memcontrol.c 115.4 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include "internal.h"
B
Balbir Singh 已提交
51

52 53
#include <asm/uaccess.h>

54 55
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
56
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
57

58
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
59
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
60 61 62 63 64 65
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

66 67 68 69 70 71 72 73 74
/*
 * Per memcg event counter is incremented at every pagein/pageout. This counter
 * is used for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 *
 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 */
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
75

76 77 78 79 80 81 82 83
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
84
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
85
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
86 87
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
88
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89
	MEM_CGROUP_EVENTS,	/* incremented at every  pagein/pageout */
90 91 92 93 94 95 96 97

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
};

98 99 100 101
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
102 103 104
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
105 106
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
107 108

	struct zone_reclaim_stat reclaim_stat;
109 110 111 112
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
113 114
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
115 116 117 118 119 120 121 122 123 124 125 126
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

147 148 149 150 151
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
152
/* For threshold */
153 154 155 156 157 158 159 160
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
	atomic_t current_threshold;
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
K
KAMEZAWA Hiroyuki 已提交
161 162 163 164 165
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
166 167

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
168
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
169

B
Balbir Singh 已提交
170 171 172 173 174 175 176
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
177 178 179
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
180 181 182 183 184 185 186
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
187 188 189 190
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
191 192 193 194
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
195
	struct mem_cgroup_lru_info info;
196

K
KOSAKI Motohiro 已提交
197 198 199 200 201
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

202
	int	prev_priority;	/* for recording reclaim priority */
203 204

	/*
205
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
206
	 * reclaimed from.
207
	 */
K
KAMEZAWA Hiroyuki 已提交
208
	int last_scanned_child;
209 210 211 212
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
213
	atomic_t	oom_lock;
214
	atomic_t	refcnt;
215

K
KOSAKI Motohiro 已提交
216
	unsigned int	swappiness;
217 218
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
219

220 221 222
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

223 224 225 226 227 228 229 230 231
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
	struct mem_cgroup_threshold_ary *thresholds;

	/* thresholds for mem+swap usage. RCU-protected */
	struct mem_cgroup_threshold_ary *memsw_thresholds;

K
KAMEZAWA Hiroyuki 已提交
232 233 234
	/* For oom notifier event fd */
	struct list_head oom_notify;

235 236 237 238 239
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
240
	/*
241
	 * percpu counter.
242
	 */
243
	struct mem_cgroup_stat_cpu *stat;
B
Balbir Singh 已提交
244 245
};

246 247 248 249 250 251
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
252
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
253 254 255
	NR_MOVE_TYPE,
};

256 257 258 259 260
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
261
	unsigned long moved_charge;
262
	unsigned long moved_swap;
263 264 265 266 267
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
268

D
Daisuke Nishimura 已提交
269 270 271 272 273 274
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

275 276 277 278 279 280 281
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

282 283 284
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
285
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
286
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
287
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
288
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
289 290 291
	NR_CHARGE_TYPE,
};

292 293 294 295
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
296 297
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
298

299 300 301
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
302
#define _OOM_TYPE		(2)
303 304 305
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
306 307
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
308

309 310 311 312 313 314 315
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
316 317
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
318

319 320
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
321
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
322
static void drain_all_stock_async(void);
323

324 325 326 327 328 329
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

330 331 332 333 334
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
364
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
365
				struct mem_cgroup_per_zone *mz,
366 367
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
368 369 370 371 372 373 374 375
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

376 377 378
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
395 396 397 398 399 400 401 402 403 404 405 406 407
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

408 409 410 411 412 413
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
414
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
415 416 417 418 419 420
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
421
	unsigned long long excess;
422 423
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
424 425
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
426 427 428
	mctz = soft_limit_tree_from_page(page);

	/*
429 430
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
431
	 */
432 433
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
434
		excess = res_counter_soft_limit_excess(&mem->res);
435 436 437 438
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
439
		if (excess || mz->on_tree) {
440 441 442 443 444
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
445 446
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
447
			 */
448
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
449 450
			spin_unlock(&mctz->lock);
		}
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

469 470 471 472 473 474 475 476 477
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
478
	struct mem_cgroup_per_zone *mz;
479 480

retry:
481
	mz = NULL;
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

	for_each_possible_cpu(cpu)
		val += per_cpu(mem->stat->count[idx], cpu);
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

531 532 533 534
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
535
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
536 537
}

538 539 540
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
541
{
542
	int val = (charge) ? 1 : -1;
543

544 545
	preempt_disable();

546
	if (PageCgroupCache(pc))
547
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
548
	else
549
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
550 551

	if (charge)
552
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
553
	else
554
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
555
	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
556

557
	preempt_enable();
558 559
}

K
KAMEZAWA Hiroyuki 已提交
560
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
561
					enum lru_list idx)
562 563 564 565 566 567 568 569 570 571 572
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
573 574
}

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
	s64 val;

	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);

	return !(val & ((1 << event_mask_shift) - 1));
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
		mem_cgroup_threshold(mem);
		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
			mem_cgroup_update_tree(mem, page);
	}
}

598
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
599 600 601 602 603 604
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

605
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
606
{
607 608 609 610 611 612 613 614
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

615 616 617 618
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

619 620 621
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
622 623 624

	if (!mm)
		return NULL;
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

675 676 677 678 679
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
680 681 682 683 684 685 686 687 688 689 690 691 692
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
693

K
KAMEZAWA Hiroyuki 已提交
694 695 696 697
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
698

699
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
700 701 702
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
703
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
704
		return;
705
	VM_BUG_ON(!pc->mem_cgroup);
706 707 708 709
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
710
	mz = page_cgroup_zoneinfo(pc);
711
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
712 713 714
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
715 716
	list_del_init(&pc->lru);
	return;
717 718
}

K
KAMEZAWA Hiroyuki 已提交
719
void mem_cgroup_del_lru(struct page *page)
720
{
K
KAMEZAWA Hiroyuki 已提交
721 722
	mem_cgroup_del_lru_list(page, page_lru(page));
}
723

K
KAMEZAWA Hiroyuki 已提交
724 725 726 727
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
728

729
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
730
		return;
731

K
KAMEZAWA Hiroyuki 已提交
732
	pc = lookup_page_cgroup(page);
733 734 735 736
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
737
	smp_rmb();
738 739
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
740 741 742
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
743 744
}

K
KAMEZAWA Hiroyuki 已提交
745
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
746
{
K
KAMEZAWA Hiroyuki 已提交
747 748
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
749

750
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
751 752
		return;
	pc = lookup_page_cgroup(page);
753
	VM_BUG_ON(PageCgroupAcctLRU(pc));
754 755 756 757
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
758 759
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
760
		return;
761

K
KAMEZAWA Hiroyuki 已提交
762
	mz = page_cgroup_zoneinfo(pc);
763
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
764 765 766
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
767 768
	list_add(&pc->lru, &mz->lists[lru]);
}
769

K
KAMEZAWA Hiroyuki 已提交
770
/*
771 772 773 774 775
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
776
 */
777
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
778
{
779 780 781 782 783 784 785 786 787 788 789 790
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
791 792
}

793 794 795 796 797 798 799 800
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
801
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
802 803 804 805 806
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
807 808 809
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
810
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
811 812 813
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
814 815
}

816 817 818
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
819
	struct mem_cgroup *curr = NULL;
820 821

	task_lock(task);
822 823 824
	rcu_read_lock();
	curr = try_get_mem_cgroup_from_mm(task->mm);
	rcu_read_unlock();
825
	task_unlock(task);
826 827
	if (!curr)
		return 0;
828 829 830 831 832 833 834
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
835 836 837 838
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
839 840 841
	return ret;
}

842 843 844 845 846
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
K
KOSAKI Motohiro 已提交
847 848 849 850 851 852 853
	int prev_priority;

	spin_lock(&mem->reclaim_param_lock);
	prev_priority = mem->prev_priority;
	spin_unlock(&mem->reclaim_param_lock);

	return prev_priority;
854 855 856 857
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
858
	spin_lock(&mem->reclaim_param_lock);
859 860
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
861
	spin_unlock(&mem->reclaim_param_lock);
862 863 864 865
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
866
	spin_lock(&mem->reclaim_param_lock);
867
	mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
868
	spin_unlock(&mem->reclaim_param_lock);
869 870
}

871
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
872 873 874
{
	unsigned long active;
	unsigned long inactive;
875 876
	unsigned long gb;
	unsigned long inactive_ratio;
877

K
KAMEZAWA Hiroyuki 已提交
878 879
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
880

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
908 909 910 911 912
		return 1;

	return 0;
}

913 914 915 916 917 918 919 920 921 922 923
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

924 925 926 927 928 929 930 931 932 933 934
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
955 956 957 958 959 960 961 962
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
963 964 965 966 967 968 969
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

970 971 972 973 974
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
975
					int active, int file)
976 977 978 979 980 981
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
982
	struct page_cgroup *pc, *tmp;
983 984 985
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
986
	int lru = LRU_FILE * file + active;
987
	int ret;
988

989
	BUG_ON(!mem_cont);
990
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
991
	src = &mz->lists[lru];
992

993 994
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
995
		if (scan >= nr_to_scan)
996
			break;
K
KAMEZAWA Hiroyuki 已提交
997 998

		page = pc->page;
999 1000
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
1001
		if (unlikely(!PageLRU(page)))
1002 1003
			continue;

H
Hugh Dickins 已提交
1004
		scan++;
1005 1006 1007
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1008
			list_move(&page->lru, dst);
1009
			mem_cgroup_del_lru(page);
1010
			nr_taken++;
1011 1012 1013 1014 1015 1016 1017
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1018 1019 1020 1021 1022 1023 1024
		}
	}

	*scanned = scan;
	return nr_taken;
}

1025 1026 1027
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1056 1057 1058 1059 1060 1061
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
1062 1063

/**
1064
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1083
	if (!memcg || !p)
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

1141
/*
K
KAMEZAWA Hiroyuki 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1184 1185
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1186 1187 1188
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1189 1190
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1191 1192
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1193
						struct zone *zone,
1194 1195
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1196
{
K
KAMEZAWA Hiroyuki 已提交
1197 1198 1199
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1200 1201
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1202 1203
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1204

1205 1206 1207 1208
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1209
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1210
		victim = mem_cgroup_select_victim(root_mem);
1211
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1212
			loop++;
1213 1214
			if (loop >= 1)
				drain_all_stock_async();
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1238
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1239 1240
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1241 1242
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1243
		/* we use swappiness of local cgroup */
1244 1245 1246 1247 1248 1249 1250
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
				noswap, get_swappiness(victim), zone,
				zone->zone_pgdat->node_id);
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1251
		css_put(&victim->css);
1252 1253 1254 1255 1256 1257 1258
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1259
		total += ret;
1260 1261 1262 1263
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1264
			return 1 + total;
1265
	}
K
KAMEZAWA Hiroyuki 已提交
1266
	return total;
1267 1268
}

K
KAMEZAWA Hiroyuki 已提交
1269
static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1270
{
K
KAMEZAWA Hiroyuki 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
	int *val = (int *)data;
	int x;
	/*
	 * Logically, we can stop scanning immediately when we find
	 * a memcg is already locked. But condidering unlock ops and
	 * creation/removal of memcg, scan-all is simple operation.
	 */
	x = atomic_inc_return(&mem->oom_lock);
	*val = max(x, *val);
	return 0;
}
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
	int lock_count = 0;
1289

K
KAMEZAWA Hiroyuki 已提交
1290 1291 1292 1293 1294
	mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);

	if (lock_count == 1)
		return true;
	return false;
1295
}
1296

K
KAMEZAWA Hiroyuki 已提交
1297
static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1298
{
K
KAMEZAWA Hiroyuki 已提交
1299 1300 1301 1302 1303 1304
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
	atomic_add_unless(&mem->oom_lock, -1, 0);
1305 1306 1307
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1308 1309 1310 1311 1312 1313 1314 1315
static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL,	mem_cgroup_oom_unlock_cb);
}

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1352 1353 1354 1355 1356 1357
static void memcg_oom_recover(struct mem_cgroup *mem)
{
	if (mem->oom_kill_disable && atomic_read(&mem->oom_lock))
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1358 1359 1360 1361
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1362
{
K
KAMEZAWA Hiroyuki 已提交
1363
	struct oom_wait_info owait;
1364
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1365

K
KAMEZAWA Hiroyuki 已提交
1366 1367 1368 1369 1370
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1371
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1372 1373 1374 1375 1376 1377 1378 1379
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1380 1381 1382 1383
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1384
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1385 1386
	mutex_unlock(&memcg_oom_mutex);

1387 1388
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1389
		mem_cgroup_out_of_memory(mem, mask);
1390
	} else {
K
KAMEZAWA Hiroyuki 已提交
1391
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1392
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1393 1394 1395
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1396
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1397 1398 1399 1400 1401 1402 1403
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1404 1405
}

1406 1407 1408 1409
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
 */
1410
void mem_cgroup_update_file_mapped(struct page *page, int val)
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (unlikely(!pc))
		return;

	lock_page_cgroup(pc);
	mem = pc->mem_cgroup;
1421
	if (!mem || !PageCgroupUsed(pc))
1422 1423 1424
		goto done;

	/*
1425
	 * Preemption is already disabled. We can use __this_cpu_xxx
1426
	 */
1427 1428 1429 1430 1431 1432 1433
	if (val > 0) {
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		SetPageCgroupFileMapped(pc);
	} else {
		__this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		ClearPageCgroupFileMapped(pc);
	}
1434 1435 1436 1437

done:
	unlock_page_cgroup(pc);
}
1438

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1500
 * This will be consumed by consume_stock() function, later.
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

	if (action != CPU_DEAD)
		return NOTIFY_OK;
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1566 1567 1568
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1569
 */
1570
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1571
			gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1572
{
1573
	struct mem_cgroup *mem, *mem_over_limit;
1574
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1575
	struct res_counter *fail_res;
1576
	int csize = CHARGE_SIZE;
1577

K
KAMEZAWA Hiroyuki 已提交
1578 1579 1580 1581 1582 1583 1584 1585
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
1586

1587
	/*
1588 1589
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1590 1591 1592
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
1593 1594 1595
	mem = *memcg;
	if (likely(!mem)) {
		mem = try_get_mem_cgroup_from_mm(mm);
1596
		*memcg = mem;
1597
	} else {
1598
		css_get(&mem->css);
1599
	}
1600 1601 1602
	if (unlikely(!mem))
		return 0;

1603
	VM_BUG_ON(css_is_removed(&mem->css));
1604 1605
	if (mem_cgroup_is_root(mem))
		goto done;
1606

1607
	while (1) {
1608
		int ret = 0;
1609
		unsigned long flags = 0;
1610

1611
		if (consume_stock(mem))
1612
			goto done;
1613 1614

		ret = res_counter_charge(&mem->res, csize, &fail_res);
1615 1616 1617
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
1618
			ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1619 1620 1621
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
1622
			res_counter_uncharge(&mem->res, csize);
1623
			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1624 1625 1626 1627 1628 1629 1630
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

1631 1632 1633 1634 1635
		/* reduce request size and retry */
		if (csize > PAGE_SIZE) {
			csize = PAGE_SIZE;
			continue;
		}
1636
		if (!(gfp_mask & __GFP_WAIT))
1637
			goto nomem;
1638

1639 1640
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
						gfp_mask, flags);
1641 1642
		if (ret)
			continue;
1643 1644

		/*
1645 1646 1647 1648 1649
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
1650
		 *
1651
		 */
1652 1653
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
1654

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
		/* try to avoid oom while someone is moving charge */
		if (mc.moving_task && current != mc.moving_task) {
			struct mem_cgroup *from, *to;
			bool do_continue = false;
			/*
			 * There is a small race that "from" or "to" can be
			 * freed by rmdir, so we use css_tryget().
			 */
			from = mc.from;
			to = mc.to;
			if (from && css_tryget(&from->css)) {
				if (mem_over_limit->use_hierarchy)
					do_continue = css_is_ancestor(
							&from->css,
							&mem_over_limit->css);
				else
					do_continue = (from == mem_over_limit);
				css_put(&from->css);
			}
			if (!do_continue && to && css_tryget(&to->css)) {
				if (mem_over_limit->use_hierarchy)
					do_continue = css_is_ancestor(
							&to->css,
							&mem_over_limit->css);
				else
					do_continue = (to == mem_over_limit);
				css_put(&to->css);
			}
			if (do_continue) {
				DEFINE_WAIT(wait);
				prepare_to_wait(&mc.waitq, &wait,
							TASK_INTERRUPTIBLE);
				/* moving charge context might have finished. */
				if (mc.moving_task)
					schedule();
				finish_wait(&mc.waitq, &wait);
				continue;
			}
		}

1695
		if (!nr_retries--) {
K
KAMEZAWA Hiroyuki 已提交
1696 1697 1698 1699 1700
			if (!oom)
				goto nomem;
			if (mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) {
				nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
				continue;
1701
			}
K
KAMEZAWA Hiroyuki 已提交
1702 1703 1704
			/* When we reach here, current task is dying .*/
			css_put(&mem->css);
			goto bypass;
1705
		}
1706
	}
1707 1708
	if (csize > PAGE_SIZE)
		refill_stock(mem, csize - PAGE_SIZE);
1709
done:
1710 1711 1712 1713
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
1714 1715 1716
bypass:
	*memcg = NULL;
	return 0;
1717
}
1718

1719 1720 1721 1722 1723
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
1724 1725
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
1726 1727
{
	if (!mem_cgroup_is_root(mem)) {
1728
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1729
		if (do_swap_account)
1730 1731 1732 1733
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_put(&mem->css, (int)count);
1734
	}
1735 1736 1737 1738 1739 1740
	/* we don't need css_put for root */
}

static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
{
	__mem_cgroup_cancel_charge(mem, 1);
1741 1742
}

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

1762
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1763
{
1764
	struct mem_cgroup *mem = NULL;
1765
	struct page_cgroup *pc;
1766
	unsigned short id;
1767 1768
	swp_entry_t ent;

1769 1770 1771
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
1772
	lock_page_cgroup(pc);
1773
	if (PageCgroupUsed(pc)) {
1774
		mem = pc->mem_cgroup;
1775 1776
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
1777
	} else if (PageSwapCache(page)) {
1778
		ent.val = page_private(page);
1779 1780 1781 1782 1783 1784
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
1785
	}
1786
	unlock_page_cgroup(pc);
1787 1788 1789
	return mem;
}

1790
/*
1791
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1802 1803 1804 1805

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
1806
		mem_cgroup_cancel_charge(mem);
1807
		return;
1808
	}
1809

1810
	pc->mem_cgroup = mem;
1811 1812 1813 1814 1815 1816 1817
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
1818
	smp_wmb();
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
1832

K
KAMEZAWA Hiroyuki 已提交
1833
	mem_cgroup_charge_statistics(mem, pc, true);
1834 1835

	unlock_page_cgroup(pc);
1836 1837 1838 1839 1840
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
1841
	memcg_check_events(mem, pc->page);
1842
}
1843

1844
/**
1845
 * __mem_cgroup_move_account - move account of the page
1846 1847 1848
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
1849
 * @uncharge: whether we should call uncharge and css_put against @from.
1850 1851
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
1852
 * - page is not on LRU (isolate_page() is useful.)
1853
 * - the pc is locked, used, and ->mem_cgroup points to @from.
1854
 *
1855 1856 1857 1858
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
1859 1860
 */

1861
static void __mem_cgroup_move_account(struct page_cgroup *pc,
1862
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1863 1864
{
	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1865
	VM_BUG_ON(PageLRU(pc->page));
1866 1867 1868
	VM_BUG_ON(!PageCgroupLocked(pc));
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
1869

1870
	if (PageCgroupFileMapped(pc)) {
1871 1872 1873 1874 1875
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
1876
	}
1877 1878 1879 1880
	mem_cgroup_charge_statistics(from, pc, false);
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
		mem_cgroup_cancel_charge(from);
1881

1882
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
1883 1884
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
1885 1886 1887
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
1888 1889 1890
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
1891
	 */
1892 1893 1894 1895 1896 1897 1898
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
1899
		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1900 1901 1902 1903
{
	int ret = -EINVAL;
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1904
		__mem_cgroup_move_account(pc, from, to, uncharge);
1905 1906 1907
		ret = 0;
	}
	unlock_page_cgroup(pc);
1908 1909 1910 1911 1912
	/*
	 * check events
	 */
	memcg_check_events(to, pc->page);
	memcg_check_events(from, pc->page);
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1924
	struct page *page = pc->page;
1925 1926 1927 1928 1929 1930 1931 1932 1933
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

1934 1935 1936 1937 1938
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
K
KAMEZAWA Hiroyuki 已提交
1939

1940
	parent = mem_cgroup_from_cont(pcg);
1941
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1942
	if (ret || !parent)
1943
		goto put_back;
1944

1945 1946 1947
	ret = mem_cgroup_move_account(pc, child, parent, true);
	if (ret)
		mem_cgroup_cancel_charge(parent);
1948
put_back:
K
KAMEZAWA Hiroyuki 已提交
1949
	putback_lru_page(page);
1950
put:
1951
	put_page(page);
1952
out:
1953 1954 1955
	return ret;
}

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
1977
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1978
	if (ret || !mem)
1979 1980 1981
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
1982 1983 1984
	return 0;
}

1985 1986
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
1987
{
1988
	if (mem_cgroup_disabled())
1989
		return 0;
1990 1991
	if (PageCompound(page))
		return 0;
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2003
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2004
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
2005 2006
}

D
Daisuke Nishimura 已提交
2007 2008 2009 2010
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2011 2012
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2013
{
2014 2015 2016
	struct mem_cgroup *mem = NULL;
	int ret;

2017
	if (mem_cgroup_disabled())
2018
		return 0;
2019 2020
	if (PageCompound(page))
		return 0;
2021 2022 2023 2024 2025 2026 2027 2028
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2029 2030
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2031 2032 2033 2034
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2035 2036 2037 2038 2039 2040 2041

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2042 2043
			return 0;
		}
2044
		unlock_page_cgroup(pc);
2045 2046
	}

2047
	if (unlikely(!mm && !mem))
2048
		mm = &init_mm;
2049

2050 2051
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
2052
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
2053

D
Daisuke Nishimura 已提交
2054 2055 2056 2057 2058 2059 2060 2061 2062
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
2063 2064

	return ret;
2065 2066
}

2067 2068 2069
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2070
 * struct page_cgroup is acquired. This refcnt will be consumed by
2071 2072
 * "commit()" or removed by "cancel()"
 */
2073 2074 2075 2076 2077
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2078
	int ret;
2079

2080
	if (mem_cgroup_disabled())
2081 2082 2083 2084 2085 2086
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2087 2088 2089
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2090 2091
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2092
		goto charge_cur_mm;
2093
	mem = try_get_mem_cgroup_from_page(page);
2094 2095
	if (!mem)
		goto charge_cur_mm;
2096
	*ptr = mem;
2097
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2098 2099 2100
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
2101 2102 2103
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2104
	return __mem_cgroup_try_charge(mm, mask, ptr, true);
2105 2106
}

D
Daisuke Nishimura 已提交
2107 2108 2109
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2110 2111 2112
{
	struct page_cgroup *pc;

2113
	if (mem_cgroup_disabled())
2114 2115 2116
		return;
	if (!ptr)
		return;
2117
	cgroup_exclude_rmdir(&ptr->css);
2118
	pc = lookup_page_cgroup(page);
2119
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
2120
	__mem_cgroup_commit_charge(ptr, pc, ctype);
2121
	mem_cgroup_lru_add_after_commit_swapcache(page);
2122 2123 2124
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2125 2126 2127
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2128
	 */
2129
	if (do_swap_account && PageSwapCache(page)) {
2130
		swp_entry_t ent = {.val = page_private(page)};
2131
		unsigned short id;
2132
		struct mem_cgroup *memcg;
2133 2134 2135 2136

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2137
		if (memcg) {
2138 2139 2140 2141
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2142
			if (!mem_cgroup_is_root(memcg))
2143
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2144
			mem_cgroup_swap_statistics(memcg, false);
2145 2146
			mem_cgroup_put(memcg);
		}
2147
		rcu_read_unlock();
2148
	}
2149 2150 2151 2152 2153 2154
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2155 2156
}

D
Daisuke Nishimura 已提交
2157 2158 2159 2160 2161 2162
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2163 2164
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2165
	if (mem_cgroup_disabled())
2166 2167 2168
		return;
	if (!mem)
		return;
2169
	mem_cgroup_cancel_charge(mem);
2170 2171
}

2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
static void
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (uncharge_memsw)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2216 2217
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2218 2219
	return;
}
2220

2221
/*
2222
 * uncharge if !page_mapped(page)
2223
 */
2224
static struct mem_cgroup *
2225
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2226
{
H
Hugh Dickins 已提交
2227
	struct page_cgroup *pc;
2228
	struct mem_cgroup *mem = NULL;
2229
	struct mem_cgroup_per_zone *mz;
2230

2231
	if (mem_cgroup_disabled())
2232
		return NULL;
2233

K
KAMEZAWA Hiroyuki 已提交
2234
	if (PageSwapCache(page))
2235
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2236

2237
	/*
2238
	 * Check if our page_cgroup is valid
2239
	 */
2240 2241
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2242
		return NULL;
2243

2244
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2245

2246 2247
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2248 2249 2250 2251 2252
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2253
	case MEM_CGROUP_CHARGE_TYPE_DROP:
K
KAMEZAWA Hiroyuki 已提交
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
		if (page_mapped(page))
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2266
	}
K
KAMEZAWA Hiroyuki 已提交
2267

2268 2269
	if (!mem_cgroup_is_root(mem))
		__do_uncharge(mem, ctype);
2270 2271
	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		mem_cgroup_swap_statistics(mem, true);
K
KAMEZAWA Hiroyuki 已提交
2272
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
2273

2274
	ClearPageCgroupUsed(pc);
2275 2276 2277 2278 2279 2280
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2281

2282
	mz = page_cgroup_zoneinfo(pc);
2283
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
2284

2285
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2286 2287 2288
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
2289

2290
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2291 2292 2293

unlock_out:
	unlock_page_cgroup(pc);
2294
	return NULL;
2295 2296
}

2297 2298
void mem_cgroup_uncharge_page(struct page *page)
{
2299 2300 2301 2302 2303
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2304 2305 2306 2307 2308 2309
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2310
	VM_BUG_ON(page->mapping);
2311 2312 2313
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2354
	memcg_oom_recover(batch->memcg);
2355 2356 2357 2358
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2359
#ifdef CONFIG_SWAP
2360
/*
2361
 * called after __delete_from_swap_cache() and drop "page" account.
2362 2363
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2364 2365
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2366 2367
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2368 2369 2370 2371 2372 2373
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2374 2375

	/* record memcg information */
K
KAMEZAWA Hiroyuki 已提交
2376
	if (do_swap_account && swapout && memcg) {
2377
		swap_cgroup_record(ent, css_id(&memcg->css));
2378 2379
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
2380
	if (swapout && memcg)
K
KAMEZAWA Hiroyuki 已提交
2381
		css_put(&memcg->css);
2382
}
2383
#endif
2384 2385 2386 2387 2388 2389 2390

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2391
{
2392
	struct mem_cgroup *memcg;
2393
	unsigned short id;
2394 2395 2396 2397

	if (!do_swap_account)
		return;

2398 2399 2400
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2401
	if (memcg) {
2402 2403 2404 2405
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2406
		if (!mem_cgroup_is_root(memcg))
2407
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2408
		mem_cgroup_swap_statistics(memcg, false);
2409 2410
		mem_cgroup_put(memcg);
	}
2411
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2412
}
2413 2414 2415 2416 2417 2418

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2419
 * @need_fixup: whether we should fixup res_counters and refcounts.
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2430
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2431 2432 2433 2434 2435 2436 2437 2438
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2439
		mem_cgroup_swap_statistics(to, true);
2440
		/*
2441 2442 2443 2444 2445 2446
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2447 2448
		 */
		mem_cgroup_get(to);
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
			css_put(&to->css);
		}
2461 2462 2463 2464 2465 2466
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2467
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2468 2469 2470
{
	return -EINVAL;
}
2471
#endif
K
KAMEZAWA Hiroyuki 已提交
2472

2473
/*
2474 2475
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2476
 */
2477
int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
2478 2479
{
	struct page_cgroup *pc;
2480 2481
	struct mem_cgroup *mem = NULL;
	int ret = 0;
2482

2483
	if (mem_cgroup_disabled())
2484 2485
		return 0;

2486 2487 2488
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2489 2490 2491
		mem = pc->mem_cgroup;
		css_get(&mem->css);
	}
2492
	unlock_page_cgroup(pc);
2493

A
Andrea Arcangeli 已提交
2494
	*ptr = mem;
2495
	if (mem) {
A
Andrea Arcangeli 已提交
2496
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
2497 2498 2499
		css_put(&mem->css);
	}
	return ret;
2500
}
2501

2502
/* remove redundant charge if migration failed*/
2503 2504
void mem_cgroup_end_migration(struct mem_cgroup *mem,
		struct page *oldpage, struct page *newpage)
2505
{
2506 2507 2508 2509 2510 2511
	struct page *target, *unused;
	struct page_cgroup *pc;
	enum charge_type ctype;

	if (!mem)
		return;
2512
	cgroup_exclude_rmdir(&mem->css);
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
		target = oldpage;
		unused = NULL;
	} else {
		target = newpage;
		unused = oldpage;
	}

	if (PageAnon(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/* unused page is not on radix-tree now. */
K
KAMEZAWA Hiroyuki 已提交
2530
	if (unused)
2531 2532 2533
		__mem_cgroup_uncharge_common(unused, ctype);

	pc = lookup_page_cgroup(target);
2534
	/*
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
	 * So, double-counting is effectively avoided.
	 */
	__mem_cgroup_commit_charge(mem, pc, ctype);

	/*
	 * Both of oldpage and newpage are still under lock_page().
	 * Then, we don't have to care about race in radix-tree.
	 * But we have to be careful that this page is unmapped or not.
	 *
	 * There is a case for !page_mapped(). At the start of
	 * migration, oldpage was mapped. But now, it's zapped.
	 * But we know *target* page is not freed/reused under us.
	 * mem_cgroup_uncharge_page() does all necessary checks.
2549
	 */
2550 2551
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		mem_cgroup_uncharge_page(target);
2552 2553 2554 2555 2556 2557
	/*
	 * At migration, we may charge account against cgroup which has no tasks
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2558
}
2559

2560
/*
2561 2562 2563 2564 2565 2566
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2567
 */
2568
int mem_cgroup_shmem_charge_fallback(struct page *page,
2569 2570
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2571
{
2572
	struct mem_cgroup *mem = NULL;
2573
	int ret;
2574

2575
	if (mem_cgroup_disabled())
2576
		return 0;
2577

2578 2579 2580
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2581

2582
	return ret;
2583 2584
}

2585 2586
static DEFINE_MUTEX(set_limit_mutex);

2587
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2588
				unsigned long long val)
2589
{
2590
	int retry_count;
2591
	u64 memswlimit, memlimit;
2592
	int ret = 0;
2593 2594
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
2595
	int enlarge;
2596 2597 2598 2599 2600 2601 2602 2603 2604

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2605

2606
	enlarge = 0;
2607
	while (retry_count) {
2608 2609 2610 2611
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2622 2623
			break;
		}
2624 2625 2626 2627 2628

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

2629
		ret = res_counter_set_limit(&memcg->res, val);
2630 2631 2632 2633 2634 2635
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2636 2637 2638 2639 2640
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2641
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2642
						MEM_CGROUP_RECLAIM_SHRINK);
2643 2644 2645 2646 2647 2648
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2649
	}
2650 2651
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2652

2653 2654 2655
	return ret;
}

L
Li Zefan 已提交
2656 2657
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
2658
{
2659
	int retry_count;
2660
	u64 memlimit, memswlimit, oldusage, curusage;
2661 2662
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
2663
	int enlarge = 0;
2664

2665 2666 2667
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
2685 2686 2687
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
2688
		ret = res_counter_set_limit(&memcg->memsw, val);
2689 2690 2691 2692 2693 2694
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2695 2696 2697 2698 2699
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2700
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2701 2702
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
2703
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2704
		/* Usage is reduced ? */
2705
		if (curusage >= oldusage)
2706
			retry_count--;
2707 2708
		else
			oldusage = curusage;
2709
	}
2710 2711
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2712 2713 2714
	return ret;
}

2715 2716 2717 2718 2719 2720 2721 2722 2723
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
						gfp_t gfp_mask, int nid,
						int zid)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2724
	unsigned long long excess;
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(nid, zid);
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2777
		excess = res_counter_soft_limit_excess(&mz->mem->res);
2778 2779 2780 2781 2782 2783 2784 2785
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
2786 2787
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

2806 2807 2808 2809
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
2810
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
2811
				int node, int zid, enum lru_list lru)
2812
{
K
KAMEZAWA Hiroyuki 已提交
2813 2814
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
2815
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
2816
	unsigned long flags, loop;
2817
	struct list_head *list;
2818
	int ret = 0;
2819

K
KAMEZAWA Hiroyuki 已提交
2820 2821
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
2822
	list = &mz->lists[lru];
2823

2824 2825 2826 2827 2828 2829
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
2830
		spin_lock_irqsave(&zone->lru_lock, flags);
2831
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
2832
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2833
			break;
2834 2835 2836 2837
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
2838
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
2839
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2840 2841
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
2842
		spin_unlock_irqrestore(&zone->lru_lock, flags);
2843

K
KAMEZAWA Hiroyuki 已提交
2844
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2845
		if (ret == -ENOMEM)
2846
			break;
2847 2848 2849 2850 2851 2852 2853

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
2854
	}
K
KAMEZAWA Hiroyuki 已提交
2855

2856 2857 2858
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
2859 2860 2861 2862 2863 2864
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
2865
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2866
{
2867 2868 2869
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2870
	struct cgroup *cgrp = mem->css.cgroup;
2871

2872
	css_get(&mem->css);
2873 2874

	shrink = 0;
2875 2876 2877
	/* should free all ? */
	if (free_all)
		goto try_to_free;
2878
move_account:
2879
	do {
2880
		ret = -EBUSY;
2881 2882 2883 2884
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
2885
			goto out;
2886 2887
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
2888
		drain_all_stock_sync();
2889
		ret = 0;
2890
		for_each_node_state(node, N_HIGH_MEMORY) {
2891
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2892
				enum lru_list l;
2893 2894
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
2895
							node, zid, l);
2896 2897 2898
					if (ret)
						break;
				}
2899
			}
2900 2901 2902
			if (ret)
				break;
		}
2903
		memcg_oom_recover(mem);
2904 2905 2906
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
2907
		cond_resched();
2908 2909
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
2910 2911 2912
out:
	css_put(&mem->css);
	return ret;
2913 2914

try_to_free:
2915 2916
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2917 2918 2919
		ret = -EBUSY;
		goto out;
	}
2920 2921
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2922 2923 2924 2925
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
2926 2927 2928 2929 2930

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
2931 2932
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
2933
		if (!progress) {
2934
			nr_retries--;
2935
			/* maybe some writeback is necessary */
2936
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2937
		}
2938 2939

	}
K
KAMEZAWA Hiroyuki 已提交
2940
	lru_add_drain();
2941
	/* try move_account...there may be some *locked* pages. */
2942
	goto move_account;
2943 2944
}

2945 2946 2947 2948 2949 2950
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
2969
	 * If parent's use_hierarchy is set, we can't make any modifications
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

2989 2990 2991 2992 2993 2994 2995 2996 2997
struct mem_cgroup_idx_data {
	s64 val;
	enum mem_cgroup_stat_index idx;
};

static int
mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_idx_data *d = data;
2998
	d->val += mem_cgroup_read_stat(mem, d->idx);
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
	return 0;
}

static void
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx, s64 *val)
{
	struct mem_cgroup_idx_data d;
	d.idx = idx;
	d.val = 0;
	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
	*val = d.val;
}

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
	u64 idx_val, val;

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
	val = idx_val;
	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
	val += idx_val;

	if (swap) {
		mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
		val += idx_val;
	}

	return val << PAGE_SHIFT;
}

3038
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3039
{
3040
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3041
	u64 val;
3042 3043 3044 3045 3046 3047
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3048 3049 3050
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3051
			val = res_counter_read_u64(&mem->res, name);
3052 3053
		break;
	case _MEMSWAP:
3054 3055 3056
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3057
			val = res_counter_read_u64(&mem->memsw, name);
3058 3059 3060 3061 3062 3063
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3064
}
3065 3066 3067 3068
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3069 3070
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3071
{
3072
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3073
	int type, name;
3074 3075 3076
	unsigned long long val;
	int ret;

3077 3078 3079
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3080
	case RES_LIMIT:
3081 3082 3083 3084
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3085 3086
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3087 3088 3089
		if (ret)
			break;
		if (type == _MEM)
3090
			ret = mem_cgroup_resize_limit(memcg, val);
3091 3092
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3093
		break;
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3108 3109 3110 3111 3112
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3113 3114
}

3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3143
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3144 3145
{
	struct mem_cgroup *mem;
3146
	int type, name;
3147 3148

	mem = mem_cgroup_from_cont(cont);
3149 3150 3151
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3152
	case RES_MAX_USAGE:
3153 3154 3155 3156
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3157 3158
		break;
	case RES_FAILCNT:
3159 3160 3161 3162
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3163 3164
		break;
	}
3165

3166
	return 0;
3167 3168
}

3169 3170 3171 3172 3173 3174
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3175
#ifdef CONFIG_MMU
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3194 3195 3196 3197 3198 3199 3200
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3201

K
KAMEZAWA Hiroyuki 已提交
3202 3203 3204 3205 3206

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3207
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3208 3209
	MCS_PGPGIN,
	MCS_PGPGOUT,
3210
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3221 3222
};

K
KAMEZAWA Hiroyuki 已提交
3223 3224 3225 3226 3227 3228
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3229
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3230 3231
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3232
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
3247
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3248
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3249
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3250
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3251
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3252
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3253
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3254
	s->stat[MCS_PGPGIN] += val;
3255
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3256
	s->stat[MCS_PGPGOUT] += val;
3257
	if (do_swap_account) {
3258
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3259 3260
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

3282 3283
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3284 3285
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3286
	struct mcs_total_stat mystat;
3287 3288
	int i;

K
KAMEZAWA Hiroyuki 已提交
3289 3290
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3291

3292 3293 3294
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3295
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3296
	}
L
Lee Schermerhorn 已提交
3297

K
KAMEZAWA Hiroyuki 已提交
3298
	/* Hierarchical information */
3299 3300 3301 3302 3303 3304 3305
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3306

K
KAMEZAWA Hiroyuki 已提交
3307 3308
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3309 3310 3311
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3312
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3313
	}
K
KAMEZAWA Hiroyuki 已提交
3314

K
KOSAKI Motohiro 已提交
3315
#ifdef CONFIG_DEBUG_VM
3316
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3344 3345 3346
	return 0;
}

K
KOSAKI Motohiro 已提交
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3359

K
KOSAKI Motohiro 已提交
3360 3361 3362 3363 3364 3365 3366
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3367 3368 3369

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3370 3371
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3372 3373
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3374
		return -EINVAL;
3375
	}
K
KOSAKI Motohiro 已提交
3376 3377 3378 3379 3380

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3381 3382
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3383 3384 3385
	return 0;
}

3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
		t = rcu_dereference(memcg->thresholds);
	else
		t = rcu_dereference(memcg->memsw_thresholds);

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
	i = atomic_read(&t->current_threshold);

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
	atomic_set(&t->current_threshold, i - 1);
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
	__mem_cgroup_threshold(memcg, false);
	if (do_swap_account)
		__mem_cgroup_threshold(memcg, true);
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
	int size;
	int i, ret;

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
		thresholds = memcg->thresholds;
	else if (type == _MEMSWAP)
		thresholds = memcg->memsw_thresholds;
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
	if (thresholds)
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	if (thresholds)
		size = thresholds->size + 1;
	else
		size = 1;

	/* Allocate memory for new array of thresholds */
	thresholds_new = kmalloc(sizeof(*thresholds_new) +
			size * sizeof(struct mem_cgroup_threshold),
			GFP_KERNEL);
	if (!thresholds_new) {
		ret = -ENOMEM;
		goto unlock;
	}
	thresholds_new->size = size;

	/* Copy thresholds (if any) to new array */
	if (thresholds)
		memcpy(thresholds_new->entries, thresholds->entries,
				thresholds->size *
				sizeof(struct mem_cgroup_threshold));
	/* Add new threshold */
	thresholds_new->entries[size - 1].eventfd = eventfd;
	thresholds_new->entries[size - 1].threshold = threshold;

	/* Sort thresholds. Registering of new threshold isn't time-critical */
	sort(thresholds_new->entries, size,
			sizeof(struct mem_cgroup_threshold),
			compare_thresholds, NULL);

	/* Find current threshold */
	atomic_set(&thresholds_new->current_threshold, -1);
	for (i = 0; i < size; i++) {
		if (thresholds_new->entries[i].threshold < usage) {
			/*
			 * thresholds_new->current_threshold will not be used
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
			atomic_inc(&thresholds_new->current_threshold);
		}
	}

	if (type == _MEM)
		rcu_assign_pointer(memcg->thresholds, thresholds_new);
	else
		rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);

	/* To be sure that nobody uses thresholds before freeing it */
	synchronize_rcu();

	kfree(thresholds);
unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

K
KAMEZAWA Hiroyuki 已提交
3551 3552
static int mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd)
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
	int size = 0;
	int i, j, ret;

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
		thresholds = memcg->thresholds;
	else if (type == _MEMSWAP)
		thresholds = memcg->memsw_thresholds;
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
	for (i = 0; i < thresholds->size; i++) {
		if (thresholds->entries[i].eventfd != eventfd)
			size++;
	}

	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
		thresholds_new = NULL;
		goto assign;
	}

	/* Allocate memory for new array of thresholds */
	thresholds_new = kmalloc(sizeof(*thresholds_new) +
			size * sizeof(struct mem_cgroup_threshold),
			GFP_KERNEL);
	if (!thresholds_new) {
		ret = -ENOMEM;
		goto unlock;
	}
	thresholds_new->size = size;

	/* Copy thresholds and find current threshold */
	atomic_set(&thresholds_new->current_threshold, -1);
	for (i = 0, j = 0; i < thresholds->size; i++) {
		if (thresholds->entries[i].eventfd == eventfd)
			continue;

		thresholds_new->entries[j] = thresholds->entries[i];
		if (thresholds_new->entries[j].threshold < usage) {
			/*
			 * thresholds_new->current_threshold will not be used
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
			atomic_inc(&thresholds_new->current_threshold);
		}
		j++;
	}

assign:
	if (type == _MEM)
		rcu_assign_pointer(memcg->thresholds, thresholds_new);
	else
		rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);

	/* To be sure that nobody uses thresholds before freeing it */
	synchronize_rcu();

	kfree(thresholds);
unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}
3635

K
KAMEZAWA Hiroyuki 已提交
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

static int mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

/*
 */
static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
	cgroup_unlock();
	return 0;
}

B
Balbir Singh 已提交
3724 3725
static struct cftype mem_cgroup_files[] = {
	{
3726
		.name = "usage_in_bytes",
3727
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3728
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
3729 3730
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
3731
	},
3732 3733
	{
		.name = "max_usage_in_bytes",
3734
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3735
		.trigger = mem_cgroup_reset,
3736 3737
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3738
	{
3739
		.name = "limit_in_bytes",
3740
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3741
		.write_string = mem_cgroup_write,
3742
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3743
	},
3744 3745 3746 3747 3748 3749
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3750 3751
	{
		.name = "failcnt",
3752
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3753
		.trigger = mem_cgroup_reset,
3754
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3755
	},
3756 3757
	{
		.name = "stat",
3758
		.read_map = mem_control_stat_show,
3759
	},
3760 3761 3762 3763
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
3764 3765 3766 3767 3768
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
3769 3770 3771 3772 3773
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3774 3775 3776 3777 3778
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3779 3780
	{
		.name = "oom_control",
3781 3782
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3783 3784 3785 3786
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
B
Balbir Singh 已提交
3787 3788
};

3789 3790 3791 3792 3793 3794
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
3795 3796
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

3832 3833 3834
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
3835
	struct mem_cgroup_per_zone *mz;
3836
	enum lru_list l;
3837
	int zone, tmp = node;
3838 3839 3840 3841 3842 3843 3844 3845
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
3846 3847 3848
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3849 3850
	if (!pn)
		return 1;
3851

3852 3853
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
3854 3855 3856

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
3857 3858
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
3859
		mz->usage_in_excess = 0;
3860 3861
		mz->on_tree = false;
		mz->mem = mem;
3862
	}
3863 3864 3865
	return 0;
}

3866 3867 3868 3869 3870
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

3871 3872 3873
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
3874
	int size = sizeof(struct mem_cgroup);
3875

3876
	/* Can be very big if MAX_NUMNODES is very big */
3877 3878
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
3879
	else
3880
		mem = vmalloc(size);
3881

3882 3883 3884 3885
	if (!mem)
		return NULL;

	memset(mem, 0, size);
3886 3887 3888 3889 3890 3891 3892 3893
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!mem->stat) {
		if (size < PAGE_SIZE)
			kfree(mem);
		else
			vfree(mem);
		mem = NULL;
	}
3894 3895 3896
	return mem;
}

3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

3908
static void __mem_cgroup_free(struct mem_cgroup *mem)
3909
{
K
KAMEZAWA Hiroyuki 已提交
3910 3911
	int node;

3912
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
3913 3914
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
3915 3916 3917
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

3918 3919
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
3920 3921 3922 3923 3924
		kfree(mem);
	else
		vfree(mem);
}

3925 3926 3927 3928 3929
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

3930
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
3931
{
3932
	if (atomic_sub_and_test(count, &mem->refcnt)) {
3933
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
3934
		__mem_cgroup_free(mem);
3935 3936 3937
		if (parent)
			mem_cgroup_put(parent);
	}
3938 3939
}

3940 3941 3942 3943 3944
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

3945 3946 3947 3948 3949 3950 3951 3952 3953
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
3954

3955 3956 3957
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
3958
	if (!mem_cgroup_disabled() && really_do_swap_account)
3959 3960 3961 3962 3963 3964 3965 3966
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
3992
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
3993 3994
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
3995
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
3996
	long error = -ENOMEM;
3997
	int node;
B
Balbir Singh 已提交
3998

3999 4000
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4001
		return ERR_PTR(error);
4002

4003 4004 4005
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4006

4007
	/* root ? */
4008
	if (cont->parent == NULL) {
4009
		int cpu;
4010
		enable_swap_cgroup();
4011
		parent = NULL;
4012
		root_mem_cgroup = mem;
4013 4014
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4015 4016 4017 4018 4019 4020
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
		hotcpu_notifier(memcg_stock_cpu_callback, 0);
4021
	} else {
4022
		parent = mem_cgroup_from_cont(cont->parent);
4023
		mem->use_hierarchy = parent->use_hierarchy;
4024
		mem->oom_kill_disable = parent->oom_kill_disable;
4025
	}
4026

4027 4028 4029
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4030 4031 4032 4033 4034 4035 4036
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4037 4038 4039 4040
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4041
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
4042
	spin_lock_init(&mem->reclaim_param_lock);
K
KAMEZAWA Hiroyuki 已提交
4043
	INIT_LIST_HEAD(&mem->oom_notify);
4044

K
KOSAKI Motohiro 已提交
4045 4046
	if (parent)
		mem->swappiness = get_swappiness(parent);
4047
	atomic_set(&mem->refcnt, 1);
4048
	mem->move_charge_at_immigrate = 0;
4049
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4050
	return &mem->css;
4051
free_out:
4052
	__mem_cgroup_free(mem);
4053
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4054
	return ERR_PTR(error);
B
Balbir Singh 已提交
4055 4056
}

4057
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4058 4059 4060
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4061 4062

	return mem_cgroup_force_empty(mem, false);
4063 4064
}

B
Balbir Singh 已提交
4065 4066 4067
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4068 4069 4070
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4071 4072 4073 4074 4075
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4076 4077 4078 4079 4080 4081 4082 4083
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4084 4085
}

4086
#ifdef CONFIG_MMU
4087
/* Handlers for move charge at task migration. */
4088 4089
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4090
{
4091 4092
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4093 4094
	struct mem_cgroup *mem = mc.to;

4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_get(&mem->css, (int)count);
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
4133
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4134 4135 4136 4137 4138
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4139 4140 4141 4142 4143 4144 4145 4146
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4147
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4148 4149 4150 4151 4152 4153
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4154 4155 4156
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4157 4158 4159 4160 4161
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4162
	swp_entry_t	ent;
4163 4164 4165 4166 4167
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4168
	MC_TARGET_SWAP,
4169 4170
};

D
Daisuke Nishimura 已提交
4171 4172
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4173
{
D
Daisuke Nishimura 已提交
4174
	struct page *page = vm_normal_page(vma, addr, ptent);
4175

D
Daisuke Nishimura 已提交
4176 4177 4178 4179 4180 4181 4182
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
	} else
4183 4184 4185 4186
		/*
		 * TODO: We don't move charges of file(including shmem/tmpfs)
		 * pages for now.
		 */
D
Daisuke Nishimura 已提交
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
4205 4206
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
4207
		return NULL;
4208
	}
D
Daisuke Nishimura 已提交
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
	/* TODO: handle swap of shmes/tmpfs */

	if (!page && !ent.val)
		return 0;
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4246 4247
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
4248 4249 4250 4251
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4271 4272 4273
	return 0;
}

4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		/* TODO: We don't move charges of shmem/tmpfs pages for now. */
		if (vma->vm_flags & VM_SHARED)
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
	up_read(&mm->mmap_sem);

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4304
	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4305 4306 4307 4308 4309
}

static void mem_cgroup_clear_mc(void)
{
	/* we must uncharge all the leftover precharges from mc.to */
4310 4311 4312
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
4313
		memcg_oom_recover(mc.to);
4314 4315 4316 4317 4318 4319 4320 4321
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4322
		memcg_oom_recover(mc.from);
4323
	}
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		WARN_ON_ONCE(mc.moved_swap > INT_MAX);
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
			VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
			__css_put(&mc.to->css, mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */

		mc.moved_swap = 0;
	}
4347 4348
	mc.from = NULL;
	mc.to = NULL;
4349 4350
	mc.moving_task = NULL;
	wake_up_all(&mc.waitq);
4351 4352
}

4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4371 4372 4373 4374
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4375
			VM_BUG_ON(mc.moved_charge);
4376
			VM_BUG_ON(mc.moved_swap);
4377
			VM_BUG_ON(mc.moving_task);
4378 4379 4380
			mc.from = from;
			mc.to = mem;
			mc.precharge = 0;
4381
			mc.moved_charge = 0;
4382
			mc.moved_swap = 0;
4383
			mc.moving_task = current;
4384 4385 4386 4387 4388

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
		}
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
		mmput(mm);
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4399
	mem_cgroup_clear_mc();
4400 4401
}

4402 4403 4404
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4405
{
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4419
		swp_entry_t ent;
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4431 4432
			if (!mem_cgroup_move_account(pc,
						mc.from, mc.to, false)) {
4433
				mc.precharge--;
4434 4435
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4436 4437 4438 4439 4440
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4441 4442
		case MC_TARGET_SWAP:
			ent = target.ent;
4443 4444
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4445
				mc.precharge--;
4446 4447 4448
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4449
			break;
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4464
		ret = mem_cgroup_do_precharge(1);
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		/* TODO: We don't move charges of shmem/tmpfs pages for now. */
		if (vma->vm_flags & VM_SHARED)
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
	up_read(&mm->mmap_sem);
4500 4501
}

B
Balbir Singh 已提交
4502 4503 4504
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
4505 4506
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
4507
{
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
	struct mm_struct *mm;

	if (!mc.to)
		/* no need to move charge */
		return;

	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4520
}
4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
B
Balbir Singh 已提交
4543

B
Balbir Singh 已提交
4544 4545 4546 4547
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
4548
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
4549 4550
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
4551 4552
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
4553
	.attach = mem_cgroup_move_task,
4554
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
4555
	.use_id = 1,
B
Balbir Singh 已提交
4556
};
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif