memcontrol.c 192.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmalloc.h>
53
#include <linux/vmpressure.h>
54
#include <linux/mm_inline.h>
55
#include <linux/page_cgroup.h>
56
#include <linux/cpu.h>
57
#include <linux/oom.h>
58
#include <linux/lockdep.h>
59
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
60
#include "internal.h"
G
Glauber Costa 已提交
61
#include <net/sock.h>
M
Michal Hocko 已提交
62
#include <net/ip.h>
G
Glauber Costa 已提交
63
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
70 71
EXPORT_SYMBOL(mem_cgroup_subsys);

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82 83 84 85
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
147 148 149 150
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
151
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
152 153
	unsigned long last_dead_count;

154 155 156 157
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

158 159 160 161
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
162
	struct lruvec		lruvec;
163
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
164

165 166
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

167 168 169 170
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
171
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
172
						/* use container_of	   */
173 174 175 176 177 178
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

199 200 201 202 203
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
204
/* For threshold */
205
struct mem_cgroup_threshold_ary {
206
	/* An array index points to threshold just below or equal to usage. */
207
	int current_threshold;
208 209 210 211 212
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
213 214 215 216 217 218 219 220 221 222 223 224

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
225 226 227 228 229
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
230

231 232 233 234 235
/*
 * cgroup_event represents events which userspace want to receive.
 */
struct cgroup_event {
	/*
236
	 * memcg which the event belongs to.
237
	 */
238
	struct mem_cgroup *memcg;
239 240 241 242 243 244 245 246
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
247 248 249 250 251
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
252
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
253
			      struct eventfd_ctx *eventfd, const char *args);
254 255 256 257 258
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
259
	void (*unregister_event)(struct mem_cgroup *memcg,
260
				 struct eventfd_ctx *eventfd);
261 262 263 264 265 266 267 268 269 270
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

271 272
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273

B
Balbir Singh 已提交
274 275 276 277 278 279 280
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 282 283
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
284 285 286 287 288 289 290
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
291

292 293 294
	/* vmpressure notifications */
	struct vmpressure vmpressure;

295 296 297 298
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
299

300 301 302 303
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
304 305 306 307
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
308
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309 310 311

	bool		oom_lock;
	atomic_t	under_oom;
312
	atomic_t	oom_wakeups;
313

314
	int	swappiness;
315 316
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
317

318 319 320
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

321 322 323 324
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
325
	struct mem_cgroup_thresholds thresholds;
326

327
	/* thresholds for mem+swap usage. RCU-protected */
328
	struct mem_cgroup_thresholds memsw_thresholds;
329

K
KAMEZAWA Hiroyuki 已提交
330 331
	/* For oom notifier event fd */
	struct list_head oom_notify;
332

333 334 335 336
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
337
	unsigned long move_charge_at_immigrate;
338 339 340 341
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
342 343
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
344
	/*
345
	 * percpu counter.
346
	 */
347
	struct mem_cgroup_stat_cpu __percpu *stat;
348 349 350 351 352 353
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
354

M
Michal Hocko 已提交
355
	atomic_t	dead_count;
M
Michal Hocko 已提交
356
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
357 358
	struct tcp_memcontrol tcp_mem;
#endif
359 360 361 362 363 364 365 366
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
367 368 369 370 371 372 373

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
374

375 376 377 378
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

379 380
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
381 382
};

383 384 385 386 387 388
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

389 390 391
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
392
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
393
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
394 395
};

396 397 398
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
399 400 401 402 403 404

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
405 406 407 408 409 410

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

411 412 413 414 415
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

416 417 418 419 420
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

421 422
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
423 424 425 426 427
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
428 429 430 431 432 433 434 435 436
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
437 438
#endif

439 440
/* Stuffs for move charges at task migration. */
/*
441 442
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
443 444
 */
enum move_type {
445
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
446
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
447 448 449
	NR_MOVE_TYPE,
};

450 451
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
452
	spinlock_t	  lock; /* for from, to */
453 454
	struct mem_cgroup *from;
	struct mem_cgroup *to;
455
	unsigned long immigrate_flags;
456
	unsigned long precharge;
457
	unsigned long moved_charge;
458
	unsigned long moved_swap;
459 460 461
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
462
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
463 464
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
465

D
Daisuke Nishimura 已提交
466 467
static bool move_anon(void)
{
468
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
469 470
}

471 472
static bool move_file(void)
{
473
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
474 475
}

476 477 478 479
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
480
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
481
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
482

483 484
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
485
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
486
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
487
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
488 489 490
	NR_CHARGE_TYPE,
};

491
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
492 493 494 495
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
496
	_KMEM,
G
Glauber Costa 已提交
497 498
};

499 500
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
501
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
502 503
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
504

505 506 507 508 509 510 511 512
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

513 514 515 516 517 518 519
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

520 521
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
522
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
523 524
}

525 526 527 528 529 530 531 532 533 534 535 536 537
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

538 539 540 541 542
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
543
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
544
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
545 546 547

void sock_update_memcg(struct sock *sk)
{
548
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
549
		struct mem_cgroup *memcg;
550
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
551 552 553

		BUG_ON(!sk->sk_prot->proto_cgroup);

554 555 556 557 558 559 560 561 562 563
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
564
			css_get(&sk->sk_cgrp->memcg->css);
565 566 567
			return;
		}

G
Glauber Costa 已提交
568 569
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
570
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
571 572
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
573
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
574 575 576 577 578 579 580 581
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
582
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
583 584 585
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
586
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
587 588
	}
}
G
Glauber Costa 已提交
589 590 591 592 593 594 595 596 597

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
598

599 600 601 602 603 604 605 606 607 608 609 610
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

611
#ifdef CONFIG_MEMCG_KMEM
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
630 631
int memcg_limited_groups_array_size;

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

647 648 649 650 651 652
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
653
struct static_key memcg_kmem_enabled_key;
654
EXPORT_SYMBOL(memcg_kmem_enabled_key);
655 656 657

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
658
	if (memcg_kmem_is_active(memcg)) {
659
		static_key_slow_dec(&memcg_kmem_enabled_key);
660 661
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
662 663 664 665 666
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
667 668 669 670 671 672 673 674 675 676 677 678 679
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

680
static void drain_all_stock_async(struct mem_cgroup *memcg);
681

682
static struct mem_cgroup_per_zone *
683
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
684
{
685
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
686
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
687 688
}

689
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
690
{
691
	return &memcg->css;
692 693
}

694
static struct mem_cgroup_per_zone *
695
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
696
{
697 698
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
699

700
	return mem_cgroup_zoneinfo(memcg, nid, zid);
701 702
}

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

static void
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
	unsigned long long excess;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
	mctz = soft_limit_tree_from_page(page);

	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
			spin_unlock(&mctz->lock);
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node(node) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
880
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
881
				 enum mem_cgroup_stat_index idx)
882
{
883
	long val = 0;
884 885
	int cpu;

886 887
	get_online_cpus();
	for_each_online_cpu(cpu)
888
		val += per_cpu(memcg->stat->count[idx], cpu);
889
#ifdef CONFIG_HOTPLUG_CPU
890 891 892
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
893 894
#endif
	put_online_cpus();
895 896 897
	return val;
}

898
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
899 900 901
					 bool charge)
{
	int val = (charge) ? 1 : -1;
902
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
903 904
}

905
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
906 907 908 909 910
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

911
	get_online_cpus();
912
	for_each_online_cpu(cpu)
913
		val += per_cpu(memcg->stat->events[idx], cpu);
914
#ifdef CONFIG_HOTPLUG_CPU
915 916 917
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
918
#endif
919
	put_online_cpus();
920 921 922
	return val;
}

923
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
924
					 struct page *page,
925
					 bool anon, int nr_pages)
926
{
927 928
	preempt_disable();

929 930 931 932 933 934
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
935
				nr_pages);
936
	else
937
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
938
				nr_pages);
939

940 941 942 943
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

944 945
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
946
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
947
	else {
948
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
949 950
		nr_pages = -nr_pages; /* for event */
	}
951

952
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
953

954
	preempt_enable();
955 956
}

957
unsigned long
958
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
959 960 961 962 963 964 965 966
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
967
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
968
			unsigned int lru_mask)
969 970
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
971
	enum lru_list lru;
972 973
	unsigned long ret = 0;

974
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
975

H
Hugh Dickins 已提交
976 977 978
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
979 980 981 982 983
	}
	return ret;
}

static unsigned long
984
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
985 986
			int nid, unsigned int lru_mask)
{
987 988 989
	u64 total = 0;
	int zid;

990
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
991 992
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
993

994 995
	return total;
}
996

997
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
998
			unsigned int lru_mask)
999
{
1000
	int nid;
1001 1002
	u64 total = 0;

1003
	for_each_node_state(nid, N_MEMORY)
1004
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
1005
	return total;
1006 1007
}

1008 1009
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
1010 1011 1012
{
	unsigned long val, next;

1013
	val = __this_cpu_read(memcg->stat->nr_page_events);
1014
	next = __this_cpu_read(memcg->stat->targets[target]);
1015
	/* from time_after() in jiffies.h */
1016 1017 1018 1019 1020
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
1021 1022 1023
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
1024 1025 1026 1027 1028 1029 1030 1031
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1032
	}
1033
	return false;
1034 1035 1036 1037 1038 1039
}

/*
 * Check events in order.
 *
 */
1040
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1041
{
1042
	preempt_disable();
1043
	/* threshold event is triggered in finer grain than soft limit */
1044 1045
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1046
		bool do_softlimit;
1047
		bool do_numainfo __maybe_unused;
1048

1049 1050
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1051 1052 1053 1054 1055 1056
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1057
		mem_cgroup_threshold(memcg);
1058 1059
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1060
#if MAX_NUMNODES > 1
1061
		if (unlikely(do_numainfo))
1062
			atomic_inc(&memcg->numainfo_events);
1063
#endif
1064 1065
	} else
		preempt_enable();
1066 1067
}

1068
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1069
{
1070 1071 1072 1073 1074 1075 1076 1077
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1078
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1079 1080
}

1081
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1082
{
1083
	struct mem_cgroup *memcg = NULL;
1084 1085 1086

	if (!mm)
		return NULL;
1087 1088 1089 1090 1091 1092 1093
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1094 1095
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1096
			break;
1097
	} while (!css_tryget(&memcg->css));
1098
	rcu_read_unlock();
1099
	return memcg;
1100 1101
}

1102 1103 1104 1105 1106 1107 1108
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1109
		struct mem_cgroup *last_visited)
1110
{
1111
	struct cgroup_subsys_state *prev_css, *next_css;
1112

1113
	prev_css = last_visited ? &last_visited->css : NULL;
1114
skip_node:
1115
	next_css = css_next_descendant_pre(prev_css, &root->css);
1116 1117 1118 1119 1120 1121 1122 1123

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
1124 1125 1126
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

1127 1128 1129
		if (css_tryget(&mem->css))
			return mem;
		else {
1130
			prev_css = next_css;
1131 1132 1133 1134 1135 1136 1137
			goto skip_node;
		}
	}

	return NULL;
}

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1207
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1208
				   struct mem_cgroup *prev,
1209
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1210
{
1211
	struct mem_cgroup *memcg = NULL;
1212
	struct mem_cgroup *last_visited = NULL;
1213

1214 1215
	if (mem_cgroup_disabled())
		return NULL;
1216

1217 1218
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1219

1220
	if (prev && !reclaim)
1221
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1222

1223 1224
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1225
			goto out_css_put;
1226
		return root;
1227
	}
K
KAMEZAWA Hiroyuki 已提交
1228

1229
	rcu_read_lock();
1230
	while (!memcg) {
1231
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1232
		int uninitialized_var(seq);
1233

1234 1235 1236 1237 1238 1239 1240
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1241
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1242
				iter->last_visited = NULL;
1243 1244
				goto out_unlock;
			}
M
Michal Hocko 已提交
1245

1246
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1247
		}
K
KAMEZAWA Hiroyuki 已提交
1248

1249
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1250

1251
		if (reclaim) {
1252
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1253

M
Michal Hocko 已提交
1254
			if (!memcg)
1255 1256 1257 1258
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1259

1260
		if (prev && !memcg)
1261
			goto out_unlock;
1262
	}
1263 1264
out_unlock:
	rcu_read_unlock();
1265 1266 1267 1268
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1269
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1270
}
K
KAMEZAWA Hiroyuki 已提交
1271

1272 1273 1274 1275 1276 1277 1278
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1279 1280 1281 1282 1283 1284
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1285

1286 1287 1288 1289 1290 1291
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1292
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1293
	     iter != NULL;				\
1294
	     iter = mem_cgroup_iter(root, iter, NULL))
1295

1296
#define for_each_mem_cgroup(iter)			\
1297
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1298
	     iter != NULL;				\
1299
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1300

1301
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1302
{
1303
	struct mem_cgroup *memcg;
1304 1305

	rcu_read_lock();
1306 1307
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1308 1309 1310 1311
		goto out;

	switch (idx) {
	case PGFAULT:
1312 1313 1314 1315
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1316 1317 1318 1319 1320 1321 1322
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1323
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1324

1325 1326 1327
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1328
 * @memcg: memcg of the wanted lruvec
1329 1330 1331 1332 1333 1334 1335 1336 1337
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1338
	struct lruvec *lruvec;
1339

1340 1341 1342 1343
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1344 1345

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1356 1357
}

K
KAMEZAWA Hiroyuki 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1371

1372
/**
1373
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1374
 * @page: the page
1375
 * @zone: zone of the page
1376
 */
1377
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1378 1379
{
	struct mem_cgroup_per_zone *mz;
1380 1381
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1382
	struct lruvec *lruvec;
1383

1384 1385 1386 1387
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1388

K
KAMEZAWA Hiroyuki 已提交
1389
	pc = lookup_page_cgroup(page);
1390
	memcg = pc->mem_cgroup;
1391 1392

	/*
1393
	 * Surreptitiously switch any uncharged offlist page to root:
1394 1395 1396 1397 1398 1399 1400
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1401
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1402 1403
		pc->mem_cgroup = memcg = root_mem_cgroup;

1404
	mz = page_cgroup_zoneinfo(memcg, page);
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1415
}
1416

1417
/**
1418 1419 1420 1421
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1422
 *
1423 1424
 * This function must be called when a page is added to or removed from an
 * lru list.
1425
 */
1426 1427
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1428 1429
{
	struct mem_cgroup_per_zone *mz;
1430
	unsigned long *lru_size;
1431 1432 1433 1434

	if (mem_cgroup_disabled())
		return;

1435 1436 1437 1438
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1439
}
1440

1441
/*
1442
 * Checks whether given mem is same or in the root_mem_cgroup's
1443 1444
 * hierarchy subtree
 */
1445 1446
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1447
{
1448 1449
	if (root_memcg == memcg)
		return true;
1450
	if (!root_memcg->use_hierarchy || !memcg)
1451
		return false;
1452 1453 1454 1455 1456 1457 1458 1459
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1460
	rcu_read_lock();
1461
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1462 1463
	rcu_read_unlock();
	return ret;
1464 1465
}

1466 1467
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1468
{
1469
	struct mem_cgroup *curr = NULL;
1470
	struct task_struct *p;
1471
	bool ret;
1472

1473
	p = find_lock_task_mm(task);
1474 1475 1476 1477 1478 1479 1480 1481 1482
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1483
		rcu_read_lock();
1484 1485 1486
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1487
		rcu_read_unlock();
1488
	}
1489
	if (!curr)
1490
		return false;
1491
	/*
1492
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1493
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1494 1495
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1496
	 */
1497
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1498
	css_put(&curr->css);
1499 1500 1501
	return ret;
}

1502
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1503
{
1504
	unsigned long inactive_ratio;
1505
	unsigned long inactive;
1506
	unsigned long active;
1507
	unsigned long gb;
1508

1509 1510
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1511

1512 1513 1514 1515 1516 1517
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1518
	return inactive * inactive_ratio < active;
1519 1520
}

1521 1522 1523
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1524
/**
1525
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1526
 * @memcg: the memory cgroup
1527
 *
1528
 * Returns the maximum amount of memory @mem can be charged with, in
1529
 * pages.
1530
 */
1531
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1532
{
1533 1534
	unsigned long long margin;

1535
	margin = res_counter_margin(&memcg->res);
1536
	if (do_swap_account)
1537
		margin = min(margin, res_counter_margin(&memcg->memsw));
1538
	return margin >> PAGE_SHIFT;
1539 1540
}

1541
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1542 1543
{
	/* root ? */
T
Tejun Heo 已提交
1544
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1545 1546
		return vm_swappiness;

1547
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1548 1549
}

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1564 1565 1566 1567

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1568
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1569
{
1570
	atomic_inc(&memcg_moving);
1571
	atomic_inc(&memcg->moving_account);
1572 1573 1574
	synchronize_rcu();
}

1575
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1576
{
1577 1578 1579 1580
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1581 1582
	if (memcg) {
		atomic_dec(&memcg_moving);
1583
		atomic_dec(&memcg->moving_account);
1584
	}
1585
}
1586

1587 1588 1589
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1590 1591
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1592 1593 1594 1595 1596 1597 1598
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1599
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1600 1601
{
	VM_BUG_ON(!rcu_read_lock_held());
1602
	return atomic_read(&memcg->moving_account) > 0;
1603
}
1604

1605
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1606
{
1607 1608
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1609
	bool ret = false;
1610 1611 1612 1613 1614 1615 1616 1617 1618
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1619

1620 1621
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1622 1623
unlock:
	spin_unlock(&mc.lock);
1624 1625 1626
	return ret;
}

1627
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1628 1629
{
	if (mc.moving_task && current != mc.moving_task) {
1630
		if (mem_cgroup_under_move(memcg)) {
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1643 1644 1645 1646
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1647
 * see mem_cgroup_stolen(), too.
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1661
#define K(x) ((x) << (PAGE_SHIFT-10))
1662
/**
1663
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1681 1682
	struct mem_cgroup *iter;
	unsigned int i;
1683

1684
	if (!p)
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1703
	pr_info("Task in %s killed", memcg_name);
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1716
	pr_cont(" as a result of limit of %s\n", memcg_name);
1717 1718
done:

1719
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1720 1721 1722
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1723
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1724 1725 1726
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1727
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1728 1729 1730
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1755 1756
}

1757 1758 1759 1760
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1761
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1762 1763
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1764 1765
	struct mem_cgroup *iter;

1766
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1767
		num++;
1768 1769 1770
	return num;
}

D
David Rientjes 已提交
1771 1772 1773
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1774
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1775 1776 1777
{
	u64 limit;

1778 1779
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1780
	/*
1781
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1782
	 */
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1797 1798
}

1799 1800
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1801 1802 1803 1804 1805 1806 1807
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1808
	/*
1809 1810 1811
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1812
	 */
1813
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1814 1815 1816 1817 1818
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1819 1820
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1821
		struct css_task_iter it;
1822 1823
		struct task_struct *task;

1824 1825
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1838
				css_task_iter_end(&it);
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1855
		css_task_iter_end(&it);
1856 1857 1858 1859 1860 1861 1862 1863 1864
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1901 1902
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1903
 * @memcg: the target memcg
1904 1905 1906 1907 1908 1909 1910
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1911
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1912 1913
		int nid, bool noswap)
{
1914
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1915 1916 1917
		return true;
	if (noswap || !total_swap_pages)
		return false;
1918
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1919 1920 1921 1922
		return true;
	return false;

}
1923
#if MAX_NUMNODES > 1
1924 1925 1926 1927 1928 1929 1930

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1931
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1932 1933
{
	int nid;
1934 1935 1936 1937
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1938
	if (!atomic_read(&memcg->numainfo_events))
1939
		return;
1940
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1941 1942 1943
		return;

	/* make a nodemask where this memcg uses memory from */
1944
	memcg->scan_nodes = node_states[N_MEMORY];
1945

1946
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1947

1948 1949
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1950
	}
1951

1952 1953
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1968
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1969 1970 1971
{
	int node;

1972 1973
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1974

1975
	node = next_node(node, memcg->scan_nodes);
1976
	if (node == MAX_NUMNODES)
1977
		node = first_node(memcg->scan_nodes);
1978 1979 1980 1981 1982 1983 1984 1985 1986
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1987
	memcg->last_scanned_node = node;
1988 1989 1990
	return node;
}

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

2026
#else
2027
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2028 2029 2030
{
	return 0;
}
2031

2032 2033 2034 2035
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
2036 2037
#endif

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
			break;
2086
	}
2087 2088
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
2089 2090
}

2091 2092 2093 2094 2095 2096
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

2097 2098
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
2099 2100 2101 2102
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
2103
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2104
{
2105
	struct mem_cgroup *iter, *failed = NULL;
2106

2107 2108
	spin_lock(&memcg_oom_lock);

2109
	for_each_mem_cgroup_tree(iter, memcg) {
2110
		if (iter->oom_lock) {
2111 2112 2113 2114 2115
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2116 2117
			mem_cgroup_iter_break(memcg, iter);
			break;
2118 2119
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2120
	}
K
KAMEZAWA Hiroyuki 已提交
2121

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
2133
		}
2134 2135
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2136 2137 2138 2139

	spin_unlock(&memcg_oom_lock);

	return !failed;
2140
}
2141

2142
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2143
{
K
KAMEZAWA Hiroyuki 已提交
2144 2145
	struct mem_cgroup *iter;

2146
	spin_lock(&memcg_oom_lock);
2147
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2148
	for_each_mem_cgroup_tree(iter, memcg)
2149
		iter->oom_lock = false;
2150
	spin_unlock(&memcg_oom_lock);
2151 2152
}

2153
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2154 2155 2156
{
	struct mem_cgroup *iter;

2157
	for_each_mem_cgroup_tree(iter, memcg)
2158 2159 2160
		atomic_inc(&iter->under_oom);
}

2161
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2162 2163 2164
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2165 2166 2167 2168 2169
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2170
	for_each_mem_cgroup_tree(iter, memcg)
2171
		atomic_add_unless(&iter->under_oom, -1, 0);
2172 2173
}

K
KAMEZAWA Hiroyuki 已提交
2174 2175
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2176
struct oom_wait_info {
2177
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2178 2179 2180 2181 2182 2183
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2184 2185
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2186 2187 2188
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2189
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2190 2191

	/*
2192
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2193 2194
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2195 2196
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2197 2198 2199 2200
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2201
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2202
{
2203
	atomic_inc(&memcg->oom_wakeups);
2204 2205
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2206 2207
}

2208
static void memcg_oom_recover(struct mem_cgroup *memcg)
2209
{
2210 2211
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2212 2213
}

2214
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2215
{
2216 2217
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2218
	/*
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2231
	 */
2232 2233 2234 2235
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2236 2237 2238 2239
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2240
 * @handle: actually kill/wait or just clean up the OOM state
2241
 *
2242 2243
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2244
 *
2245
 * Memcg supports userspace OOM handling where failed allocations must
2246 2247 2248 2249
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2250
 * the end of the page fault to complete the OOM handling.
2251 2252
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2253
 * completed, %false otherwise.
2254
 */
2255
bool mem_cgroup_oom_synchronize(bool handle)
2256
{
2257
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2258
	struct oom_wait_info owait;
2259
	bool locked;
2260 2261 2262

	/* OOM is global, do not handle */
	if (!memcg)
2263
		return false;
2264

2265 2266
	if (!handle)
		goto cleanup;
2267 2268 2269 2270 2271 2272

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2273

2274
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2288
		schedule();
2289 2290 2291 2292 2293
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2294 2295 2296 2297 2298 2299 2300 2301
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2302 2303
cleanup:
	current->memcg_oom.memcg = NULL;
2304
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2305
	return true;
2306 2307
}

2308 2309 2310
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2328 2329
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2330
 */
2331

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2345
	 * need to take move_lock_mem_cgroup(). Because we already hold
2346
	 * rcu_read_lock(), any calls to move_account will be delayed until
2347
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2348
	 */
2349
	if (!mem_cgroup_stolen(memcg))
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2367
	 * should take move_lock_mem_cgroup().
2368 2369 2370 2371
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2372
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2373
				 enum mem_cgroup_stat_index idx, int val)
2374
{
2375
	struct mem_cgroup *memcg;
2376
	struct page_cgroup *pc = lookup_page_cgroup(page);
2377
	unsigned long uninitialized_var(flags);
2378

2379
	if (mem_cgroup_disabled())
2380
		return;
2381

2382
	VM_BUG_ON(!rcu_read_lock_held());
2383 2384
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2385
		return;
2386

2387
	this_cpu_add(memcg->stat->count[idx], val);
2388
}
2389

2390 2391 2392 2393
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2394
#define CHARGE_BATCH	32U
2395 2396
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2397
	unsigned int nr_pages;
2398
	struct work_struct work;
2399
	unsigned long flags;
2400
#define FLUSHING_CACHED_CHARGE	0
2401 2402
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2403
static DEFINE_MUTEX(percpu_charge_mutex);
2404

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2415
 */
2416
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2417 2418 2419 2420
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2421 2422 2423
	if (nr_pages > CHARGE_BATCH)
		return false;

2424
	stock = &get_cpu_var(memcg_stock);
2425 2426
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2440 2441 2442 2443
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2444
		if (do_swap_account)
2445 2446
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2459
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2460 2461
}

2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2473 2474
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2475
 * This will be consumed by consume_stock() function, later.
2476
 */
2477
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2478 2479 2480
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2481
	if (stock->cached != memcg) { /* reset if necessary */
2482
		drain_stock(stock);
2483
		stock->cached = memcg;
2484
	}
2485
	stock->nr_pages += nr_pages;
2486 2487 2488 2489
	put_cpu_var(memcg_stock);
}

/*
2490
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2491 2492
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2493
 */
2494
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2495
{
2496
	int cpu, curcpu;
2497

2498 2499
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2500
	curcpu = get_cpu();
2501 2502
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2503
		struct mem_cgroup *memcg;
2504

2505 2506
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2507
			continue;
2508
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2509
			continue;
2510 2511 2512 2513 2514 2515
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2516
	}
2517
	put_cpu();
2518 2519 2520 2521 2522 2523

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2524
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2525 2526 2527
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2528
	put_online_cpus();
2529 2530 2531 2532 2533 2534 2535 2536
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2537
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2538
{
2539 2540 2541 2542 2543
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2544
	drain_all_stock(root_memcg, false);
2545
	mutex_unlock(&percpu_charge_mutex);
2546 2547 2548
}

/* This is a synchronous drain interface. */
2549
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2550 2551
{
	/* called when force_empty is called */
2552
	mutex_lock(&percpu_charge_mutex);
2553
	drain_all_stock(root_memcg, true);
2554
	mutex_unlock(&percpu_charge_mutex);
2555 2556
}

2557 2558 2559 2560
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2561
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2562 2563 2564
{
	int i;

2565
	spin_lock(&memcg->pcp_counter_lock);
2566
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2567
		long x = per_cpu(memcg->stat->count[i], cpu);
2568

2569 2570
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2571
	}
2572
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2573
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2574

2575 2576
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2577
	}
2578
	spin_unlock(&memcg->pcp_counter_lock);
2579 2580
}

2581
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2582 2583 2584 2585 2586
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2587
	struct mem_cgroup *iter;
2588

2589
	if (action == CPU_ONLINE)
2590 2591
		return NOTIFY_OK;

2592
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2593
		return NOTIFY_OK;
2594

2595
	for_each_mem_cgroup(iter)
2596 2597
		mem_cgroup_drain_pcp_counter(iter, cpu);

2598 2599 2600 2601 2602
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2603 2604 2605 2606 2607 2608 2609 2610 2611

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
};

2612
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2613
				unsigned int nr_pages, unsigned int min_pages,
2614
				bool invoke_oom)
2615
{
2616
	unsigned long csize = nr_pages * PAGE_SIZE;
2617 2618 2619 2620 2621
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2622
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2623 2624 2625 2626

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2627
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2628 2629 2630
		if (likely(!ret))
			return CHARGE_OK;

2631
		res_counter_uncharge(&memcg->res, csize);
2632 2633 2634 2635
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2636 2637 2638 2639
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2640
	if (nr_pages > min_pages)
2641 2642 2643 2644 2645
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2646 2647 2648
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2649
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2650
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2651
		return CHARGE_RETRY;
2652
	/*
2653 2654 2655 2656 2657 2658 2659
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2660
	 */
2661
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2662 2663 2664 2665 2666 2667 2668 2669 2670
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

2671 2672
	if (invoke_oom)
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2673

2674
	return CHARGE_NOMEM;
2675 2676
}

2677
/*
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2697
 */
2698
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2699
				   gfp_t gfp_mask,
2700
				   unsigned int nr_pages,
2701
				   struct mem_cgroup **ptr,
2702
				   bool oom)
2703
{
2704
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2705
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2706
	struct mem_cgroup *memcg = NULL;
2707
	int ret;
2708

K
KAMEZAWA Hiroyuki 已提交
2709 2710 2711 2712 2713 2714 2715 2716
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2717

2718 2719 2720
	if (unlikely(task_in_memcg_oom(current)))
		goto bypass;

2721
	/*
2722 2723
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2724
	 * thread group leader migrates. It's possible that mm is not
2725
	 * set, if so charge the root memcg (happens for pagecache usage).
2726
	 */
2727
	if (!*ptr && !mm)
2728
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2729
again:
2730 2731 2732
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2733
			goto done;
2734
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2735
			goto done;
2736
		css_get(&memcg->css);
2737
	} else {
K
KAMEZAWA Hiroyuki 已提交
2738
		struct task_struct *p;
2739

K
KAMEZAWA Hiroyuki 已提交
2740 2741 2742
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2743
		 * Because we don't have task_lock(), "p" can exit.
2744
		 * In that case, "memcg" can point to root or p can be NULL with
2745 2746 2747 2748 2749 2750
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2751
		 */
2752
		memcg = mem_cgroup_from_task(p);
2753 2754 2755
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2756 2757 2758
			rcu_read_unlock();
			goto done;
		}
2759
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2772
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2773 2774 2775 2776 2777
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2778

2779
	do {
2780
		bool invoke_oom = oom && !nr_oom_retries;
2781

2782
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2783
		if (fatal_signal_pending(current)) {
2784
			css_put(&memcg->css);
2785
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2786
		}
2787

2788 2789
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
					   nr_pages, invoke_oom);
2790 2791 2792 2793
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2794
			batch = nr_pages;
2795 2796
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2797
			goto again;
2798
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2799
			css_put(&memcg->css);
2800 2801
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
2802
			if (!oom || invoke_oom) {
2803
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2804
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2805
			}
2806 2807
			nr_oom_retries--;
			break;
2808
		}
2809 2810
	} while (ret != CHARGE_OK);

2811
	if (batch > nr_pages)
2812 2813
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2814
done:
2815
	*ptr = memcg;
2816 2817
	return 0;
nomem:
2818 2819 2820 2821
	if (!(gfp_mask & __GFP_NOFAIL)) {
		*ptr = NULL;
		return -ENOMEM;
	}
K
KAMEZAWA Hiroyuki 已提交
2822
bypass:
2823 2824
	*ptr = root_mem_cgroup;
	return -EINTR;
2825
}
2826

2827 2828 2829 2830 2831
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2832
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2833
				       unsigned int nr_pages)
2834
{
2835
	if (!mem_cgroup_is_root(memcg)) {
2836 2837
		unsigned long bytes = nr_pages * PAGE_SIZE;

2838
		res_counter_uncharge(&memcg->res, bytes);
2839
		if (do_swap_account)
2840
			res_counter_uncharge(&memcg->memsw, bytes);
2841
	}
2842 2843
}

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2862 2863
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2864 2865 2866
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2878
	return mem_cgroup_from_css(css);
2879 2880
}

2881
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2882
{
2883
	struct mem_cgroup *memcg = NULL;
2884
	struct page_cgroup *pc;
2885
	unsigned short id;
2886 2887
	swp_entry_t ent;

2888 2889 2890
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2891
	lock_page_cgroup(pc);
2892
	if (PageCgroupUsed(pc)) {
2893 2894 2895
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2896
	} else if (PageSwapCache(page)) {
2897
		ent.val = page_private(page);
2898
		id = lookup_swap_cgroup_id(ent);
2899
		rcu_read_lock();
2900 2901 2902
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2903
		rcu_read_unlock();
2904
	}
2905
	unlock_page_cgroup(pc);
2906
	return memcg;
2907 2908
}

2909
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2910
				       struct page *page,
2911
				       unsigned int nr_pages,
2912 2913
				       enum charge_type ctype,
				       bool lrucare)
2914
{
2915
	struct page_cgroup *pc = lookup_page_cgroup(page);
2916
	struct zone *uninitialized_var(zone);
2917
	struct lruvec *lruvec;
2918
	bool was_on_lru = false;
2919
	bool anon;
2920

2921
	lock_page_cgroup(pc);
2922
	VM_BUG_ON(PageCgroupUsed(pc));
2923 2924 2925 2926
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2927 2928 2929 2930 2931 2932 2933 2934 2935

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2936
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2937
			ClearPageLRU(page);
2938
			del_page_from_lru_list(page, lruvec, page_lru(page));
2939 2940 2941 2942
			was_on_lru = true;
		}
	}

2943
	pc->mem_cgroup = memcg;
2944 2945 2946 2947 2948 2949
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2950
	 */
K
KAMEZAWA Hiroyuki 已提交
2951
	smp_wmb();
2952
	SetPageCgroupUsed(pc);
2953

2954 2955
	if (lrucare) {
		if (was_on_lru) {
2956
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2957 2958
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2959
			add_page_to_lru_list(page, lruvec, page_lru(page));
2960 2961 2962 2963
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2964
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2965 2966 2967 2968
		anon = true;
	else
		anon = false;

2969
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2970
	unlock_page_cgroup(pc);
2971

2972
	/*
2973 2974 2975
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
2976
	 */
2977
	memcg_check_events(memcg, page);
2978
}
2979

2980 2981
static DEFINE_MUTEX(set_limit_mutex);

2982 2983 2984 2985 2986 2987 2988
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

3002
#ifdef CONFIG_SLABINFO
3003 3004
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
				    struct cftype *cft, struct seq_file *m)
3005
{
3006
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3076 3077 3078 3079 3080

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

3081 3082 3083 3084 3085 3086 3087 3088
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
3089
	if (memcg_kmem_test_and_clear_dead(memcg))
3090
		css_put(&memcg->css);
3091 3092
}

3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3176 3177
static void kmem_cache_destroy_work_func(struct work_struct *w);

3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3189
		size += offsetof(struct memcg_cache_params, memcg_caches);
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3229 3230
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3231
{
3232
	size_t size;
3233 3234 3235 3236

	if (!memcg_kmem_enabled())
		return 0;

3237 3238
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3239
		size += memcg_limited_groups_array_size * sizeof(void *);
3240 3241
	} else
		size = sizeof(struct memcg_cache_params);
3242

3243 3244 3245 3246
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3247
	if (memcg) {
3248
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3249
		s->memcg_params->root_cache = root_cache;
3250 3251
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3252 3253 3254
	} else
		s->memcg_params->is_root_cache = true;

3255 3256 3257 3258 3259
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3284
	css_put(&memcg->css);
3285
out:
3286 3287 3288
	kfree(s->memcg_params);
}

3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3320 3321 3322 3323 3324 3325 3326 3327 3328
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3350 3351 3352 3353 3354 3355 3356 3357
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3378 3379 3380 3381 3382 3383 3384
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3385 3386 3387 3388 3389 3390 3391 3392 3393
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3394

3395 3396 3397
/*
 * Called with memcg_cache_mutex held
 */
3398 3399 3400 3401
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3402
	static char *tmp_name = NULL;
3403

3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3422

3423
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3424
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3425

3426 3427 3428
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
3444 3445
	if (new_cachep) {
		css_put(&memcg->css);
3446
		goto out;
3447
	}
3448 3449 3450 3451

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3452
		css_put(&memcg->css);
3453 3454 3455
		goto out;
	}

G
Glauber Costa 已提交
3456
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3508
		cancel_work_sync(&c->memcg_params->destroy);
3509 3510 3511 3512 3513
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3514 3515 3516 3517 3518 3519
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3549 3550
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3551 3552 3553 3554
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3555 3556
	if (cw == NULL) {
		css_put(&memcg->css);
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3607 3608 3609
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3610 3611 3612 3613
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3614
		goto out;
3615 3616 3617 3618 3619 3620 3621 3622

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3623 3624 3625
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3626 3627
	}

3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3655 3656 3657
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3694 3695 3696
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3781 3782 3783 3784
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3785 3786
#endif /* CONFIG_MEMCG_KMEM */

3787 3788
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3789
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3790 3791
/*
 * Because tail pages are not marked as "used", set it. We're under
3792 3793 3794
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3795
 */
3796
void mem_cgroup_split_huge_fixup(struct page *head)
3797 3798
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3799
	struct page_cgroup *pc;
3800
	struct mem_cgroup *memcg;
3801
	int i;
3802

3803 3804
	if (mem_cgroup_disabled())
		return;
3805 3806

	memcg = head_pc->mem_cgroup;
3807 3808
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3809
		pc->mem_cgroup = memcg;
3810 3811 3812
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3813 3814
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3815
}
3816
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3817

3818 3819 3820 3821 3822 3823 3824 3825
static inline
void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
					struct mem_cgroup *to,
					unsigned int nr_pages,
					enum mem_cgroup_stat_index idx)
{
	/* Update stat data for mem_cgroup */
	preempt_disable();
3826
	__this_cpu_sub(from->stat->count[idx], nr_pages);
3827 3828 3829 3830
	__this_cpu_add(to->stat->count[idx], nr_pages);
	preempt_enable();
}

3831
/**
3832
 * mem_cgroup_move_account - move account of the page
3833
 * @page: the page
3834
 * @nr_pages: number of regular pages (>1 for huge pages)
3835 3836 3837 3838 3839
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3840
 * - page is not on LRU (isolate_page() is useful.)
3841
 * - compound_lock is held when nr_pages > 1
3842
 *
3843 3844
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3845
 */
3846 3847 3848 3849
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3850
				   struct mem_cgroup *to)
3851
{
3852 3853
	unsigned long flags;
	int ret;
3854
	bool anon = PageAnon(page);
3855

3856
	VM_BUG_ON(from == to);
3857
	VM_BUG_ON(PageLRU(page));
3858 3859 3860 3861 3862 3863 3864
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3865
	if (nr_pages > 1 && !PageTransHuge(page))
3866 3867 3868 3869 3870 3871 3872 3873
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3874
	move_lock_mem_cgroup(from, &flags);
3875

3876 3877 3878 3879 3880 3881 3882 3883
	if (!anon && page_mapped(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_FILE_MAPPED);

	if (PageWriteback(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_WRITEBACK);

3884
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3885

3886
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3887
	pc->mem_cgroup = to;
3888
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3889
	move_unlock_mem_cgroup(from, &flags);
3890 3891
	ret = 0;
unlock:
3892
	unlock_page_cgroup(pc);
3893 3894 3895
	/*
	 * check events
	 */
3896 3897
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3898
out:
3899 3900 3901
	return ret;
}

3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3922
 */
3923 3924
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3925
				  struct mem_cgroup *child)
3926 3927
{
	struct mem_cgroup *parent;
3928
	unsigned int nr_pages;
3929
	unsigned long uninitialized_var(flags);
3930 3931
	int ret;

3932
	VM_BUG_ON(mem_cgroup_is_root(child));
3933

3934 3935 3936 3937 3938
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3939

3940
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3941

3942 3943 3944 3945 3946 3947
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3948

3949 3950
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3951
		flags = compound_lock_irqsave(page);
3952
	}
3953

3954
	ret = mem_cgroup_move_account(page, nr_pages,
3955
				pc, child, parent);
3956 3957
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3958

3959
	if (nr_pages > 1)
3960
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3961
	putback_lru_page(page);
3962
put:
3963
	put_page(page);
3964
out:
3965 3966 3967
	return ret;
}

3968 3969 3970 3971 3972 3973 3974
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3975
				gfp_t gfp_mask, enum charge_type ctype)
3976
{
3977
	struct mem_cgroup *memcg = NULL;
3978
	unsigned int nr_pages = 1;
3979
	bool oom = true;
3980
	int ret;
A
Andrea Arcangeli 已提交
3981

A
Andrea Arcangeli 已提交
3982
	if (PageTransHuge(page)) {
3983
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3984
		VM_BUG_ON(!PageTransHuge(page));
3985 3986 3987 3988 3989
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3990
	}
3991

3992
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3993
	if (ret == -ENOMEM)
3994
		return ret;
3995
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3996 3997 3998
	return 0;
}

3999 4000
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
4001
{
4002
	if (mem_cgroup_disabled())
4003
		return 0;
4004 4005 4006
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
4007
	return mem_cgroup_charge_common(page, mm, gfp_mask,
4008
					MEM_CGROUP_CHARGE_TYPE_ANON);
4009 4010
}

4011 4012 4013
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
4014
 * struct page_cgroup is acquired. This refcnt will be consumed by
4015 4016
 * "commit()" or removed by "cancel()"
 */
4017 4018 4019 4020
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
4021
{
4022
	struct mem_cgroup *memcg;
4023
	struct page_cgroup *pc;
4024
	int ret;
4025

4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
4036 4037
	if (!do_swap_account)
		goto charge_cur_mm;
4038 4039
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
4040
		goto charge_cur_mm;
4041 4042
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4043
	css_put(&memcg->css);
4044 4045
	if (ret == -EINTR)
		ret = 0;
4046
	return ret;
4047
charge_cur_mm:
4048 4049 4050 4051
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
4052 4053
}

4054 4055 4056 4057 4058 4059
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
4074 4075 4076
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

4077 4078 4079 4080 4081 4082 4083 4084 4085
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
4086
static void
4087
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
4088
					enum charge_type ctype)
4089
{
4090
	if (mem_cgroup_disabled())
4091
		return;
4092
	if (!memcg)
4093
		return;
4094

4095
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4096 4097 4098
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
4099 4100 4101
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
4102
	 */
4103
	if (do_swap_account && PageSwapCache(page)) {
4104
		swp_entry_t ent = {.val = page_private(page)};
4105
		mem_cgroup_uncharge_swap(ent);
4106
	}
4107 4108
}

4109 4110
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4111
{
4112
	__mem_cgroup_commit_charge_swapin(page, memcg,
4113
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4114 4115
}

4116 4117
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4118
{
4119 4120 4121 4122
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4123
	if (mem_cgroup_disabled())
4124 4125 4126 4127 4128 4129 4130
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4131 4132
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4133 4134 4135 4136
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4137 4138
}

4139
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4140 4141
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4142 4143 4144
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4145

4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4157
		batch->memcg = memcg;
4158 4159
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4160
	 * In those cases, all pages freed continuously can be expected to be in
4161 4162 4163 4164 4165 4166 4167 4168
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4169
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4170 4171
		goto direct_uncharge;

4172 4173 4174 4175 4176
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4177
	if (batch->memcg != memcg)
4178 4179
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4180
	batch->nr_pages++;
4181
	if (uncharge_memsw)
4182
		batch->memsw_nr_pages++;
4183 4184
	return;
direct_uncharge:
4185
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4186
	if (uncharge_memsw)
4187 4188 4189
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4190
}
4191

4192
/*
4193
 * uncharge if !page_mapped(page)
4194
 */
4195
static struct mem_cgroup *
4196 4197
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4198
{
4199
	struct mem_cgroup *memcg = NULL;
4200 4201
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4202
	bool anon;
4203

4204
	if (mem_cgroup_disabled())
4205
		return NULL;
4206

A
Andrea Arcangeli 已提交
4207
	if (PageTransHuge(page)) {
4208
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4209 4210
		VM_BUG_ON(!PageTransHuge(page));
	}
4211
	/*
4212
	 * Check if our page_cgroup is valid
4213
	 */
4214
	pc = lookup_page_cgroup(page);
4215
	if (unlikely(!PageCgroupUsed(pc)))
4216
		return NULL;
4217

4218
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4219

4220
	memcg = pc->mem_cgroup;
4221

K
KAMEZAWA Hiroyuki 已提交
4222 4223 4224
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4225 4226
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4227
	switch (ctype) {
4228
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4229 4230 4231 4232 4233
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4234 4235
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4236
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4237
		/* See mem_cgroup_prepare_migration() */
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4259
	}
K
KAMEZAWA Hiroyuki 已提交
4260

4261
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4262

4263
	ClearPageCgroupUsed(pc);
4264 4265 4266 4267 4268 4269
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4270

4271
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4272
	/*
4273
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4274
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4275
	 */
4276
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4277
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4278
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4279
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4280
	}
4281 4282 4283 4284 4285 4286
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4287
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4288

4289
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4290 4291 4292

unlock_out:
	unlock_page_cgroup(pc);
4293
	return NULL;
4294 4295
}

4296 4297
void mem_cgroup_uncharge_page(struct page *page)
{
4298 4299 4300
	/* early check. */
	if (page_mapped(page))
		return;
4301
	VM_BUG_ON(page->mapping && !PageAnon(page));
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4314 4315
	if (PageSwapCache(page))
		return;
4316
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4317 4318 4319 4320 4321
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4322
	VM_BUG_ON(page->mapping);
4323
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4324 4325
}

4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4340 4341
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4362 4363 4364 4365 4366 4367
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4368
	memcg_oom_recover(batch->memcg);
4369 4370 4371 4372
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4373
#ifdef CONFIG_SWAP
4374
/*
4375
 * called after __delete_from_swap_cache() and drop "page" account.
4376 4377
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4378 4379
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4380 4381
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4382 4383 4384 4385 4386
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4387
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4388

K
KAMEZAWA Hiroyuki 已提交
4389 4390
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4391
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4392 4393
	 */
	if (do_swap_account && swapout && memcg)
4394
		swap_cgroup_record(ent, css_id(&memcg->css));
4395
}
4396
#endif
4397

A
Andrew Morton 已提交
4398
#ifdef CONFIG_MEMCG_SWAP
4399 4400 4401 4402 4403
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4404
{
4405
	struct mem_cgroup *memcg;
4406
	unsigned short id;
4407 4408 4409 4410

	if (!do_swap_account)
		return;

4411 4412 4413
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4414
	if (memcg) {
4415 4416 4417 4418
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4419
		if (!mem_cgroup_is_root(memcg))
4420
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4421
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4422
		css_put(&memcg->css);
4423
	}
4424
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4425
}
4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4442
				struct mem_cgroup *from, struct mem_cgroup *to)
4443 4444 4445 4446 4447 4448 4449 4450
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4451
		mem_cgroup_swap_statistics(to, true);
4452
		/*
4453 4454 4455
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4456 4457 4458 4459 4460 4461
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4462
		 */
L
Li Zefan 已提交
4463
		css_get(&to->css);
4464 4465 4466 4467 4468 4469
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4470
				struct mem_cgroup *from, struct mem_cgroup *to)
4471 4472 4473
{
	return -EINVAL;
}
4474
#endif
K
KAMEZAWA Hiroyuki 已提交
4475

4476
/*
4477 4478
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4479
 */
4480 4481
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4482
{
4483
	struct mem_cgroup *memcg = NULL;
4484
	unsigned int nr_pages = 1;
4485
	struct page_cgroup *pc;
4486
	enum charge_type ctype;
4487

4488
	*memcgp = NULL;
4489

4490
	if (mem_cgroup_disabled())
4491
		return;
4492

4493 4494 4495
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4496 4497 4498
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4499 4500
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4532
	}
4533
	unlock_page_cgroup(pc);
4534 4535 4536 4537
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4538
	if (!memcg)
4539
		return;
4540

4541
	*memcgp = memcg;
4542 4543 4544 4545 4546 4547 4548
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4549
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4550
	else
4551
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4552 4553 4554 4555 4556
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4557
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4558
}
4559

4560
/* remove redundant charge if migration failed*/
4561
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4562
	struct page *oldpage, struct page *newpage, bool migration_ok)
4563
{
4564
	struct page *used, *unused;
4565
	struct page_cgroup *pc;
4566
	bool anon;
4567

4568
	if (!memcg)
4569
		return;
4570

4571
	if (!migration_ok) {
4572 4573
		used = oldpage;
		unused = newpage;
4574
	} else {
4575
		used = newpage;
4576 4577
		unused = oldpage;
	}
4578
	anon = PageAnon(used);
4579 4580 4581 4582
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4583
	css_put(&memcg->css);
4584
	/*
4585 4586 4587
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4588
	 */
4589 4590 4591 4592 4593
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4594
	/*
4595 4596 4597 4598 4599 4600
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4601
	 */
4602
	if (anon)
4603
		mem_cgroup_uncharge_page(used);
4604
}
4605

4606 4607 4608 4609 4610 4611 4612 4613
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4614
	struct mem_cgroup *memcg = NULL;
4615 4616 4617 4618 4619 4620 4621 4622 4623
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4624 4625
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4626
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4627 4628
		ClearPageCgroupUsed(pc);
	}
4629 4630
	unlock_page_cgroup(pc);

4631 4632 4633 4634 4635 4636
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4637 4638 4639 4640 4641
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4642
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4643 4644
}

4645 4646 4647 4648 4649 4650
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4651 4652 4653 4654 4655
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4675 4676
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4677 4678 4679 4680
	}
}
#endif

4681
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4682
				unsigned long long val)
4683
{
4684
	int retry_count;
4685
	u64 memswlimit, memlimit;
4686
	int ret = 0;
4687 4688
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4689
	int enlarge;
4690 4691 4692 4693 4694 4695 4696 4697 4698

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4699

4700
	enlarge = 0;
4701
	while (retry_count) {
4702 4703 4704 4705
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4706 4707 4708
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4709
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4710 4711 4712 4713 4714 4715
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4716 4717
			break;
		}
4718 4719 4720 4721 4722

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4723
		ret = res_counter_set_limit(&memcg->res, val);
4724 4725 4726 4727 4728 4729
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4730 4731 4732 4733 4734
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4735 4736
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4737 4738
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4739
		if (curusage >= oldusage)
4740 4741 4742
			retry_count--;
		else
			oldusage = curusage;
4743
	}
4744 4745
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4746

4747 4748 4749
	return ret;
}

L
Li Zefan 已提交
4750 4751
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4752
{
4753
	int retry_count;
4754
	u64 memlimit, memswlimit, oldusage, curusage;
4755 4756
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4757
	int enlarge = 0;
4758

4759
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4760
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4761
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4762 4763 4764 4765 4766 4767 4768 4769
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4770
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4771 4772 4773 4774 4775 4776 4777 4778
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4779 4780 4781
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4782
		ret = res_counter_set_limit(&memcg->memsw, val);
4783 4784 4785 4786 4787 4788
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4789 4790 4791 4792 4793
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4794 4795 4796
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4797
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4798
		/* Usage is reduced ? */
4799
		if (curusage >= oldusage)
4800
			retry_count--;
4801 4802
		else
			oldusage = curusage;
4803
	}
4804 4805
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4806 4807 4808
	return ret;
}

4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
	unsigned long long excess;
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
		spin_unlock(&mctz->lock);
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

4901 4902 4903 4904 4905 4906 4907
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4908
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4909 4910
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4911
 */
4912
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4913
				int node, int zid, enum lru_list lru)
4914
{
4915
	struct lruvec *lruvec;
4916
	unsigned long flags;
4917
	struct list_head *list;
4918 4919
	struct page *busy;
	struct zone *zone;
4920

K
KAMEZAWA Hiroyuki 已提交
4921
	zone = &NODE_DATA(node)->node_zones[zid];
4922 4923
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4924

4925
	busy = NULL;
4926
	do {
4927
		struct page_cgroup *pc;
4928 4929
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4930
		spin_lock_irqsave(&zone->lru_lock, flags);
4931
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4932
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4933
			break;
4934
		}
4935 4936 4937
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4938
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4939
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4940 4941
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4942
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4943

4944
		pc = lookup_page_cgroup(page);
4945

4946
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4947
			/* found lock contention or "pc" is obsolete. */
4948
			busy = page;
4949 4950 4951
			cond_resched();
		} else
			busy = NULL;
4952
	} while (!list_empty(list));
4953 4954 4955
}

/*
4956 4957
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4958
 * This enables deleting this mem_cgroup.
4959 4960
 *
 * Caller is responsible for holding css reference on the memcg.
4961
 */
4962
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4963
{
4964
	int node, zid;
4965
	u64 usage;
4966

4967
	do {
4968 4969
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4970 4971
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4972
		for_each_node_state(node, N_MEMORY) {
4973
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4974 4975
				enum lru_list lru;
				for_each_lru(lru) {
4976
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4977
							node, zid, lru);
4978
				}
4979
			}
4980
		}
4981 4982
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4983
		cond_resched();
4984

4985
		/*
4986 4987 4988 4989 4990
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4991 4992 4993 4994 4995 4996
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4997 4998 4999
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
5000 5001
}

5002 5003
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
	lockdep_assert_held(&memcg_create_mutex);
	/*
	 * The lock does not prevent addition or deletion to the list
	 * of children, but it prevents a new child from being
	 * initialized based on this parent in css_online(), so it's
	 * enough to decide whether hierarchically inherited
	 * attributes can still be changed or not.
	 */
	return memcg->use_hierarchy &&
		!list_empty(&memcg->css.cgroup->children);
5014 5015
}

5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
5026

5027
	/* returns EBUSY if there is a task or if we come here twice. */
5028 5029 5030
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

5031 5032
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
5033
	/* try to free all pages in this cgroup */
5034
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5035
		int progress;
5036

5037 5038 5039
		if (signal_pending(current))
			return -EINTR;

5040
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5041
						false);
5042
		if (!progress) {
5043
			nr_retries--;
5044
			/* maybe some writeback is necessary */
5045
			congestion_wait(BLK_RW_ASYNC, HZ/10);
5046
		}
5047 5048

	}
K
KAMEZAWA Hiroyuki 已提交
5049
	lru_add_drain();
5050 5051 5052
	mem_cgroup_reparent_charges(memcg);

	return 0;
5053 5054
}

5055 5056
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
5057
{
5058
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5059

5060 5061
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
5062
	return mem_cgroup_force_empty(memcg);
5063 5064
}

5065 5066
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
5067
{
5068
	return mem_cgroup_from_css(css)->use_hierarchy;
5069 5070
}

5071 5072
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
5073 5074
{
	int retval = 0;
5075
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5076
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5077

5078
	mutex_lock(&memcg_create_mutex);
5079 5080 5081 5082

	if (memcg->use_hierarchy == val)
		goto out;

5083
	/*
5084
	 * If parent's use_hierarchy is set, we can't make any modifications
5085 5086 5087 5088 5089 5090
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
5091
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5092
				(val == 1 || val == 0)) {
5093
		if (list_empty(&memcg->css.cgroup->children))
5094
			memcg->use_hierarchy = val;
5095 5096 5097 5098
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
5099 5100

out:
5101
	mutex_unlock(&memcg_create_mutex);
5102 5103 5104 5105

	return retval;
}

5106

5107
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5108
					       enum mem_cgroup_stat_index idx)
5109
{
K
KAMEZAWA Hiroyuki 已提交
5110
	struct mem_cgroup *iter;
5111
	long val = 0;
5112

5113
	/* Per-cpu values can be negative, use a signed accumulator */
5114
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5115 5116 5117 5118 5119
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
5120 5121
}

5122
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5123
{
K
KAMEZAWA Hiroyuki 已提交
5124
	u64 val;
5125

5126
	if (!mem_cgroup_is_root(memcg)) {
5127
		if (!swap)
5128
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5129
		else
5130
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5131 5132
	}

5133 5134 5135 5136
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
5137 5138
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5139

K
KAMEZAWA Hiroyuki 已提交
5140
	if (swap)
5141
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5142 5143 5144 5145

	return val << PAGE_SHIFT;
}

5146 5147 5148
static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
5149
{
5150
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5151
	char str[64];
5152
	u64 val;
G
Glauber Costa 已提交
5153 5154
	int name, len;
	enum res_type type;
5155 5156 5157

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5158

5159 5160
	switch (type) {
	case _MEM:
5161
		if (name == RES_USAGE)
5162
			val = mem_cgroup_usage(memcg, false);
5163
		else
5164
			val = res_counter_read_u64(&memcg->res, name);
5165 5166
		break;
	case _MEMSWAP:
5167
		if (name == RES_USAGE)
5168
			val = mem_cgroup_usage(memcg, true);
5169
		else
5170
			val = res_counter_read_u64(&memcg->memsw, name);
5171
		break;
5172 5173 5174
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5175 5176 5177
	default:
		BUG();
	}
5178 5179 5180

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
5181
}
5182

5183
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5184 5185 5186
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
5187
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5200
	mutex_lock(&memcg_create_mutex);
5201
	mutex_lock(&set_limit_mutex);
5202
	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5203
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5204 5205 5206 5207 5208 5209
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5210 5211
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
5212
			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5213 5214
			goto out;
		}
5215 5216 5217 5218 5219 5220
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
5221 5222 5223 5224
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5225
	mutex_unlock(&memcg_create_mutex);
5226 5227 5228 5229
#endif
	return ret;
}

5230
#ifdef CONFIG_MEMCG_KMEM
5231
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5232
{
5233
	int ret = 0;
5234 5235
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5236 5237
		goto out;

5238
	memcg->kmem_account_flags = parent->kmem_account_flags;
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5249 5250 5251 5252
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
5253 5254 5255
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
5256 5257 5258 5259
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
5260
	memcg_stop_kmem_account();
5261
	ret = memcg_update_cache_sizes(memcg);
5262
	memcg_resume_kmem_account();
5263 5264 5265
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5266
}
5267
#endif /* CONFIG_MEMCG_KMEM */
5268

5269 5270 5271 5272
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5273
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5274
			    const char *buffer)
B
Balbir Singh 已提交
5275
{
5276
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5277 5278
	enum res_type type;
	int name;
5279 5280 5281
	unsigned long long val;
	int ret;

5282 5283
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5284

5285
	switch (name) {
5286
	case RES_LIMIT:
5287 5288 5289 5290
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5291 5292
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5293 5294 5295
		if (ret)
			break;
		if (type == _MEM)
5296
			ret = mem_cgroup_resize_limit(memcg, val);
5297
		else if (type == _MEMSWAP)
5298
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5299
		else if (type == _KMEM)
5300
			ret = memcg_update_kmem_limit(css, val);
5301 5302
		else
			return -EINVAL;
5303
		break;
5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5318 5319 5320 5321 5322
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5323 5324
}

5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5335 5336
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5349
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5350
{
5351
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5352 5353
	int name;
	enum res_type type;
5354

5355 5356
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5357

5358
	switch (name) {
5359
	case RES_MAX_USAGE:
5360
		if (type == _MEM)
5361
			res_counter_reset_max(&memcg->res);
5362
		else if (type == _MEMSWAP)
5363
			res_counter_reset_max(&memcg->memsw);
5364 5365 5366 5367
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5368 5369
		break;
	case RES_FAILCNT:
5370
		if (type == _MEM)
5371
			res_counter_reset_failcnt(&memcg->res);
5372
		else if (type == _MEMSWAP)
5373
			res_counter_reset_failcnt(&memcg->memsw);
5374 5375 5376 5377
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5378 5379
		break;
	}
5380

5381
	return 0;
5382 5383
}

5384
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5385 5386
					struct cftype *cft)
{
5387
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5388 5389
}

5390
#ifdef CONFIG_MMU
5391
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5392 5393
					struct cftype *cft, u64 val)
{
5394
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5395 5396 5397

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5398

5399
	/*
5400 5401 5402 5403
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5404
	 */
5405
	memcg->move_charge_at_immigrate = val;
5406 5407
	return 0;
}
5408
#else
5409
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5410 5411 5412 5413 5414
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5415

5416
#ifdef CONFIG_NUMA
5417 5418
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
				struct cftype *cft, struct seq_file *m)
5419 5420 5421 5422
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5423
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5424

5425
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5426
	seq_printf(m, "total=%lu", total_nr);
5427
	for_each_node_state(nid, N_MEMORY) {
5428
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5429 5430 5431 5432
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5433
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5434
	seq_printf(m, "file=%lu", file_nr);
5435
	for_each_node_state(nid, N_MEMORY) {
5436
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5437
				LRU_ALL_FILE);
5438 5439 5440 5441
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5442
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5443
	seq_printf(m, "anon=%lu", anon_nr);
5444
	for_each_node_state(nid, N_MEMORY) {
5445
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5446
				LRU_ALL_ANON);
5447 5448 5449 5450
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5451
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5452
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5453
	for_each_node_state(nid, N_MEMORY) {
5454
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5455
				BIT(LRU_UNEVICTABLE));
5456 5457 5458 5459 5460 5461 5462
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5463 5464 5465 5466 5467
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5468
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5469
				 struct seq_file *m)
5470
{
5471
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5472 5473
	struct mem_cgroup *mi;
	unsigned int i;
5474

5475
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5476
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5477
			continue;
5478 5479
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5480
	}
L
Lee Schermerhorn 已提交
5481

5482 5483 5484 5485 5486 5487 5488 5489
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5490
	/* Hierarchical information */
5491 5492
	{
		unsigned long long limit, memsw_limit;
5493
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5494
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5495
		if (do_swap_account)
5496 5497
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5498
	}
K
KOSAKI Motohiro 已提交
5499

5500 5501 5502
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5503
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5504
			continue;
5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5525
	}
K
KAMEZAWA Hiroyuki 已提交
5526

K
KOSAKI Motohiro 已提交
5527 5528 5529 5530
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5531
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5532 5533 5534 5535 5536
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5537
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5538
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5539

5540 5541 5542 5543
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5544
			}
5545 5546 5547 5548
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5549 5550 5551
	}
#endif

5552 5553 5554
	return 0;
}

5555 5556
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5557
{
5558
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5559

5560
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5561 5562
}

5563 5564
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5565
{
5566
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5567
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5568

T
Tejun Heo 已提交
5569
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5570 5571
		return -EINVAL;

5572
	mutex_lock(&memcg_create_mutex);
5573

K
KOSAKI Motohiro 已提交
5574
	/* If under hierarchy, only empty-root can set this value */
5575
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5576
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5577
		return -EINVAL;
5578
	}
K
KOSAKI Motohiro 已提交
5579 5580 5581

	memcg->swappiness = val;

5582
	mutex_unlock(&memcg_create_mutex);
5583

K
KOSAKI Motohiro 已提交
5584 5585 5586
	return 0;
}

5587 5588 5589 5590 5591 5592 5593 5594
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5595
		t = rcu_dereference(memcg->thresholds.primary);
5596
	else
5597
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5598 5599 5600 5601 5602 5603 5604

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5605
	 * current_threshold points to threshold just below or equal to usage.
5606 5607 5608
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5609
	i = t->current_threshold;
5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5633
	t->current_threshold = i - 1;
5634 5635 5636 5637 5638 5639
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5640 5641 5642 5643 5644 5645 5646
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5647 5648 5649 5650 5651 5652 5653
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5654 5655 5656 5657 5658 5659 5660
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5661 5662
}

5663
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5664 5665 5666
{
	struct mem_cgroup_eventfd_list *ev;

5667
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5668 5669 5670 5671
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5672
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5673
{
K
KAMEZAWA Hiroyuki 已提交
5674 5675
	struct mem_cgroup *iter;

5676
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5677
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5678 5679
}

5680
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5681
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5682
{
5683 5684
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5685
	u64 threshold, usage;
5686
	int i, size, ret;
5687 5688 5689 5690 5691 5692

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5693

5694
	if (type == _MEM)
5695
		thresholds = &memcg->thresholds;
5696
	else if (type == _MEMSWAP)
5697
		thresholds = &memcg->memsw_thresholds;
5698 5699 5700 5701 5702 5703
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5704
	if (thresholds->primary)
5705 5706
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5707
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5708 5709

	/* Allocate memory for new array of thresholds */
5710
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5711
			GFP_KERNEL);
5712
	if (!new) {
5713 5714 5715
		ret = -ENOMEM;
		goto unlock;
	}
5716
	new->size = size;
5717 5718

	/* Copy thresholds (if any) to new array */
5719 5720
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5721
				sizeof(struct mem_cgroup_threshold));
5722 5723
	}

5724
	/* Add new threshold */
5725 5726
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5727 5728

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5729
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5730 5731 5732
			compare_thresholds, NULL);

	/* Find current threshold */
5733
	new->current_threshold = -1;
5734
	for (i = 0; i < size; i++) {
5735
		if (new->entries[i].threshold <= usage) {
5736
			/*
5737 5738
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5739 5740
			 * it here.
			 */
5741
			++new->current_threshold;
5742 5743
		} else
			break;
5744 5745
	}

5746 5747 5748 5749 5750
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5751

5752
	/* To be sure that nobody uses thresholds */
5753 5754 5755 5756 5757 5758 5759 5760
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5761
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5762 5763
	struct eventfd_ctx *eventfd, const char *args)
{
5764
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
5765 5766
}

5767
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5768 5769
	struct eventfd_ctx *eventfd, const char *args)
{
5770
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
5771 5772
}

5773
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5774
	struct eventfd_ctx *eventfd, enum res_type type)
5775
{
5776 5777
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5778
	u64 usage;
5779
	int i, j, size;
5780 5781 5782

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5783
		thresholds = &memcg->thresholds;
5784
	else if (type == _MEMSWAP)
5785
		thresholds = &memcg->memsw_thresholds;
5786 5787 5788
	else
		BUG();

5789 5790 5791
	if (!thresholds->primary)
		goto unlock;

5792 5793 5794 5795 5796 5797
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5798 5799 5800
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5801 5802 5803
			size++;
	}

5804
	new = thresholds->spare;
5805

5806 5807
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5808 5809
		kfree(new);
		new = NULL;
5810
		goto swap_buffers;
5811 5812
	}

5813
	new->size = size;
5814 5815

	/* Copy thresholds and find current threshold */
5816 5817 5818
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5819 5820
			continue;

5821
		new->entries[j] = thresholds->primary->entries[i];
5822
		if (new->entries[j].threshold <= usage) {
5823
			/*
5824
			 * new->current_threshold will not be used
5825 5826 5827
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5828
			++new->current_threshold;
5829 5830 5831 5832
		}
		j++;
	}

5833
swap_buffers:
5834 5835
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5836 5837 5838 5839 5840 5841
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5842
	rcu_assign_pointer(thresholds->primary, new);
5843

5844
	/* To be sure that nobody uses thresholds */
5845
	synchronize_rcu();
5846
unlock:
5847 5848
	mutex_unlock(&memcg->thresholds_lock);
}
5849

5850
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5851 5852
	struct eventfd_ctx *eventfd)
{
5853
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
5854 5855
}

5856
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5857 5858
	struct eventfd_ctx *eventfd)
{
5859
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
5860 5861
}

5862
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5863
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
5864 5865 5866 5867 5868 5869 5870
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5871
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5872 5873 5874 5875 5876

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5877
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5878
		eventfd_signal(eventfd, 1);
5879
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5880 5881 5882 5883

	return 0;
}

5884
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5885
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
5886 5887 5888
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

5889
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5890

5891
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5892 5893 5894 5895 5896 5897
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5898
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5899 5900
}

5901
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5902 5903
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5904
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5905

5906
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5907

5908
	if (atomic_read(&memcg->under_oom))
5909 5910 5911 5912 5913 5914
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

5915
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5916 5917
	struct cftype *cft, u64 val)
{
5918
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5919
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5920 5921

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5922
	if (!parent || !((val == 0) || (val == 1)))
5923 5924
		return -EINVAL;

5925
	mutex_lock(&memcg_create_mutex);
5926
	/* oom-kill-disable is a flag for subhierarchy. */
5927
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5928
		mutex_unlock(&memcg_create_mutex);
5929 5930
		return -EINVAL;
	}
5931
	memcg->oom_kill_disable = val;
5932
	if (!val)
5933
		memcg_oom_recover(memcg);
5934
	mutex_unlock(&memcg_create_mutex);
5935 5936 5937
	return 0;
}

A
Andrew Morton 已提交
5938
#ifdef CONFIG_MEMCG_KMEM
5939
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5940
{
5941 5942
	int ret;

5943
	memcg->kmemcg_id = -1;
5944 5945 5946
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5947

5948
	return mem_cgroup_sockets_init(memcg, ss);
5949
}
5950

5951
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5952
{
5953
	mem_cgroup_sockets_destroy(memcg);
5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5980 5981 5982 5983 5984 5985 5986

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5987
		css_put(&memcg->css);
G
Glauber Costa 已提交
5988
}
5989
#else
5990
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5991 5992 5993
{
	return 0;
}
G
Glauber Costa 已提交
5994

5995 5996 5997 5998 5999
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
6000 6001
{
}
6002 6003
#endif

6004 6005 6006 6007 6008 6009 6010 6011 6012
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
static void cgroup_event_remove(struct work_struct *work)
{
	struct cgroup_event *event = container_of(work, struct cgroup_event,
			remove);
6013
	struct mem_cgroup *memcg = event->memcg;
6014 6015 6016

	remove_wait_queue(event->wqh, &event->wait);

6017
	event->unregister_event(memcg, event->eventfd);
6018 6019 6020 6021 6022 6023

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
6024
	css_put(&memcg->css);
6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
		int sync, void *key)
{
	struct cgroup_event *event = container_of(wait,
			struct cgroup_event, wait);
6037
	struct mem_cgroup *memcg = event->memcg;
6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
6050
		spin_lock(&memcg->event_list_lock);
6051 6052 6053 6054 6055 6056 6057 6058
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
6059
		spin_unlock(&memcg->event_list_lock);
6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080
	}

	return 0;
}

static void cgroup_event_ptable_queue_proc(struct file *file,
		wait_queue_head_t *wqh, poll_table *pt)
{
	struct cgroup_event *event = container_of(pt,
			struct cgroup_event, pt);

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
6081
static int cgroup_write_event_control(struct cgroup_subsys_state *css,
6082 6083
				      struct cftype *cft, const char *buffer)
{
6084
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6085 6086 6087 6088 6089
	struct cgroup_event *event;
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
6090
	const char *name;
6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
	char *endp;
	int ret;

	efd = simple_strtoul(buffer, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buffer = endp + 1;

	cfd = simple_strtoul(buffer, &endp, 10);
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
	buffer = endp + 1;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

6108
	event->memcg = memcg;
6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137
	INIT_LIST_HEAD(&event->list);
	init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
	INIT_WORK(&event->remove, cgroup_event_remove);

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
	 */
	name = cfile.file->f_dentry->d_name.name;

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
6156 6157
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
6158 6159 6160 6161 6162
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

6163
	/*
6164 6165 6166
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
6167 6168 6169 6170
	 */
	rcu_read_lock();

	ret = -EINVAL;
6171 6172 6173
	cfile_css = css_from_dir(cfile.file->f_dentry->d_parent,
				 &mem_cgroup_subsys);
	if (cfile_css == css && css_tryget(css))
6174 6175 6176 6177 6178 6179
		ret = 0;

	rcu_read_unlock();
	if (ret)
		goto out_put_cfile;

6180
	ret = event->register_event(memcg, event->eventfd, buffer);
6181 6182 6183 6184 6185
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

6186 6187 6188
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
6189 6190 6191 6192 6193 6194 6195

	fdput(cfile);
	fdput(efile);

	return 0;

out_put_css:
6196
	css_put(css);
6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
6209 6210
static struct cftype mem_cgroup_files[] = {
	{
6211
		.name = "usage_in_bytes",
6212
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6213
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
6214
	},
6215 6216
	{
		.name = "max_usage_in_bytes",
6217
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6218
		.trigger = mem_cgroup_reset,
6219
		.read = mem_cgroup_read,
6220
	},
B
Balbir Singh 已提交
6221
	{
6222
		.name = "limit_in_bytes",
6223
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6224
		.write_string = mem_cgroup_write,
6225
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
6226
	},
6227 6228 6229 6230
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
6231
		.read = mem_cgroup_read,
6232
	},
B
Balbir Singh 已提交
6233 6234
	{
		.name = "failcnt",
6235
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6236
		.trigger = mem_cgroup_reset,
6237
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
6238
	},
6239 6240
	{
		.name = "stat",
6241
		.read_seq_string = memcg_stat_show,
6242
	},
6243 6244 6245 6246
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
6247 6248
	{
		.name = "use_hierarchy",
6249
		.flags = CFTYPE_INSANE,
6250 6251 6252
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
6253 6254 6255 6256 6257 6258
	{
		.name = "cgroup.event_control",
		.write_string = cgroup_write_event_control,
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
6259 6260 6261 6262 6263
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
6264 6265 6266 6267 6268
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
6269 6270
	{
		.name = "oom_control",
6271 6272
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
6273 6274
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
6275 6276 6277
	{
		.name = "pressure_level",
	},
6278 6279 6280
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
6281
		.read_seq_string = memcg_numa_stat_show,
6282 6283
	},
#endif
6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
6308 6309 6310 6311 6312 6313
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
6314
#endif
6315
	{ },	/* terminate */
6316
};
6317

6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
6346
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6347 6348
{
	struct mem_cgroup_per_node *pn;
6349
	struct mem_cgroup_per_zone *mz;
6350
	int zone, tmp = node;
6351 6352 6353 6354 6355 6356 6357 6358
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6359 6360
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6361
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6362 6363
	if (!pn)
		return 1;
6364 6365 6366

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6367
		lruvec_init(&mz->lruvec);
6368 6369
		mz->usage_in_excess = 0;
		mz->on_tree = false;
6370
		mz->memcg = memcg;
6371
	}
6372
	memcg->nodeinfo[node] = pn;
6373 6374 6375
	return 0;
}

6376
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6377
{
6378
	kfree(memcg->nodeinfo[node]);
6379 6380
}

6381 6382
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6383
	struct mem_cgroup *memcg;
6384
	size_t size = memcg_size();
6385

6386
	/* Can be very big if nr_node_ids is very big */
6387
	if (size < PAGE_SIZE)
6388
		memcg = kzalloc(size, GFP_KERNEL);
6389
	else
6390
		memcg = vzalloc(size);
6391

6392
	if (!memcg)
6393 6394
		return NULL;

6395 6396
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6397
		goto out_free;
6398 6399
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6400 6401 6402

out_free:
	if (size < PAGE_SIZE)
6403
		kfree(memcg);
6404
	else
6405
		vfree(memcg);
6406
	return NULL;
6407 6408
}

6409
/*
6410 6411 6412 6413 6414 6415 6416 6417
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6418
 */
6419 6420

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6421
{
6422
	int node;
6423
	size_t size = memcg_size();
6424

6425
	mem_cgroup_remove_from_trees(memcg);
6426 6427 6428 6429 6430 6431 6432
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6444
	disarm_static_keys(memcg);
6445 6446 6447 6448
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6449
}
6450

6451 6452 6453
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6454
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6455
{
6456
	if (!memcg->res.parent)
6457
		return NULL;
6458
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6459
}
G
Glauber Costa 已提交
6460
EXPORT_SYMBOL(parent_mem_cgroup);
6461

6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6485
static struct cgroup_subsys_state * __ref
6486
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6487
{
6488
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6489
	long error = -ENOMEM;
6490
	int node;
B
Balbir Singh 已提交
6491

6492 6493
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6494
		return ERR_PTR(error);
6495

B
Bob Liu 已提交
6496
	for_each_node(node)
6497
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6498
			goto free_out;
6499

6500
	/* root ? */
6501
	if (parent_css == NULL) {
6502
		root_mem_cgroup = memcg;
6503 6504 6505
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6506
	}
6507

6508 6509 6510 6511 6512
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6513
	vmpressure_init(&memcg->vmpressure);
6514 6515
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
6516 6517 6518 6519 6520 6521 6522 6523 6524

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6525
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6526
{
6527 6528
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6529 6530
	int error = 0;

T
Tejun Heo 已提交
6531
	if (!parent)
6532 6533
		return 0;

6534
	mutex_lock(&memcg_create_mutex);
6535 6536 6537 6538 6539 6540

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6541 6542
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6543
		res_counter_init(&memcg->kmem, &parent->kmem);
6544

6545
		/*
6546 6547
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6548
		 */
6549
	} else {
6550 6551
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6552
		res_counter_init(&memcg->kmem, NULL);
6553 6554 6555 6556 6557
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6558
		if (parent != root_mem_cgroup)
6559
			mem_cgroup_subsys.broken_hierarchy = true;
6560
	}
6561 6562

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6563
	mutex_unlock(&memcg_create_mutex);
6564
	return error;
B
Balbir Singh 已提交
6565 6566
}

M
Michal Hocko 已提交
6567 6568 6569 6570 6571 6572 6573 6574
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6575
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6576 6577 6578 6579 6580 6581

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6582
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6583 6584
}

6585
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6586
{
6587
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6588 6589 6590 6591 6592 6593 6594
	struct cgroup_event *event, *tmp;

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
6595 6596
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6597 6598 6599
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
6600
	spin_unlock(&memcg->event_list_lock);
6601

6602 6603
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6604
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6605
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6606
	mem_cgroup_destroy_all_caches(memcg);
6607
	vmpressure_cleanup(&memcg->vmpressure);
6608 6609
}

6610
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6611
{
6612
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6613

6614
	memcg_destroy_kmem(memcg);
6615
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6616 6617
}

6618
#ifdef CONFIG_MMU
6619
/* Handlers for move charge at task migration. */
6620 6621
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6622
{
6623 6624
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6625
	struct mem_cgroup *memcg = mc.to;
6626

6627
	if (mem_cgroup_is_root(memcg)) {
6628 6629 6630 6631 6632 6633 6634 6635
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6636
		 * "memcg" cannot be under rmdir() because we've already checked
6637 6638 6639 6640
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6641
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6642
			goto one_by_one;
6643
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6644
						PAGE_SIZE * count, &dummy)) {
6645
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6662 6663
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6664
		if (ret)
6665
			/* mem_cgroup_clear_mc() will do uncharge later */
6666
			return ret;
6667 6668
		mc.precharge++;
	}
6669 6670 6671 6672
	return ret;
}

/**
6673
 * get_mctgt_type - get target type of moving charge
6674 6675 6676
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6677
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6678 6679 6680 6681 6682 6683
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6684 6685 6686
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6687 6688 6689 6690 6691
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6692
	swp_entry_t	ent;
6693 6694 6695
};

enum mc_target_type {
6696
	MC_TARGET_NONE = 0,
6697
	MC_TARGET_PAGE,
6698
	MC_TARGET_SWAP,
6699 6700
};

D
Daisuke Nishimura 已提交
6701 6702
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6703
{
D
Daisuke Nishimura 已提交
6704
	struct page *page = vm_normal_page(vma, addr, ptent);
6705

D
Daisuke Nishimura 已提交
6706 6707 6708 6709
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6710
		if (!move_anon())
D
Daisuke Nishimura 已提交
6711
			return NULL;
6712 6713
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6714 6715 6716 6717 6718 6719 6720
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6721
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6722 6723 6724 6725 6726 6727 6728 6729
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6730 6731 6732 6733
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6734
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6735 6736 6737 6738 6739
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6740 6741 6742 6743 6744 6745 6746
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6747

6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6767 6768 6769 6770 6771 6772
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6773
		if (do_swap_account)
6774
			*entry = swap;
6775
		page = find_get_page(swap_address_space(swap), swap.val);
6776
	}
6777
#endif
6778 6779 6780
	return page;
}

6781
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6782 6783 6784 6785
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6786
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6787 6788 6789 6790 6791 6792
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6793 6794
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6795 6796

	if (!page && !ent.val)
6797
		return ret;
6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6813 6814
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6815
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6816 6817 6818
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6819 6820 6821 6822
	}
	return ret;
}

6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6858 6859 6860 6861 6862 6863 6864 6865
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6866 6867 6868 6869
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6870
		return 0;
6871
	}
6872

6873 6874
	if (pmd_trans_unstable(pmd))
		return 0;
6875 6876
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6877
		if (get_mctgt_type(vma, addr, *pte, NULL))
6878 6879 6880 6881
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6882 6883 6884
	return 0;
}

6885 6886 6887 6888 6889
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6890
	down_read(&mm->mmap_sem);
6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6902
	up_read(&mm->mmap_sem);
6903 6904 6905 6906 6907 6908 6909 6910 6911

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6912 6913 6914 6915 6916
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6917 6918
}

6919 6920
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6921
{
6922 6923
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6924
	int i;
6925

6926
	/* we must uncharge all the leftover precharges from mc.to */
6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6938
	}
6939 6940 6941 6942 6943 6944
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6945 6946 6947

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6948 6949 6950 6951 6952 6953 6954 6955 6956

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6957
		/* we've already done css_get(mc.to) */
6958 6959
		mc.moved_swap = 0;
	}
6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6975
	spin_lock(&mc.lock);
6976 6977
	mc.from = NULL;
	mc.to = NULL;
6978
	spin_unlock(&mc.lock);
6979
	mem_cgroup_end_move(from);
6980 6981
}

6982
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6983
				 struct cgroup_taskset *tset)
6984
{
6985
	struct task_struct *p = cgroup_taskset_first(tset);
6986
	int ret = 0;
6987
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6988
	unsigned long move_charge_at_immigrate;
6989

6990 6991 6992 6993 6994 6995 6996
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6997 6998 6999
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

7000
		VM_BUG_ON(from == memcg);
7001 7002 7003 7004 7005

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
7006 7007 7008 7009
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
7010
			VM_BUG_ON(mc.moved_charge);
7011
			VM_BUG_ON(mc.moved_swap);
7012
			mem_cgroup_start_move(from);
7013
			spin_lock(&mc.lock);
7014
			mc.from = from;
7015
			mc.to = memcg;
7016
			mc.immigrate_flags = move_charge_at_immigrate;
7017
			spin_unlock(&mc.lock);
7018
			/* We set mc.moving_task later */
7019 7020 7021 7022

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
7023 7024
		}
		mmput(mm);
7025 7026 7027 7028
	}
	return ret;
}

7029
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7030
				     struct cgroup_taskset *tset)
7031
{
7032
	mem_cgroup_clear_mc();
7033 7034
}

7035 7036 7037
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
7038
{
7039 7040 7041 7042
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
7043 7044 7045 7046
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
7047

7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
7059
		if (mc.precharge < HPAGE_PMD_NR) {
7060 7061 7062 7063 7064 7065 7066 7067 7068
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
7069
							pc, mc.from, mc.to)) {
7070 7071 7072 7073 7074 7075 7076 7077
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
7078
		return 0;
7079 7080
	}

7081 7082
	if (pmd_trans_unstable(pmd))
		return 0;
7083 7084 7085 7086
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
7087
		swp_entry_t ent;
7088 7089 7090 7091

		if (!mc.precharge)
			break;

7092
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
7093 7094 7095 7096 7097
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
7098
			if (!mem_cgroup_move_account(page, 1, pc,
7099
						     mc.from, mc.to)) {
7100
				mc.precharge--;
7101 7102
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
7103 7104
			}
			putback_lru_page(page);
7105
put:			/* get_mctgt_type() gets the page */
7106 7107
			put_page(page);
			break;
7108 7109
		case MC_TARGET_SWAP:
			ent = target.ent;
7110
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
7111
				mc.precharge--;
7112 7113 7114
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
7115
			break;
7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
7130
		ret = mem_cgroup_do_precharge(1);
7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
7174
	up_read(&mm->mmap_sem);
7175 7176
}

7177
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7178
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
7179
{
7180
	struct task_struct *p = cgroup_taskset_first(tset);
7181
	struct mm_struct *mm = get_task_mm(p);
7182 7183

	if (mm) {
7184 7185
		if (mc.to)
			mem_cgroup_move_charge(mm);
7186 7187
		mmput(mm);
	}
7188 7189
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
7190
}
7191
#else	/* !CONFIG_MMU */
7192
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7193
				 struct cgroup_taskset *tset)
7194 7195 7196
{
	return 0;
}
7197
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7198
				     struct cgroup_taskset *tset)
7199 7200
{
}
7201
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7202
				 struct cgroup_taskset *tset)
7203 7204 7205
{
}
#endif
B
Balbir Singh 已提交
7206

7207 7208 7209 7210
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
7211
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7212 7213 7214 7215 7216 7217
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
7218 7219
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
7220 7221
}

B
Balbir Singh 已提交
7222 7223 7224
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
7225
	.css_alloc = mem_cgroup_css_alloc,
7226
	.css_online = mem_cgroup_css_online,
7227 7228
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
7229 7230
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
7231
	.attach = mem_cgroup_move_task,
7232
	.bind = mem_cgroup_bind,
7233
	.base_cftypes = mem_cgroup_files,
7234
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
7235
	.use_id = 1,
B
Balbir Singh 已提交
7236
};
7237

A
Andrew Morton 已提交
7238
#ifdef CONFIG_MEMCG_SWAP
7239 7240
static int __init enable_swap_account(char *s)
{
7241
	if (!strcmp(s, "1"))
7242
		really_do_swap_account = 1;
7243
	else if (!strcmp(s, "0"))
7244 7245 7246
		really_do_swap_account = 0;
	return 1;
}
7247
__setup("swapaccount=", enable_swap_account);
7248

7249 7250
static void __init memsw_file_init(void)
{
7251 7252 7253 7254 7255 7256 7257 7258 7259
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
7260
}
7261

7262
#else
7263
static void __init enable_swap_cgroup(void)
7264 7265
{
}
7266
#endif
7267 7268

/*
7269 7270 7271 7272 7273 7274
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
7275 7276 7277 7278
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7279
	enable_swap_cgroup();
7280
	mem_cgroup_soft_limit_tree_init();
7281
	memcg_stock_init();
7282 7283 7284
	return 0;
}
subsys_initcall(mem_cgroup_init);