memcontrol.c 150.7 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78 79
struct mem_cgroup *root_mem_cgroup __read_mostly;

80
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
81

82 83 84
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

85 86 87
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

88
/* Whether the swap controller is active */
A
Andrew Morton 已提交
89
#ifdef CONFIG_MEMCG_SWAP
90 91
int do_swap_account __read_mostly;
#else
92
#define do_swap_account		0
93 94
#endif

95 96 97 98 99 100
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

101 102 103
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
104
	"rss_huge",
105
	"mapped_file",
106
	"dirty",
107
	"writeback",
108 109 110 111 112 113 114 115 116 117
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

118 119 120 121 122 123 124 125
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

126 127 128
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
150 151 152 153 154
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
155

156 157 158
/*
 * cgroup_event represents events which userspace want to receive.
 */
159
struct mem_cgroup_event {
160
	/*
161
	 * memcg which the event belongs to.
162
	 */
163
	struct mem_cgroup *memcg;
164 165 166 167 168 169 170 171
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
172 173 174 175 176
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
177
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
178
			      struct eventfd_ctx *eventfd, const char *args);
179 180 181 182 183
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
184
	void (*unregister_event)(struct mem_cgroup *memcg,
185
				 struct eventfd_ctx *eventfd);
186 187 188 189 190 191 192 193 194 195
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

196 197
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198

199 200
/* Stuffs for move charges at task migration. */
/*
201
 * Types of charges to be moved.
202
 */
203 204 205
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
206

207 208
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
209
	spinlock_t	  lock; /* for from, to */
210 211
	struct mem_cgroup *from;
	struct mem_cgroup *to;
212
	unsigned long flags;
213
	unsigned long precharge;
214
	unsigned long moved_charge;
215
	unsigned long moved_swap;
216 217 218
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
219
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
220 221
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
222

223 224 225 226
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
227
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
228
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
229

230 231
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
232
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
233
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
234
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
235 236 237
	NR_CHARGE_TYPE,
};

238
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
239 240 241 242
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
243
	_KMEM,
V
Vladimir Davydov 已提交
244
	_TCP,
G
Glauber Costa 已提交
245 246
};

247 248
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
249
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
250 251
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
252

253 254 255 256 257 258 259 260 261 262 263 264 265
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

266 267 268 269 270
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

271
#ifndef CONFIG_SLOB
272
/*
273
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
274 275 276 277 278
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
279
 *
280 281
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
282
 */
283 284
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
285

286 287 288 289 290 291 292 293 294 295 296 297 298
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

299 300 301 302 303 304
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
305
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
306 307
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
308
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
309 310 311
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
312
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
313

314 315 316 317 318 319
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
320
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
321
EXPORT_SYMBOL(memcg_kmem_enabled_key);
322

323
#endif /* !CONFIG_SLOB */
324

325
static struct mem_cgroup_per_zone *
326
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
327
{
328 329 330
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

331
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
332 333
}

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

351
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
352 353 354 355 356
		memcg = root_mem_cgroup;

	return &memcg->css;
}

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

385
static struct mem_cgroup_per_zone *
386
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
387
{
388 389
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
390

391
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
392 393
}

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

409 410
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
411
					 unsigned long new_usage_in_excess)
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

441 442
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
443 444 445 446 447 448 449
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

450 451
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
452
{
453 454 455
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
456
	__mem_cgroup_remove_exceeded(mz, mctz);
457
	spin_unlock_irqrestore(&mctz->lock, flags);
458 459
}

460 461 462
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
463
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
464 465 466 467 468 469 470
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
471 472 473

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
474
	unsigned long excess;
475 476 477
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

478
	mctz = soft_limit_tree_from_page(page);
479 480 481 482 483
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
484
		mz = mem_cgroup_page_zoneinfo(memcg, page);
485
		excess = soft_limit_excess(memcg);
486 487 488 489 490
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
491 492 493
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
494 495
			/* if on-tree, remove it */
			if (mz->on_tree)
496
				__mem_cgroup_remove_exceeded(mz, mctz);
497 498 499 500
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
501
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
502
			spin_unlock_irqrestore(&mctz->lock, flags);
503 504 505 506 507 508 509
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
510 511
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
512

513 514 515 516
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
517
			mem_cgroup_remove_exceeded(mz, mctz);
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
540
	__mem_cgroup_remove_exceeded(mz, mctz);
541
	if (!soft_limit_excess(mz->memcg) ||
542
	    !css_tryget_online(&mz->memcg->css))
543 544 545 546 547 548 549 550 551 552
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

553
	spin_lock_irq(&mctz->lock);
554
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
555
	spin_unlock_irq(&mctz->lock);
556 557 558
	return mz;
}

559
/*
560 561
 * Return page count for single (non recursive) @memcg.
 *
562 563 564 565 566
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
567
 * a periodic synchronization of counter in memcg's counter.
568 569 570 571 572 573 574 575 576
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
577
 * common workload, threshold and synchronization as vmstat[] should be
578 579
 * implemented.
 */
580 581
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
582
{
583
	long val = 0;
584 585
	int cpu;

586
	/* Per-cpu values can be negative, use a signed accumulator */
587
	for_each_possible_cpu(cpu)
588
		val += per_cpu(memcg->stat->count[idx], cpu);
589 590 591 592 593 594
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
595 596 597
	return val;
}

598
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
599 600 601 602 603
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

604
	for_each_possible_cpu(cpu)
605
		val += per_cpu(memcg->stat->events[idx], cpu);
606 607 608
	return val;
}

609
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
610
					 struct page *page,
611
					 bool compound, int nr_pages)
612
{
613 614 615 616
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
617
	if (PageAnon(page))
618
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
619
				nr_pages);
620
	else
621
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
622
				nr_pages);
623

624 625
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
626 627
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);
628
	}
629

630 631
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
632
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
633
	else {
634
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
635 636
		nr_pages = -nr_pages; /* for event */
	}
637

638
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
639 640
}

641 642 643
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
644
{
645
	unsigned long nr = 0;
646 647
	int zid;

648
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
649

650 651 652 653 654 655 656 657 658 659 660 661
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
662
}
663

664
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665
			unsigned int lru_mask)
666
{
667
	unsigned long nr = 0;
668
	int nid;
669

670
	for_each_node_state(nid, N_MEMORY)
671 672
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
673 674
}

675 676
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
677 678 679
{
	unsigned long val, next;

680
	val = __this_cpu_read(memcg->stat->nr_page_events);
681
	next = __this_cpu_read(memcg->stat->targets[target]);
682
	/* from time_after() in jiffies.h */
683 684 685 686 687
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
688 689 690
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
691 692 693 694 695 696 697 698
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
699
	}
700
	return false;
701 702 703 704 705 706
}

/*
 * Check events in order.
 *
 */
707
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 709
{
	/* threshold event is triggered in finer grain than soft limit */
710 711
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
712
		bool do_softlimit;
713
		bool do_numainfo __maybe_unused;
714

715 716
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
717 718 719 720
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
721
		mem_cgroup_threshold(memcg);
722 723
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
724
#if MAX_NUMNODES > 1
725
		if (unlikely(do_numainfo))
726
			atomic_inc(&memcg->numainfo_events);
727
#endif
728
	}
729 730
}

731
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732
{
733 734 735 736 737 738 739 740
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

741
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742
}
M
Michal Hocko 已提交
743
EXPORT_SYMBOL(mem_cgroup_from_task);
744

745
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746
{
747
	struct mem_cgroup *memcg = NULL;
748

749 750
	rcu_read_lock();
	do {
751 752 753 754 755 756
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
757
			memcg = root_mem_cgroup;
758 759 760 761 762
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
763
	} while (!css_tryget_online(&memcg->css));
764
	rcu_read_unlock();
765
	return memcg;
766 767
}

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
785
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786
				   struct mem_cgroup *prev,
787
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
788
{
M
Michal Hocko 已提交
789
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790
	struct cgroup_subsys_state *css = NULL;
791
	struct mem_cgroup *memcg = NULL;
792
	struct mem_cgroup *pos = NULL;
793

794 795
	if (mem_cgroup_disabled())
		return NULL;
796

797 798
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
799

800
	if (prev && !reclaim)
801
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
802

803 804
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
805
			goto out;
806
		return root;
807
	}
K
KAMEZAWA Hiroyuki 已提交
808

809
	rcu_read_lock();
M
Michal Hocko 已提交
810

811 812 813 814 815 816 817 818 819
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

820
		while (1) {
821
			pos = READ_ONCE(iter->position);
822 823
			if (!pos || css_tryget(&pos->css))
				break;
824
			/*
825 826 827 828 829 830
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
831
			 */
832 833
			(void)cmpxchg(&iter->position, pos, NULL);
		}
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
851
		}
K
KAMEZAWA Hiroyuki 已提交
852

853 854 855 856 857 858
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
859

860 861
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
862

863 864
		if (css_tryget(css))
			break;
865

866
		memcg = NULL;
867
	}
868 869 870

	if (reclaim) {
		/*
871 872 873
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
874
		 */
875 876
		(void)cmpxchg(&iter->position, pos, memcg);

877 878 879 880 881 882 883
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
884
	}
885

886 887
out_unlock:
	rcu_read_unlock();
888
out:
889 890 891
	if (prev && prev != root)
		css_put(&prev->css);

892
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
893
}
K
KAMEZAWA Hiroyuki 已提交
894

895 896 897 898 899 900 901
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
902 903 904 905 906 907
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
908

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
				for (i = 0; i <= DEF_PRIORITY; i++) {
					iter = &mz->iter[i];
					cmpxchg(&iter->position,
						dead_memcg, NULL);
				}
			}
		}
	}
}

931 932 933 934 935 936
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
937
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
938
	     iter != NULL;				\
939
	     iter = mem_cgroup_iter(root, iter, NULL))
940

941
#define for_each_mem_cgroup(iter)			\
942
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
943
	     iter != NULL;				\
944
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
945

946 947 948
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
949
 * @memcg: memcg of the wanted lruvec
950 951 952 953 954 955 956 957 958
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
959
	struct lruvec *lruvec;
960

961 962 963 964
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
965

966
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 968 969 970 971 972 973 974 975 976
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
977 978 979
}

/**
980
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981
 * @page: the page
982
 * @zone: zone of the page
983 984 985 986
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
987
 */
988
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
989 990
{
	struct mem_cgroup_per_zone *mz;
991
	struct mem_cgroup *memcg;
992
	struct lruvec *lruvec;
993

994 995 996 997
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
998

999
	memcg = page->mem_cgroup;
1000
	/*
1001
	 * Swapcache readahead pages are added to the LRU - and
1002
	 * possibly migrated - before they are charged.
1003
	 */
1004 1005
	if (!memcg)
		memcg = root_mem_cgroup;
1006

1007
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1018
}
1019

1020
/**
1021 1022 1023 1024
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1025
 *
1026 1027
 * This function must be called when a page is added to or removed from an
 * lru list.
1028
 */
1029 1030
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1031 1032
{
	struct mem_cgroup_per_zone *mz;
1033
	unsigned long *lru_size;
1034 1035 1036 1037

	if (mem_cgroup_disabled())
		return;

1038 1039 1040 1041
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1042
}
1043

1044
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1045
{
1046
	struct mem_cgroup *task_memcg;
1047
	struct task_struct *p;
1048
	bool ret;
1049

1050
	p = find_lock_task_mm(task);
1051
	if (p) {
1052
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1053 1054 1055 1056 1057 1058 1059
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1060
		rcu_read_lock();
1061 1062
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1063
		rcu_read_unlock();
1064
	}
1065 1066
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1067 1068 1069
	return ret;
}

1070
/**
1071
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1072
 * @memcg: the memory cgroup
1073
 *
1074
 * Returns the maximum amount of memory @mem can be charged with, in
1075
 * pages.
1076
 */
1077
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1078
{
1079 1080 1081
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1082

1083
	count = page_counter_read(&memcg->memory);
1084
	limit = READ_ONCE(memcg->memory.limit);
1085 1086 1087
	if (count < limit)
		margin = limit - count;

1088
	if (do_memsw_account()) {
1089
		count = page_counter_read(&memcg->memsw);
1090
		limit = READ_ONCE(memcg->memsw.limit);
1091 1092 1093 1094 1095
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1096 1097
}

1098
/*
Q
Qiang Huang 已提交
1099
 * A routine for checking "mem" is under move_account() or not.
1100
 *
Q
Qiang Huang 已提交
1101 1102 1103
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1104
 */
1105
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1106
{
1107 1108
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1109
	bool ret = false;
1110 1111 1112 1113 1114 1115 1116 1117 1118
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1119

1120 1121
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1122 1123
unlock:
	spin_unlock(&mc.lock);
1124 1125 1126
	return ret;
}

1127
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1128 1129
{
	if (mc.moving_task && current != mc.moving_task) {
1130
		if (mem_cgroup_under_move(memcg)) {
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1143
#define K(x) ((x) << (PAGE_SHIFT-10))
1144
/**
1145
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146 1147 1148 1149 1150 1151 1152 1153
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1154
	/* oom_info_lock ensures that parallel ooms do not interleave */
1155
	static DEFINE_MUTEX(oom_info_lock);
1156 1157
	struct mem_cgroup *iter;
	unsigned int i;
1158

1159
	mutex_lock(&oom_info_lock);
1160 1161
	rcu_read_lock();

1162 1163 1164 1165 1166 1167 1168 1169
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1170
	pr_cont_cgroup_path(memcg->css.cgroup);
1171
	pr_cont("\n");
1172 1173 1174

	rcu_read_unlock();

1175 1176 1177 1178 1179 1180 1181 1182 1183
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1184 1185

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1186 1187
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1188 1189 1190
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1191
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1192
				continue;
1193
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1194 1195 1196 1197 1198 1199 1200 1201 1202
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1203
	mutex_unlock(&oom_info_lock);
1204 1205
}

1206 1207 1208 1209
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1210
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1211 1212
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1213 1214
	struct mem_cgroup *iter;

1215
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1216
		num++;
1217 1218 1219
	return num;
}

D
David Rientjes 已提交
1220 1221 1222
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1223
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1224
{
1225
	unsigned long limit;
1226

1227
	limit = memcg->memory.limit;
1228
	if (mem_cgroup_swappiness(memcg)) {
1229
		unsigned long memsw_limit;
1230
		unsigned long swap_limit;
1231

1232
		memsw_limit = memcg->memsw.limit;
1233 1234 1235
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1236 1237
	}
	return limit;
D
David Rientjes 已提交
1238 1239
}

1240 1241
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1242
{
1243 1244 1245 1246 1247 1248
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
		.gfp_mask = gfp_mask,
		.order = order,
	};
1249 1250 1251 1252 1253 1254
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1255 1256
	mutex_lock(&oom_lock);

1257
	/*
1258 1259 1260
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1261
	 */
1262
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1263
		mark_oom_victim(current);
1264
		goto unlock;
1265 1266
	}

1267
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1268
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1269
	for_each_mem_cgroup_tree(iter, memcg) {
1270
		struct css_task_iter it;
1271 1272
		struct task_struct *task;

1273 1274
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1275
			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1286
				css_task_iter_end(&it);
1287 1288 1289
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1290
				goto unlock;
1291 1292 1293 1294
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1307
		}
1308
		css_task_iter_end(&it);
1309 1310
	}

1311 1312
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1313 1314
		oom_kill_process(&oc, chosen, points, totalpages, memcg,
				 "Memory cgroup out of memory");
1315 1316 1317
	}
unlock:
	mutex_unlock(&oom_lock);
1318 1319
}

1320 1321
#if MAX_NUMNODES > 1

1322 1323
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1324
 * @memcg: the target memcg
1325 1326 1327 1328 1329 1330 1331
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1332
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1333 1334
		int nid, bool noswap)
{
1335
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1336 1337 1338
		return true;
	if (noswap || !total_swap_pages)
		return false;
1339
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1340 1341 1342 1343
		return true;
	return false;

}
1344 1345 1346 1347 1348 1349 1350

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1351
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1352 1353
{
	int nid;
1354 1355 1356 1357
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1358
	if (!atomic_read(&memcg->numainfo_events))
1359
		return;
1360
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1361 1362 1363
		return;

	/* make a nodemask where this memcg uses memory from */
1364
	memcg->scan_nodes = node_states[N_MEMORY];
1365

1366
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1367

1368 1369
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1370
	}
1371

1372 1373
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1388
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1389 1390 1391
{
	int node;

1392 1393
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1394

1395
	node = next_node(node, memcg->scan_nodes);
1396
	if (node == MAX_NUMNODES)
1397
		node = first_node(memcg->scan_nodes);
1398 1399 1400 1401 1402 1403 1404 1405 1406
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1407
	memcg->last_scanned_node = node;
1408 1409 1410
	return node;
}
#else
1411
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1412 1413 1414 1415 1416
{
	return 0;
}
#endif

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1432
	excess = soft_limit_excess(root_memcg);
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1461
		if (!soft_limit_excess(root_memcg))
1462
			break;
1463
	}
1464 1465
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1466 1467
}

1468 1469 1470 1471 1472 1473
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1474 1475
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1476 1477 1478 1479
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1480
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1481
{
1482
	struct mem_cgroup *iter, *failed = NULL;
1483

1484 1485
	spin_lock(&memcg_oom_lock);

1486
	for_each_mem_cgroup_tree(iter, memcg) {
1487
		if (iter->oom_lock) {
1488 1489 1490 1491 1492
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1493 1494
			mem_cgroup_iter_break(memcg, iter);
			break;
1495 1496
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1497
	}
K
KAMEZAWA Hiroyuki 已提交
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1510
		}
1511 1512
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1513 1514 1515 1516

	spin_unlock(&memcg_oom_lock);

	return !failed;
1517
}
1518

1519
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1520
{
K
KAMEZAWA Hiroyuki 已提交
1521 1522
	struct mem_cgroup *iter;

1523
	spin_lock(&memcg_oom_lock);
1524
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1525
	for_each_mem_cgroup_tree(iter, memcg)
1526
		iter->oom_lock = false;
1527
	spin_unlock(&memcg_oom_lock);
1528 1529
}

1530
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1531 1532 1533
{
	struct mem_cgroup *iter;

1534
	spin_lock(&memcg_oom_lock);
1535
	for_each_mem_cgroup_tree(iter, memcg)
1536 1537
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1538 1539
}

1540
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1541 1542 1543
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1544 1545
	/*
	 * When a new child is created while the hierarchy is under oom,
1546
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1547
	 */
1548
	spin_lock(&memcg_oom_lock);
1549
	for_each_mem_cgroup_tree(iter, memcg)
1550 1551 1552
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1553 1554
}

K
KAMEZAWA Hiroyuki 已提交
1555 1556
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1557
struct oom_wait_info {
1558
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1559 1560 1561 1562 1563 1564
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1565 1566
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1567 1568 1569
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1570
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1571

1572 1573
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1574 1575 1576 1577
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1578
static void memcg_oom_recover(struct mem_cgroup *memcg)
1579
{
1580 1581 1582 1583 1584 1585 1586 1587 1588
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1589
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1590 1591
}

1592
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1593
{
T
Tejun Heo 已提交
1594
	if (!current->memcg_may_oom)
1595
		return;
K
KAMEZAWA Hiroyuki 已提交
1596
	/*
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1609
	 */
1610
	css_get(&memcg->css);
T
Tejun Heo 已提交
1611 1612 1613
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1614 1615 1616 1617
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1618
 * @handle: actually kill/wait or just clean up the OOM state
1619
 *
1620 1621
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1622
 *
1623
 * Memcg supports userspace OOM handling where failed allocations must
1624 1625 1626 1627
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1628
 * the end of the page fault to complete the OOM handling.
1629 1630
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1631
 * completed, %false otherwise.
1632
 */
1633
bool mem_cgroup_oom_synchronize(bool handle)
1634
{
T
Tejun Heo 已提交
1635
	struct mem_cgroup *memcg = current->memcg_in_oom;
1636
	struct oom_wait_info owait;
1637
	bool locked;
1638 1639 1640

	/* OOM is global, do not handle */
	if (!memcg)
1641
		return false;
1642

1643
	if (!handle || oom_killer_disabled)
1644
		goto cleanup;
1645 1646 1647 1648 1649 1650

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1651

1652
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1663 1664
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1665
	} else {
1666
		schedule();
1667 1668 1669 1670 1671
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1672 1673 1674 1675 1676 1677 1678 1679
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1680
cleanup:
T
Tejun Heo 已提交
1681
	current->memcg_in_oom = NULL;
1682
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1683
	return true;
1684 1685
}

1686
/**
1687 1688
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1689
 *
1690 1691
 * This function protects unlocked LRU pages from being moved to
 * another cgroup and stabilizes their page->mem_cgroup binding.
1692
 */
1693
struct mem_cgroup *lock_page_memcg(struct page *page)
1694 1695
{
	struct mem_cgroup *memcg;
1696
	unsigned long flags;
1697

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
1710 1711 1712 1713
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
1714
again:
1715
	memcg = page->mem_cgroup;
1716
	if (unlikely(!memcg))
1717 1718
		return NULL;

Q
Qiang Huang 已提交
1719
	if (atomic_read(&memcg->moving_account) <= 0)
1720
		return memcg;
1721

1722
	spin_lock_irqsave(&memcg->move_lock, flags);
1723
	if (memcg != page->mem_cgroup) {
1724
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1725 1726
		goto again;
	}
1727 1728 1729 1730

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1731
	 * the task who has the lock for unlock_page_memcg().
1732 1733 1734
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1735 1736

	return memcg;
1737
}
1738
EXPORT_SYMBOL(lock_page_memcg);
1739

1740
/**
1741 1742
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @memcg: the memcg returned by lock_page_memcg()
1743
 */
1744
void unlock_page_memcg(struct mem_cgroup *memcg)
1745
{
1746 1747 1748 1749 1750 1751 1752 1753
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1754

1755
	rcu_read_unlock();
1756
}
1757
EXPORT_SYMBOL(unlock_page_memcg);
1758

1759 1760 1761 1762
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1763
#define CHARGE_BATCH	32U
1764 1765
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1766
	unsigned int nr_pages;
1767
	struct work_struct work;
1768
	unsigned long flags;
1769
#define FLUSHING_CACHED_CHARGE	0
1770 1771
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1772
static DEFINE_MUTEX(percpu_charge_mutex);
1773

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1784
 */
1785
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1786 1787
{
	struct memcg_stock_pcp *stock;
1788
	bool ret = false;
1789

1790
	if (nr_pages > CHARGE_BATCH)
1791
		return ret;
1792

1793
	stock = &get_cpu_var(memcg_stock);
1794
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1795
		stock->nr_pages -= nr_pages;
1796 1797
		ret = true;
	}
1798 1799 1800 1801 1802
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1803
 * Returns stocks cached in percpu and reset cached information.
1804 1805 1806 1807 1808
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1809
	if (stock->nr_pages) {
1810
		page_counter_uncharge(&old->memory, stock->nr_pages);
1811
		if (do_memsw_account())
1812
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1813
		css_put_many(&old->css, stock->nr_pages);
1814
		stock->nr_pages = 0;
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1825
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1826
	drain_stock(stock);
1827
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1828 1829 1830
}

/*
1831
 * Cache charges(val) to local per_cpu area.
1832
 * This will be consumed by consume_stock() function, later.
1833
 */
1834
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1835 1836 1837
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1838
	if (stock->cached != memcg) { /* reset if necessary */
1839
		drain_stock(stock);
1840
		stock->cached = memcg;
1841
	}
1842
	stock->nr_pages += nr_pages;
1843 1844 1845 1846
	put_cpu_var(memcg_stock);
}

/*
1847
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1848
 * of the hierarchy under it.
1849
 */
1850
static void drain_all_stock(struct mem_cgroup *root_memcg)
1851
{
1852
	int cpu, curcpu;
1853

1854 1855 1856
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1857 1858
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1859
	curcpu = get_cpu();
1860 1861
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1862
		struct mem_cgroup *memcg;
1863

1864 1865
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1866
			continue;
1867
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1868
			continue;
1869 1870 1871 1872 1873 1874
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1875
	}
1876
	put_cpu();
A
Andrew Morton 已提交
1877
	put_online_cpus();
1878
	mutex_unlock(&percpu_charge_mutex);
1879 1880
}

1881
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1882 1883 1884 1885 1886 1887
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1888
	if (action == CPU_ONLINE)
1889 1890
		return NOTIFY_OK;

1891
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1892
		return NOTIFY_OK;
1893

1894 1895 1896 1897 1898
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1919 1920 1921 1922 1923 1924 1925
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1926
	struct mem_cgroup *memcg;
1927 1928 1929 1930

	if (likely(!nr_pages))
		return;

1931 1932
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1933 1934 1935 1936
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1937 1938
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1939
{
1940
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1941
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1942
	struct mem_cgroup *mem_over_limit;
1943
	struct page_counter *counter;
1944
	unsigned long nr_reclaimed;
1945 1946
	bool may_swap = true;
	bool drained = false;
1947

1948
	if (mem_cgroup_is_root(memcg))
1949
		return 0;
1950
retry:
1951
	if (consume_stock(memcg, nr_pages))
1952
		return 0;
1953

1954
	if (!do_memsw_account() ||
1955 1956
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1957
			goto done_restock;
1958
		if (do_memsw_account())
1959 1960
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1961
	} else {
1962
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1963
		may_swap = false;
1964
	}
1965

1966 1967 1968 1969
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1970

1971 1972 1973 1974 1975 1976 1977 1978 1979
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1980
		goto force;
1981 1982 1983 1984

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1985
	if (!gfpflags_allow_blocking(gfp_mask))
1986
		goto nomem;
1987

1988 1989
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

1990 1991
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
1992

1993
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1994
		goto retry;
1995

1996
	if (!drained) {
1997
		drain_all_stock(mem_over_limit);
1998 1999 2000 2001
		drained = true;
		goto retry;
	}

2002 2003
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2004 2005 2006 2007 2008 2009 2010 2011 2012
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2013
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2014 2015 2016 2017 2018 2019 2020 2021
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2022 2023 2024
	if (nr_retries--)
		goto retry;

2025
	if (gfp_mask & __GFP_NOFAIL)
2026
		goto force;
2027

2028
	if (fatal_signal_pending(current))
2029
		goto force;
2030

2031 2032
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2033 2034
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
2035
nomem:
2036
	if (!(gfp_mask & __GFP_NOFAIL))
2037
		return -ENOMEM;
2038 2039 2040 2041 2042 2043 2044
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2045
	if (do_memsw_account())
2046 2047 2048 2049
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2050 2051

done_restock:
2052
	css_get_many(&memcg->css, batch);
2053 2054
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2055

2056
	/*
2057 2058
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2059
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2060 2061 2062 2063
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2064 2065
	 */
	do {
2066
		if (page_counter_read(&memcg->memory) > memcg->high) {
2067 2068 2069 2070 2071
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2072
			current->memcg_nr_pages_over_high += batch;
2073 2074 2075
			set_notify_resume(current);
			break;
		}
2076
	} while ((memcg = parent_mem_cgroup(memcg)));
2077 2078

	return 0;
2079
}
2080

2081
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2082
{
2083 2084 2085
	if (mem_cgroup_is_root(memcg))
		return;

2086
	page_counter_uncharge(&memcg->memory, nr_pages);
2087
	if (do_memsw_account())
2088
		page_counter_uncharge(&memcg->memsw, nr_pages);
2089

2090
	css_put_many(&memcg->css, nr_pages);
2091 2092
}

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2124
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2125
			  bool lrucare)
2126
{
2127
	int isolated;
2128

2129
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2130 2131 2132 2133 2134

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2135 2136
	if (lrucare)
		lock_page_lru(page, &isolated);
2137

2138 2139
	/*
	 * Nobody should be changing or seriously looking at
2140
	 * page->mem_cgroup at this point:
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2152
	page->mem_cgroup = memcg;
2153

2154 2155
	if (lrucare)
		unlock_page_lru(page, isolated);
2156
}
2157

2158
#ifndef CONFIG_SLOB
2159
static int memcg_alloc_cache_id(void)
2160
{
2161 2162 2163
	int id, size;
	int err;

2164
	id = ida_simple_get(&memcg_cache_ida,
2165 2166 2167
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2168

2169
	if (id < memcg_nr_cache_ids)
2170 2171 2172 2173 2174 2175
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2176
	down_write(&memcg_cache_ids_sem);
2177 2178

	size = 2 * (id + 1);
2179 2180 2181 2182 2183
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2184
	err = memcg_update_all_caches(size);
2185 2186
	if (!err)
		err = memcg_update_all_list_lrus(size);
2187 2188 2189 2190 2191
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2192
	if (err) {
2193
		ida_simple_remove(&memcg_cache_ida, id);
2194 2195 2196 2197 2198 2199 2200
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2201
	ida_simple_remove(&memcg_cache_ida, id);
2202 2203
}

2204
struct memcg_kmem_cache_create_work {
2205 2206 2207 2208 2209
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2210
static void memcg_kmem_cache_create_func(struct work_struct *w)
2211
{
2212 2213
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2214 2215
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2216

2217
	memcg_create_kmem_cache(memcg, cachep);
2218

2219
	css_put(&memcg->css);
2220 2221 2222 2223 2224 2225
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2226 2227
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2228
{
2229
	struct memcg_kmem_cache_create_work *cw;
2230

2231
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2232
	if (!cw)
2233
		return;
2234 2235

	css_get(&memcg->css);
2236 2237 2238

	cw->memcg = memcg;
	cw->cachep = cachep;
2239
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2240 2241 2242 2243

	schedule_work(&cw->work);
}

2244 2245
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2246 2247 2248 2249
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2250
	 * in __memcg_schedule_kmem_cache_create will recurse.
2251 2252 2253 2254 2255 2256 2257
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2258
	current->memcg_kmem_skip_account = 1;
2259
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2260
	current->memcg_kmem_skip_account = 0;
2261
}
2262

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
V
Vladimir Davydov 已提交
2276
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2277 2278
{
	struct mem_cgroup *memcg;
2279
	struct kmem_cache *memcg_cachep;
2280
	int kmemcg_id;
2281

2282
	VM_BUG_ON(!is_root_cache(cachep));
2283

V
Vladimir Davydov 已提交
2284 2285 2286 2287 2288 2289
	if (cachep->flags & SLAB_ACCOUNT)
		gfp |= __GFP_ACCOUNT;

	if (!(gfp & __GFP_ACCOUNT))
		return cachep;

2290
	if (current->memcg_kmem_skip_account)
2291 2292
		return cachep;

2293
	memcg = get_mem_cgroup_from_mm(current->mm);
2294
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2295
	if (kmemcg_id < 0)
2296
		goto out;
2297

2298
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2299 2300
	if (likely(memcg_cachep))
		return memcg_cachep;
2301 2302 2303 2304 2305 2306 2307 2308 2309

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2310 2311 2312
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2313
	 */
2314
	memcg_schedule_kmem_cache_create(memcg, cachep);
2315
out:
2316
	css_put(&memcg->css);
2317
	return cachep;
2318 2319
}

2320 2321 2322
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2323
		css_put(&cachep->memcg_params.memcg->css);
2324 2325
}

2326 2327
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			      struct mem_cgroup *memcg)
2328
{
2329 2330
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2331 2332
	int ret;

2333
	if (!memcg_kmem_online(memcg))
2334
		return 0;
2335

2336
	ret = try_charge(memcg, gfp, nr_pages);
2337
	if (ret)
2338
		return ret;
2339 2340 2341 2342 2343

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2344 2345
	}

2346
	page->mem_cgroup = memcg;
2347

2348
	return 0;
2349 2350
}

2351
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2352
{
2353 2354
	struct mem_cgroup *memcg;
	int ret;
2355

2356 2357
	memcg = get_mem_cgroup_from_mm(current->mm);
	ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2358
	css_put(&memcg->css);
2359
	return ret;
2360 2361
}

2362
void __memcg_kmem_uncharge(struct page *page, int order)
2363
{
2364
	struct mem_cgroup *memcg = page->mem_cgroup;
2365
	unsigned int nr_pages = 1 << order;
2366 2367 2368 2369

	if (!memcg)
		return;

2370
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2371

2372 2373 2374
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2375
	page_counter_uncharge(&memcg->memory, nr_pages);
2376
	if (do_memsw_account())
2377
		page_counter_uncharge(&memcg->memsw, nr_pages);
2378

2379
	page->mem_cgroup = NULL;
2380
	css_put_many(&memcg->css, nr_pages);
2381
}
2382
#endif /* !CONFIG_SLOB */
2383

2384 2385 2386 2387
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2388
 * zone->lru_lock and migration entries setup in all page mappings.
2389
 */
2390
void mem_cgroup_split_huge_fixup(struct page *head)
2391
{
2392
	int i;
2393

2394 2395
	if (mem_cgroup_disabled())
		return;
2396

2397
	for (i = 1; i < HPAGE_PMD_NR; i++)
2398
		head[i].mem_cgroup = head->mem_cgroup;
2399

2400
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2401
		       HPAGE_PMD_NR);
2402
}
2403
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2404

A
Andrew Morton 已提交
2405
#ifdef CONFIG_MEMCG_SWAP
2406 2407
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2408
{
2409 2410
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2411
}
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2424
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2425 2426 2427
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2428
				struct mem_cgroup *from, struct mem_cgroup *to)
2429 2430 2431
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2432 2433
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2434 2435 2436

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2437
		mem_cgroup_swap_statistics(to, true);
2438 2439 2440 2441 2442 2443
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2444
				struct mem_cgroup *from, struct mem_cgroup *to)
2445 2446 2447
{
	return -EINVAL;
}
2448
#endif
K
KAMEZAWA Hiroyuki 已提交
2449

2450
static DEFINE_MUTEX(memcg_limit_mutex);
2451

2452
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2453
				   unsigned long limit)
2454
{
2455 2456 2457
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2458
	int retry_count;
2459
	int ret;
2460 2461 2462 2463 2464 2465

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2466 2467
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2468

2469
	oldusage = page_counter_read(&memcg->memory);
2470

2471
	do {
2472 2473 2474 2475
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2476 2477 2478 2479

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2480
			ret = -EINVAL;
2481 2482
			break;
		}
2483 2484 2485 2486
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2487 2488 2489 2490

		if (!ret)
			break;

2491 2492
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2493
		curusage = page_counter_read(&memcg->memory);
2494
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2495
		if (curusage >= oldusage)
2496 2497 2498
			retry_count--;
		else
			oldusage = curusage;
2499 2500
	} while (retry_count);

2501 2502
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2503

2504 2505 2506
	return ret;
}

L
Li Zefan 已提交
2507
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2508
					 unsigned long limit)
2509
{
2510 2511 2512
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2513
	int retry_count;
2514
	int ret;
2515

2516
	/* see mem_cgroup_resize_res_limit */
2517 2518 2519 2520 2521 2522
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2523 2524 2525 2526
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2527 2528 2529 2530

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2531 2532 2533
			ret = -EINVAL;
			break;
		}
2534 2535 2536 2537
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2538 2539 2540 2541

		if (!ret)
			break;

2542 2543
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2544
		curusage = page_counter_read(&memcg->memsw);
2545
		/* Usage is reduced ? */
2546
		if (curusage >= oldusage)
2547
			retry_count--;
2548 2549
		else
			oldusage = curusage;
2550 2551
	} while (retry_count);

2552 2553
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2554

2555 2556 2557
	return ret;
}

2558 2559 2560 2561 2562 2563 2564 2565 2566
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2567
	unsigned long excess;
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2592
		spin_lock_irq(&mctz->lock);
2593
		__mem_cgroup_remove_exceeded(mz, mctz);
2594 2595 2596 2597 2598 2599

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2600 2601 2602
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2603
		excess = soft_limit_excess(mz->memcg);
2604 2605 2606 2607 2608 2609 2610 2611 2612
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2613
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2614
		spin_unlock_irq(&mctz->lock);
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2632 2633 2634 2635 2636 2637
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2638 2639
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2640 2641 2642 2643 2644 2645
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2646 2647
}

2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2658 2659
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2660
	/* try to free all pages in this cgroup */
2661
	while (nr_retries && page_counter_read(&memcg->memory)) {
2662
		int progress;
2663

2664 2665 2666
		if (signal_pending(current))
			return -EINTR;

2667 2668
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2669
		if (!progress) {
2670
			nr_retries--;
2671
			/* maybe some writeback is necessary */
2672
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2673
		}
2674 2675

	}
2676 2677

	return 0;
2678 2679
}

2680 2681 2682
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2683
{
2684
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2685

2686 2687
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2688
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2689 2690
}

2691 2692
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2693
{
2694
	return mem_cgroup_from_css(css)->use_hierarchy;
2695 2696
}

2697 2698
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2699 2700
{
	int retval = 0;
2701
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2702
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2703

2704
	if (memcg->use_hierarchy == val)
2705
		return 0;
2706

2707
	/*
2708
	 * If parent's use_hierarchy is set, we can't make any modifications
2709 2710 2711 2712 2713 2714
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2715
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2716
				(val == 1 || val == 0)) {
2717
		if (!memcg_has_children(memcg))
2718
			memcg->use_hierarchy = val;
2719 2720 2721 2722
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2723

2724 2725 2726
	return retval;
}

2727 2728
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
2729 2730
{
	struct mem_cgroup *iter;
2731
	unsigned long val = 0;
2732 2733 2734 2735 2736 2737 2738

	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	return val;
}

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
static unsigned long tree_events(struct mem_cgroup *memcg,
				 enum mem_cgroup_events_index idx)
{
	struct mem_cgroup *iter;
	unsigned long val = 0;

	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_events(iter, idx);

	return val;
}

2751
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2752
{
2753
	unsigned long val;
2754

2755 2756 2757 2758 2759 2760
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
2761
		if (!swap)
2762
			val = page_counter_read(&memcg->memory);
2763
		else
2764
			val = page_counter_read(&memcg->memsw);
2765
	}
2766
	return val;
2767 2768
}

2769 2770 2771 2772 2773 2774 2775
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2776

2777
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2778
			       struct cftype *cft)
B
Balbir Singh 已提交
2779
{
2780
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2781
	struct page_counter *counter;
2782

2783
	switch (MEMFILE_TYPE(cft->private)) {
2784
	case _MEM:
2785 2786
		counter = &memcg->memory;
		break;
2787
	case _MEMSWAP:
2788 2789
		counter = &memcg->memsw;
		break;
2790
	case _KMEM:
2791
		counter = &memcg->kmem;
2792
		break;
V
Vladimir Davydov 已提交
2793
	case _TCP:
2794
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2795
		break;
2796 2797 2798
	default:
		BUG();
	}
2799 2800 2801 2802

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2803
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2804
		if (counter == &memcg->memsw)
2805
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2818
}
2819

2820
#ifndef CONFIG_SLOB
2821
static int memcg_online_kmem(struct mem_cgroup *memcg)
2822 2823 2824
{
	int memcg_id;

2825
	BUG_ON(memcg->kmemcg_id >= 0);
2826
	BUG_ON(memcg->kmem_state);
2827

2828
	memcg_id = memcg_alloc_cache_id();
2829 2830
	if (memcg_id < 0)
		return memcg_id;
2831

2832
	static_branch_inc(&memcg_kmem_enabled_key);
2833
	/*
2834
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2835
	 * kmemcg_id. Setting the id after enabling static branching will
2836 2837 2838
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2839
	memcg->kmemcg_id = memcg_id;
2840
	memcg->kmem_state = KMEM_ONLINE;
2841 2842

	return 0;
2843 2844
}

2845 2846
static int memcg_propagate_kmem(struct mem_cgroup *parent,
				struct mem_cgroup *memcg)
2847
{
2848 2849
	int ret = 0;

2850
	mutex_lock(&memcg_limit_mutex);
2851
	/*
2852 2853 2854
	 * If the parent cgroup is not kmem-online now, it cannot be
	 * onlined after this point, because it has at least one child
	 * already.
2855
	 */
2856 2857
	if (memcg_kmem_online(parent) ||
	    (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nokmem))
2858
		ret = memcg_online_kmem(memcg);
2859
	mutex_unlock(&memcg_limit_mutex);
2860
	return ret;
2861
}
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909

static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2910 2911 2912 2913
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2914 2915 2916 2917 2918 2919
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2920
#else
2921 2922 2923 2924 2925
static int memcg_propagate_kmem(struct mem_cgroup *parent, struct mem_cgroup *memcg)
{
	return 0;
}
static int memcg_online_kmem(struct mem_cgroup *memcg)
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2937
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2938
				   unsigned long limit)
2939
{
2940
	int ret = 0;
2941 2942 2943 2944

	mutex_lock(&memcg_limit_mutex);
	/* Top-level cgroup doesn't propagate from root */
	if (!memcg_kmem_online(memcg)) {
2945 2946 2947 2948 2949
		if (cgroup_is_populated(memcg->css.cgroup) ||
		    (memcg->use_hierarchy && memcg_has_children(memcg)))
			ret = -EBUSY;
		if (ret)
			goto out;
2950 2951 2952 2953 2954 2955 2956 2957
		ret = memcg_online_kmem(memcg);
		if (ret)
			goto out;
	}
	ret = page_counter_limit(&memcg->kmem, limit);
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2958
}
2959

V
Vladimir Davydov 已提交
2960 2961 2962 2963 2964 2965
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2966
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2967 2968 2969
	if (ret)
		goto out;

2970
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
		 * function is the last one to run. See sock_update_memcg() for
		 * details, and note that we don't mark any socket as belonging
		 * to this memcg until that flag is up.
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
		 * We never race with the readers in sock_update_memcg(),
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
2988
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
2989 2990 2991 2992 2993 2994
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

2995 2996 2997 2998
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2999 3000
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3001
{
3002
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3003
	unsigned long nr_pages;
3004 3005
	int ret;

3006
	buf = strstrip(buf);
3007
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3008 3009
	if (ret)
		return ret;
3010

3011
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3012
	case RES_LIMIT:
3013 3014 3015 3016
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3017 3018 3019
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3020
			break;
3021 3022
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3023
			break;
3024 3025 3026
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
3027 3028 3029
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
3030
		}
3031
		break;
3032 3033 3034
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3035 3036
		break;
	}
3037
	return ret ?: nbytes;
B
Balbir Singh 已提交
3038 3039
}

3040 3041
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3042
{
3043
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3044
	struct page_counter *counter;
3045

3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3056
	case _TCP:
3057
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3058
		break;
3059 3060 3061
	default:
		BUG();
	}
3062

3063
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3064
	case RES_MAX_USAGE:
3065
		page_counter_reset_watermark(counter);
3066 3067
		break;
	case RES_FAILCNT:
3068
		counter->failcnt = 0;
3069
		break;
3070 3071
	default:
		BUG();
3072
	}
3073

3074
	return nbytes;
3075 3076
}

3077
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3078 3079
					struct cftype *cft)
{
3080
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3081 3082
}

3083
#ifdef CONFIG_MMU
3084
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3085 3086
					struct cftype *cft, u64 val)
{
3087
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3088

3089
	if (val & ~MOVE_MASK)
3090
		return -EINVAL;
3091

3092
	/*
3093 3094 3095 3096
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3097
	 */
3098
	memcg->move_charge_at_immigrate = val;
3099 3100
	return 0;
}
3101
#else
3102
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3103 3104 3105 3106 3107
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3108

3109
#ifdef CONFIG_NUMA
3110
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3111
{
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3124
	int nid;
3125
	unsigned long nr;
3126
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3127

3128 3129 3130 3131 3132 3133 3134 3135 3136
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3137 3138
	}

3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3154 3155 3156 3157 3158 3159
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3160
static int memcg_stat_show(struct seq_file *m, void *v)
3161
{
3162
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3163
	unsigned long memory, memsw;
3164 3165
	struct mem_cgroup *mi;
	unsigned int i;
3166

3167 3168 3169 3170
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3171 3172
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3173
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3174
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3175
			continue;
3176
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3177
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3178
	}
L
Lee Schermerhorn 已提交
3179

3180 3181 3182 3183 3184 3185 3186 3187
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3188
	/* Hierarchical information */
3189 3190 3191 3192
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3193
	}
3194 3195
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3196
	if (do_memsw_account())
3197 3198
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3199

3200
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3201
		unsigned long long val = 0;
3202

3203
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3204
			continue;
3205 3206
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3207
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3225
	}
K
KAMEZAWA Hiroyuki 已提交
3226

K
KOSAKI Motohiro 已提交
3227 3228 3229 3230
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3231
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3232 3233 3234 3235 3236
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3237
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3238
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3239

3240 3241 3242 3243
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3244
			}
3245 3246 3247 3248
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3249 3250 3251
	}
#endif

3252 3253 3254
	return 0;
}

3255 3256
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3257
{
3258
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3259

3260
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3261 3262
}

3263 3264
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3265
{
3266
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3267

3268
	if (val > 100)
K
KOSAKI Motohiro 已提交
3269 3270
		return -EINVAL;

3271
	if (css->parent)
3272 3273 3274
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3275

K
KOSAKI Motohiro 已提交
3276 3277 3278
	return 0;
}

3279 3280 3281
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3282
	unsigned long usage;
3283 3284 3285 3286
	int i;

	rcu_read_lock();
	if (!swap)
3287
		t = rcu_dereference(memcg->thresholds.primary);
3288
	else
3289
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3290 3291 3292 3293

	if (!t)
		goto unlock;

3294
	usage = mem_cgroup_usage(memcg, swap);
3295 3296

	/*
3297
	 * current_threshold points to threshold just below or equal to usage.
3298 3299 3300
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3301
	i = t->current_threshold;
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3325
	t->current_threshold = i - 1;
3326 3327 3328 3329 3330 3331
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3332 3333
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3334
		if (do_memsw_account())
3335 3336 3337 3338
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3339 3340 3341 3342 3343 3344 3345
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3346 3347 3348 3349 3350 3351 3352
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3353 3354
}

3355
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3356 3357 3358
{
	struct mem_cgroup_eventfd_list *ev;

3359 3360
	spin_lock(&memcg_oom_lock);

3361
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3362
		eventfd_signal(ev->eventfd, 1);
3363 3364

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3365 3366 3367
	return 0;
}

3368
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3369
{
K
KAMEZAWA Hiroyuki 已提交
3370 3371
	struct mem_cgroup *iter;

3372
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3373
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3374 3375
}

3376
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3377
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3378
{
3379 3380
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3381 3382
	unsigned long threshold;
	unsigned long usage;
3383
	int i, size, ret;
3384

3385
	ret = page_counter_memparse(args, "-1", &threshold);
3386 3387 3388 3389
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3390

3391
	if (type == _MEM) {
3392
		thresholds = &memcg->thresholds;
3393
		usage = mem_cgroup_usage(memcg, false);
3394
	} else if (type == _MEMSWAP) {
3395
		thresholds = &memcg->memsw_thresholds;
3396
		usage = mem_cgroup_usage(memcg, true);
3397
	} else
3398 3399 3400
		BUG();

	/* Check if a threshold crossed before adding a new one */
3401
	if (thresholds->primary)
3402 3403
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3404
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3405 3406

	/* Allocate memory for new array of thresholds */
3407
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3408
			GFP_KERNEL);
3409
	if (!new) {
3410 3411 3412
		ret = -ENOMEM;
		goto unlock;
	}
3413
	new->size = size;
3414 3415

	/* Copy thresholds (if any) to new array */
3416 3417
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3418
				sizeof(struct mem_cgroup_threshold));
3419 3420
	}

3421
	/* Add new threshold */
3422 3423
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3424 3425

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3426
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3427 3428 3429
			compare_thresholds, NULL);

	/* Find current threshold */
3430
	new->current_threshold = -1;
3431
	for (i = 0; i < size; i++) {
3432
		if (new->entries[i].threshold <= usage) {
3433
			/*
3434 3435
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3436 3437
			 * it here.
			 */
3438
			++new->current_threshold;
3439 3440
		} else
			break;
3441 3442
	}

3443 3444 3445 3446 3447
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3448

3449
	/* To be sure that nobody uses thresholds */
3450 3451 3452 3453 3454 3455 3456 3457
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3458
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3459 3460
	struct eventfd_ctx *eventfd, const char *args)
{
3461
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3462 3463
}

3464
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3465 3466
	struct eventfd_ctx *eventfd, const char *args)
{
3467
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3468 3469
}

3470
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3471
	struct eventfd_ctx *eventfd, enum res_type type)
3472
{
3473 3474
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3475
	unsigned long usage;
3476
	int i, j, size;
3477 3478

	mutex_lock(&memcg->thresholds_lock);
3479 3480

	if (type == _MEM) {
3481
		thresholds = &memcg->thresholds;
3482
		usage = mem_cgroup_usage(memcg, false);
3483
	} else if (type == _MEMSWAP) {
3484
		thresholds = &memcg->memsw_thresholds;
3485
		usage = mem_cgroup_usage(memcg, true);
3486
	} else
3487 3488
		BUG();

3489 3490 3491
	if (!thresholds->primary)
		goto unlock;

3492 3493 3494 3495
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3496 3497 3498
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3499 3500 3501
			size++;
	}

3502
	new = thresholds->spare;
3503

3504 3505
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3506 3507
		kfree(new);
		new = NULL;
3508
		goto swap_buffers;
3509 3510
	}

3511
	new->size = size;
3512 3513

	/* Copy thresholds and find current threshold */
3514 3515 3516
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3517 3518
			continue;

3519
		new->entries[j] = thresholds->primary->entries[i];
3520
		if (new->entries[j].threshold <= usage) {
3521
			/*
3522
			 * new->current_threshold will not be used
3523 3524 3525
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3526
			++new->current_threshold;
3527 3528 3529 3530
		}
		j++;
	}

3531
swap_buffers:
3532 3533
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3534

3535
	rcu_assign_pointer(thresholds->primary, new);
3536

3537
	/* To be sure that nobody uses thresholds */
3538
	synchronize_rcu();
3539 3540 3541 3542 3543 3544

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3545
unlock:
3546 3547
	mutex_unlock(&memcg->thresholds_lock);
}
3548

3549
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3550 3551
	struct eventfd_ctx *eventfd)
{
3552
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3553 3554
}

3555
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3556 3557
	struct eventfd_ctx *eventfd)
{
3558
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3559 3560
}

3561
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3562
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3563 3564 3565 3566 3567 3568 3569
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3570
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3571 3572 3573 3574 3575

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3576
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3577
		eventfd_signal(eventfd, 1);
3578
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3579 3580 3581 3582

	return 0;
}

3583
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3584
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3585 3586 3587
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3588
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3589

3590
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3591 3592 3593 3594 3595 3596
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3597
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3598 3599
}

3600
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3601
{
3602
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3603

3604
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3605
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3606 3607 3608
	return 0;
}

3609
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3610 3611
	struct cftype *cft, u64 val)
{
3612
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3613 3614

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3615
	if (!css->parent || !((val == 0) || (val == 1)))
3616 3617
		return -EINVAL;

3618
	memcg->oom_kill_disable = val;
3619
	if (!val)
3620
		memcg_oom_recover(memcg);
3621

3622 3623 3624
	return 0;
}

3625 3626 3627 3628 3629 3630 3631
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3642 3643 3644 3645 3646
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3657 3658 3659
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3660 3661
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3662 3663 3664
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3665 3666 3667
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3668
 *
3669 3670 3671 3672 3673
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3674
 */
3675 3676 3677
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3678 3679 3680 3681 3682 3683 3684 3685
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3686 3687 3688
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3689 3690 3691 3692 3693

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3694
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3695 3696 3697 3698
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3710 3711 3712 3713
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3714 3715
#endif	/* CONFIG_CGROUP_WRITEBACK */

3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3729 3730 3731 3732 3733
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3734
static void memcg_event_remove(struct work_struct *work)
3735
{
3736 3737
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3738
	struct mem_cgroup *memcg = event->memcg;
3739 3740 3741

	remove_wait_queue(event->wqh, &event->wait);

3742
	event->unregister_event(memcg, event->eventfd);
3743 3744 3745 3746 3747 3748

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3749
	css_put(&memcg->css);
3750 3751 3752 3753 3754 3755 3756
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3757 3758
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3759
{
3760 3761
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3762
	struct mem_cgroup *memcg = event->memcg;
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3775
		spin_lock(&memcg->event_list_lock);
3776 3777 3778 3779 3780 3781 3782 3783
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3784
		spin_unlock(&memcg->event_list_lock);
3785 3786 3787 3788 3789
	}

	return 0;
}

3790
static void memcg_event_ptable_queue_proc(struct file *file,
3791 3792
		wait_queue_head_t *wqh, poll_table *pt)
{
3793 3794
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3795 3796 3797 3798 3799 3800

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3801 3802
 * DO NOT USE IN NEW FILES.
 *
3803 3804 3805 3806 3807
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3808 3809
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3810
{
3811
	struct cgroup_subsys_state *css = of_css(of);
3812
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3813
	struct mem_cgroup_event *event;
3814 3815 3816 3817
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3818
	const char *name;
3819 3820 3821
	char *endp;
	int ret;

3822 3823 3824
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3825 3826
	if (*endp != ' ')
		return -EINVAL;
3827
	buf = endp + 1;
3828

3829
	cfd = simple_strtoul(buf, &endp, 10);
3830 3831
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3832
	buf = endp + 1;
3833 3834 3835 3836 3837

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3838
	event->memcg = memcg;
3839
	INIT_LIST_HEAD(&event->list);
3840 3841 3842
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3868 3869 3870 3871 3872
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3873 3874
	 *
	 * DO NOT ADD NEW FILES.
3875
	 */
A
Al Viro 已提交
3876
	name = cfile.file->f_path.dentry->d_name.name;
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3888 3889
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3890 3891 3892 3893 3894
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3895
	/*
3896 3897 3898
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3899
	 */
A
Al Viro 已提交
3900
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3901
					       &memory_cgrp_subsys);
3902
	ret = -EINVAL;
3903
	if (IS_ERR(cfile_css))
3904
		goto out_put_cfile;
3905 3906
	if (cfile_css != css) {
		css_put(cfile_css);
3907
		goto out_put_cfile;
3908
	}
3909

3910
	ret = event->register_event(memcg, event->eventfd, buf);
3911 3912 3913 3914 3915
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3916 3917 3918
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3919 3920 3921 3922

	fdput(cfile);
	fdput(efile);

3923
	return nbytes;
3924 3925

out_put_css:
3926
	css_put(css);
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3939
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3940
	{
3941
		.name = "usage_in_bytes",
3942
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3943
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3944
	},
3945 3946
	{
		.name = "max_usage_in_bytes",
3947
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3948
		.write = mem_cgroup_reset,
3949
		.read_u64 = mem_cgroup_read_u64,
3950
	},
B
Balbir Singh 已提交
3951
	{
3952
		.name = "limit_in_bytes",
3953
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3954
		.write = mem_cgroup_write,
3955
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3956
	},
3957 3958 3959
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3960
		.write = mem_cgroup_write,
3961
		.read_u64 = mem_cgroup_read_u64,
3962
	},
B
Balbir Singh 已提交
3963 3964
	{
		.name = "failcnt",
3965
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3966
		.write = mem_cgroup_reset,
3967
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3968
	},
3969 3970
	{
		.name = "stat",
3971
		.seq_show = memcg_stat_show,
3972
	},
3973 3974
	{
		.name = "force_empty",
3975
		.write = mem_cgroup_force_empty_write,
3976
	},
3977 3978 3979 3980 3981
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
3982
	{
3983
		.name = "cgroup.event_control",		/* XXX: for compat */
3984
		.write = memcg_write_event_control,
3985
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3986
	},
K
KOSAKI Motohiro 已提交
3987 3988 3989 3990 3991
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3992 3993 3994 3995 3996
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3997 3998
	{
		.name = "oom_control",
3999
		.seq_show = mem_cgroup_oom_control_read,
4000
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4001 4002
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4003 4004 4005
	{
		.name = "pressure_level",
	},
4006 4007 4008
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4009
		.seq_show = memcg_numa_stat_show,
4010 4011
	},
#endif
4012 4013 4014
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4015
		.write = mem_cgroup_write,
4016
		.read_u64 = mem_cgroup_read_u64,
4017 4018 4019 4020
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4021
		.read_u64 = mem_cgroup_read_u64,
4022 4023 4024 4025
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4026
		.write = mem_cgroup_reset,
4027
		.read_u64 = mem_cgroup_read_u64,
4028 4029 4030 4031
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4032
		.write = mem_cgroup_reset,
4033
		.read_u64 = mem_cgroup_read_u64,
4034
	},
4035 4036 4037
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4038 4039 4040 4041
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4042 4043
	},
#endif
V
Vladimir Davydov 已提交
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4067
	{ },	/* terminate */
4068
};
4069

4070
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4071 4072
{
	struct mem_cgroup_per_node *pn;
4073
	struct mem_cgroup_per_zone *mz;
4074
	int zone, tmp = node;
4075 4076 4077 4078 4079 4080 4081 4082
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4083 4084
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4085
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4086 4087
	if (!pn)
		return 1;
4088 4089 4090

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4091
		lruvec_init(&mz->lruvec);
4092 4093
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4094
		mz->memcg = memcg;
4095
	}
4096
	memcg->nodeinfo[node] = pn;
4097 4098 4099
	return 0;
}

4100
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4101
{
4102
	kfree(memcg->nodeinfo[node]);
4103 4104
}

4105
static void mem_cgroup_free(struct mem_cgroup *memcg)
4106
{
4107
	int node;
4108

4109
	memcg_wb_domain_exit(memcg);
4110 4111 4112
	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);
	free_percpu(memcg->stat);
4113
	kfree(memcg);
4114
}
4115

4116
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4117
{
4118
	struct mem_cgroup *memcg;
4119
	size_t size;
4120
	int node;
B
Balbir Singh 已提交
4121

4122 4123 4124 4125
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4126
	if (!memcg)
4127 4128 4129 4130 4131
		return NULL;

	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4132

B
Bob Liu 已提交
4133
	for_each_node(node)
4134
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4135
			goto fail;
4136

4137 4138
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4139

4140
	INIT_WORK(&memcg->high_work, high_work_func);
4141 4142 4143 4144
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4145
	vmpressure_init(&memcg->vmpressure);
4146 4147
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4148
	memcg->socket_pressure = jiffies;
4149
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4150 4151
	memcg->kmemcg_id = -1;
#endif
4152 4153 4154
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4155 4156 4157 4158
	return memcg;
fail:
	mem_cgroup_free(memcg);
	return NULL;
4159 4160
}

4161 4162
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4163
{
4164 4165 4166
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4167

4168 4169 4170
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4171

4172 4173 4174 4175 4176 4177 4178 4179
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4180
		page_counter_init(&memcg->memory, &parent->memory);
4181
		page_counter_init(&memcg->swap, &parent->swap);
4182 4183
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4184
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4185
	} else {
4186
		page_counter_init(&memcg->memory, NULL);
4187
		page_counter_init(&memcg->swap, NULL);
4188 4189
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4190
		page_counter_init(&memcg->tcpmem, NULL);
4191 4192 4193 4194 4195
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4196
		if (parent != root_mem_cgroup)
4197
			memory_cgrp_subsys.broken_hierarchy = true;
4198
	}
4199

4200 4201 4202 4203 4204 4205 4206 4207 4208
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

	error = memcg_propagate_kmem(parent, memcg);
	if (error)
		goto fail;
4209

4210
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4211
		static_branch_inc(&memcg_sockets_enabled_key);
4212

4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
	return NULL;
}

static int
mem_cgroup_css_online(struct cgroup_subsys_state *css)
{
	if (css->id > MEM_CGROUP_ID_MAX)
		return -ENOSPC;
4224 4225

	return 0;
B
Balbir Singh 已提交
4226 4227
}

4228
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4229
{
4230
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4231
	struct mem_cgroup_event *event, *tmp;
4232 4233 4234 4235 4236 4237

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4238 4239
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4240 4241 4242
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4243
	spin_unlock(&memcg->event_list_lock);
4244

4245
	memcg_offline_kmem(memcg);
4246
	wb_memcg_offline(memcg);
4247 4248
}

4249 4250 4251 4252 4253 4254 4255
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4256
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4257
{
4258
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4259

4260
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4261
		static_branch_dec(&memcg_sockets_enabled_key);
4262

4263
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4264
		static_branch_dec(&memcg_sockets_enabled_key);
4265

4266 4267 4268
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4269
	memcg_free_kmem(memcg);
4270
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4271 4272
}

4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4290 4291 4292
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4293 4294
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4295
	memcg->soft_limit = PAGE_COUNTER_MAX;
4296
	memcg_wb_domain_size_changed(memcg);
4297 4298
}

4299
#ifdef CONFIG_MMU
4300
/* Handlers for move charge at task migration. */
4301
static int mem_cgroup_do_precharge(unsigned long count)
4302
{
4303
	int ret;
4304

4305 4306
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4307
	if (!ret) {
4308 4309 4310
		mc.precharge += count;
		return ret;
	}
4311 4312

	/* Try charges one by one with reclaim */
4313
	while (count--) {
4314
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4315 4316
		if (ret)
			return ret;
4317
		mc.precharge++;
4318
		cond_resched();
4319
	}
4320
	return 0;
4321 4322 4323
}

/**
4324
 * get_mctgt_type - get target type of moving charge
4325 4326 4327
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4328
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4329 4330 4331 4332 4333 4334
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4335 4336 4337
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4338 4339 4340 4341 4342
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4343
	swp_entry_t	ent;
4344 4345 4346
};

enum mc_target_type {
4347
	MC_TARGET_NONE = 0,
4348
	MC_TARGET_PAGE,
4349
	MC_TARGET_SWAP,
4350 4351
};

D
Daisuke Nishimura 已提交
4352 4353
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4354
{
D
Daisuke Nishimura 已提交
4355
	struct page *page = vm_normal_page(vma, addr, ptent);
4356

D
Daisuke Nishimura 已提交
4357 4358 4359
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4360
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4361
			return NULL;
4362 4363 4364 4365
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4366 4367 4368 4369 4370 4371
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4372
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4373 4374 4375 4376 4377 4378
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4379
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4380
		return NULL;
4381 4382 4383 4384
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4385
	page = find_get_page(swap_address_space(ent), ent.val);
4386
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4387 4388 4389 4390
		entry->val = ent.val;

	return page;
}
4391 4392 4393 4394 4395 4396 4397
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4398

4399 4400 4401 4402 4403 4404 4405 4406 4407
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4408
	if (!(mc.flags & MOVE_FILE))
4409 4410 4411
		return NULL;

	mapping = vma->vm_file->f_mapping;
4412
	pgoff = linear_page_index(vma, addr);
4413 4414

	/* page is moved even if it's not RSS of this task(page-faulted). */
4415 4416
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4417 4418 4419 4420
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4421
			if (do_memsw_account())
4422 4423 4424 4425 4426 4427 4428
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4429
#endif
4430 4431 4432
	return page;
}

4433 4434 4435 4436 4437 4438 4439
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4440
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4441 4442 4443 4444 4445
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4446
				   bool compound,
4447 4448 4449 4450
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4451
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4452
	int ret;
4453
	bool anon;
4454 4455 4456

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4457
	VM_BUG_ON(compound && !PageTransHuge(page));
4458 4459

	/*
4460 4461
	 * Prevent mem_cgroup_replace_page() from looking at
	 * page->mem_cgroup of its source page while we change it.
4462
	 */
4463
	ret = -EBUSY;
4464 4465 4466 4467 4468 4469 4470
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4471 4472
	anon = PageAnon(page);

4473 4474
	spin_lock_irqsave(&from->move_lock, flags);

4475
	if (!anon && page_mapped(page)) {
4476 4477 4478 4479 4480 4481
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4518
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4519
	memcg_check_events(to, page);
4520
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4521 4522 4523 4524 4525 4526 4527 4528
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4529
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4530 4531 4532
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4533
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4534 4535 4536 4537 4538 4539
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4540
	else if (pte_none(ptent))
4541
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4542 4543

	if (!page && !ent.val)
4544
		return ret;
4545 4546
	if (page) {
		/*
4547
		 * Do only loose check w/o serialization.
4548
		 * mem_cgroup_move_account() checks the page is valid or
4549
		 * not under LRU exclusion.
4550
		 */
4551
		if (page->mem_cgroup == mc.from) {
4552 4553 4554 4555 4556 4557 4558
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4559 4560
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4561
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4562 4563 4564
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4565 4566 4567 4568
	}
	return ret;
}

4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4582
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4583
	if (!(mc.flags & MOVE_ANON))
4584
		return ret;
4585
	if (page->mem_cgroup == mc.from) {
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4602 4603 4604 4605
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4606
	struct vm_area_struct *vma = walk->vma;
4607 4608 4609
	pte_t *pte;
	spinlock_t *ptl;

4610 4611
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4612 4613
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4614
		spin_unlock(ptl);
4615
		return 0;
4616
	}
4617

4618 4619
	if (pmd_trans_unstable(pmd))
		return 0;
4620 4621
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4622
		if (get_mctgt_type(vma, addr, *pte, NULL))
4623 4624 4625 4626
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4627 4628 4629
	return 0;
}

4630 4631 4632 4633
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4634 4635 4636 4637
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4638
	down_read(&mm->mmap_sem);
4639
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4640
	up_read(&mm->mmap_sem);
4641 4642 4643 4644 4645 4646 4647 4648 4649

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4650 4651 4652 4653 4654
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4655 4656
}

4657 4658
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4659
{
4660 4661 4662
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4663
	/* we must uncharge all the leftover precharges from mc.to */
4664
	if (mc.precharge) {
4665
		cancel_charge(mc.to, mc.precharge);
4666 4667 4668 4669 4670 4671 4672
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4673
		cancel_charge(mc.from, mc.moved_charge);
4674
		mc.moved_charge = 0;
4675
	}
4676 4677 4678
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4679
		if (!mem_cgroup_is_root(mc.from))
4680
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4681

4682
		/*
4683 4684
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4685
		 */
4686
		if (!mem_cgroup_is_root(mc.to))
4687 4688
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4689
		css_put_many(&mc.from->css, mc.moved_swap);
4690

L
Li Zefan 已提交
4691
		/* we've already done css_get(mc.to) */
4692 4693
		mc.moved_swap = 0;
	}
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4707
	spin_lock(&mc.lock);
4708 4709
	mc.from = NULL;
	mc.to = NULL;
4710
	spin_unlock(&mc.lock);
4711 4712
}

4713
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4714
{
4715
	struct cgroup_subsys_state *css;
4716
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4717
	struct mem_cgroup *from;
4718
	struct task_struct *leader, *p;
4719
	struct mm_struct *mm;
4720
	unsigned long move_flags;
4721
	int ret = 0;
4722

4723 4724
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4725 4726
		return 0;

4727 4728 4729 4730 4731 4732 4733
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4734
	cgroup_taskset_for_each_leader(leader, css, tset) {
4735 4736
		WARN_ON_ONCE(p);
		p = leader;
4737
		memcg = mem_cgroup_from_css(css);
4738 4739 4740 4741
	}
	if (!p)
		return 0;

4742 4743 4744 4745 4746 4747 4748 4749 4750
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4776
	}
4777
	mmput(mm);
4778 4779 4780
	return ret;
}

4781
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4782
{
4783 4784
	if (mc.to)
		mem_cgroup_clear_mc();
4785 4786
}

4787 4788 4789
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4790
{
4791
	int ret = 0;
4792
	struct vm_area_struct *vma = walk->vma;
4793 4794
	pte_t *pte;
	spinlock_t *ptl;
4795 4796 4797
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4798

4799 4800
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4801
		if (mc.precharge < HPAGE_PMD_NR) {
4802
			spin_unlock(ptl);
4803 4804 4805 4806 4807 4808
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4809
				if (!mem_cgroup_move_account(page, true,
4810
							     mc.from, mc.to)) {
4811 4812 4813 4814 4815 4816 4817
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4818
		spin_unlock(ptl);
4819
		return 0;
4820 4821
	}

4822 4823
	if (pmd_trans_unstable(pmd))
		return 0;
4824 4825 4826 4827
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4828
		swp_entry_t ent;
4829 4830 4831 4832

		if (!mc.precharge)
			break;

4833
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4834 4835
		case MC_TARGET_PAGE:
			page = target.page;
4836 4837 4838 4839 4840 4841 4842 4843
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4844 4845
			if (isolate_lru_page(page))
				goto put;
4846 4847
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4848
				mc.precharge--;
4849 4850
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4851 4852
			}
			putback_lru_page(page);
4853
put:			/* get_mctgt_type() gets the page */
4854 4855
			put_page(page);
			break;
4856 4857
		case MC_TARGET_SWAP:
			ent = target.ent;
4858
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4859
				mc.precharge--;
4860 4861 4862
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4863
			break;
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4878
		ret = mem_cgroup_do_precharge(1);
4879 4880 4881 4882 4883 4884 4885 4886 4887
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
4888 4889 4890 4891
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
4892 4893

	lru_add_drain_all();
4894
	/*
4895 4896 4897
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
4898 4899 4900
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4914 4915 4916 4917 4918
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4919
	up_read(&mm->mmap_sem);
4920
	atomic_dec(&mc.from->moving_account);
4921 4922
}

4923
static void mem_cgroup_move_task(struct cgroup_taskset *tset)
B
Balbir Singh 已提交
4924
{
4925 4926
	struct cgroup_subsys_state *css;
	struct task_struct *p = cgroup_taskset_first(tset, &css);
4927
	struct mm_struct *mm = get_task_mm(p);
4928 4929

	if (mm) {
4930 4931
		if (mc.to)
			mem_cgroup_move_charge(mm);
4932 4933
		mmput(mm);
	}
4934 4935
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4936
}
4937
#else	/* !CONFIG_MMU */
4938
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4939 4940 4941
{
	return 0;
}
4942
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4943 4944
{
}
4945
static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4946 4947 4948
{
}
#endif
B
Balbir Singh 已提交
4949

4950 4951
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4952 4953
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
4954
 */
4955
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4956 4957
{
	/*
4958
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
4959 4960 4961
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
4962
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4963 4964 4965
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
4966 4967
}

4968 4969 4970
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
4971 4972 4973
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4974 4975 4976 4977 4978
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4979
	unsigned long low = READ_ONCE(memcg->low);
4980 4981

	if (low == PAGE_COUNTER_MAX)
4982
		seq_puts(m, "max\n");
4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
4997
	err = page_counter_memparse(buf, "max", &low);
4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5009
	unsigned long high = READ_ONCE(memcg->high);
5010 5011

	if (high == PAGE_COUNTER_MAX)
5012
		seq_puts(m, "max\n");
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
5027
	err = page_counter_memparse(buf, "max", &high);
5028 5029 5030 5031 5032
	if (err)
		return err;

	memcg->high = high;

5033
	memcg_wb_domain_size_changed(memcg);
5034 5035 5036 5037 5038 5039
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5040
	unsigned long max = READ_ONCE(memcg->memory.limit);
5041 5042

	if (max == PAGE_COUNTER_MAX)
5043
		seq_puts(m, "max\n");
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
5058
	err = page_counter_memparse(buf, "max", &max);
5059 5060 5061 5062 5063 5064 5065
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

5066
	memcg_wb_domain_size_changed(memcg);
5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

	seq_printf(m, "anon %llu\n",
		   (u64)tree_stat(memcg, MEM_CGROUP_STAT_RSS) * PAGE_SIZE);
	seq_printf(m, "file %llu\n",
		   (u64)tree_stat(memcg, MEM_CGROUP_STAT_CACHE) * PAGE_SIZE);
5102 5103
	seq_printf(m, "sock %llu\n",
		   (u64)tree_stat(memcg, MEMCG_SOCK) * PAGE_SIZE);
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134

	seq_printf(m, "file_mapped %llu\n",
		   (u64)tree_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED) *
		   PAGE_SIZE);
	seq_printf(m, "file_dirty %llu\n",
		   (u64)tree_stat(memcg, MEM_CGROUP_STAT_DIRTY) *
		   PAGE_SIZE);
	seq_printf(m, "file_writeback %llu\n",
		   (u64)tree_stat(memcg, MEM_CGROUP_STAT_WRITEBACK) *
		   PAGE_SIZE);

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

	/* Accumulated memory events */

	seq_printf(m, "pgfault %lu\n",
		   tree_events(memcg, MEM_CGROUP_EVENTS_PGFAULT));
	seq_printf(m, "pgmajfault %lu\n",
		   tree_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT));

	return 0;
}

5135 5136 5137
static struct cftype memory_files[] = {
	{
		.name = "current",
5138
		.flags = CFTYPE_NOT_ON_ROOT,
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5162
		.file_offset = offsetof(struct mem_cgroup, events_file),
5163 5164
		.seq_show = memory_events_show,
	},
5165 5166 5167 5168 5169
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5170 5171 5172
	{ }	/* terminate */
};

5173
struct cgroup_subsys memory_cgrp_subsys = {
5174
	.css_alloc = mem_cgroup_css_alloc,
5175
	.css_online = mem_cgroup_css_online,
5176
	.css_offline = mem_cgroup_css_offline,
5177
	.css_released = mem_cgroup_css_released,
5178
	.css_free = mem_cgroup_css_free,
5179
	.css_reset = mem_cgroup_css_reset,
5180 5181
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5182
	.attach = mem_cgroup_move_task,
5183
	.bind = mem_cgroup_bind,
5184 5185
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5186
	.early_init = 0,
B
Balbir Singh 已提交
5187
};
5188

5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5211
	if (page_counter_read(&memcg->memory) >= memcg->low)
5212 5213 5214 5215 5216 5217 5218 5219
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5220
		if (page_counter_read(&memcg->memory) >= memcg->low)
5221 5222 5223 5224 5225
			return false;
	}
	return true;
}

5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5244 5245
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5246 5247
{
	struct mem_cgroup *memcg = NULL;
5248
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5262
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5263
		if (page->mem_cgroup)
5264
			goto out;
5265

5266
		if (do_swap_account) {
5267 5268 5269 5270 5271 5272 5273 5274 5275
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5306
			      bool lrucare, bool compound)
5307
{
5308
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5323 5324 5325
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5326
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5327 5328
	memcg_check_events(memcg, page);
	local_irq_enable();
5329

5330
	if (do_memsw_account() && PageSwapCache(page)) {
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5348 5349
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5350
{
5351
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5366 5367 5368 5369
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5370
	unsigned long nr_pages = nr_anon + nr_file;
5371 5372
	unsigned long flags;

5373
	if (!mem_cgroup_is_root(memcg)) {
5374
		page_counter_uncharge(&memcg->memory, nr_pages);
5375
		if (do_memsw_account())
5376
			page_counter_uncharge(&memcg->memsw, nr_pages);
5377 5378
		memcg_oom_recover(memcg);
	}
5379 5380 5381 5382 5383 5384

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5385
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5386 5387
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5388 5389

	if (!mem_cgroup_is_root(memcg))
5390
		css_put_many(&memcg->css, nr_pages);
5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5413
		if (!page->mem_cgroup)
5414 5415 5416 5417
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5418
		 * page->mem_cgroup at this point, we have fully
5419
		 * exclusive access to the page.
5420 5421
		 */

5422
		if (memcg != page->mem_cgroup) {
5423
			if (memcg) {
5424 5425 5426
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5427
			}
5428
			memcg = page->mem_cgroup;
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5442
		page->mem_cgroup = NULL;
5443 5444 5445 5446 5447

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5448 5449
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5450 5451
}

5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5464
	/* Don't touch page->lru of any random page, pre-check: */
5465
	if (!page->mem_cgroup)
5466 5467
		return;

5468 5469 5470
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5471

5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5483

5484 5485
	if (!list_empty(page_list))
		uncharge_list(page_list);
5486 5487 5488
}

/**
5489
 * mem_cgroup_replace_page - migrate a charge to another page
5490 5491 5492 5493 5494 5495
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
5496
 * Either or both pages might be on the LRU already.
5497
 */
5498
void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5499
{
5500
	struct mem_cgroup *memcg;
5501 5502
	unsigned int nr_pages;
	bool compound;
5503 5504 5505 5506

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5507 5508
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5509 5510 5511 5512 5513

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5514
	if (newpage->mem_cgroup)
5515 5516
		return;

5517
	/* Swapcache readahead pages can get replaced before being charged */
5518
	memcg = oldpage->mem_cgroup;
5519
	if (!memcg)
5520 5521
		return;

5522 5523 5524 5525 5526 5527 5528 5529
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5530

5531
	commit_charge(newpage, memcg, true);
5532 5533 5534 5535 5536

	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
	local_irq_enable();
5537 5538
}

5539
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561
EXPORT_SYMBOL(memcg_sockets_enabled_key);

void sock_update_memcg(struct sock *sk)
{
	struct mem_cgroup *memcg;

	/* Socket cloning can throw us here with sk_cgrp already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5562 5563
	if (memcg == root_mem_cgroup)
		goto out;
5564
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5565 5566
		goto out;
	if (css_tryget_online(&memcg->css))
5567
		sk->sk_memcg = memcg;
5568
out:
5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588
	rcu_read_unlock();
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	WARN_ON(!sk->sk_memcg);
	css_put(&sk->sk_memcg->css);
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5589
	gfp_t gfp_mask = GFP_KERNEL;
5590

5591
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5592
		struct page_counter *fail;
5593

5594 5595
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5596 5597
			return true;
		}
5598 5599
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5600
		return false;
5601
	}
5602

5603 5604 5605 5606
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5607 5608
	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);

5609 5610 5611 5612
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5623
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5624
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5625 5626
		return;
	}
5627

5628 5629
	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);

5630 5631
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5632 5633
}

5634 5635 5636 5637 5638 5639 5640 5641 5642
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5643 5644
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5645 5646 5647 5648
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5649

5650
/*
5651 5652 5653 5654 5655 5656
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5657 5658 5659
 */
static int __init mem_cgroup_init(void)
{
5660 5661
	int cpu, node;

5662
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5685 5686 5687
	return 0;
}
subsys_initcall(mem_cgroup_init);
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5705
	if (!do_memsw_account())
5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5723 5724 5725 5726 5727 5728 5729
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5730
	mem_cgroup_charge_statistics(memcg, page, false, -1);
5731 5732 5733
	memcg_check_events(memcg, page);
}

5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769
/*
 * mem_cgroup_try_charge_swap - try charging a swap entry
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
 * Try to charge @entry to the memcg that @page belongs to.
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	struct page_counter *counter;
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

	if (!mem_cgroup_is_root(memcg) &&
	    !page_counter_try_charge(&memcg->swap, 1, &counter))
		return -ENOMEM;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	css_get(&memcg->css);
	return 0;
}

5770 5771 5772 5773
/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
5774
 * Drop the swap charge associated with @entry.
5775 5776 5777 5778 5779 5780
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5781
	if (!do_swap_account)
5782 5783 5784 5785
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5786
	memcg = mem_cgroup_from_id(id);
5787
	if (memcg) {
5788 5789 5790 5791 5792 5793
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
				page_counter_uncharge(&memcg->swap, 1);
			else
				page_counter_uncharge(&memcg->memsw, 1);
		}
5794 5795 5796 5797 5798 5799
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
5940 5941
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
5942 5943 5944 5945 5946 5947 5948 5949
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */