,
2628
	struct page *oldpage, struct page *newpage)
2629
{
2630
	struct page *used, *unused;
2631 2632 2633 2634
	struct page_cgroup *pc;

	if (!mem)
		return;
2635
	/* blocks rmdir() */
2636
	cgroup_exclude_rmdir(&mem->css);
2637 2638
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
2639 2640
		used = oldpage;
		unused = newpage;
2641
	} else {
2642
		used = newpage;
2643 2644
		unused = oldpage;
	}
2645
	/*
2646 2647 2648
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
2649
	 */
2650 2651 2652 2653
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
2654

2655 2656 2657 2658 2659
	if (unused != oldpage)
		pc = lookup_page_cgroup(unused);
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

	pc = lookup_page_cgroup(used);
2660
	/*
2661 2662 2663 2664 2665 2666
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
2667
	 */
2668 2669
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
2670
	/*
2671 2672
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
2673 2674 2675 2676
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2677
}
2678

2679
/*
2680 2681 2682 2683 2684 2685
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2686
 */
2687
int mem_cgroup_shmem_charge_fallback(struct page *page,
2688 2689
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2690
{
2691
	struct mem_cgroup *mem = NULL;
2692
	int ret;
2693

2694
	if (mem_cgroup_disabled())
2695
		return 0;
2696

2697 2698 2699
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2700

2701
	return ret;
2702 2703
}

2704 2705
static DEFINE_MUTEX(set_limit_mutex);

2706
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2707
				unsigned long long val)
2708
{
2709
	int retry_count;
2710
	u64 memswlimit, memlimit;
2711
	int ret = 0;
2712 2713
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
2714
	int enlarge;
2715 2716 2717 2718 2719 2720 2721 2722 2723

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2724

2725
	enlarge = 0;
2726
	while (retry_count) {
2727 2728 2729 2730
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2741 2742
			break;
		}
2743 2744 2745 2746 2747

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

2748
		ret = res_counter_set_limit(&memcg->res, val);
2749 2750 2751 2752 2753 2754
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2755 2756 2757 2758 2759
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2760
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2761
						MEM_CGROUP_RECLAIM_SHRINK);
2762 2763 2764 2765 2766 2767
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2768
	}
2769 2770
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2771

2772 2773 2774
	return ret;
}

L
Li Zefan 已提交
2775 2776
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
2777
{
2778
	int retry_count;
2779
	u64 memlimit, memswlimit, oldusage, curusage;
2780 2781
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
2782
	int enlarge = 0;
2783

2784 2785 2786
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
2804 2805 2806
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
2807
		ret = res_counter_set_limit(&memcg->memsw, val);
2808 2809 2810 2811 2812 2813
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2814 2815 2816 2817 2818
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2819
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2820 2821
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
2822
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2823
		/* Usage is reduced ? */
2824
		if (curusage >= oldusage)
2825
			retry_count--;
2826 2827
		else
			oldusage = curusage;
2828
	}
2829 2830
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2831 2832 2833
	return ret;
}

2834 2835 2836 2837 2838 2839 2840 2841 2842
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
						gfp_t gfp_mask, int nid,
						int zid)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2843
	unsigned long long excess;
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(nid, zid);
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2896
		excess = res_counter_soft_limit_excess(&mz->mem->res);
2897 2898 2899 2900 2901 2902 2903 2904
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
2905 2906
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

2925 2926 2927 2928
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
2929
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
2930
				int node, int zid, enum lru_list lru)
2931
{
K
KAMEZAWA Hiroyuki 已提交
2932 2933
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
2934
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
2935
	unsigned long flags, loop;
2936
	struct list_head *list;
2937
	int ret = 0;
2938

K
KAMEZAWA Hiroyuki 已提交
2939 2940
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
2941
	list = &mz->lists[lru];
2942

2943 2944 2945 2946 2947 2948
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
2949
		spin_lock_irqsave(&zone->lru_lock, flags);
2950
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
2951
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2952
			break;
2953 2954 2955 2956
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
2957
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
2958
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2959 2960
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
2961
		spin_unlock_irqrestore(&zone->lru_lock, flags);
2962

K
KAMEZAWA Hiroyuki 已提交
2963
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2964
		if (ret == -ENOMEM)
2965
			break;
2966 2967 2968 2969 2970 2971 2972

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
2973
	}
K
KAMEZAWA Hiroyuki 已提交
2974

2975 2976 2977
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
2978 2979 2980 2981 2982 2983
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
2984
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2985
{
2986 2987 2988
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2989
	struct cgroup *cgrp = mem->css.cgroup;
2990

2991
	css_get(&mem->css);
2992 2993

	shrink = 0;
2994 2995 2996
	/* should free all ? */
	if (free_all)
		goto try_to_free;
2997
move_account:
2998
	do {
2999
		ret = -EBUSY;
3000 3001 3002 3003
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3004
			goto out;
3005 3006
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3007
		drain_all_stock_sync();
3008
		ret = 0;
3009
		for_each_node_state(node, N_HIGH_MEMORY) {
3010
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3011
				enum lru_list l;
3012 3013
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3014
							node, zid, l);
3015 3016 3017
					if (ret)
						break;
				}
3018
			}
3019 3020 3021
			if (ret)
				break;
		}
3022
		memcg_oom_recover(mem);
3023 3024 3025
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3026
		cond_resched();
3027 3028
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3029 3030 3031
out:
	css_put(&mem->css);
	return ret;
3032 3033

try_to_free:
3034 3035
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3036 3037 3038
		ret = -EBUSY;
		goto out;
	}
3039 3040
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3041 3042 3043 3044
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3045 3046 3047 3048 3049

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3050 3051
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3052
		if (!progress) {
3053
			nr_retries--;
3054
			/* maybe some writeback is necessary */
3055
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3056
		}
3057 3058

	}
K
KAMEZAWA Hiroyuki 已提交
3059
	lru_add_drain();
3060
	/* try move_account...there may be some *locked* pages. */
3061
	goto move_account;
3062 3063
}

3064 3065 3066 3067 3068 3069
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3088
	 * If parent's use_hierarchy is set, we can't make any modifications
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3108 3109 3110 3111 3112 3113 3114 3115 3116
struct mem_cgroup_idx_data {
	s64 val;
	enum mem_cgroup_stat_index idx;
};

static int
mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_idx_data *d = data;
3117
	d->val += mem_cgroup_read_stat(mem, d->idx);
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
	return 0;
}

static void
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx, s64 *val)
{
	struct mem_cgroup_idx_data d;
	d.idx = idx;
	d.val = 0;
	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
	*val = d.val;
}

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
	u64 idx_val, val;

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
	val = idx_val;
	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
	val += idx_val;

	if (swap) {
		mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
		val += idx_val;
	}

	return val << PAGE_SHIFT;
}

3157
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3158
{
3159
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3160
	u64 val;
3161 3162 3163 3164 3165 3166
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3167 3168 3169
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3170
			val = res_counter_read_u64(&mem->res, name);
3171 3172
		break;
	case _MEMSWAP:
3173 3174 3175
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3176
			val = res_counter_read_u64(&mem->memsw, name);
3177 3178 3179 3180 3181 3182
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3183
}
3184 3185 3186 3187
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3188 3189
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3190
{
3191
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3192
	int type, name;
3193 3194 3195
	unsigned long long val;
	int ret;

3196 3197 3198
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3199
	case RES_LIMIT:
3200 3201 3202 3203
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3204 3205
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3206 3207 3208
		if (ret)
			break;
		if (type == _MEM)
3209
			ret = mem_cgroup_resize_limit(memcg, val);
3210 3211
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3212
		break;
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3227 3228 3229 3230 3231
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3232 3233
}

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3262
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3263 3264
{
	struct mem_cgroup *mem;
3265
	int type, name;
3266 3267

	mem = mem_cgroup_from_cont(cont);
3268 3269 3270
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3271
	case RES_MAX_USAGE:
3272 3273 3274 3275
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3276 3277
		break;
	case RES_FAILCNT:
3278 3279 3280 3281
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3282 3283
		break;
	}
3284

3285
	return 0;
3286 3287
}

3288 3289 3290 3291 3292 3293
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3294
#ifdef CONFIG_MMU
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3313 3314 3315 3316 3317 3318 3319
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3320

K
KAMEZAWA Hiroyuki 已提交
3321 3322 3323 3324 3325

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3326
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3327 3328
	MCS_PGPGIN,
	MCS_PGPGOUT,
3329
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3340 3341
};

K
KAMEZAWA Hiroyuki 已提交
3342 3343 3344 3345 3346 3347
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3348
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3349 3350
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3351
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
3366
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3367
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3368
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3369
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3370
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3371
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3372
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3373
	s->stat[MCS_PGPGIN] += val;
3374
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3375
	s->stat[MCS_PGPGOUT] += val;
3376
	if (do_swap_account) {
3377
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3378 3379
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

3401 3402
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3403 3404
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3405
	struct mcs_total_stat mystat;
3406 3407
	int i;

K
KAMEZAWA Hiroyuki 已提交
3408 3409
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3410

3411 3412 3413
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3414
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3415
	}
L
Lee Schermerhorn 已提交
3416

K
KAMEZAWA Hiroyuki 已提交
3417
	/* Hierarchical information */
3418 3419 3420 3421 3422 3423 3424
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3425

K
KAMEZAWA Hiroyuki 已提交
3426 3427
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3428 3429 3430
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3431
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3432
	}
K
KAMEZAWA Hiroyuki 已提交
3433

K
KOSAKI Motohiro 已提交
3434
#ifdef CONFIG_DEBUG_VM
3435
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3463 3464 3465
	return 0;
}

K
KOSAKI Motohiro 已提交
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3478

K
KOSAKI Motohiro 已提交
3479 3480 3481 3482 3483 3484 3485
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3486 3487 3488

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3489 3490
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3491 3492
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3493
		return -EINVAL;
3494
	}
K
KOSAKI Motohiro 已提交
3495 3496 3497 3498 3499

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3500 3501
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3502 3503 3504
	return 0;
}

3505 3506 3507 3508 3509 3510 3511 3512
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
3513
		t = rcu_dereference(memcg->thresholds.primary);
3514
	else
3515
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3527
	i = t->current_threshold;
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3551
	t->current_threshold = i - 1;
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
	__mem_cgroup_threshold(memcg, false);
	if (do_swap_account)
		__mem_cgroup_threshold(memcg, true);
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3587 3588
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3589 3590
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3591 3592
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
3593
	int i, size, ret;
3594 3595 3596 3597 3598 3599

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3600

3601
	if (type == _MEM)
3602
		thresholds = &memcg->thresholds;
3603
	else if (type == _MEMSWAP)
3604
		thresholds = &memcg->memsw_thresholds;
3605 3606 3607 3608 3609 3610
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
3611
	if (thresholds->primary)
3612 3613
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3614
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3615 3616

	/* Allocate memory for new array of thresholds */
3617
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3618
			GFP_KERNEL);
3619
	if (!new) {
3620 3621 3622
		ret = -ENOMEM;
		goto unlock;
	}
3623
	new->size = size;
3624 3625

	/* Copy thresholds (if any) to new array */
3626 3627
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3628
				sizeof(struct mem_cgroup_threshold));
3629 3630
	}

3631
	/* Add new threshold */
3632 3633
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3634 3635

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3636
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3637 3638 3639
			compare_thresholds, NULL);

	/* Find current threshold */
3640
	new->current_threshold = -1;
3641
	for (i = 0; i < size; i++) {
3642
		if (new->entries[i].threshold < usage) {
3643
			/*
3644 3645
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3646 3647
			 * it here.
			 */
3648
			++new->current_threshold;
3649 3650 3651
		}
	}

3652 3653 3654 3655 3656
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3657

3658
	/* To be sure that nobody uses thresholds */
3659 3660 3661 3662 3663 3664 3665 3666
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3667
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3668
	struct cftype *cft, struct eventfd_ctx *eventfd)
3669 3670
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3671 3672
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3673 3674
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
3675
	int i, j, size;
3676 3677 3678

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
3679
		thresholds = &memcg->thresholds;
3680
	else if (type == _MEMSWAP)
3681
		thresholds = &memcg->memsw_thresholds;
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3697 3698 3699
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3700 3701 3702
			size++;
	}

3703
	new = thresholds->spare;
3704

3705 3706
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3707 3708
		kfree(new);
		new = NULL;
3709
		goto swap_buffers;
3710 3711
	}

3712
	new->size = size;
3713 3714

	/* Copy thresholds and find current threshold */
3715 3716 3717
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3718 3719
			continue;

3720 3721
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
3722
			/*
3723
			 * new->current_threshold will not be used
3724 3725 3726
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3727
			++new->current_threshold;
3728 3729 3730 3731
		}
		j++;
	}

3732
swap_buffers:
3733 3734 3735
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
3736

3737
	/* To be sure that nobody uses thresholds */
3738 3739 3740 3741
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
3742

K
KAMEZAWA Hiroyuki 已提交
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

3768
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

/*
 */
static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
3825 3826
	if (!val)
		memcg_oom_recover(mem);
3827 3828 3829 3830
	cgroup_unlock();
	return 0;
}

B
Balbir Singh 已提交
3831 3832
static struct cftype mem_cgroup_files[] = {
	{
3833
		.name = "usage_in_bytes",
3834
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3835
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
3836 3837
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
3838
	},
3839 3840
	{
		.name = "max_usage_in_bytes",
3841
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3842
		.trigger = mem_cgroup_reset,
3843 3844
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3845
	{
3846
		.name = "limit_in_bytes",
3847
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3848
		.write_string = mem_cgroup_write,
3849
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3850
	},
3851 3852 3853 3854 3855 3856
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3857 3858
	{
		.name = "failcnt",
3859
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3860
		.trigger = mem_cgroup_reset,
3861
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3862
	},
3863 3864
	{
		.name = "stat",
3865
		.read_map = mem_control_stat_show,
3866
	},
3867 3868 3869 3870
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
3871 3872 3873 3874 3875
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
3876 3877 3878 3879 3880
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3881 3882 3883 3884 3885
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3886 3887
	{
		.name = "oom_control",
3888 3889
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3890 3891 3892 3893
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
B
Balbir Singh 已提交
3894 3895
};

3896 3897 3898 3899 3900 3901
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
3902 3903
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

3939 3940 3941
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
3942
	struct mem_cgroup_per_zone *mz;
3943
	enum lru_list l;
3944
	int zone, tmp = node;
3945 3946 3947 3948 3949 3950 3951 3952
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
3953 3954 3955
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3956 3957
	if (!pn)
		return 1;
3958

3959 3960
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
3961 3962 3963

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
3964 3965
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
3966
		mz->usage_in_excess = 0;
3967 3968
		mz->on_tree = false;
		mz->mem = mem;
3969
	}
3970 3971 3972
	return 0;
}

3973 3974 3975 3976 3977
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

3978 3979 3980
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
3981
	int size = sizeof(struct mem_cgroup);
3982

3983
	/* Can be very big if MAX_NUMNODES is very big */
3984 3985
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
3986
	else
3987
		mem = vmalloc(size);
3988

3989 3990 3991 3992
	if (!mem)
		return NULL;

	memset(mem, 0, size);
3993 3994 3995 3996 3997 3998 3999 4000
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!mem->stat) {
		if (size < PAGE_SIZE)
			kfree(mem);
		else
			vfree(mem);
		mem = NULL;
	}
4001 4002 4003
	return mem;
}

4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4015
static void __mem_cgroup_free(struct mem_cgroup *mem)
4016
{
K
KAMEZAWA Hiroyuki 已提交
4017 4018
	int node;

4019
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4020 4021
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4022 4023 4024
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4025 4026
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4027 4028 4029 4030 4031
		kfree(mem);
	else
		vfree(mem);
}

4032 4033 4034 4035 4036
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4037
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4038
{
4039
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4040
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4041
		__mem_cgroup_free(mem);
4042 4043 4044
		if (parent)
			mem_cgroup_put(parent);
	}
4045 4046
}

4047 4048 4049 4050 4051
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4052 4053 4054 4055 4056 4057 4058 4059 4060
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4061

4062 4063 4064
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4065
	if (!mem_cgroup_disabled() && really_do_swap_account)
4066 4067 4068 4069 4070 4071 4072 4073
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4099
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4100 4101
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4102
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4103
	long error = -ENOMEM;
4104
	int node;
B
Balbir Singh 已提交
4105

4106 4107
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4108
		return ERR_PTR(error);
4109

4110 4111 4112
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4113

4114
	/* root ? */
4115
	if (cont->parent == NULL) {
4116
		int cpu;
4117
		enable_swap_cgroup();
4118
		parent = NULL;
4119
		root_mem_cgroup = mem;
4120 4121
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4122 4123 4124 4125 4126 4127
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
		hotcpu_notifier(memcg_stock_cpu_callback, 0);
4128
	} else {
4129
		parent = mem_cgroup_from_cont(cont->parent);
4130
		mem->use_hierarchy = parent->use_hierarchy;
4131
		mem->oom_kill_disable = parent->oom_kill_disable;
4132
	}
4133

4134 4135 4136
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4137 4138 4139 4140 4141 4142 4143
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4144 4145 4146 4147
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4148
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
4149
	spin_lock_init(&mem->reclaim_param_lock);
K
KAMEZAWA Hiroyuki 已提交
4150
	INIT_LIST_HEAD(&mem->oom_notify);
4151

K
KOSAKI Motohiro 已提交
4152 4153
	if (parent)
		mem->swappiness = get_swappiness(parent);
4154
	atomic_set(&mem->refcnt, 1);
4155
	mem->move_charge_at_immigrate = 0;
4156
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4157
	return &mem->css;
4158
free_out:
4159
	__mem_cgroup_free(mem);
4160
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4161
	return ERR_PTR(error);
B
Balbir Singh 已提交
4162 4163
}

4164
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4165 4166 4167
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4168 4169

	return mem_cgroup_force_empty(mem, false);
4170 4171
}

B
Balbir Singh 已提交
4172 4173 4174
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4175 4176 4177
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4178 4179 4180 4181 4182
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4183 4184 4185 4186 4187 4188 4189 4190
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4191 4192
}

4193
#ifdef CONFIG_MMU
4194
/* Handlers for move charge at task migration. */
4195 4196
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4197
{
4198 4199
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4200 4201
	struct mem_cgroup *mem = mc.to;

4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_get(&mem->css, (int)count);
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
4240
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4241 4242 4243 4244 4245
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4246 4247 4248 4249 4250 4251 4252 4253
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4254
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4255 4256 4257 4258 4259 4260
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4261 4262 4263
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4264 4265 4266 4267 4268
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4269
	swp_entry_t	ent;
4270 4271 4272 4273 4274
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4275
	MC_TARGET_SWAP,
4276 4277
};

D
Daisuke Nishimura 已提交
4278 4279
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4280
{
D
Daisuke Nishimura 已提交
4281
	struct page *page = vm_normal_page(vma, addr, ptent);
4282

D
Daisuke Nishimura 已提交
4283 4284 4285 4286 4287 4288
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
4289 4290
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
4309 4310
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
4311
		return NULL;
4312
	}
D
Daisuke Nishimura 已提交
4313 4314 4315 4316 4317 4318
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4364 4365
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4366 4367 4368

	if (!page && !ent.val)
		return 0;
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4384 4385
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
4386 4387 4388 4389
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4409 4410 4411
	return 0;
}

4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
	up_read(&mm->mmap_sem);

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4439
	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4440 4441 4442 4443 4444
}

static void mem_cgroup_clear_mc(void)
{
	/* we must uncharge all the leftover precharges from mc.to */
4445 4446 4447
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
4448
		memcg_oom_recover(mc.to);
4449 4450 4451 4452 4453 4454 4455 4456
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4457
		memcg_oom_recover(mc.from);
4458
	}
4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		WARN_ON_ONCE(mc.moved_swap > INT_MAX);
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
			VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
			__css_put(&mc.to->css, mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */

		mc.moved_swap = 0;
	}
4482 4483
	mc.from = NULL;
	mc.to = NULL;
4484 4485
	mc.moving_task = NULL;
	wake_up_all(&mc.waitq);
4486 4487
}

4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4506 4507 4508 4509
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4510
			VM_BUG_ON(mc.moved_charge);
4511
			VM_BUG_ON(mc.moved_swap);
4512
			VM_BUG_ON(mc.moving_task);
4513 4514 4515
			mc.from = from;
			mc.to = mem;
			mc.precharge = 0;
4516
			mc.moved_charge = 0;
4517
			mc.moved_swap = 0;
4518
			mc.moving_task = current;
4519 4520 4521 4522 4523

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
		}
4524 4525 4526 4527 4528 4529 4530 4531 4532 4533
		mmput(mm);
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4534
	mem_cgroup_clear_mc();
4535 4536
}

4537 4538 4539
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4540
{
4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4554
		swp_entry_t ent;
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4566 4567
			if (!mem_cgroup_move_account(pc,
						mc.from, mc.to, false)) {
4568
				mc.precharge--;
4569 4570
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4571 4572 4573 4574 4575
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4576 4577
		case MC_TARGET_SWAP:
			ent = target.ent;
4578 4579
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4580
				mc.precharge--;
4581 4582 4583
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4584
			break;
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4599
		ret = mem_cgroup_do_precharge(1);
4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
	up_read(&mm->mmap_sem);
4632 4633
}

B
Balbir Singh 已提交
4634 4635 4636
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
4637 4638
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
4639
{
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
	struct mm_struct *mm;

	if (!mc.to)
		/* no need to move charge */
		return;

	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4652
}
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
B
Balbir Singh 已提交
4675

B
Balbir Singh 已提交
4676 4677 4678 4679
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
4680
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
4681 4682
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
4683 4684
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
4685
	.attach = mem_cgroup_move_task,
4686
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
4687
	.use_id = 1,
B
Balbir Singh 已提交
4688
};
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif