memcontrol.c 157.1 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82
static int really_do_swap_account __initdata = 1;
#else
83
static int really_do_swap_account __initdata;
84 85
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146 147
struct reclaim_iter {
	struct mem_cgroup *position;
148 149 150 151
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

152 153 154 155
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
156
	struct lruvec		lruvec;
157
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
158

159
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
160

161
	struct rb_node		tree_node;	/* RB tree node */
162
	unsigned long		usage_in_excess;/* Set to the value by which */
163 164
						/* the soft limit is exceeded*/
	bool			on_tree;
165
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
166
						/* use container_of	   */
167 168 169 170 171 172
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

193 194
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
195
	unsigned long threshold;
196 197
};

K
KAMEZAWA Hiroyuki 已提交
198
/* For threshold */
199
struct mem_cgroup_threshold_ary {
200
	/* An array index points to threshold just below or equal to usage. */
201
	int current_threshold;
202 203 204 205 206
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
207 208 209 210 211 212 213 214 215 216 217 218

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
219 220 221 222 223
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
224

225 226 227
/*
 * cgroup_event represents events which userspace want to receive.
 */
228
struct mem_cgroup_event {
229
	/*
230
	 * memcg which the event belongs to.
231
	 */
232
	struct mem_cgroup *memcg;
233 234 235 236 237 238 239 240
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
241 242 243 244 245
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
246
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
247
			      struct eventfd_ctx *eventfd, const char *args);
248 249 250 251 252
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
253
	void (*unregister_event)(struct mem_cgroup *memcg,
254
				 struct eventfd_ctx *eventfd);
255 256 257 258 259 260 261 262 263 264
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

265 266
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
267

B
Balbir Singh 已提交
268 269 270 271 272 273 274
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
275 276 277
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
278 279 280
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
281 282 283 284 285 286 287

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

	unsigned long soft_limit;
288

289 290 291
	/* vmpressure notifications */
	struct vmpressure vmpressure;

292 293 294
	/* css_online() has been completed */
	int initialized;

295 296 297 298
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
299
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
300 301 302

	bool		oom_lock;
	atomic_t	under_oom;
303
	atomic_t	oom_wakeups;
304

305
	int	swappiness;
306 307
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
308

309 310 311 312
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
313
	struct mem_cgroup_thresholds thresholds;
314

315
	/* thresholds for mem+swap usage. RCU-protected */
316
	struct mem_cgroup_thresholds memsw_thresholds;
317

K
KAMEZAWA Hiroyuki 已提交
318 319
	/* For oom notifier event fd */
	struct list_head oom_notify;
320

321 322 323 324
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
325
	unsigned long move_charge_at_immigrate;
326 327 328 329
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
330 331
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
332
	/*
333
	 * percpu counter.
334
	 */
335
	struct mem_cgroup_stat_cpu __percpu *stat;
336 337 338 339 340 341
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
342

M
Michal Hocko 已提交
343
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
344
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
345
#endif
346
#if defined(CONFIG_MEMCG_KMEM)
347 348
	/* analogous to slab_common's slab_caches list, but per-memcg;
	 * protected by memcg_slab_mutex */
349 350 351 352
	struct list_head memcg_slab_caches;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
353 354 355 356 357 358 359

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
360

361 362 363 364
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

365 366
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
367 368
};

369 370
/* internal only representation about the status of kmem accounting. */
enum {
371
	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
372 373 374 375 376 377 378
};

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
379 380 381 382 383 384

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

385 386
#endif

387 388
/* Stuffs for move charges at task migration. */
/*
389 390
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
391 392
 */
enum move_type {
393
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
394
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
395 396 397
	NR_MOVE_TYPE,
};

398 399
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
400
	spinlock_t	  lock; /* for from, to */
401 402
	struct mem_cgroup *from;
	struct mem_cgroup *to;
403
	unsigned long immigrate_flags;
404
	unsigned long precharge;
405
	unsigned long moved_charge;
406
	unsigned long moved_swap;
407 408 409
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
410
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
411 412
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
413

D
Daisuke Nishimura 已提交
414 415
static bool move_anon(void)
{
416
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
417 418
}

419 420
static bool move_file(void)
{
421
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
422 423
}

424 425 426 427
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
428
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
429
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
430

431 432
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
433
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
434
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
435
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
436 437 438
	NR_CHARGE_TYPE,
};

439
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
440 441 442 443
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
444
	_KMEM,
G
Glauber Costa 已提交
445 446
};

447 448
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
449
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
450 451
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
452

453 454 455 456 457 458 459
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

460 461
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
462
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
463 464
}

465 466 467 468 469 470 471 472 473 474 475 476 477
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

478 479 480 481 482
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

483 484 485 486 487 488
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
489 490
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
491
	return memcg->css.id;
L
Li Zefan 已提交
492 493 494 495 496 497
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

498
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
499 500 501
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
502
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
503
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
504 505 506

void sock_update_memcg(struct sock *sk)
{
507
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
508
		struct mem_cgroup *memcg;
509
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
510 511 512

		BUG_ON(!sk->sk_prot->proto_cgroup);

513 514 515 516 517 518 519 520 521 522
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
523
			css_get(&sk->sk_cgrp->memcg->css);
524 525 526
			return;
		}

G
Glauber Costa 已提交
527 528
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
529
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
530
		if (!mem_cgroup_is_root(memcg) &&
531 532
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
533
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
534 535 536 537 538 539 540 541
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
542
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
543 544 545
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
546
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
547 548
	}
}
G
Glauber Costa 已提交
549 550 551 552 553 554

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

555
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
556 557
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
558

559 560
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
561
	if (!memcg_proto_activated(&memcg->tcp_mem))
562 563 564 565 566 567 568 569 570
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

571
#ifdef CONFIG_MEMCG_KMEM
572 573
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
574 575 576 577 578
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
579 580 581 582 583 584
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
585 586
int memcg_limited_groups_array_size;

587 588 589 590 591 592
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
593
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
594 595
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
596
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
597 598 599
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
600
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
601

602 603 604 605 606 607
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
608
struct static_key memcg_kmem_enabled_key;
609
EXPORT_SYMBOL(memcg_kmem_enabled_key);
610

611 612
static void memcg_free_cache_id(int id);

613 614
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
615
	if (memcg_kmem_is_active(memcg)) {
616
		static_key_slow_dec(&memcg_kmem_enabled_key);
617
		memcg_free_cache_id(memcg->kmemcg_id);
618
	}
619 620 621 622
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
623
	WARN_ON(page_counter_read(&memcg->kmem));
624 625 626 627 628 629 630 631 632 633 634 635 636
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

637
static struct mem_cgroup_per_zone *
638
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
639
{
640 641 642
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

643
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
644 645
}

646
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
647
{
648
	return &memcg->css;
649 650
}

651
static struct mem_cgroup_per_zone *
652
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
653
{
654 655
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
656

657
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
658 659
}

660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

675 676
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
677
					 unsigned long new_usage_in_excess)
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

707 708
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
709 710 711 712 713 714 715
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

716 717
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
718
{
719 720 721
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
722
	__mem_cgroup_remove_exceeded(mz, mctz);
723
	spin_unlock_irqrestore(&mctz->lock, flags);
724 725
}

726 727 728 729 730 731 732 733 734 735 736
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
	unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
737 738 739

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
740
	unsigned long excess;
741 742 743
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

744
	mctz = soft_limit_tree_from_page(page);
745 746 747 748 749
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
750
		mz = mem_cgroup_page_zoneinfo(memcg, page);
751
		excess = soft_limit_excess(memcg);
752 753 754 755 756
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
757 758 759
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
760 761
			/* if on-tree, remove it */
			if (mz->on_tree)
762
				__mem_cgroup_remove_exceeded(mz, mctz);
763 764 765 766
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
767
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
768
			spin_unlock_irqrestore(&mctz->lock, flags);
769 770 771 772 773 774 775
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
776 777
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
778

779 780 781 782
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
783
			mem_cgroup_remove_exceeded(mz, mctz);
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
806
	__mem_cgroup_remove_exceeded(mz, mctz);
807
	if (!soft_limit_excess(mz->memcg) ||
808
	    !css_tryget_online(&mz->memcg->css))
809 810 811 812 813 814 815 816 817 818
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

819
	spin_lock_irq(&mctz->lock);
820
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
821
	spin_unlock_irq(&mctz->lock);
822 823 824
	return mz;
}

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
844
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
845
				 enum mem_cgroup_stat_index idx)
846
{
847
	long val = 0;
848 849
	int cpu;

850 851
	get_online_cpus();
	for_each_online_cpu(cpu)
852
		val += per_cpu(memcg->stat->count[idx], cpu);
853
#ifdef CONFIG_HOTPLUG_CPU
854 855 856
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
857 858
#endif
	put_online_cpus();
859 860 861
	return val;
}

862
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
863 864 865 866 867
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

868
	get_online_cpus();
869
	for_each_online_cpu(cpu)
870
		val += per_cpu(memcg->stat->events[idx], cpu);
871
#ifdef CONFIG_HOTPLUG_CPU
872 873 874
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
875
#endif
876
	put_online_cpus();
877 878 879
	return val;
}

880
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
881
					 struct page *page,
882
					 int nr_pages)
883
{
884 885 886 887
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
888
	if (PageAnon(page))
889
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
890
				nr_pages);
891
	else
892
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
893
				nr_pages);
894

895 896 897 898
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

899 900
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
901
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
902
	else {
903
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
904 905
		nr_pages = -nr_pages; /* for event */
	}
906

907
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
908 909
}

910
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
911 912 913 914 915 916 917
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

918 919 920
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
921
{
922
	unsigned long nr = 0;
923 924
	int zid;

925
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
926

927 928 929 930 931 932 933 934 935 936 937 938
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
939
}
940

941
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
942
			unsigned int lru_mask)
943
{
944
	unsigned long nr = 0;
945
	int nid;
946

947
	for_each_node_state(nid, N_MEMORY)
948 949
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
950 951
}

952 953
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
954 955 956
{
	unsigned long val, next;

957
	val = __this_cpu_read(memcg->stat->nr_page_events);
958
	next = __this_cpu_read(memcg->stat->targets[target]);
959
	/* from time_after() in jiffies.h */
960 961 962 963 964
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
965 966 967
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
968 969 970 971 972 973 974 975
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
976
	}
977
	return false;
978 979 980 981 982 983
}

/*
 * Check events in order.
 *
 */
984
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
985 986
{
	/* threshold event is triggered in finer grain than soft limit */
987 988
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
989
		bool do_softlimit;
990
		bool do_numainfo __maybe_unused;
991

992 993
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
994 995 996 997
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
998
		mem_cgroup_threshold(memcg);
999 1000
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1001
#if MAX_NUMNODES > 1
1002
		if (unlikely(do_numainfo))
1003
			atomic_inc(&memcg->numainfo_events);
1004
#endif
1005
	}
1006 1007
}

1008
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1009
{
1010 1011 1012 1013 1014 1015 1016 1017
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1018
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1019 1020
}

1021
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1022
{
1023
	struct mem_cgroup *memcg = NULL;
1024

1025 1026
	rcu_read_lock();
	do {
1027 1028 1029 1030 1031 1032
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1033
			memcg = root_mem_cgroup;
1034 1035 1036 1037 1038
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1039
	} while (!css_tryget_online(&memcg->css));
1040
	rcu_read_unlock();
1041
	return memcg;
1042 1043
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1061
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1062
				   struct mem_cgroup *prev,
1063
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1064
{
1065 1066
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1067
	struct mem_cgroup *memcg = NULL;
1068
	struct mem_cgroup *pos = NULL;
1069

1070 1071
	if (mem_cgroup_disabled())
		return NULL;
1072

1073 1074
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1075

1076
	if (prev && !reclaim)
1077
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1078

1079 1080
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1081
			goto out;
1082
		return root;
1083
	}
K
KAMEZAWA Hiroyuki 已提交
1084

1085
	rcu_read_lock();
M
Michal Hocko 已提交
1086

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
			pos = ACCESS_ONCE(iter->position);
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1121
		}
K
KAMEZAWA Hiroyuki 已提交
1122

1123 1124 1125 1126 1127 1128
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1129

1130 1131
		if (css == &root->css)
			break;
1132

1133
		if (css_tryget(css)) {
1134 1135 1136 1137 1138 1139 1140 1141 1142
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;

			css_put(css);
1143
		}
1144

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		memcg = NULL;
	}

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1167
	}
1168

1169 1170
out_unlock:
	rcu_read_unlock();
1171
out:
1172 1173 1174
	if (prev && prev != root)
		css_put(&prev->css);

1175
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1176
}
K
KAMEZAWA Hiroyuki 已提交
1177

1178 1179 1180 1181 1182 1183 1184
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1185 1186 1187 1188 1189 1190
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1191

1192 1193 1194 1195 1196 1197
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1198
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1199
	     iter != NULL;				\
1200
	     iter = mem_cgroup_iter(root, iter, NULL))
1201

1202
#define for_each_mem_cgroup(iter)			\
1203
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1204
	     iter != NULL;				\
1205
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1206

1207
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1208
{
1209
	struct mem_cgroup *memcg;
1210 1211

	rcu_read_lock();
1212 1213
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1214 1215 1216 1217
		goto out;

	switch (idx) {
	case PGFAULT:
1218 1219 1220 1221
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1222 1223 1224 1225 1226 1227 1228
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1229
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1230

1231 1232 1233
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1234
 * @memcg: memcg of the wanted lruvec
1235 1236 1237 1238 1239 1240 1241 1242 1243
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1244
	struct lruvec *lruvec;
1245

1246 1247 1248 1249
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1250

1251
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1262 1263 1264
}

/**
1265
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1266
 * @page: the page
1267
 * @zone: zone of the page
1268 1269 1270 1271
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1272
 */
1273
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1274 1275
{
	struct mem_cgroup_per_zone *mz;
1276 1277
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1278
	struct lruvec *lruvec;
1279

1280 1281 1282 1283
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1284

K
KAMEZAWA Hiroyuki 已提交
1285
	pc = lookup_page_cgroup(page);
1286
	memcg = pc->mem_cgroup;
1287
	/*
1288
	 * Swapcache readahead pages are added to the LRU - and
1289
	 * possibly migrated - before they are charged.
1290
	 */
1291 1292
	if (!memcg)
		memcg = root_mem_cgroup;
1293

1294
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1305
}
1306

1307
/**
1308 1309 1310 1311
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1312
 *
1313 1314
 * This function must be called when a page is added to or removed from an
 * lru list.
1315
 */
1316 1317
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1318 1319
{
	struct mem_cgroup_per_zone *mz;
1320
	unsigned long *lru_size;
1321 1322 1323 1324

	if (mem_cgroup_disabled())
		return;

1325 1326 1327 1328
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1329
}
1330

1331
/*
1332
 * Checks whether given mem is same or in the root_mem_cgroup's
1333 1334
 * hierarchy subtree
 */
1335 1336
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1337
{
1338 1339
	if (root_memcg == memcg)
		return true;
1340
	if (!root_memcg->use_hierarchy || !memcg)
1341
		return false;
1342
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1343 1344 1345 1346 1347 1348 1349
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1350
	rcu_read_lock();
1351
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1352 1353
	rcu_read_unlock();
	return ret;
1354 1355
}

1356 1357
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1358
{
1359
	struct mem_cgroup *curr = NULL;
1360
	struct task_struct *p;
1361
	bool ret;
1362

1363
	p = find_lock_task_mm(task);
1364
	if (p) {
1365
		curr = get_mem_cgroup_from_mm(p->mm);
1366 1367 1368 1369 1370 1371 1372
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1373
		rcu_read_lock();
1374 1375 1376
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1377
		rcu_read_unlock();
1378
	}
1379
	/*
1380
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1381
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1382 1383
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1384
	 */
1385
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1386
	css_put(&curr->css);
1387 1388 1389
	return ret;
}

1390
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1391
{
1392
	unsigned long inactive_ratio;
1393
	unsigned long inactive;
1394
	unsigned long active;
1395
	unsigned long gb;
1396

1397 1398
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1399

1400 1401 1402 1403 1404 1405
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1406
	return inactive * inactive_ratio < active;
1407 1408
}

1409
#define mem_cgroup_from_counter(counter, member)	\
1410 1411
	container_of(counter, struct mem_cgroup, member)

1412
/**
1413
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1414
 * @memcg: the memory cgroup
1415
 *
1416
 * Returns the maximum amount of memory @mem can be charged with, in
1417
 * pages.
1418
 */
1419
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1420
{
1421 1422 1423
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1424

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	count = page_counter_read(&memcg->memory);
	limit = ACCESS_ONCE(memcg->memory.limit);
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
		limit = ACCESS_ONCE(memcg->memsw.limit);
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1438 1439
}

1440
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1441 1442
{
	/* root ? */
1443
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1444 1445
		return vm_swappiness;

1446
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1447 1448
}

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1463

1464
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1465
{
1466
	atomic_inc(&memcg->moving_account);
1467 1468 1469
	synchronize_rcu();
}

1470
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1471
{
1472 1473 1474 1475
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1476
	if (memcg)
1477
		atomic_dec(&memcg->moving_account);
1478
}
1479

1480
/*
Q
Qiang Huang 已提交
1481
 * A routine for checking "mem" is under move_account() or not.
1482
 *
Q
Qiang Huang 已提交
1483 1484 1485
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1486
 */
1487
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1488
{
1489 1490
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1491
	bool ret = false;
1492 1493 1494 1495 1496 1497 1498 1499 1500
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1501

1502 1503
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1504 1505
unlock:
	spin_unlock(&mc.lock);
1506 1507 1508
	return ret;
}

1509
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1510 1511
{
	if (mc.moving_task && current != mc.moving_task) {
1512
		if (mem_cgroup_under_move(memcg)) {
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1525
#define K(x) ((x) << (PAGE_SHIFT-10))
1526
/**
1527
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1528 1529 1530 1531 1532 1533 1534 1535
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1536
	/* oom_info_lock ensures that parallel ooms do not interleave */
1537
	static DEFINE_MUTEX(oom_info_lock);
1538 1539
	struct mem_cgroup *iter;
	unsigned int i;
1540

1541
	if (!p)
1542 1543
		return;

1544
	mutex_lock(&oom_info_lock);
1545 1546
	rcu_read_lock();

T
Tejun Heo 已提交
1547 1548 1549 1550 1551
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	pr_info(" killed as a result of limit of ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_info("\n");
1552 1553 1554

	rcu_read_unlock();

1555 1556 1557 1558 1559 1560 1561 1562 1563
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1564 1565

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1566 1567
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1583
	mutex_unlock(&oom_info_lock);
1584 1585
}

1586 1587 1588 1589
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1590
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1591 1592
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1593 1594
	struct mem_cgroup *iter;

1595
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1596
		num++;
1597 1598 1599
	return num;
}

D
David Rientjes 已提交
1600 1601 1602
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1603
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1604
{
1605
	unsigned long limit;
D
David Rientjes 已提交
1606

1607
	limit = memcg->memory.limit;
1608
	if (mem_cgroup_swappiness(memcg)) {
1609
		unsigned long memsw_limit;
1610

1611 1612
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1613 1614
	}
	return limit;
D
David Rientjes 已提交
1615 1616
}

1617 1618
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1619 1620 1621 1622 1623 1624 1625
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1626
	/*
1627 1628 1629
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1630
	 */
1631
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1632 1633 1634 1635 1636
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1637
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1638
	for_each_mem_cgroup_tree(iter, memcg) {
1639
		struct css_task_iter it;
1640 1641
		struct task_struct *task;

1642 1643
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1656
				css_task_iter_end(&it);
1657 1658 1659 1660 1661 1662 1663 1664
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1677
		}
1678
		css_task_iter_end(&it);
1679 1680 1681 1682 1683 1684 1685 1686 1687
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1688 1689
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1690
 * @memcg: the target memcg
1691 1692 1693 1694 1695 1696 1697
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1698
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1699 1700
		int nid, bool noswap)
{
1701
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1702 1703 1704
		return true;
	if (noswap || !total_swap_pages)
		return false;
1705
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1706 1707 1708 1709
		return true;
	return false;

}
1710
#if MAX_NUMNODES > 1
1711 1712 1713 1714 1715 1716 1717

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1718
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1719 1720
{
	int nid;
1721 1722 1723 1724
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1725
	if (!atomic_read(&memcg->numainfo_events))
1726
		return;
1727
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1728 1729 1730
		return;

	/* make a nodemask where this memcg uses memory from */
1731
	memcg->scan_nodes = node_states[N_MEMORY];
1732

1733
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1734

1735 1736
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1737
	}
1738

1739 1740
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1755
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1756 1757 1758
{
	int node;

1759 1760
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1761

1762
	node = next_node(node, memcg->scan_nodes);
1763
	if (node == MAX_NUMNODES)
1764
		node = first_node(memcg->scan_nodes);
1765 1766 1767 1768 1769 1770 1771 1772 1773
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1774
	memcg->last_scanned_node = node;
1775 1776 1777
	return node;
}

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

1813
#else
1814
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1815 1816 1817
{
	return 0;
}
1818

1819 1820 1821 1822
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
1823 1824
#endif

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1840
	excess = soft_limit_excess(root_memcg);
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1871
		if (!soft_limit_excess(root_memcg))
1872
			break;
1873
	}
1874 1875
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1876 1877
}

1878 1879 1880 1881 1882 1883
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1884 1885
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1886 1887 1888 1889
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1890
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1891
{
1892
	struct mem_cgroup *iter, *failed = NULL;
1893

1894 1895
	spin_lock(&memcg_oom_lock);

1896
	for_each_mem_cgroup_tree(iter, memcg) {
1897
		if (iter->oom_lock) {
1898 1899 1900 1901 1902
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1903 1904
			mem_cgroup_iter_break(memcg, iter);
			break;
1905 1906
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1907
	}
K
KAMEZAWA Hiroyuki 已提交
1908

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1920
		}
1921 1922
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1923 1924 1925 1926

	spin_unlock(&memcg_oom_lock);

	return !failed;
1927
}
1928

1929
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1930
{
K
KAMEZAWA Hiroyuki 已提交
1931 1932
	struct mem_cgroup *iter;

1933
	spin_lock(&memcg_oom_lock);
1934
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1935
	for_each_mem_cgroup_tree(iter, memcg)
1936
		iter->oom_lock = false;
1937
	spin_unlock(&memcg_oom_lock);
1938 1939
}

1940
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1941 1942 1943
{
	struct mem_cgroup *iter;

1944
	for_each_mem_cgroup_tree(iter, memcg)
1945 1946 1947
		atomic_inc(&iter->under_oom);
}

1948
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1949 1950 1951
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1952 1953 1954 1955 1956
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1957
	for_each_mem_cgroup_tree(iter, memcg)
1958
		atomic_add_unless(&iter->under_oom, -1, 0);
1959 1960
}

K
KAMEZAWA Hiroyuki 已提交
1961 1962
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1963
struct oom_wait_info {
1964
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1965 1966 1967 1968 1969 1970
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1971 1972
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1973 1974 1975
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1976
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1977 1978

	/*
1979
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1980 1981
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1982 1983
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1984 1985 1986 1987
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1988
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1989
{
1990
	atomic_inc(&memcg->oom_wakeups);
1991 1992
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1993 1994
}

1995
static void memcg_oom_recover(struct mem_cgroup *memcg)
1996
{
1997 1998
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1999 2000
}

2001
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2002
{
2003 2004
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2005
	/*
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2018
	 */
2019 2020 2021 2022
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2023 2024 2025 2026
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2027
 * @handle: actually kill/wait or just clean up the OOM state
2028
 *
2029 2030
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2031
 *
2032
 * Memcg supports userspace OOM handling where failed allocations must
2033 2034 2035 2036
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2037
 * the end of the page fault to complete the OOM handling.
2038 2039
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2040
 * completed, %false otherwise.
2041
 */
2042
bool mem_cgroup_oom_synchronize(bool handle)
2043
{
2044
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2045
	struct oom_wait_info owait;
2046
	bool locked;
2047 2048 2049

	/* OOM is global, do not handle */
	if (!memcg)
2050
		return false;
2051

2052 2053
	if (!handle)
		goto cleanup;
2054 2055 2056 2057 2058 2059

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2060

2061
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2075
		schedule();
2076 2077 2078 2079 2080
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2081 2082 2083 2084 2085 2086 2087 2088
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2089 2090
cleanup:
	current->memcg_oom.memcg = NULL;
2091
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2092
	return true;
2093 2094
}

2095 2096 2097 2098 2099
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
 * @locked: &memcg->move_lock slowpath was taken
 * @flags: IRQ-state flags for &memcg->move_lock
2100
 *
2101 2102 2103
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
2104
 *
2105 2106 2107 2108
 *   memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
 *   mem_cgroup_end_page_stat(memcg, locked, flags);
2109
 *
2110 2111 2112
 * The RCU lock is held throughout the transaction.  The fast path can
 * get away without acquiring the memcg->move_lock (@locked is false)
 * because page moving starts with an RCU grace period.
2113
 *
2114 2115 2116 2117 2118
 * The RCU lock also protects the memcg from being freed when the page
 * state that is going to change is the only thing preventing the page
 * from being uncharged.  E.g. end-writeback clearing PageWriteback(),
 * which allows migration to go ahead and uncharge the page before the
 * account transaction might be complete.
2119
 */
2120 2121 2122
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
					      bool *locked,
					      unsigned long *flags)
2123 2124 2125 2126
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

2127 2128 2129 2130 2131
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;

2132 2133 2134
	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
2135
	if (unlikely(!memcg))
2136 2137 2138
		return NULL;

	*locked = false;
Q
Qiang Huang 已提交
2139
	if (atomic_read(&memcg->moving_account) <= 0)
2140
		return memcg;
2141

2142
	spin_lock_irqsave(&memcg->move_lock, *flags);
2143
	if (memcg != pc->mem_cgroup) {
2144
		spin_unlock_irqrestore(&memcg->move_lock, *flags);
2145 2146 2147
		goto again;
	}
	*locked = true;
2148 2149

	return memcg;
2150 2151
}

2152 2153 2154 2155 2156 2157 2158 2159
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 * @locked: value received from mem_cgroup_begin_page_stat()
 * @flags: value received from mem_cgroup_begin_page_stat()
 */
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
			      unsigned long flags)
2160
{
2161
	if (memcg && locked)
2162
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2163

2164
	rcu_read_unlock();
2165 2166
}

2167 2168 2169 2170 2171 2172 2173 2174 2175
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2176
				 enum mem_cgroup_stat_index idx, int val)
2177
{
2178
	VM_BUG_ON(!rcu_read_lock_held());
2179

2180 2181
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2182
}
2183

2184 2185 2186 2187
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2188
#define CHARGE_BATCH	32U
2189 2190
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2191
	unsigned int nr_pages;
2192
	struct work_struct work;
2193
	unsigned long flags;
2194
#define FLUSHING_CACHED_CHARGE	0
2195 2196
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2197
static DEFINE_MUTEX(percpu_charge_mutex);
2198

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2209
 */
2210
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2211 2212
{
	struct memcg_stock_pcp *stock;
2213
	bool ret = false;
2214

2215
	if (nr_pages > CHARGE_BATCH)
2216
		return ret;
2217

2218
	stock = &get_cpu_var(memcg_stock);
2219
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2220
		stock->nr_pages -= nr_pages;
2221 2222
		ret = true;
	}
2223 2224 2225 2226 2227
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2228
 * Returns stocks cached in percpu and reset cached information.
2229 2230 2231 2232 2233
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2234
	if (stock->nr_pages) {
2235
		page_counter_uncharge(&old->memory, stock->nr_pages);
2236
		if (do_swap_account)
2237
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2238
		css_put_many(&old->css, stock->nr_pages);
2239
		stock->nr_pages = 0;
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2250
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2251
	drain_stock(stock);
2252
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2253 2254
}

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2266
/*
2267
 * Cache charges(val) to local per_cpu area.
2268
 * This will be consumed by consume_stock() function, later.
2269
 */
2270
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2271 2272 2273
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2274
	if (stock->cached != memcg) { /* reset if necessary */
2275
		drain_stock(stock);
2276
		stock->cached = memcg;
2277
	}
2278
	stock->nr_pages += nr_pages;
2279 2280 2281 2282
	put_cpu_var(memcg_stock);
}

/*
2283
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2284
 * of the hierarchy under it.
2285
 */
2286
static void drain_all_stock(struct mem_cgroup *root_memcg)
2287
{
2288
	int cpu, curcpu;
2289

2290 2291 2292
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2293 2294
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2295
	curcpu = get_cpu();
2296 2297
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2298
		struct mem_cgroup *memcg;
2299

2300 2301
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2302
			continue;
2303
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2304
			continue;
2305 2306 2307 2308 2309 2310
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2311
	}
2312
	put_cpu();
A
Andrew Morton 已提交
2313
	put_online_cpus();
2314
	mutex_unlock(&percpu_charge_mutex);
2315 2316
}

2317 2318 2319 2320
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2321
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2322 2323 2324
{
	int i;

2325
	spin_lock(&memcg->pcp_counter_lock);
2326
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2327
		long x = per_cpu(memcg->stat->count[i], cpu);
2328

2329 2330
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2331
	}
2332
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2333
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2334

2335 2336
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2337
	}
2338
	spin_unlock(&memcg->pcp_counter_lock);
2339 2340
}

2341
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2342 2343 2344 2345 2346
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2347
	struct mem_cgroup *iter;
2348

2349
	if (action == CPU_ONLINE)
2350 2351
		return NOTIFY_OK;

2352
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2353
		return NOTIFY_OK;
2354

2355
	for_each_mem_cgroup(iter)
2356 2357
		mem_cgroup_drain_pcp_counter(iter, cpu);

2358 2359 2360 2361 2362
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2363 2364
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2365
{
2366
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2367
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2368
	struct mem_cgroup *mem_over_limit;
2369
	struct page_counter *counter;
2370
	unsigned long nr_reclaimed;
2371 2372
	bool may_swap = true;
	bool drained = false;
2373
	int ret = 0;
2374

2375 2376
	if (mem_cgroup_is_root(memcg))
		goto done;
2377
retry:
2378 2379
	if (consume_stock(memcg, nr_pages))
		goto done;
2380

2381
	if (!do_swap_account ||
2382 2383
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2384
			goto done_restock;
2385
		if (do_swap_account)
2386 2387
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2388
	} else {
2389
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2390
		may_swap = false;
2391
	}
2392

2393 2394 2395 2396
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2397

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2412 2413
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2414

2415 2416
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2417

2418
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2419
		goto retry;
2420

2421
	if (!drained) {
2422
		drain_all_stock(mem_over_limit);
2423 2424 2425 2426
		drained = true;
		goto retry;
	}

2427 2428
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2429 2430 2431 2432 2433 2434 2435 2436 2437
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2438
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2439 2440 2441 2442 2443 2444 2445 2446
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2447 2448 2449
	if (nr_retries--)
		goto retry;

2450 2451 2452
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2453 2454 2455
	if (fatal_signal_pending(current))
		goto bypass;

2456
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2457
nomem:
2458
	if (!(gfp_mask & __GFP_NOFAIL))
2459
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2460
bypass:
2461
	return -EINTR;
2462 2463

done_restock:
2464
	css_get_many(&memcg->css, batch);
2465 2466 2467
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
done:
2468
	return ret;
2469
}
2470

2471
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2472
{
2473 2474 2475
	if (mem_cgroup_is_root(memcg))
		return;

2476
	page_counter_uncharge(&memcg->memory, nr_pages);
2477
	if (do_swap_account)
2478
		page_counter_uncharge(&memcg->memsw, nr_pages);
2479 2480

	css_put_many(&memcg->css, nr_pages);
2481 2482
}

2483 2484
/*
 * A helper function to get mem_cgroup from ID. must be called under
2485 2486 2487
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2488 2489 2490 2491 2492 2493
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2494
	return mem_cgroup_from_id(id);
2495 2496
}

2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2507
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2508
{
2509
	struct mem_cgroup *memcg;
2510
	struct page_cgroup *pc;
2511
	unsigned short id;
2512 2513
	swp_entry_t ent;

2514
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2515 2516

	pc = lookup_page_cgroup(page);
2517 2518 2519 2520
	memcg = pc->mem_cgroup;

	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2521
			memcg = NULL;
2522
	} else if (PageSwapCache(page)) {
2523
		ent.val = page_private(page);
2524
		id = lookup_swap_cgroup_id(ent);
2525
		rcu_read_lock();
2526
		memcg = mem_cgroup_lookup(id);
2527
		if (memcg && !css_tryget_online(&memcg->css))
2528
			memcg = NULL;
2529
		rcu_read_unlock();
2530
	}
2531
	return memcg;
2532 2533
}

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2565
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2566
			  bool lrucare)
2567
{
2568
	struct page_cgroup *pc = lookup_page_cgroup(page);
2569
	int isolated;
2570

2571
	VM_BUG_ON_PAGE(pc->mem_cgroup, page);
2572 2573 2574 2575
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2576 2577 2578 2579 2580

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2581 2582
	if (lrucare)
		lock_page_lru(page, &isolated);
2583

2584 2585
	/*
	 * Nobody should be changing or seriously looking at
2586
	 * pc->mem_cgroup at this point:
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2598
	pc->mem_cgroup = memcg;
2599

2600 2601
	if (lrucare)
		unlock_page_lru(page, isolated);
2602
}
2603

2604
#ifdef CONFIG_MEMCG_KMEM
2605 2606 2607 2608 2609 2610
/*
 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
 */
static DEFINE_MUTEX(memcg_slab_mutex);

G
Glauber Costa 已提交
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
2621
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
2622 2623
}

2624
#ifdef CONFIG_SLABINFO
2625
static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2626
{
2627
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2628 2629
	struct memcg_cache_params *params;

2630
	if (!memcg_kmem_is_active(memcg))
2631 2632 2633 2634
		return -EIO;

	print_slabinfo_header(m);

2635
	mutex_lock(&memcg_slab_mutex);
2636 2637
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
2638
	mutex_unlock(&memcg_slab_mutex);
2639 2640 2641 2642 2643

	return 0;
}
#endif

2644 2645
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
			     unsigned long nr_pages)
2646
{
2647
	struct page_counter *counter;
2648 2649
	int ret = 0;

2650 2651
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2652 2653
		return ret;

2654
	ret = try_charge(memcg, gfp, nr_pages);
2655 2656
	if (ret == -EINTR)  {
		/*
2657 2658 2659 2660 2661 2662
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2663 2664 2665
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2666 2667 2668
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2669 2670
		 * directed to the root cgroup in memcontrol.h
		 */
2671
		page_counter_charge(&memcg->memory, nr_pages);
2672
		if (do_swap_account)
2673
			page_counter_charge(&memcg->memsw, nr_pages);
2674
		css_get_many(&memcg->css, nr_pages);
2675 2676
		ret = 0;
	} else if (ret)
2677
		page_counter_uncharge(&memcg->kmem, nr_pages);
2678 2679 2680 2681

	return ret;
}

2682 2683
static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
				unsigned long nr_pages)
2684
{
2685
	page_counter_uncharge(&memcg->memory, nr_pages);
2686
	if (do_swap_account)
2687
		page_counter_uncharge(&memcg->memsw, nr_pages);
2688

2689
	page_counter_uncharge(&memcg->kmem, nr_pages);
2690 2691

	css_put_many(&memcg->css, nr_pages);
2692 2693
}

2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2704
static int memcg_alloc_cache_id(void)
2705
{
2706 2707 2708 2709 2710 2711 2712
	int id, size;
	int err;

	id = ida_simple_get(&kmem_limited_groups,
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2713

2714 2715 2716 2717 2718 2719 2720 2721 2722
	if (id < memcg_limited_groups_array_size)
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */

	size = 2 * (id + 1);
2723 2724 2725 2726 2727
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
	mutex_lock(&memcg_slab_mutex);
	err = memcg_update_all_caches(size);
	mutex_unlock(&memcg_slab_mutex);

	if (err) {
		ida_simple_remove(&kmem_limited_groups, id);
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
	ida_simple_remove(&kmem_limited_groups, id);
2742 2743 2744 2745 2746 2747 2748 2749 2750
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
2751
	memcg_limited_groups_array_size = num;
2752 2753
}

2754 2755
static void memcg_register_cache(struct mem_cgroup *memcg,
				 struct kmem_cache *root_cache)
2756
{
2757 2758
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by
						     memcg_slab_mutex */
2759
	struct kmem_cache *cachep;
2760 2761
	int id;

2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
	lockdep_assert_held(&memcg_slab_mutex);

	id = memcg_cache_id(memcg);

	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
	if (cache_from_memcg_idx(root_cache, id))
2772 2773
		return;

2774
	cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
2775
	cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2776
	/*
2777 2778 2779
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
2780
	 */
2781 2782
	if (!cachep)
		return;
2783

2784
	css_get(&memcg->css);
2785
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2786

2787
	/*
2788 2789 2790
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
2791
	 */
2792 2793
	smp_wmb();

2794 2795
	BUG_ON(root_cache->memcg_params->memcg_caches[id]);
	root_cache->memcg_params->memcg_caches[id] = cachep;
2796
}
2797

2798
static void memcg_unregister_cache(struct kmem_cache *cachep)
2799
{
2800
	struct kmem_cache *root_cache;
2801 2802 2803
	struct mem_cgroup *memcg;
	int id;

2804
	lockdep_assert_held(&memcg_slab_mutex);
2805

2806
	BUG_ON(is_root_cache(cachep));
2807

2808 2809
	root_cache = cachep->memcg_params->root_cache;
	memcg = cachep->memcg_params->memcg;
2810
	id = memcg_cache_id(memcg);
2811

2812 2813
	BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
	root_cache->memcg_params->memcg_caches[id] = NULL;
2814

2815 2816 2817
	list_del(&cachep->memcg_params->list);

	kmem_cache_destroy(cachep);
2818 2819 2820

	/* drop the reference taken in memcg_register_cache */
	css_put(&memcg->css);
2821 2822
}

2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

2854
int __memcg_cleanup_cache_params(struct kmem_cache *s)
2855 2856
{
	struct kmem_cache *c;
2857
	int i, failed = 0;
2858

2859
	mutex_lock(&memcg_slab_mutex);
2860 2861
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
2862 2863 2864
		if (!c)
			continue;

2865
		memcg_unregister_cache(c);
2866 2867 2868

		if (cache_from_memcg_idx(s, i))
			failed++;
2869
	}
2870
	mutex_unlock(&memcg_slab_mutex);
2871
	return failed;
2872 2873
}

2874
static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
2875 2876
{
	struct kmem_cache *cachep;
2877
	struct memcg_cache_params *params, *tmp;
G
Glauber Costa 已提交
2878 2879 2880 2881

	if (!memcg_kmem_is_active(memcg))
		return;

2882 2883
	mutex_lock(&memcg_slab_mutex);
	list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
G
Glauber Costa 已提交
2884
		cachep = memcg_params_to_cache(params);
2885 2886
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
2887
			memcg_unregister_cache(cachep);
G
Glauber Costa 已提交
2888
	}
2889
	mutex_unlock(&memcg_slab_mutex);
G
Glauber Costa 已提交
2890 2891
}

2892
struct memcg_register_cache_work {
2893 2894 2895 2896 2897
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2898
static void memcg_register_cache_func(struct work_struct *w)
2899
{
2900 2901
	struct memcg_register_cache_work *cw =
		container_of(w, struct memcg_register_cache_work, work);
2902 2903
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2904

2905
	mutex_lock(&memcg_slab_mutex);
2906
	memcg_register_cache(memcg, cachep);
2907 2908
	mutex_unlock(&memcg_slab_mutex);

2909
	css_put(&memcg->css);
2910 2911 2912 2913 2914 2915
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2916 2917
static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
					    struct kmem_cache *cachep)
2918
{
2919
	struct memcg_register_cache_work *cw;
2920

2921
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2922 2923
	if (cw == NULL) {
		css_put(&memcg->css);
2924 2925 2926 2927 2928 2929
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

2930
	INIT_WORK(&cw->work, memcg_register_cache_func);
2931 2932 2933
	schedule_work(&cw->work);
}

2934 2935
static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
					  struct kmem_cache *cachep)
2936 2937 2938 2939
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2940
	 * in __memcg_schedule_register_cache will recurse.
2941 2942 2943 2944 2945 2946 2947 2948
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
2949
	__memcg_schedule_register_cache(memcg, cachep);
2950 2951
	memcg_resume_kmem_account();
}
2952 2953 2954

int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
{
2955
	unsigned int nr_pages = 1 << order;
2956 2957
	int res;

2958
	res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
2959
	if (!res)
2960
		atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
2961 2962 2963 2964 2965
	return res;
}

void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
{
2966 2967 2968 2969
	unsigned int nr_pages = 1 << order;

	memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
	atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
2970 2971
}

2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
2989
	struct kmem_cache *memcg_cachep;
2990 2991 2992 2993

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

2994 2995 2996
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

2997 2998 2999
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

3000
	if (!memcg_kmem_is_active(memcg))
3001
		goto out;
3002

3003 3004 3005
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
	if (likely(memcg_cachep)) {
		cachep = memcg_cachep;
3006
		goto out;
3007 3008
	}

3009
	/* The corresponding put will be done in the workqueue. */
3010
	if (!css_tryget_online(&memcg->css))
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
3022 3023 3024
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
3025
	 */
3026
	memcg_schedule_register_cache(memcg, cachep);
3027 3028 3029 3030
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3031 3032
}

3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3054 3055 3056 3057

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
V
Vladimir Davydov 已提交
3058 3059 3060 3061 3062 3063
	 * check here, since direct calls to the page allocator that are
	 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
	 * outside memcg core. We are mostly concerned with cache allocations,
	 * and by having this test at memcg_kmem_get_cache, we are already able
	 * to relay the allocation to the root cache and bypass the memcg cache
	 * altogether.
3064 3065 3066 3067 3068 3069
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3070 3071 3072
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3083
	memcg = get_mem_cgroup_from_mm(current->mm);
3084

3085
	if (!memcg_kmem_is_active(memcg)) {
3086 3087 3088 3089
		css_put(&memcg->css);
		return true;
	}

3090
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
3107
		memcg_uncharge_kmem(memcg, 1 << order);
3108 3109 3110 3111 3112 3113 3114 3115
		return;
	}
	pc = lookup_page_cgroup(page);
	pc->mem_cgroup = memcg;
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
3116 3117
	struct page_cgroup *pc = lookup_page_cgroup(page);
	struct mem_cgroup *memcg = pc->mem_cgroup;
3118 3119 3120 3121

	if (!memcg)
		return;

3122
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3123

3124
	memcg_uncharge_kmem(memcg, 1 << order);
3125
	pc->mem_cgroup = NULL;
3126
}
G
Glauber Costa 已提交
3127
#else
3128
static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3129 3130
{
}
3131 3132
#endif /* CONFIG_MEMCG_KMEM */

3133 3134 3135 3136
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
3137 3138 3139
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3140
 */
3141
void mem_cgroup_split_huge_fixup(struct page *head)
3142
{
3143
	struct page_cgroup *pc = lookup_page_cgroup(head);
3144
	int i;
3145

3146 3147
	if (mem_cgroup_disabled())
		return;
3148

3149 3150
	for (i = 1; i < HPAGE_PMD_NR; i++)
		pc[i].mem_cgroup = pc[0].mem_cgroup;
3151

3152
	__this_cpu_sub(pc[0].mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3153
		       HPAGE_PMD_NR);
3154
}
3155
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3156

3157
/**
3158
 * mem_cgroup_move_account - move account of the page
3159
 * @page: the page
3160
 * @nr_pages: number of regular pages (>1 for huge pages)
3161 3162 3163 3164 3165
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3166
 * - page is not on LRU (isolate_page() is useful.)
3167
 * - compound_lock is held when nr_pages > 1
3168
 *
3169 3170
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3171
 */
3172 3173 3174 3175
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3176
				   struct mem_cgroup *to)
3177
{
3178 3179
	unsigned long flags;
	int ret;
3180

3181
	VM_BUG_ON(from == to);
3182
	VM_BUG_ON_PAGE(PageLRU(page), page);
3183 3184 3185 3186 3187 3188 3189
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3190
	if (nr_pages > 1 && !PageTransHuge(page))
3191 3192
		goto out;

3193 3194 3195 3196 3197 3198 3199
	/*
	 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;
3200 3201

	ret = -EINVAL;
3202
	if (pc->mem_cgroup != from)
3203
		goto out_unlock;
3204

3205
	spin_lock_irqsave(&from->move_lock, flags);
3206

3207
	if (!PageAnon(page) && page_mapped(page)) {
3208 3209 3210 3211 3212
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
3213

3214 3215 3216 3217 3218 3219
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
3220

3221 3222 3223 3224 3225
	/*
	 * It is safe to change pc->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */
3226

3227
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3228
	pc->mem_cgroup = to;
3229 3230
	spin_unlock_irqrestore(&from->move_lock, flags);

3231
	ret = 0;
3232 3233 3234

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
3235
	memcg_check_events(to, page);
3236
	mem_cgroup_charge_statistics(from, page, -nr_pages);
3237
	memcg_check_events(from, page);
3238 3239 3240
	local_irq_enable();
out_unlock:
	unlock_page(page);
3241
out:
3242 3243 3244
	return ret;
}

A
Andrew Morton 已提交
3245
#ifdef CONFIG_MEMCG_SWAP
3246 3247
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
3248
{
3249 3250
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
3251
}
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3264
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3265 3266 3267
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3268
				struct mem_cgroup *from, struct mem_cgroup *to)
3269 3270 3271
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3272 3273
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3274 3275 3276

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3277
		mem_cgroup_swap_statistics(to, true);
3278
		/*
3279
		 * This function is only called from task migration context now.
3280
		 * It postpones page_counter and refcount handling till the end
3281
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
3282 3283 3284 3285 3286 3287
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
3288
		 */
L
Li Zefan 已提交
3289
		css_get(&to->css);
3290 3291 3292 3293 3294 3295
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3296
				struct mem_cgroup *from, struct mem_cgroup *to)
3297 3298 3299
{
	return -EINVAL;
}
3300
#endif
K
KAMEZAWA Hiroyuki 已提交
3301

3302 3303 3304 3305 3306 3307
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3308 3309 3310 3311 3312
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3313
	if (likely(pc) && pc->mem_cgroup)
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
3331 3332
	if (pc)
		pr_alert("pc:%p pc->mem_cgroup:%p\n", pc, pc->mem_cgroup);
3333 3334 3335
}
#endif

3336 3337
static DEFINE_MUTEX(memcg_limit_mutex);

3338
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3339
				   unsigned long limit)
3340
{
3341 3342 3343
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
3344
	int retry_count;
3345
	int ret;
3346 3347 3348 3349 3350 3351

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
3352 3353
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
3354

3355
	oldusage = page_counter_read(&memcg->memory);
3356

3357
	do {
3358 3359 3360 3361
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3362 3363 3364 3365

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
3366
			ret = -EINVAL;
3367 3368
			break;
		}
3369 3370 3371 3372
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
3373 3374 3375 3376

		if (!ret)
			break;

3377 3378
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

3379
		curusage = page_counter_read(&memcg->memory);
3380
		/* Usage is reduced ? */
A
Andrew Morton 已提交
3381
		if (curusage >= oldusage)
3382 3383 3384
			retry_count--;
		else
			oldusage = curusage;
3385 3386
	} while (retry_count);

3387 3388
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3389

3390 3391 3392
	return ret;
}

L
Li Zefan 已提交
3393
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3394
					 unsigned long limit)
3395
{
3396 3397 3398
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
3399
	int retry_count;
3400
	int ret;
3401

3402
	/* see mem_cgroup_resize_res_limit */
3403 3404 3405 3406 3407 3408
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
3409 3410 3411 3412
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3413 3414 3415 3416

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
3417 3418 3419
			ret = -EINVAL;
			break;
		}
3420 3421 3422 3423
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
3424 3425 3426 3427

		if (!ret)
			break;

3428 3429
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

3430
		curusage = page_counter_read(&memcg->memsw);
3431
		/* Usage is reduced ? */
3432
		if (curusage >= oldusage)
3433
			retry_count--;
3434 3435
		else
			oldusage = curusage;
3436 3437
	} while (retry_count);

3438 3439
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3440

3441 3442 3443
	return ret;
}

3444 3445 3446 3447 3448 3449 3450 3451 3452
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3453
	unsigned long excess;
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3478
		spin_lock_irq(&mctz->lock);
3479
		__mem_cgroup_remove_exceeded(mz, mctz);
3480 3481 3482 3483 3484 3485

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3486 3487 3488
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3489
		excess = soft_limit_excess(mz->memcg);
3490 3491 3492 3493 3494 3495 3496 3497 3498
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3499
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3500
		spin_unlock_irq(&mctz->lock);
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3518 3519 3520 3521 3522 3523
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3524 3525
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3526 3527
	bool ret;

3528
	/*
3529 3530 3531 3532
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3533
	 */
3534 3535 3536 3537 3538 3539
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3540 3541
}

3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3552 3553
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3554
	/* try to free all pages in this cgroup */
3555
	while (nr_retries && page_counter_read(&memcg->memory)) {
3556
		int progress;
3557

3558 3559 3560
		if (signal_pending(current))
			return -EINTR;

3561 3562
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3563
		if (!progress) {
3564
			nr_retries--;
3565
			/* maybe some writeback is necessary */
3566
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3567
		}
3568 3569

	}
3570 3571

	return 0;
3572 3573
}

3574 3575 3576
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3577
{
3578
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3579

3580 3581
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3582
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3583 3584
}

3585 3586
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3587
{
3588
	return mem_cgroup_from_css(css)->use_hierarchy;
3589 3590
}

3591 3592
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3593 3594
{
	int retval = 0;
3595
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3596
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3597

3598
	mutex_lock(&memcg_create_mutex);
3599 3600 3601 3602

	if (memcg->use_hierarchy == val)
		goto out;

3603
	/*
3604
	 * If parent's use_hierarchy is set, we can't make any modifications
3605 3606 3607 3608 3609 3610
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3611
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3612
				(val == 1 || val == 0)) {
3613
		if (!memcg_has_children(memcg))
3614
			memcg->use_hierarchy = val;
3615 3616 3617 3618
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3619 3620

out:
3621
	mutex_unlock(&memcg_create_mutex);
3622 3623 3624 3625

	return retval;
}

3626 3627
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3645 3646 3647 3648 3649 3650
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3651
		if (!swap)
3652
			val = page_counter_read(&memcg->memory);
3653
		else
3654
			val = page_counter_read(&memcg->memsw);
3655 3656 3657 3658
	}
	return val << PAGE_SHIFT;
}

3659 3660 3661 3662 3663 3664 3665
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3666

3667
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3668
			       struct cftype *cft)
B
Balbir Singh 已提交
3669
{
3670
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3671
	struct page_counter *counter;
3672

3673
	switch (MEMFILE_TYPE(cft->private)) {
3674
	case _MEM:
3675 3676
		counter = &memcg->memory;
		break;
3677
	case _MEMSWAP:
3678 3679
		counter = &memcg->memsw;
		break;
3680
	case _KMEM:
3681
		counter = &memcg->kmem;
3682
		break;
3683 3684 3685
	default:
		BUG();
	}
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3705
}
3706 3707

#ifdef CONFIG_MEMCG_KMEM
3708 3709
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

	/*
	 * We are going to allocate memory for data shared by all memory
	 * cgroups so let's stop accounting here.
	 */
	memcg_stop_kmem_account();

3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
3735
	mutex_lock(&memcg_create_mutex);
3736 3737
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3738 3739 3740 3741
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
3742

3743
	memcg_id = memcg_alloc_cache_id();
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	memcg->kmemcg_id = memcg_id;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);

	/*
	 * We couldn't have accounted to this cgroup, because it hasn't got the
	 * active bit set yet, so this should succeed.
	 */
3756
	err = page_counter_limit(&memcg->kmem, nr_pages);
3757 3758 3759 3760 3761 3762 3763 3764 3765
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
	 * Setting the active bit after enabling static branching will
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
	memcg_kmem_set_active(memcg);
3766
out:
3767 3768 3769 3770 3771
	memcg_resume_kmem_account();
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3772
				   unsigned long limit)
3773 3774 3775
{
	int ret;

3776
	mutex_lock(&memcg_limit_mutex);
3777
	if (!memcg_kmem_is_active(memcg))
3778
		ret = memcg_activate_kmem(memcg, limit);
3779
	else
3780 3781
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
3782 3783 3784
	return ret;
}

3785
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3786
{
3787
	int ret = 0;
3788
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3789

3790 3791
	if (!parent)
		return 0;
3792

3793
	mutex_lock(&memcg_limit_mutex);
3794
	/*
3795 3796
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3797
	 */
3798
	if (memcg_kmem_is_active(parent))
3799 3800
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3801
	return ret;
3802
}
3803 3804
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3805
				   unsigned long limit)
3806 3807 3808
{
	return -EINVAL;
}
3809
#endif /* CONFIG_MEMCG_KMEM */
3810

3811 3812 3813 3814
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3815 3816
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3817
{
3818
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3819
	unsigned long nr_pages;
3820 3821
	int ret;

3822
	buf = strstrip(buf);
3823 3824 3825
	ret = page_counter_memparse(buf, &nr_pages);
	if (ret)
		return ret;
3826

3827
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3828
	case RES_LIMIT:
3829 3830 3831 3832
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3833 3834 3835
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3836
			break;
3837 3838
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3839
			break;
3840 3841 3842 3843
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3844
		break;
3845 3846 3847
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3848 3849
		break;
	}
3850
	return ret ?: nbytes;
B
Balbir Singh 已提交
3851 3852
}

3853 3854
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3855
{
3856
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3857
	struct page_counter *counter;
3858

3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3872

3873
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3874
	case RES_MAX_USAGE:
3875
		page_counter_reset_watermark(counter);
3876 3877
		break;
	case RES_FAILCNT:
3878
		counter->failcnt = 0;
3879
		break;
3880 3881
	default:
		BUG();
3882
	}
3883

3884
	return nbytes;
3885 3886
}

3887
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3888 3889
					struct cftype *cft)
{
3890
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3891 3892
}

3893
#ifdef CONFIG_MMU
3894
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3895 3896
					struct cftype *cft, u64 val)
{
3897
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3898 3899 3900

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
3901

3902
	/*
3903 3904 3905 3906
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3907
	 */
3908
	memcg->move_charge_at_immigrate = val;
3909 3910
	return 0;
}
3911
#else
3912
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3913 3914 3915 3916 3917
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3918

3919
#ifdef CONFIG_NUMA
3920
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3921
{
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3934
	int nid;
3935
	unsigned long nr;
3936
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3937

3938 3939 3940 3941 3942 3943 3944 3945 3946
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3947 3948
	}

3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3964 3965 3966 3967 3968 3969
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3970 3971 3972 3973 3974
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

3975
static int memcg_stat_show(struct seq_file *m, void *v)
3976
{
3977
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3978
	unsigned long memory, memsw;
3979 3980
	struct mem_cgroup *mi;
	unsigned int i;
3981

3982
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3983
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3984
			continue;
3985 3986
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3987
	}
L
Lee Schermerhorn 已提交
3988

3989 3990 3991 3992 3993 3994 3995 3996
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3997
	/* Hierarchical information */
3998 3999 4000 4001
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
4002
	}
4003 4004 4005 4006 4007
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
4008

4009 4010 4011
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4012
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4013
			continue;
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4034
	}
K
KAMEZAWA Hiroyuki 已提交
4035

K
KOSAKI Motohiro 已提交
4036 4037 4038 4039
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4040
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4041 4042 4043 4044 4045
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4046
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
4047
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4048

4049 4050 4051 4052
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4053
			}
4054 4055 4056 4057
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4058 4059 4060
	}
#endif

4061 4062 4063
	return 0;
}

4064 4065
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4066
{
4067
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4068

4069
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4070 4071
}

4072 4073
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4074
{
4075
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4076

4077
	if (val > 100)
K
KOSAKI Motohiro 已提交
4078 4079
		return -EINVAL;

4080
	if (css->parent)
4081 4082 4083
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4084

K
KOSAKI Motohiro 已提交
4085 4086 4087
	return 0;
}

4088 4089 4090
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4091
	unsigned long usage;
4092 4093 4094 4095
	int i;

	rcu_read_lock();
	if (!swap)
4096
		t = rcu_dereference(memcg->thresholds.primary);
4097
	else
4098
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4099 4100 4101 4102

	if (!t)
		goto unlock;

4103
	usage = mem_cgroup_usage(memcg, swap);
4104 4105

	/*
4106
	 * current_threshold points to threshold just below or equal to usage.
4107 4108 4109
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4110
	i = t->current_threshold;
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4134
	t->current_threshold = i - 1;
4135 4136 4137 4138 4139 4140
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4141 4142 4143 4144 4145 4146 4147
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4148 4149 4150 4151 4152 4153 4154
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4155 4156 4157 4158 4159 4160 4161
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4162 4163
}

4164
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4165 4166 4167
{
	struct mem_cgroup_eventfd_list *ev;

4168 4169
	spin_lock(&memcg_oom_lock);

4170
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4171
		eventfd_signal(ev->eventfd, 1);
4172 4173

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4174 4175 4176
	return 0;
}

4177
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4178
{
K
KAMEZAWA Hiroyuki 已提交
4179 4180
	struct mem_cgroup *iter;

4181
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4182
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4183 4184
}

4185
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4186
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4187
{
4188 4189
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4190 4191
	unsigned long threshold;
	unsigned long usage;
4192
	int i, size, ret;
4193

4194
	ret = page_counter_memparse(args, &threshold);
4195 4196 4197 4198
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4199

4200
	if (type == _MEM) {
4201
		thresholds = &memcg->thresholds;
4202
		usage = mem_cgroup_usage(memcg, false);
4203
	} else if (type == _MEMSWAP) {
4204
		thresholds = &memcg->memsw_thresholds;
4205
		usage = mem_cgroup_usage(memcg, true);
4206
	} else
4207 4208 4209
		BUG();

	/* Check if a threshold crossed before adding a new one */
4210
	if (thresholds->primary)
4211 4212
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4213
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4214 4215

	/* Allocate memory for new array of thresholds */
4216
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4217
			GFP_KERNEL);
4218
	if (!new) {
4219 4220 4221
		ret = -ENOMEM;
		goto unlock;
	}
4222
	new->size = size;
4223 4224

	/* Copy thresholds (if any) to new array */
4225 4226
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4227
				sizeof(struct mem_cgroup_threshold));
4228 4229
	}

4230
	/* Add new threshold */
4231 4232
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4233 4234

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4235
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4236 4237 4238
			compare_thresholds, NULL);

	/* Find current threshold */
4239
	new->current_threshold = -1;
4240
	for (i = 0; i < size; i++) {
4241
		if (new->entries[i].threshold <= usage) {
4242
			/*
4243 4244
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4245 4246
			 * it here.
			 */
4247
			++new->current_threshold;
4248 4249
		} else
			break;
4250 4251
	}

4252 4253 4254 4255 4256
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4257

4258
	/* To be sure that nobody uses thresholds */
4259 4260 4261 4262 4263 4264 4265 4266
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4267
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4268 4269
	struct eventfd_ctx *eventfd, const char *args)
{
4270
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4271 4272
}

4273
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4274 4275
	struct eventfd_ctx *eventfd, const char *args)
{
4276
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4277 4278
}

4279
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4280
	struct eventfd_ctx *eventfd, enum res_type type)
4281
{
4282 4283
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4284
	unsigned long usage;
4285
	int i, j, size;
4286 4287

	mutex_lock(&memcg->thresholds_lock);
4288 4289

	if (type == _MEM) {
4290
		thresholds = &memcg->thresholds;
4291
		usage = mem_cgroup_usage(memcg, false);
4292
	} else if (type == _MEMSWAP) {
4293
		thresholds = &memcg->memsw_thresholds;
4294
		usage = mem_cgroup_usage(memcg, true);
4295
	} else
4296 4297
		BUG();

4298 4299 4300
	if (!thresholds->primary)
		goto unlock;

4301 4302 4303 4304
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4305 4306 4307
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4308 4309 4310
			size++;
	}

4311
	new = thresholds->spare;
4312

4313 4314
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4315 4316
		kfree(new);
		new = NULL;
4317
		goto swap_buffers;
4318 4319
	}

4320
	new->size = size;
4321 4322

	/* Copy thresholds and find current threshold */
4323 4324 4325
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4326 4327
			continue;

4328
		new->entries[j] = thresholds->primary->entries[i];
4329
		if (new->entries[j].threshold <= usage) {
4330
			/*
4331
			 * new->current_threshold will not be used
4332 4333 4334
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4335
			++new->current_threshold;
4336 4337 4338 4339
		}
		j++;
	}

4340
swap_buffers:
4341 4342
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4343 4344 4345 4346 4347 4348
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4349
	rcu_assign_pointer(thresholds->primary, new);
4350

4351
	/* To be sure that nobody uses thresholds */
4352
	synchronize_rcu();
4353
unlock:
4354 4355
	mutex_unlock(&memcg->thresholds_lock);
}
4356

4357
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4358 4359
	struct eventfd_ctx *eventfd)
{
4360
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4361 4362
}

4363
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4364 4365
	struct eventfd_ctx *eventfd)
{
4366
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4367 4368
}

4369
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4370
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4371 4372 4373 4374 4375 4376 4377
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4378
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4379 4380 4381 4382 4383

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4384
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4385
		eventfd_signal(eventfd, 1);
4386
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4387 4388 4389 4390

	return 0;
}

4391
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4392
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4393 4394 4395
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4396
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4397

4398
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4399 4400 4401 4402 4403 4404
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4405
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4406 4407
}

4408
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4409
{
4410
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4411

4412 4413
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4414 4415 4416
	return 0;
}

4417
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4418 4419
	struct cftype *cft, u64 val)
{
4420
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4421 4422

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4423
	if (!css->parent || !((val == 0) || (val == 1)))
4424 4425
		return -EINVAL;

4426
	memcg->oom_kill_disable = val;
4427
	if (!val)
4428
		memcg_oom_recover(memcg);
4429

4430 4431 4432
	return 0;
}

A
Andrew Morton 已提交
4433
#ifdef CONFIG_MEMCG_KMEM
4434
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4435
{
4436 4437
	int ret;

4438
	memcg->kmemcg_id = -1;
4439 4440 4441
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
4442

4443
	return mem_cgroup_sockets_init(memcg, ss);
4444
}
4445

4446
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4447
{
4448
	mem_cgroup_sockets_destroy(memcg);
4449
}
4450
#else
4451
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4452 4453 4454
{
	return 0;
}
G
Glauber Costa 已提交
4455

4456 4457 4458
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
4459 4460
#endif

4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4474 4475 4476 4477 4478
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4479
static void memcg_event_remove(struct work_struct *work)
4480
{
4481 4482
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4483
	struct mem_cgroup *memcg = event->memcg;
4484 4485 4486

	remove_wait_queue(event->wqh, &event->wait);

4487
	event->unregister_event(memcg, event->eventfd);
4488 4489 4490 4491 4492 4493

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4494
	css_put(&memcg->css);
4495 4496 4497 4498 4499 4500 4501
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4502 4503
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4504
{
4505 4506
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4507
	struct mem_cgroup *memcg = event->memcg;
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4520
		spin_lock(&memcg->event_list_lock);
4521 4522 4523 4524 4525 4526 4527 4528
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4529
		spin_unlock(&memcg->event_list_lock);
4530 4531 4532 4533 4534
	}

	return 0;
}

4535
static void memcg_event_ptable_queue_proc(struct file *file,
4536 4537
		wait_queue_head_t *wqh, poll_table *pt)
{
4538 4539
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4540 4541 4542 4543 4544 4545

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4546 4547
 * DO NOT USE IN NEW FILES.
 *
4548 4549 4550 4551 4552
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4553 4554
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4555
{
4556
	struct cgroup_subsys_state *css = of_css(of);
4557
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4558
	struct mem_cgroup_event *event;
4559 4560 4561 4562
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4563
	const char *name;
4564 4565 4566
	char *endp;
	int ret;

4567 4568 4569
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4570 4571
	if (*endp != ' ')
		return -EINVAL;
4572
	buf = endp + 1;
4573

4574
	cfd = simple_strtoul(buf, &endp, 10);
4575 4576
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4577
	buf = endp + 1;
4578 4579 4580 4581 4582

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4583
	event->memcg = memcg;
4584
	INIT_LIST_HEAD(&event->list);
4585 4586 4587
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4613 4614 4615 4616 4617
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4618 4619
	 *
	 * DO NOT ADD NEW FILES.
4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
	 */
	name = cfile.file->f_dentry->d_name.name;

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4633 4634
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4635 4636 4637 4638 4639
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4640
	/*
4641 4642 4643
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4644
	 */
4645 4646
	cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
					       &memory_cgrp_subsys);
4647
	ret = -EINVAL;
4648
	if (IS_ERR(cfile_css))
4649
		goto out_put_cfile;
4650 4651
	if (cfile_css != css) {
		css_put(cfile_css);
4652
		goto out_put_cfile;
4653
	}
4654

4655
	ret = event->register_event(memcg, event->eventfd, buf);
4656 4657 4658 4659 4660
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4661 4662 4663
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4664 4665 4666 4667

	fdput(cfile);
	fdput(efile);

4668
	return nbytes;
4669 4670

out_put_css:
4671
	css_put(css);
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
4684 4685
static struct cftype mem_cgroup_files[] = {
	{
4686
		.name = "usage_in_bytes",
4687
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4688
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4689
	},
4690 4691
	{
		.name = "max_usage_in_bytes",
4692
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4693
		.write = mem_cgroup_reset,
4694
		.read_u64 = mem_cgroup_read_u64,
4695
	},
B
Balbir Singh 已提交
4696
	{
4697
		.name = "limit_in_bytes",
4698
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4699
		.write = mem_cgroup_write,
4700
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4701
	},
4702 4703 4704
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4705
		.write = mem_cgroup_write,
4706
		.read_u64 = mem_cgroup_read_u64,
4707
	},
B
Balbir Singh 已提交
4708 4709
	{
		.name = "failcnt",
4710
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4711
		.write = mem_cgroup_reset,
4712
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4713
	},
4714 4715
	{
		.name = "stat",
4716
		.seq_show = memcg_stat_show,
4717
	},
4718 4719
	{
		.name = "force_empty",
4720
		.write = mem_cgroup_force_empty_write,
4721
	},
4722 4723 4724 4725 4726
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4727
	{
4728
		.name = "cgroup.event_control",		/* XXX: for compat */
4729
		.write = memcg_write_event_control,
4730 4731 4732
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4733 4734 4735 4736 4737
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4738 4739 4740 4741 4742
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4743 4744
	{
		.name = "oom_control",
4745
		.seq_show = mem_cgroup_oom_control_read,
4746
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4747 4748
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4749 4750 4751
	{
		.name = "pressure_level",
	},
4752 4753 4754
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4755
		.seq_show = memcg_numa_stat_show,
4756 4757
	},
#endif
4758 4759 4760 4761
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4762
		.write = mem_cgroup_write,
4763
		.read_u64 = mem_cgroup_read_u64,
4764 4765 4766 4767
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4768
		.read_u64 = mem_cgroup_read_u64,
4769 4770 4771 4772
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4773
		.write = mem_cgroup_reset,
4774
		.read_u64 = mem_cgroup_read_u64,
4775 4776 4777 4778
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4779
		.write = mem_cgroup_reset,
4780
		.read_u64 = mem_cgroup_read_u64,
4781
	},
4782 4783 4784
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4785
		.seq_show = mem_cgroup_slabinfo_read,
4786 4787
	},
#endif
4788
#endif
4789
	{ },	/* terminate */
4790
};
4791

4792 4793 4794 4795 4796
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4797
		.read_u64 = mem_cgroup_read_u64,
4798 4799 4800 4801
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4802
		.write = mem_cgroup_reset,
4803
		.read_u64 = mem_cgroup_read_u64,
4804 4805 4806 4807
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4808
		.write = mem_cgroup_write,
4809
		.read_u64 = mem_cgroup_read_u64,
4810 4811 4812 4813
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4814
		.write = mem_cgroup_reset,
4815
		.read_u64 = mem_cgroup_read_u64,
4816 4817 4818 4819
	},
	{ },	/* terminate */
};
#endif
4820
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4821 4822
{
	struct mem_cgroup_per_node *pn;
4823
	struct mem_cgroup_per_zone *mz;
4824
	int zone, tmp = node;
4825 4826 4827 4828 4829 4830 4831 4832
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4833 4834
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4835
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4836 4837
	if (!pn)
		return 1;
4838 4839 4840

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4841
		lruvec_init(&mz->lruvec);
4842 4843
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4844
		mz->memcg = memcg;
4845
	}
4846
	memcg->nodeinfo[node] = pn;
4847 4848 4849
	return 0;
}

4850
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4851
{
4852
	kfree(memcg->nodeinfo[node]);
4853 4854
}

4855 4856
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4857
	struct mem_cgroup *memcg;
4858
	size_t size;
4859

4860 4861
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4862

4863
	memcg = kzalloc(size, GFP_KERNEL);
4864
	if (!memcg)
4865 4866
		return NULL;

4867 4868
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4869
		goto out_free;
4870 4871
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4872 4873

out_free:
4874
	kfree(memcg);
4875
	return NULL;
4876 4877
}

4878
/*
4879 4880 4881 4882 4883 4884 4885 4886
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4887
 */
4888 4889

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4890
{
4891
	int node;
4892

4893
	mem_cgroup_remove_from_trees(memcg);
4894 4895 4896 4897 4898 4899

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
4911
	disarm_static_keys(memcg);
4912
	kfree(memcg);
4913
}
4914

4915 4916 4917
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4918
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4919
{
4920
	if (!memcg->memory.parent)
4921
		return NULL;
4922
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4923
}
G
Glauber Costa 已提交
4924
EXPORT_SYMBOL(parent_mem_cgroup);
4925

4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
4949
static struct cgroup_subsys_state * __ref
4950
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4951
{
4952
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4953
	long error = -ENOMEM;
4954
	int node;
B
Balbir Singh 已提交
4955

4956 4957
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4958
		return ERR_PTR(error);
4959

B
Bob Liu 已提交
4960
	for_each_node(node)
4961
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4962
			goto free_out;
4963

4964
	/* root ? */
4965
	if (parent_css == NULL) {
4966
		root_mem_cgroup = memcg;
4967 4968 4969
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4970
	}
4971

4972 4973 4974 4975 4976
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4977
	vmpressure_init(&memcg->vmpressure);
4978 4979
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4980 4981 4982 4983 4984 4985 4986 4987 4988

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4989
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4990
{
4991
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4992
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4993
	int ret;
4994

4995
	if (css->id > MEM_CGROUP_ID_MAX)
4996 4997
		return -ENOSPC;

T
Tejun Heo 已提交
4998
	if (!parent)
4999 5000
		return 0;

5001
	mutex_lock(&memcg_create_mutex);
5002 5003 5004 5005 5006 5007

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
5008 5009 5010
		page_counter_init(&memcg->memory, &parent->memory);
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
5011

5012
		/*
5013 5014
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
5015
		 */
5016
	} else {
5017 5018 5019
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
5020 5021 5022 5023 5024
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5025
		if (parent != root_mem_cgroup)
5026
			memory_cgrp_subsys.broken_hierarchy = true;
5027
	}
5028
	mutex_unlock(&memcg_create_mutex);
5029

5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
5042 5043
}

5044
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5045
{
5046
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5047
	struct mem_cgroup_event *event, *tmp;
5048 5049 5050 5051 5052 5053

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5054 5055
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5056 5057 5058
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5059
	spin_unlock(&memcg->event_list_lock);
5060

5061
	memcg_unregister_all_caches(memcg);
5062
	vmpressure_cleanup(&memcg->vmpressure);
5063 5064
}

5065
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5066
{
5067
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5068

5069
	memcg_destroy_kmem(memcg);
5070
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5071 5072
}

5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5090 5091 5092 5093
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
	memcg->soft_limit = 0;
5094 5095
}

5096
#ifdef CONFIG_MMU
5097
/* Handlers for move charge at task migration. */
5098
static int mem_cgroup_do_precharge(unsigned long count)
5099
{
5100
	int ret;
5101 5102

	/* Try a single bulk charge without reclaim first */
5103
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
5104
	if (!ret) {
5105 5106 5107
		mc.precharge += count;
		return ret;
	}
5108
	if (ret == -EINTR) {
5109
		cancel_charge(root_mem_cgroup, count);
5110 5111
		return ret;
	}
5112 5113

	/* Try charges one by one with reclaim */
5114
	while (count--) {
5115
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
5116 5117 5118
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
5119 5120
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
5121
		 */
5122
		if (ret == -EINTR)
5123
			cancel_charge(root_mem_cgroup, 1);
5124 5125
		if (ret)
			return ret;
5126
		mc.precharge++;
5127
		cond_resched();
5128
	}
5129
	return 0;
5130 5131 5132
}

/**
5133
 * get_mctgt_type - get target type of moving charge
5134 5135 5136
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5137
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5138 5139 5140 5141 5142 5143
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5144 5145 5146
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5147 5148 5149 5150 5151
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5152
	swp_entry_t	ent;
5153 5154 5155
};

enum mc_target_type {
5156
	MC_TARGET_NONE = 0,
5157
	MC_TARGET_PAGE,
5158
	MC_TARGET_SWAP,
5159 5160
};

D
Daisuke Nishimura 已提交
5161 5162
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5163
{
D
Daisuke Nishimura 已提交
5164
	struct page *page = vm_normal_page(vma, addr, ptent);
5165

D
Daisuke Nishimura 已提交
5166 5167 5168 5169
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5170
		if (!move_anon())
D
Daisuke Nishimura 已提交
5171
			return NULL;
5172 5173
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5174 5175 5176 5177 5178 5179 5180
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5181
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5182 5183 5184 5185 5186 5187 5188 5189
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5190 5191 5192 5193
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5194
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
5195 5196 5197 5198 5199
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5200 5201 5202 5203 5204 5205 5206
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5207

5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5227 5228
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
5241
#endif
5242 5243 5244
	return page;
}

5245
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5246 5247 5248 5249
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5250
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5251 5252 5253 5254 5255 5256
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5257 5258
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5259 5260

	if (!page && !ent.val)
5261
		return ret;
5262 5263 5264
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
5265 5266 5267
		 * Do only loose check w/o serialization.
		 * mem_cgroup_move_account() checks the pc is valid or
		 * not under LRU exclusion.
5268
		 */
5269
		if (pc->mem_cgroup == mc.from) {
5270 5271 5272 5273 5274 5275 5276
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5277 5278
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
5279
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5280 5281 5282
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5283 5284 5285 5286
	}
	return ret;
}

5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
5301
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5302 5303 5304
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
5305
	if (pc->mem_cgroup == mc.from) {
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5322 5323 5324 5325 5326 5327 5328 5329
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5330
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5331 5332
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5333
		spin_unlock(ptl);
5334
		return 0;
5335
	}
5336

5337 5338
	if (pmd_trans_unstable(pmd))
		return 0;
5339 5340
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5341
		if (get_mctgt_type(vma, addr, *pte, NULL))
5342 5343 5344 5345
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5346 5347 5348
	return 0;
}

5349 5350 5351 5352 5353
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5354
	down_read(&mm->mmap_sem);
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5366
	up_read(&mm->mmap_sem);
5367 5368 5369 5370 5371 5372 5373 5374 5375

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5376 5377 5378 5379 5380
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5381 5382
}

5383 5384
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5385
{
5386 5387 5388
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5389
	/* we must uncharge all the leftover precharges from mc.to */
5390
	if (mc.precharge) {
5391
		cancel_charge(mc.to, mc.precharge);
5392 5393 5394 5395 5396 5397 5398
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5399
		cancel_charge(mc.from, mc.moved_charge);
5400
		mc.moved_charge = 0;
5401
	}
5402 5403 5404
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5405
		if (!mem_cgroup_is_root(mc.from))
5406
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5407

5408
		/*
5409 5410
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5411
		 */
5412
		if (!mem_cgroup_is_root(mc.to))
5413 5414
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5415
		css_put_many(&mc.from->css, mc.moved_swap);
5416

L
Li Zefan 已提交
5417
		/* we've already done css_get(mc.to) */
5418 5419
		mc.moved_swap = 0;
	}
5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5435
	spin_lock(&mc.lock);
5436 5437
	mc.from = NULL;
	mc.to = NULL;
5438
	spin_unlock(&mc.lock);
5439
	mem_cgroup_end_move(from);
5440 5441
}

5442
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5443
				 struct cgroup_taskset *tset)
5444
{
5445
	struct task_struct *p = cgroup_taskset_first(tset);
5446
	int ret = 0;
5447
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5448
	unsigned long move_charge_at_immigrate;
5449

5450 5451 5452 5453 5454 5455 5456
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
5457 5458 5459
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5460
		VM_BUG_ON(from == memcg);
5461 5462 5463 5464 5465

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5466 5467 5468 5469
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5470
			VM_BUG_ON(mc.moved_charge);
5471
			VM_BUG_ON(mc.moved_swap);
5472
			mem_cgroup_start_move(from);
5473
			spin_lock(&mc.lock);
5474
			mc.from = from;
5475
			mc.to = memcg;
5476
			mc.immigrate_flags = move_charge_at_immigrate;
5477
			spin_unlock(&mc.lock);
5478
			/* We set mc.moving_task later */
5479 5480 5481 5482

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5483 5484
		}
		mmput(mm);
5485 5486 5487 5488
	}
	return ret;
}

5489
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5490
				     struct cgroup_taskset *tset)
5491
{
5492
	mem_cgroup_clear_mc();
5493 5494
}

5495 5496 5497
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5498
{
5499 5500 5501 5502
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5503 5504 5505 5506
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5507

5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5518
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5519
		if (mc.precharge < HPAGE_PMD_NR) {
5520
			spin_unlock(ptl);
5521 5522 5523 5524 5525 5526 5527 5528
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5529
							pc, mc.from, mc.to)) {
5530 5531 5532 5533 5534 5535 5536
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5537
		spin_unlock(ptl);
5538
		return 0;
5539 5540
	}

5541 5542
	if (pmd_trans_unstable(pmd))
		return 0;
5543 5544 5545 5546
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5547
		swp_entry_t ent;
5548 5549 5550 5551

		if (!mc.precharge)
			break;

5552
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5553 5554 5555 5556 5557
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5558
			if (!mem_cgroup_move_account(page, 1, pc,
5559
						     mc.from, mc.to)) {
5560
				mc.precharge--;
5561 5562
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5563 5564
			}
			putback_lru_page(page);
5565
put:			/* get_mctgt_type() gets the page */
5566 5567
			put_page(page);
			break;
5568 5569
		case MC_TARGET_SWAP:
			ent = target.ent;
5570
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5571
				mc.precharge--;
5572 5573 5574
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5575
			break;
5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5590
		ret = mem_cgroup_do_precharge(1);
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5634
	up_read(&mm->mmap_sem);
5635 5636
}

5637
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5638
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5639
{
5640
	struct task_struct *p = cgroup_taskset_first(tset);
5641
	struct mm_struct *mm = get_task_mm(p);
5642 5643

	if (mm) {
5644 5645
		if (mc.to)
			mem_cgroup_move_charge(mm);
5646 5647
		mmput(mm);
	}
5648 5649
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5650
}
5651
#else	/* !CONFIG_MMU */
5652
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5653
				 struct cgroup_taskset *tset)
5654 5655 5656
{
	return 0;
}
5657
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5658
				     struct cgroup_taskset *tset)
5659 5660
{
}
5661
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5662
				 struct cgroup_taskset *tset)
5663 5664 5665
{
}
#endif
B
Balbir Singh 已提交
5666

5667 5668
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5669 5670
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5671
 */
5672
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5673 5674
{
	/*
5675
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5676 5677 5678
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5679
	if (cgroup_on_dfl(root_css->cgroup))
5680
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
5681 5682
}

5683
struct cgroup_subsys memory_cgrp_subsys = {
5684
	.css_alloc = mem_cgroup_css_alloc,
5685
	.css_online = mem_cgroup_css_online,
5686 5687
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5688
	.css_reset = mem_cgroup_css_reset,
5689 5690
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5691
	.attach = mem_cgroup_move_task,
5692
	.bind = mem_cgroup_bind,
5693
	.legacy_cftypes = mem_cgroup_files,
5694
	.early_init = 0,
B
Balbir Singh 已提交
5695
};
5696

A
Andrew Morton 已提交
5697
#ifdef CONFIG_MEMCG_SWAP
5698 5699
static int __init enable_swap_account(char *s)
{
5700
	if (!strcmp(s, "1"))
5701
		really_do_swap_account = 1;
5702
	else if (!strcmp(s, "0"))
5703 5704 5705
		really_do_swap_account = 0;
	return 1;
}
5706
__setup("swapaccount=", enable_swap_account);
5707

5708 5709
static void __init memsw_file_init(void)
{
5710 5711
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
					  memsw_cgroup_files));
5712 5713 5714 5715 5716 5717 5718 5719
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
5720
}
5721

5722
#else
5723
static void __init enable_swap_cgroup(void)
5724 5725
{
}
5726
#endif
5727

5728 5729 5730 5731 5732 5733 5734 5735 5736 5737
#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
5738
	struct mem_cgroup *memcg;
5739 5740 5741 5742 5743 5744 5745 5746 5747 5748
	struct page_cgroup *pc;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	pc = lookup_page_cgroup(page);
5749
	memcg = pc->mem_cgroup;
5750 5751

	/* Readahead page, never charged */
5752
	if (!memcg)
5753 5754
		return;

5755
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5756
	VM_BUG_ON_PAGE(oldid, page);
5757 5758
	mem_cgroup_swap_statistics(memcg, true);

5759
	pc->mem_cgroup = NULL;
5760 5761 5762 5763 5764 5765

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

	/* XXX: caller holds IRQ-safe mapping->tree_lock */
	VM_BUG_ON(!irqs_disabled());
5766

5767 5768
	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
5789
		if (!mem_cgroup_is_root(memcg))
5790
			page_counter_uncharge(&memcg->memsw, 1);
5791 5792 5793 5794 5795 5796 5797
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}
#endif

5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		struct page_cgroup *pc = lookup_page_cgroup(page);
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5834
		if (pc->mem_cgroup)
5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5895 5896
	commit_charge(page, memcg, lrucare);

5897 5898 5899 5900 5901
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5902 5903 5904 5905
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5947 5948 5949 5950
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5951
	unsigned long nr_pages = nr_anon + nr_file;
5952 5953
	unsigned long flags;

5954
	if (!mem_cgroup_is_root(memcg)) {
5955 5956 5957
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5958 5959
		memcg_oom_recover(memcg);
	}
5960 5961 5962 5963 5964 5965

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5966
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5967 5968
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5969 5970

	if (!mem_cgroup_is_root(memcg))
5971
		css_put_many(&memcg->css, nr_pages);
5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;
		struct page_cgroup *pc;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

		pc = lookup_page_cgroup(page);
5996
		if (!pc->mem_cgroup)
5997 5998 5999 6000
			continue;

		/*
		 * Nobody should be changing or seriously looking at
6001 6002
		 * pc->mem_cgroup at this point, we have fully
		 * exclusive access to the page.
6003 6004 6005 6006
		 */

		if (memcg != pc->mem_cgroup) {
			if (memcg) {
6007 6008 6009
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024
			}
			memcg = pc->mem_cgroup;
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

6025
		pc->mem_cgroup = NULL;
6026 6027 6028 6029 6030

		pgpgout++;
	} while (next != page_list);

	if (memcg)
6031 6032
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
6033 6034
}

6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

6049
	/* Don't touch page->lru of any random page, pre-check: */
6050
	pc = lookup_page_cgroup(page);
6051
	if (!pc->mem_cgroup)
6052 6053
		return;

6054 6055 6056
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
6057

6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6069

6070 6071
	if (!list_empty(page_list))
		uncharge_list(page_list);
6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
 * @lrucare: both pages might be on the LRU already
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
6087
	struct mem_cgroup *memcg;
6088 6089 6090 6091 6092 6093 6094 6095
	struct page_cgroup *pc;
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6096 6097
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6098 6099 6100 6101 6102 6103

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
	pc = lookup_page_cgroup(newpage);
6104
	if (pc->mem_cgroup)
6105 6106
		return;

6107 6108 6109 6110 6111 6112
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
6113
	pc = lookup_page_cgroup(oldpage);
6114 6115
	memcg = pc->mem_cgroup;
	if (!memcg)
6116 6117 6118 6119 6120
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

6121
	pc->mem_cgroup = NULL;
6122 6123 6124 6125

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

6126
	commit_charge(newpage, memcg, lrucare);
6127 6128
}

6129
/*
6130 6131 6132 6133 6134 6135
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6136 6137 6138 6139
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6140
	enable_swap_cgroup();
6141
	mem_cgroup_soft_limit_tree_init();
6142
	memcg_stock_init();
6143 6144 6145
	return 0;
}
subsys_initcall(mem_cgroup_init);