memcontrol.c 145.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53
#include <net/sock.h>
M
Michal Hocko 已提交
54
#include <net/ip.h>
G
Glauber Costa 已提交
55
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
56

57 58
#include <asm/uaccess.h>

59 60
#include <trace/events/vmscan.h>

61 62
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
63
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
64

A
Andrew Morton 已提交
65
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
66
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
67
int do_swap_account __read_mostly;
68 69

/* for remember boot option*/
A
Andrew Morton 已提交
70
#ifdef CONFIG_MEMCG_SWAP_ENABLED
71 72 73 74 75
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

76
#else
77
#define do_swap_account		0
78 79 80
#endif


81 82 83 84 85 86 87 88
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
89
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
90
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
91
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
92 93 94
	MEM_CGROUP_STAT_NSTATS,
};

95 96 97 98 99 100 101
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

102 103 104
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
105 106
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
107 108
	MEM_CGROUP_EVENTS_NSTATS,
};
109 110 111 112 113 114 115 116

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

117 118 119 120 121 122 123 124 125
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
126
	MEM_CGROUP_TARGET_NUMAINFO,
127 128
	MEM_CGROUP_NTARGETS,
};
129 130 131
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
132

133
struct mem_cgroup_stat_cpu {
134
	long count[MEM_CGROUP_STAT_NSTATS];
135
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
136
	unsigned long nr_page_events;
137
	unsigned long targets[MEM_CGROUP_NTARGETS];
138 139
};

140 141 142 143 144 145 146
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

147 148 149 150
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
151
	struct lruvec		lruvec;
152
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
153

154 155
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

156 157 158 159
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
160
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
161
						/* use container_of	   */
162 163 164 165 166 167 168 169 170 171
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

192 193 194 195 196
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
197
/* For threshold */
198
struct mem_cgroup_threshold_ary {
199
	/* An array index points to threshold just below or equal to usage. */
200
	int current_threshold;
201 202 203 204 205
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
206 207 208 209 210 211 212 213 214 215 216 217

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
218 219 220 221 222
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
223

224 225
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
226

B
Balbir Singh 已提交
227 228 229 230 231 232 233
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
234 235 236
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
237 238 239 240 241 242 243
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
262 263
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
264 265 266 267
		 */
		struct work_struct work_freeing;
	};

268 269 270 271
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
272
	struct mem_cgroup_lru_info info;
273 274 275
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
276 277
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
278
#endif
279 280 281 282
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
283 284 285 286

	bool		oom_lock;
	atomic_t	under_oom;

287
	atomic_t	refcnt;
288

289
	int	swappiness;
290 291
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
292

293 294 295
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

296 297 298 299
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
300
	struct mem_cgroup_thresholds thresholds;
301

302
	/* thresholds for mem+swap usage. RCU-protected */
303
	struct mem_cgroup_thresholds memsw_thresholds;
304

K
KAMEZAWA Hiroyuki 已提交
305 306
	/* For oom notifier event fd */
	struct list_head oom_notify;
307

308 309 310 311 312
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
313 314 315 316
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
317 318
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
319
	/*
320
	 * percpu counter.
321
	 */
322
	struct mem_cgroup_stat_cpu __percpu *stat;
323 324 325 326 327 328
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
329

M
Michal Hocko 已提交
330
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
331 332
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
333 334
};

335 336 337 338 339 340
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
341
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
342
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
343 344 345
	NR_MOVE_TYPE,
};

346 347
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
348
	spinlock_t	  lock; /* for from, to */
349 350 351
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
352
	unsigned long moved_charge;
353
	unsigned long moved_swap;
354 355 356
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
357
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
358 359
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
360

D
Daisuke Nishimura 已提交
361 362 363 364 365 366
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

367 368 369 370 371 372
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

373 374 375 376
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
377 378
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
379

380 381
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
382
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
383
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
384
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
385 386 387
	NR_CHARGE_TYPE,
};

388
/* for encoding cft->private value on file */
389 390 391
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
392 393
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
394
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
395 396
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
397

398 399 400 401 402 403 404 405
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

406 407
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
408

409 410 411 412 413 414
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

415 416 417 418 419
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
420
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
421
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
422 423 424

void sock_update_memcg(struct sock *sk)
{
425
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
426
		struct mem_cgroup *memcg;
427
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
428 429 430

		BUG_ON(!sk->sk_prot->proto_cgroup);

431 432 433 434 435 436 437 438 439 440 441 442 443 444
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
445 446
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
447 448
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
449
			mem_cgroup_get(memcg);
450
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
451 452 453 454 455 456 457 458
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
459
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
460 461 462 463 464 465
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
466 467 468 469 470 471 472 473 474

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
475

476 477 478 479 480 481 482 483 484 485 486 487
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

488
static void drain_all_stock_async(struct mem_cgroup *memcg);
489

490
static struct mem_cgroup_per_zone *
491
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
492
{
493
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
494 495
}

496
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
497
{
498
	return &memcg->css;
499 500
}

501
static struct mem_cgroup_per_zone *
502
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
503
{
504 505
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
506

507
	return mem_cgroup_zoneinfo(memcg, nid, zid);
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
526
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
527
				struct mem_cgroup_per_zone *mz,
528 529
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
530 531 532 533 534 535 536 537
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

538 539 540
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
557 558 559
}

static void
560
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
561 562 563 564 565 566 567 568 569
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

570
static void
571
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
572 573 574 575
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
576
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
577 578 579 580
	spin_unlock(&mctz->lock);
}


581
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
582
{
583
	unsigned long long excess;
584 585
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
586 587
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
588 589 590
	mctz = soft_limit_tree_from_page(page);

	/*
591 592
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
593
	 */
594 595 596
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
597 598 599 600
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
601
		if (excess || mz->on_tree) {
602 603 604
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
605
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
606
			/*
607 608
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
609
			 */
610
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
611 612
			spin_unlock(&mctz->lock);
		}
613 614 615
	}
}

616
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
617 618 619 620 621
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
622
	for_each_node(node) {
623
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
624
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
625
			mctz = soft_limit_tree_node_zone(node, zone);
626
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
627 628 629 630
		}
	}
}

631 632 633 634
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
635
	struct mem_cgroup_per_zone *mz;
636 637

retry:
638
	mz = NULL;
639 640 641 642 643 644 645 646 647 648
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
649 650 651
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
687
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
688
				 enum mem_cgroup_stat_index idx)
689
{
690
	long val = 0;
691 692
	int cpu;

693 694
	get_online_cpus();
	for_each_online_cpu(cpu)
695
		val += per_cpu(memcg->stat->count[idx], cpu);
696
#ifdef CONFIG_HOTPLUG_CPU
697 698 699
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
700 701
#endif
	put_online_cpus();
702 703 704
	return val;
}

705
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
706 707 708
					 bool charge)
{
	int val = (charge) ? 1 : -1;
709
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
710 711
}

712
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
713 714 715 716 717 718
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
719
		val += per_cpu(memcg->stat->events[idx], cpu);
720
#ifdef CONFIG_HOTPLUG_CPU
721 722 723
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
724 725 726 727
#endif
	return val;
}

728
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
729
					 bool anon, int nr_pages)
730
{
731 732
	preempt_disable();

733 734 735 736 737 738
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
739
				nr_pages);
740
	else
741
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
742
				nr_pages);
743

744 745
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
746
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
747
	else {
748
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
749 750
		nr_pages = -nr_pages; /* for event */
	}
751

752
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
753

754
	preempt_enable();
755 756
}

757
unsigned long
758
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
759 760 761 762 763 764 765 766
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
767
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
768
			unsigned int lru_mask)
769 770
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
771
	enum lru_list lru;
772 773
	unsigned long ret = 0;

774
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
775

H
Hugh Dickins 已提交
776 777 778
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
779 780 781 782 783
	}
	return ret;
}

static unsigned long
784
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
785 786
			int nid, unsigned int lru_mask)
{
787 788 789
	u64 total = 0;
	int zid;

790
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
791 792
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
793

794 795
	return total;
}
796

797
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
798
			unsigned int lru_mask)
799
{
800
	int nid;
801 802
	u64 total = 0;

803
	for_each_node_state(nid, N_HIGH_MEMORY)
804
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
805
	return total;
806 807
}

808 809
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
810 811 812
{
	unsigned long val, next;

813
	val = __this_cpu_read(memcg->stat->nr_page_events);
814
	next = __this_cpu_read(memcg->stat->targets[target]);
815
	/* from time_after() in jiffies.h */
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
832
	}
833
	return false;
834 835 836 837 838 839
}

/*
 * Check events in order.
 *
 */
840
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
841
{
842
	preempt_disable();
843
	/* threshold event is triggered in finer grain than soft limit */
844 845
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
846 847
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
848 849 850 851 852 853 854 855 856

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

857
		mem_cgroup_threshold(memcg);
858
		if (unlikely(do_softlimit))
859
			mem_cgroup_update_tree(memcg, page);
860
#if MAX_NUMNODES > 1
861
		if (unlikely(do_numainfo))
862
			atomic_inc(&memcg->numainfo_events);
863
#endif
864 865
	} else
		preempt_enable();
866 867
}

G
Glauber Costa 已提交
868
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
869
{
870 871
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
872 873
}

874
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
875
{
876 877 878 879 880 881 882 883
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

884
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
885 886
}

887
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
888
{
889
	struct mem_cgroup *memcg = NULL;
890 891 892

	if (!mm)
		return NULL;
893 894 895 896 897 898 899
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
900 901
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
902
			break;
903
	} while (!css_tryget(&memcg->css));
904
	rcu_read_unlock();
905
	return memcg;
906 907
}

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
928
{
929 930
	struct mem_cgroup *memcg = NULL;
	int id = 0;
931

932 933 934
	if (mem_cgroup_disabled())
		return NULL;

935 936
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
937

938 939
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
940

941 942
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
943

944 945 946 947 948
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
949

950
	while (!memcg) {
951
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
952
		struct cgroup_subsys_state *css;
953

954 955 956 957 958 959 960 961 962 963 964
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
965

966 967 968 969
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
970
				memcg = mem_cgroup_from_css(css);
971 972
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
973 974
		rcu_read_unlock();

975 976 977 978 979 980 981
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
982 983 984 985 986

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
987
}
K
KAMEZAWA Hiroyuki 已提交
988

989 990 991 992 993 994 995
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
996 997 998 999 1000 1001
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1002

1003 1004 1005 1006 1007 1008
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1009
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1010
	     iter != NULL;				\
1011
	     iter = mem_cgroup_iter(root, iter, NULL))
1012

1013
#define for_each_mem_cgroup(iter)			\
1014
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1015
	     iter != NULL;				\
1016
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1017

1018 1019
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
1020
	struct mem_cgroup *memcg;
1021 1022 1023 1024 1025

	if (!mm)
		return;

	rcu_read_lock();
1026 1027
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1028 1029 1030 1031
		goto out;

	switch (idx) {
	case PGFAULT:
1032 1033 1034 1035
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1036 1037 1038 1039 1040 1041 1042 1043 1044
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

1045 1046 1047
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1048
 * @memcg: memcg of the wanted lruvec
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1079

1080
/**
1081
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1082
 * @page: the page
1083
 * @zone: zone of the page
1084
 */
1085
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1086 1087
{
	struct mem_cgroup_per_zone *mz;
1088 1089
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1090

1091
	if (mem_cgroup_disabled())
1092 1093
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1094
	pc = lookup_page_cgroup(page);
1095
	memcg = pc->mem_cgroup;
1096 1097

	/*
1098
	 * Surreptitiously switch any uncharged offlist page to root:
1099 1100 1101 1102 1103 1104 1105
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1106
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1107 1108
		pc->mem_cgroup = memcg = root_mem_cgroup;

1109 1110
	mz = page_cgroup_zoneinfo(memcg, page);
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1111
}
1112

1113
/**
1114 1115 1116 1117
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1118
 *
1119 1120
 * This function must be called when a page is added to or removed from an
 * lru list.
1121
 */
1122 1123
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1124 1125
{
	struct mem_cgroup_per_zone *mz;
1126
	unsigned long *lru_size;
1127 1128 1129 1130

	if (mem_cgroup_disabled())
		return;

1131 1132 1133 1134
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1135
}
1136

1137
/*
1138
 * Checks whether given mem is same or in the root_mem_cgroup's
1139 1140
 * hierarchy subtree
 */
1141 1142
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1143
{
1144 1145
	if (root_memcg == memcg)
		return true;
1146
	if (!root_memcg->use_hierarchy || !memcg)
1147
		return false;
1148 1149 1150 1151 1152 1153 1154 1155
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1156
	rcu_read_lock();
1157
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1158 1159
	rcu_read_unlock();
	return ret;
1160 1161
}

1162
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1163 1164
{
	int ret;
1165
	struct mem_cgroup *curr = NULL;
1166
	struct task_struct *p;
1167

1168
	p = find_lock_task_mm(task);
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1184 1185
	if (!curr)
		return 0;
1186
	/*
1187
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1188
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1189 1190
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1191
	 */
1192
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1193
	css_put(&curr->css);
1194 1195 1196
	return ret;
}

1197
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1198
{
1199
	unsigned long inactive_ratio;
1200
	unsigned long inactive;
1201
	unsigned long active;
1202
	unsigned long gb;
1203

1204 1205
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1206

1207 1208 1209 1210 1211 1212
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1213
	return inactive * inactive_ratio < active;
1214 1215
}

1216
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1217 1218 1219 1220
{
	unsigned long active;
	unsigned long inactive;

1221 1222
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1223 1224 1225 1226

	return (active > inactive);
}

1227 1228 1229
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1230
/**
1231
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1232
 * @memcg: the memory cgroup
1233
 *
1234
 * Returns the maximum amount of memory @mem can be charged with, in
1235
 * pages.
1236
 */
1237
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1238
{
1239 1240
	unsigned long long margin;

1241
	margin = res_counter_margin(&memcg->res);
1242
	if (do_swap_account)
1243
		margin = min(margin, res_counter_margin(&memcg->memsw));
1244
	return margin >> PAGE_SHIFT;
1245 1246
}

1247
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1248 1249 1250 1251 1252 1253 1254
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1255
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1256 1257
}

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1272 1273 1274 1275

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1276
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1277
{
1278
	atomic_inc(&memcg_moving);
1279
	atomic_inc(&memcg->moving_account);
1280 1281 1282
	synchronize_rcu();
}

1283
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1284
{
1285 1286 1287 1288
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1289 1290
	if (memcg) {
		atomic_dec(&memcg_moving);
1291
		atomic_dec(&memcg->moving_account);
1292
	}
1293
}
1294

1295 1296 1297
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1298 1299
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1300 1301 1302 1303 1304 1305 1306
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1307
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1308 1309
{
	VM_BUG_ON(!rcu_read_lock_held());
1310
	return atomic_read(&memcg->moving_account) > 0;
1311
}
1312

1313
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1314
{
1315 1316
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1317
	bool ret = false;
1318 1319 1320 1321 1322 1323 1324 1325 1326
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1327

1328 1329
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1330 1331
unlock:
	spin_unlock(&mc.lock);
1332 1333 1334
	return ret;
}

1335
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1336 1337
{
	if (mc.moving_task && current != mc.moving_task) {
1338
		if (mem_cgroup_under_move(memcg)) {
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1351 1352 1353 1354
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1355
 * see mem_cgroup_stolen(), too.
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1369
/**
1370
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1389
	if (!memcg || !p)
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1435 1436 1437 1438
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1439
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1440 1441
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1442 1443
	struct mem_cgroup *iter;

1444
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1445
		num++;
1446 1447 1448
	return num;
}

D
David Rientjes 已提交
1449 1450 1451
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1452
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1453 1454 1455 1456
{
	u64 limit;
	u64 memsw;

1457 1458 1459
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1460 1461 1462 1463 1464 1465 1466 1467
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1468 1469
void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
			      int order)
1470 1471 1472 1473 1474 1475 1476
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1571 1572
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1573
 * @memcg: the target memcg
1574 1575 1576 1577 1578 1579 1580
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1581
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1582 1583
		int nid, bool noswap)
{
1584
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1585 1586 1587
		return true;
	if (noswap || !total_swap_pages)
		return false;
1588
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1589 1590 1591 1592
		return true;
	return false;

}
1593 1594 1595 1596 1597 1598 1599 1600
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1601
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1602 1603
{
	int nid;
1604 1605 1606 1607
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1608
	if (!atomic_read(&memcg->numainfo_events))
1609
		return;
1610
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1611 1612 1613
		return;

	/* make a nodemask where this memcg uses memory from */
1614
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1615 1616 1617

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1618 1619
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1620
	}
1621

1622 1623
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1638
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1639 1640 1641
{
	int node;

1642 1643
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1644

1645
	node = next_node(node, memcg->scan_nodes);
1646
	if (node == MAX_NUMNODES)
1647
		node = first_node(memcg->scan_nodes);
1648 1649 1650 1651 1652 1653 1654 1655 1656
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1657
	memcg->last_scanned_node = node;
1658 1659 1660
	return node;
}

1661 1662 1663 1664 1665 1666
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1667
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1668 1669 1670 1671 1672 1673 1674
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1675 1676
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1677
		     nid < MAX_NUMNODES;
1678
		     nid = next_node(nid, memcg->scan_nodes)) {
1679

1680
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1681 1682 1683 1684 1685 1686 1687
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1688
		if (node_isset(nid, memcg->scan_nodes))
1689
			continue;
1690
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1691 1692 1693 1694 1695
			return true;
	}
	return false;
}

1696
#else
1697
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1698 1699 1700
{
	return 0;
}
1701

1702
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1703
{
1704
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1705
}
1706 1707
#endif

1708 1709 1710 1711
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1712
{
1713
	struct mem_cgroup *victim = NULL;
1714
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1715
	int loop = 0;
1716
	unsigned long excess;
1717
	unsigned long nr_scanned;
1718 1719 1720 1721
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1722

1723
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1724

1725
	while (1) {
1726
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1727
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1728
			loop++;
1729 1730 1731 1732 1733 1734
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1735
				if (!total)
1736 1737
					break;
				/*
L
Lucas De Marchi 已提交
1738
				 * We want to do more targeted reclaim.
1739 1740 1741 1742 1743
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1744
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1745 1746
					break;
			}
1747
			continue;
1748
		}
1749
		if (!mem_cgroup_reclaimable(victim, false))
1750
			continue;
1751 1752 1753 1754
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1755
			break;
1756
	}
1757
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1758
	return total;
1759 1760
}

K
KAMEZAWA Hiroyuki 已提交
1761 1762 1763
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1764
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1765
 */
1766
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1767
{
1768
	struct mem_cgroup *iter, *failed = NULL;
1769

1770
	for_each_mem_cgroup_tree(iter, memcg) {
1771
		if (iter->oom_lock) {
1772 1773 1774 1775 1776
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1777 1778
			mem_cgroup_iter_break(memcg, iter);
			break;
1779 1780
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1781
	}
K
KAMEZAWA Hiroyuki 已提交
1782

1783
	if (!failed)
1784
		return true;
1785 1786 1787 1788 1789

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1790
	for_each_mem_cgroup_tree(iter, memcg) {
1791
		if (iter == failed) {
1792 1793
			mem_cgroup_iter_break(memcg, iter);
			break;
1794 1795 1796
		}
		iter->oom_lock = false;
	}
1797
	return false;
1798
}
1799

1800
/*
1801
 * Has to be called with memcg_oom_lock
1802
 */
1803
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1804
{
K
KAMEZAWA Hiroyuki 已提交
1805 1806
	struct mem_cgroup *iter;

1807
	for_each_mem_cgroup_tree(iter, memcg)
1808 1809 1810 1811
		iter->oom_lock = false;
	return 0;
}

1812
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1813 1814 1815
{
	struct mem_cgroup *iter;

1816
	for_each_mem_cgroup_tree(iter, memcg)
1817 1818 1819
		atomic_inc(&iter->under_oom);
}

1820
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1821 1822 1823
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1824 1825 1826 1827 1828
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1829
	for_each_mem_cgroup_tree(iter, memcg)
1830
		atomic_add_unless(&iter->under_oom, -1, 0);
1831 1832
}

1833
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1834 1835
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1836
struct oom_wait_info {
1837
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1838 1839 1840 1841 1842 1843
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1844 1845
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1846 1847 1848
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1849
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1850 1851

	/*
1852
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1853 1854
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1855 1856
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1857 1858 1859 1860
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1861
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1862
{
1863 1864
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1865 1866
}

1867
static void memcg_oom_recover(struct mem_cgroup *memcg)
1868
{
1869 1870
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1871 1872
}

K
KAMEZAWA Hiroyuki 已提交
1873 1874 1875
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1876 1877
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
1878
{
K
KAMEZAWA Hiroyuki 已提交
1879
	struct oom_wait_info owait;
1880
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1881

1882
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1883 1884 1885 1886
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1887
	need_to_kill = true;
1888
	mem_cgroup_mark_under_oom(memcg);
1889

1890
	/* At first, try to OOM lock hierarchy under memcg.*/
1891
	spin_lock(&memcg_oom_lock);
1892
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1893 1894 1895 1896 1897
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1898
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1899
	if (!locked || memcg->oom_kill_disable)
1900 1901
		need_to_kill = false;
	if (locked)
1902
		mem_cgroup_oom_notify(memcg);
1903
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1904

1905 1906
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1907
		mem_cgroup_out_of_memory(memcg, mask, order);
1908
	} else {
K
KAMEZAWA Hiroyuki 已提交
1909
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1910
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1911
	}
1912
	spin_lock(&memcg_oom_lock);
1913
	if (locked)
1914 1915
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1916
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1917

1918
	mem_cgroup_unmark_under_oom(memcg);
1919

K
KAMEZAWA Hiroyuki 已提交
1920 1921 1922
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1923
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1924
	return true;
1925 1926
}

1927 1928 1929
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
1947 1948
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
1949
 */
1950

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
1964
	 * need to take move_lock_mem_cgroup(). Because we already hold
1965
	 * rcu_read_lock(), any calls to move_account will be delayed until
1966
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1967
	 */
1968
	if (!mem_cgroup_stolen(memcg))
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
1986
	 * should take move_lock_mem_cgroup().
1987 1988 1989 1990
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

1991 1992
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1993
{
1994
	struct mem_cgroup *memcg;
1995
	struct page_cgroup *pc = lookup_page_cgroup(page);
1996
	unsigned long uninitialized_var(flags);
1997

1998
	if (mem_cgroup_disabled())
1999
		return;
2000

2001 2002
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2003
		return;
2004 2005

	switch (idx) {
2006 2007
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2008 2009 2010
		break;
	default:
		BUG();
2011
	}
2012

2013
	this_cpu_add(memcg->stat->count[idx], val);
2014
}
2015

2016 2017 2018 2019
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2020
#define CHARGE_BATCH	32U
2021 2022
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2023
	unsigned int nr_pages;
2024
	struct work_struct work;
2025
	unsigned long flags;
2026
#define FLUSHING_CACHED_CHARGE	0
2027 2028
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2029
static DEFINE_MUTEX(percpu_charge_mutex);
2030 2031

/*
2032
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2033 2034 2035 2036
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2037
static bool consume_stock(struct mem_cgroup *memcg)
2038 2039 2040 2041 2042
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2043
	if (memcg == stock->cached && stock->nr_pages)
2044
		stock->nr_pages--;
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2058 2059 2060 2061
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2062
		if (do_swap_account)
2063 2064
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2077
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2078 2079 2080 2081
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2082
 * This will be consumed by consume_stock() function, later.
2083
 */
2084
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2085 2086 2087
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2088
	if (stock->cached != memcg) { /* reset if necessary */
2089
		drain_stock(stock);
2090
		stock->cached = memcg;
2091
	}
2092
	stock->nr_pages += nr_pages;
2093 2094 2095 2096
	put_cpu_var(memcg_stock);
}

/*
2097
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2098 2099
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2100
 */
2101
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2102
{
2103
	int cpu, curcpu;
2104

2105 2106
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2107
	curcpu = get_cpu();
2108 2109
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2110
		struct mem_cgroup *memcg;
2111

2112 2113
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2114
			continue;
2115
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2116
			continue;
2117 2118 2119 2120 2121 2122
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2123
	}
2124
	put_cpu();
2125 2126 2127 2128 2129 2130

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2131
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2132 2133 2134
			flush_work(&stock->work);
	}
out:
2135
 	put_online_cpus();
2136 2137 2138 2139 2140 2141 2142 2143
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2144
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2145
{
2146 2147 2148 2149 2150
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2151
	drain_all_stock(root_memcg, false);
2152
	mutex_unlock(&percpu_charge_mutex);
2153 2154 2155
}

/* This is a synchronous drain interface. */
2156
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2157 2158
{
	/* called when force_empty is called */
2159
	mutex_lock(&percpu_charge_mutex);
2160
	drain_all_stock(root_memcg, true);
2161
	mutex_unlock(&percpu_charge_mutex);
2162 2163
}

2164 2165 2166 2167
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2168
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2169 2170 2171
{
	int i;

2172
	spin_lock(&memcg->pcp_counter_lock);
2173
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2174
		long x = per_cpu(memcg->stat->count[i], cpu);
2175

2176 2177
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2178
	}
2179
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2180
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2181

2182 2183
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2184
	}
2185
	spin_unlock(&memcg->pcp_counter_lock);
2186 2187 2188
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2189 2190 2191 2192 2193
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2194
	struct mem_cgroup *iter;
2195

2196
	if (action == CPU_ONLINE)
2197 2198
		return NOTIFY_OK;

2199
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2200
		return NOTIFY_OK;
2201

2202
	for_each_mem_cgroup(iter)
2203 2204
		mem_cgroup_drain_pcp_counter(iter, cpu);

2205 2206 2207 2208 2209
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2220
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2221
				unsigned int nr_pages, bool oom_check)
2222
{
2223
	unsigned long csize = nr_pages * PAGE_SIZE;
2224 2225 2226 2227 2228
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2229
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2230 2231 2232 2233

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2234
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2235 2236 2237
		if (likely(!ret))
			return CHARGE_OK;

2238
		res_counter_uncharge(&memcg->res, csize);
2239 2240 2241 2242
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2243
	/*
2244 2245
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2246 2247 2248 2249
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2250
	if (nr_pages == CHARGE_BATCH)
2251 2252 2253 2254 2255
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2256
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2257
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2258
		return CHARGE_RETRY;
2259
	/*
2260 2261 2262 2263 2264 2265 2266
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2267
	 */
2268
	if (nr_pages == 1 && ret)
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2282
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2283 2284 2285 2286 2287
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2288
/*
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2308
 */
2309
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2310
				   gfp_t gfp_mask,
2311
				   unsigned int nr_pages,
2312
				   struct mem_cgroup **ptr,
2313
				   bool oom)
2314
{
2315
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2316
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2317
	struct mem_cgroup *memcg = NULL;
2318
	int ret;
2319

K
KAMEZAWA Hiroyuki 已提交
2320 2321 2322 2323 2324 2325 2326 2327
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2328

2329
	/*
2330 2331
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2332
	 * thread group leader migrates. It's possible that mm is not
2333
	 * set, if so charge the root memcg (happens for pagecache usage).
2334
	 */
2335
	if (!*ptr && !mm)
2336
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2337
again:
2338 2339 2340 2341
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2342
			goto done;
2343
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2344
			goto done;
2345
		css_get(&memcg->css);
2346
	} else {
K
KAMEZAWA Hiroyuki 已提交
2347
		struct task_struct *p;
2348

K
KAMEZAWA Hiroyuki 已提交
2349 2350 2351
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2352
		 * Because we don't have task_lock(), "p" can exit.
2353
		 * In that case, "memcg" can point to root or p can be NULL with
2354 2355 2356 2357 2358 2359
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2360
		 */
2361
		memcg = mem_cgroup_from_task(p);
2362 2363 2364
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2365 2366 2367
			rcu_read_unlock();
			goto done;
		}
2368
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2381
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2382 2383 2384 2385 2386
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2387

2388 2389
	do {
		bool oom_check;
2390

2391
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2392
		if (fatal_signal_pending(current)) {
2393
			css_put(&memcg->css);
2394
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2395
		}
2396

2397 2398 2399 2400
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2401
		}
2402

2403
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2404 2405 2406 2407
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2408
			batch = nr_pages;
2409 2410
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2411
			goto again;
2412
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2413
			css_put(&memcg->css);
2414 2415
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2416
			if (!oom) {
2417
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2418
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2419
			}
2420 2421 2422 2423
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2424
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2425
			goto bypass;
2426
		}
2427 2428
	} while (ret != CHARGE_OK);

2429
	if (batch > nr_pages)
2430 2431
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2432
done:
2433
	*ptr = memcg;
2434 2435
	return 0;
nomem:
2436
	*ptr = NULL;
2437
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2438
bypass:
2439 2440
	*ptr = root_mem_cgroup;
	return -EINTR;
2441
}
2442

2443 2444 2445 2446 2447
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2448
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2449
				       unsigned int nr_pages)
2450
{
2451
	if (!mem_cgroup_is_root(memcg)) {
2452 2453
		unsigned long bytes = nr_pages * PAGE_SIZE;

2454
		res_counter_uncharge(&memcg->res, bytes);
2455
		if (do_swap_account)
2456
			res_counter_uncharge(&memcg->memsw, bytes);
2457
	}
2458 2459
}

2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2494
	return mem_cgroup_from_css(css);
2495 2496
}

2497
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2498
{
2499
	struct mem_cgroup *memcg = NULL;
2500
	struct page_cgroup *pc;
2501
	unsigned short id;
2502 2503
	swp_entry_t ent;

2504 2505 2506
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2507
	lock_page_cgroup(pc);
2508
	if (PageCgroupUsed(pc)) {
2509 2510 2511
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2512
	} else if (PageSwapCache(page)) {
2513
		ent.val = page_private(page);
2514
		id = lookup_swap_cgroup_id(ent);
2515
		rcu_read_lock();
2516 2517 2518
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2519
		rcu_read_unlock();
2520
	}
2521
	unlock_page_cgroup(pc);
2522
	return memcg;
2523 2524
}

2525
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2526
				       struct page *page,
2527
				       unsigned int nr_pages,
2528 2529
				       enum charge_type ctype,
				       bool lrucare)
2530
{
2531
	struct page_cgroup *pc = lookup_page_cgroup(page);
2532
	struct zone *uninitialized_var(zone);
2533
	struct lruvec *lruvec;
2534
	bool was_on_lru = false;
2535
	bool anon;
2536

2537
	lock_page_cgroup(pc);
2538
	VM_BUG_ON(PageCgroupUsed(pc));
2539 2540 2541 2542
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2543 2544 2545 2546 2547 2548 2549 2550 2551

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2552
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2553
			ClearPageLRU(page);
2554
			del_page_from_lru_list(page, lruvec, page_lru(page));
2555 2556 2557 2558
			was_on_lru = true;
		}
	}

2559
	pc->mem_cgroup = memcg;
2560 2561 2562 2563 2564 2565 2566
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2567
	smp_wmb();
2568
	SetPageCgroupUsed(pc);
2569

2570 2571
	if (lrucare) {
		if (was_on_lru) {
2572
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2573 2574
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2575
			add_page_to_lru_list(page, lruvec, page_lru(page));
2576 2577 2578 2579
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2580
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2581 2582 2583 2584 2585
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2586
	unlock_page_cgroup(pc);
2587

2588 2589 2590 2591 2592
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2593
	memcg_check_events(memcg, page);
2594
}
2595

2596 2597
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2598
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2599 2600
/*
 * Because tail pages are not marked as "used", set it. We're under
2601 2602 2603
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2604
 */
2605
void mem_cgroup_split_huge_fixup(struct page *head)
2606 2607
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2608 2609
	struct page_cgroup *pc;
	int i;
2610

2611 2612
	if (mem_cgroup_disabled())
		return;
2613 2614 2615 2616 2617 2618
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2619
}
2620
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2621

2622
/**
2623
 * mem_cgroup_move_account - move account of the page
2624
 * @page: the page
2625
 * @nr_pages: number of regular pages (>1 for huge pages)
2626 2627 2628 2629 2630
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2631
 * - page is not on LRU (isolate_page() is useful.)
2632
 * - compound_lock is held when nr_pages > 1
2633
 *
2634 2635
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2636
 */
2637 2638 2639 2640
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
2641
				   struct mem_cgroup *to)
2642
{
2643 2644
	unsigned long flags;
	int ret;
2645
	bool anon = PageAnon(page);
2646

2647
	VM_BUG_ON(from == to);
2648
	VM_BUG_ON(PageLRU(page));
2649 2650 2651 2652 2653 2654 2655
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2656
	if (nr_pages > 1 && !PageTransHuge(page))
2657 2658 2659 2660 2661 2662 2663 2664
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2665
	move_lock_mem_cgroup(from, &flags);
2666

2667
	if (!anon && page_mapped(page)) {
2668 2669 2670 2671 2672
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2673
	}
2674
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2675

2676
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2677
	pc->mem_cgroup = to;
2678
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2679 2680 2681
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2682
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2683
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2684
	 * status here.
2685
	 */
2686
	move_unlock_mem_cgroup(from, &flags);
2687 2688
	ret = 0;
unlock:
2689
	unlock_page_cgroup(pc);
2690 2691 2692
	/*
	 * check events
	 */
2693 2694
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2695
out:
2696 2697 2698 2699 2700 2701 2702
	return ret;
}

/*
 * move charges to its parent.
 */

2703 2704
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2705
				  struct mem_cgroup *child)
2706 2707
{
	struct mem_cgroup *parent;
2708
	unsigned int nr_pages;
2709
	unsigned long uninitialized_var(flags);
2710 2711 2712
	int ret;

	/* Is ROOT ? */
2713
	if (mem_cgroup_is_root(child))
2714 2715
		return -EINVAL;

2716 2717 2718 2719 2720
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2721

2722
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2723

2724 2725 2726 2727 2728 2729
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
2730

2731
	if (nr_pages > 1)
2732 2733
		flags = compound_lock_irqsave(page);

2734
	ret = mem_cgroup_move_account(page, nr_pages,
2735
				pc, child, parent);
2736 2737
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
2738

2739
	if (nr_pages > 1)
2740
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
2741
	putback_lru_page(page);
2742
put:
2743
	put_page(page);
2744
out:
2745 2746 2747
	return ret;
}

2748 2749 2750 2751 2752 2753 2754
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2755
				gfp_t gfp_mask, enum charge_type ctype)
2756
{
2757
	struct mem_cgroup *memcg = NULL;
2758
	unsigned int nr_pages = 1;
2759
	bool oom = true;
2760
	int ret;
A
Andrea Arcangeli 已提交
2761

A
Andrea Arcangeli 已提交
2762
	if (PageTransHuge(page)) {
2763
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2764
		VM_BUG_ON(!PageTransHuge(page));
2765 2766 2767 2768 2769
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2770
	}
2771

2772
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2773
	if (ret == -ENOMEM)
2774
		return ret;
2775
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2776 2777 2778
	return 0;
}

2779 2780
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2781
{
2782
	if (mem_cgroup_disabled())
2783
		return 0;
2784 2785 2786
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2787
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2788
					MEM_CGROUP_CHARGE_TYPE_ANON);
2789 2790
}

2791 2792 2793
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2794
 * struct page_cgroup is acquired. This refcnt will be consumed by
2795 2796
 * "commit()" or removed by "cancel()"
 */
2797 2798 2799 2800
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
2801
{
2802
	struct mem_cgroup *memcg;
2803
	struct page_cgroup *pc;
2804
	int ret;
2805

2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
2816 2817
	if (!do_swap_account)
		goto charge_cur_mm;
2818 2819
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2820
		goto charge_cur_mm;
2821 2822
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2823
	css_put(&memcg->css);
2824 2825
	if (ret == -EINTR)
		ret = 0;
2826
	return ret;
2827
charge_cur_mm:
2828 2829 2830 2831
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2832 2833
}

2834 2835 2836 2837 2838 2839
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
2854 2855 2856
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

2857 2858 2859 2860 2861 2862 2863 2864 2865
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
2866
static void
2867
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2868
					enum charge_type ctype)
2869
{
2870
	if (mem_cgroup_disabled())
2871
		return;
2872
	if (!memcg)
2873
		return;
2874
	cgroup_exclude_rmdir(&memcg->css);
2875

2876
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2877 2878 2879
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2880 2881 2882
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2883
	 */
2884
	if (do_swap_account && PageSwapCache(page)) {
2885
		swp_entry_t ent = {.val = page_private(page)};
2886
		mem_cgroup_uncharge_swap(ent);
2887
	}
2888 2889 2890 2891 2892
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2893
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2894 2895
}

2896 2897
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2898
{
2899
	__mem_cgroup_commit_charge_swapin(page, memcg,
2900
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
2901 2902
}

2903 2904
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2905
{
2906 2907 2908 2909
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

2910
	if (mem_cgroup_disabled())
2911 2912 2913 2914 2915 2916 2917
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
2918 2919
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
2920 2921 2922 2923
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
2924 2925
}

2926
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2927 2928
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2929 2930 2931
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2932

2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2944
		batch->memcg = memcg;
2945 2946
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2947
	 * In those cases, all pages freed continuously can be expected to be in
2948 2949 2950 2951 2952 2953 2954 2955
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2956
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2957 2958
		goto direct_uncharge;

2959 2960 2961 2962 2963
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2964
	if (batch->memcg != memcg)
2965 2966
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2967
	batch->nr_pages++;
2968
	if (uncharge_memsw)
2969
		batch->memsw_nr_pages++;
2970 2971
	return;
direct_uncharge:
2972
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2973
	if (uncharge_memsw)
2974 2975 2976
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2977
}
2978

2979
/*
2980
 * uncharge if !page_mapped(page)
2981
 */
2982
static struct mem_cgroup *
2983 2984
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
2985
{
2986
	struct mem_cgroup *memcg = NULL;
2987 2988
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2989
	bool anon;
2990

2991
	if (mem_cgroup_disabled())
2992
		return NULL;
2993

2994
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
2995

A
Andrea Arcangeli 已提交
2996
	if (PageTransHuge(page)) {
2997
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2998 2999
		VM_BUG_ON(!PageTransHuge(page));
	}
3000
	/*
3001
	 * Check if our page_cgroup is valid
3002
	 */
3003
	pc = lookup_page_cgroup(page);
3004
	if (unlikely(!PageCgroupUsed(pc)))
3005
		return NULL;
3006

3007
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3008

3009
	memcg = pc->mem_cgroup;
3010

K
KAMEZAWA Hiroyuki 已提交
3011 3012 3013
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3014 3015
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3016
	switch (ctype) {
3017
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3018 3019 3020 3021 3022
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3023 3024
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
3025
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3026
		/* See mem_cgroup_prepare_migration() */
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3048
	}
K
KAMEZAWA Hiroyuki 已提交
3049

3050
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3051

3052
	ClearPageCgroupUsed(pc);
3053 3054 3055 3056 3057 3058
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3059

3060
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3061
	/*
3062
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3063 3064
	 * will never be freed.
	 */
3065
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3066
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3067 3068
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3069
	}
3070 3071 3072 3073 3074 3075
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
3076
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3077

3078
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3079 3080 3081

unlock_out:
	unlock_page_cgroup(pc);
3082
	return NULL;
3083 3084
}

3085 3086
void mem_cgroup_uncharge_page(struct page *page)
{
3087 3088 3089
	/* early check. */
	if (page_mapped(page))
		return;
3090
	VM_BUG_ON(page->mapping && !PageAnon(page));
3091 3092
	if (PageSwapCache(page))
		return;
3093
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3094 3095 3096 3097 3098
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3099
	VM_BUG_ON(page->mapping);
3100
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3101 3102
}

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3117 3118
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3139 3140 3141 3142 3143 3144
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3145
	memcg_oom_recover(batch->memcg);
3146 3147 3148 3149
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3150
#ifdef CONFIG_SWAP
3151
/*
3152
 * called after __delete_from_swap_cache() and drop "page" account.
3153 3154
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3155 3156
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3157 3158
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3159 3160 3161 3162 3163
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

3164
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3165

K
KAMEZAWA Hiroyuki 已提交
3166 3167 3168 3169 3170
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3171
		swap_cgroup_record(ent, css_id(&memcg->css));
3172
}
3173
#endif
3174

A
Andrew Morton 已提交
3175
#ifdef CONFIG_MEMCG_SWAP
3176 3177 3178 3179 3180
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3181
{
3182
	struct mem_cgroup *memcg;
3183
	unsigned short id;
3184 3185 3186 3187

	if (!do_swap_account)
		return;

3188 3189 3190
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3191
	if (memcg) {
3192 3193 3194 3195
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3196
		if (!mem_cgroup_is_root(memcg))
3197
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3198
		mem_cgroup_swap_statistics(memcg, false);
3199 3200
		mem_cgroup_put(memcg);
	}
3201
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3202
}
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3219
				struct mem_cgroup *from, struct mem_cgroup *to)
3220 3221 3222 3223 3224 3225 3226 3227
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3228
		mem_cgroup_swap_statistics(to, true);
3229
		/*
3230 3231 3232 3233 3234 3235
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3236 3237 3238 3239 3240 3241 3242 3243
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3244
				struct mem_cgroup *from, struct mem_cgroup *to)
3245 3246 3247
{
	return -EINVAL;
}
3248
#endif
K
KAMEZAWA Hiroyuki 已提交
3249

3250
/*
3251 3252
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3253
 */
3254 3255
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
3256
{
3257
	struct mem_cgroup *memcg = NULL;
3258
	struct page_cgroup *pc;
3259
	enum charge_type ctype;
3260

3261
	*memcgp = NULL;
3262

A
Andrea Arcangeli 已提交
3263
	VM_BUG_ON(PageTransHuge(page));
3264
	if (mem_cgroup_disabled())
3265
		return;
3266

3267 3268 3269
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3270 3271
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3303
	}
3304
	unlock_page_cgroup(pc);
3305 3306 3307 3308
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3309
	if (!memcg)
3310
		return;
3311

3312
	*memcgp = memcg;
3313 3314 3315 3316 3317 3318 3319
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
3320
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3321
	else
3322
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3323 3324 3325 3326 3327
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
3328
	__mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3329
}
3330

3331
/* remove redundant charge if migration failed*/
3332
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3333
	struct page *oldpage, struct page *newpage, bool migration_ok)
3334
{
3335
	struct page *used, *unused;
3336
	struct page_cgroup *pc;
3337
	bool anon;
3338

3339
	if (!memcg)
3340
		return;
3341
	/* blocks rmdir() */
3342
	cgroup_exclude_rmdir(&memcg->css);
3343
	if (!migration_ok) {
3344 3345
		used = oldpage;
		unused = newpage;
3346
	} else {
3347
		used = newpage;
3348 3349
		unused = oldpage;
	}
3350
	anon = PageAnon(used);
3351 3352 3353 3354
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
3355
	css_put(&memcg->css);
3356
	/*
3357 3358 3359
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3360
	 */
3361 3362 3363 3364 3365
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

3366
	/*
3367 3368 3369 3370 3371 3372
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3373
	 */
3374
	if (anon)
3375
		mem_cgroup_uncharge_page(used);
3376
	/*
3377 3378
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3379 3380 3381
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3382
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3383
}
3384

3385 3386 3387 3388 3389 3390 3391 3392
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
3393
	struct mem_cgroup *memcg = NULL;
3394 3395 3396 3397 3398 3399 3400 3401 3402
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
3403 3404 3405 3406 3407
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
3408 3409
	unlock_page_cgroup(pc);

3410 3411 3412 3413 3414 3415
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
3416 3417 3418 3419 3420
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3421
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3422 3423
}

3424 3425 3426 3427 3428 3429
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3430 3431 3432 3433 3434
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3454
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3455 3456 3457 3458 3459
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3460 3461
static DEFINE_MUTEX(set_limit_mutex);

3462
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3463
				unsigned long long val)
3464
{
3465
	int retry_count;
3466
	u64 memswlimit, memlimit;
3467
	int ret = 0;
3468 3469
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3470
	int enlarge;
3471 3472 3473 3474 3475 3476 3477 3478 3479

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3480

3481
	enlarge = 0;
3482
	while (retry_count) {
3483 3484 3485 3486
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3487 3488 3489
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3490
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3491 3492 3493 3494 3495 3496
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3497 3498
			break;
		}
3499 3500 3501 3502 3503

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3504
		ret = res_counter_set_limit(&memcg->res, val);
3505 3506 3507 3508 3509 3510
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3511 3512 3513 3514 3515
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3516 3517
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3518 3519 3520 3521 3522 3523
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3524
	}
3525 3526
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3527

3528 3529 3530
	return ret;
}

L
Li Zefan 已提交
3531 3532
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3533
{
3534
	int retry_count;
3535
	u64 memlimit, memswlimit, oldusage, curusage;
3536 3537
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3538
	int enlarge = 0;
3539

3540 3541 3542
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3543 3544 3545 3546 3547 3548 3549 3550
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3551
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3552 3553 3554 3555 3556 3557 3558 3559
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3560 3561 3562
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3563
		ret = res_counter_set_limit(&memcg->memsw, val);
3564 3565 3566 3567 3568 3569
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3570 3571 3572 3573 3574
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3575 3576 3577
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3578
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3579
		/* Usage is reduced ? */
3580
		if (curusage >= oldusage)
3581
			retry_count--;
3582 3583
		else
			oldusage = curusage;
3584
	}
3585 3586
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3587 3588 3589
	return ret;
}

3590
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3591 3592
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3593 3594 3595 3596 3597 3598
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3599
	unsigned long long excess;
3600
	unsigned long nr_scanned;
3601 3602 3603 3604

	if (order > 0)
		return 0;

3605
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3619
		nr_scanned = 0;
3620
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3621
						    gfp_mask, &nr_scanned);
3622
		nr_reclaimed += reclaimed;
3623
		*total_scanned += nr_scanned;
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3646
				if (next_mz == mz)
3647
					css_put(&next_mz->memcg->css);
3648
				else /* next_mz == NULL or other memcg */
3649 3650 3651
					break;
			} while (1);
		}
3652 3653
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3654 3655 3656 3657 3658 3659 3660 3661
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3662
		/* If excess == 0, no tree ops */
3663
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3664
		spin_unlock(&mctz->lock);
3665
		css_put(&mz->memcg->css);
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3678
		css_put(&next_mz->memcg->css);
3679 3680 3681
	return nr_reclaimed;
}

3682
/*
3683 3684 3685 3686
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
 * reclaim the pages page themselves - it just removes the page_cgroups.
 * Returns true if some page_cgroups were not freed, indicating that the caller
 * must retry this operation.
3687
 */
3688
static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3689
				int node, int zid, enum lru_list lru)
3690
{
K
KAMEZAWA Hiroyuki 已提交
3691 3692
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3693
	struct list_head *list;
3694 3695
	struct page *busy;
	struct zone *zone;
3696

K
KAMEZAWA Hiroyuki 已提交
3697
	zone = &NODE_DATA(node)->node_zones[zid];
3698
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3699
	list = &mz->lruvec.lists[lru];
3700

3701
	loop = mz->lru_size[lru];
3702 3703 3704 3705
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3706
		struct page_cgroup *pc;
3707 3708
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
3709
		spin_lock_irqsave(&zone->lru_lock, flags);
3710
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3711
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3712
			break;
3713
		}
3714 3715 3716
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3717
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3718
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3719 3720
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3721
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3722

3723
		pc = lookup_page_cgroup(page);
3724

3725
		if (mem_cgroup_move_parent(page, pc, memcg)) {
3726
			/* found lock contention or "pc" is obsolete. */
3727
			busy = page;
3728 3729 3730
			cond_resched();
		} else
			busy = NULL;
3731
	}
3732
	return !list_empty(list);
3733 3734 3735 3736 3737 3738
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3739
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3740
{
3741 3742 3743
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3744
	struct cgroup *cgrp = memcg->css.cgroup;
3745

3746
	css_get(&memcg->css);
3747 3748

	shrink = 0;
3749 3750 3751
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3752
move_account:
3753
	do {
3754
		ret = -EBUSY;
3755 3756
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
3757 3758
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3759
		drain_all_stock_sync(memcg);
3760
		ret = 0;
3761
		mem_cgroup_start_move(memcg);
3762
		for_each_node_state(node, N_HIGH_MEMORY) {
3763
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3764 3765
				enum lru_list lru;
				for_each_lru(lru) {
3766
					ret = mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3767
							node, zid, lru);
3768 3769 3770
					if (ret)
						break;
				}
3771
			}
3772 3773 3774
			if (ret)
				break;
		}
3775 3776
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3777
		cond_resched();
3778
	/* "ret" should also be checked to ensure all lists are empty. */
3779
	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3780
out:
3781
	css_put(&memcg->css);
3782
	return ret;
3783 3784

try_to_free:
3785 3786
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3787 3788 3789
		ret = -EBUSY;
		goto out;
	}
3790 3791
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3792 3793
	/* try to free all pages in this cgroup */
	shrink = 1;
3794
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3795
		int progress;
3796 3797 3798 3799 3800

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3801
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3802
						false);
3803
		if (!progress) {
3804
			nr_retries--;
3805
			/* maybe some writeback is necessary */
3806
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3807
		}
3808 3809

	}
K
KAMEZAWA Hiroyuki 已提交
3810
	lru_add_drain();
3811
	/* try move_account...there may be some *locked* pages. */
3812
	goto move_account;
3813 3814
}

3815
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3816 3817 3818 3819 3820
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3821 3822 3823 3824 3825 3826 3827 3828 3829
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3830
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3831
	struct cgroup *parent = cont->parent;
3832
	struct mem_cgroup *parent_memcg = NULL;
3833 3834

	if (parent)
3835
		parent_memcg = mem_cgroup_from_cont(parent);
3836 3837

	cgroup_lock();
3838 3839 3840 3841

	if (memcg->use_hierarchy == val)
		goto out;

3842
	/*
3843
	 * If parent's use_hierarchy is set, we can't make any modifications
3844 3845 3846 3847 3848 3849
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3850
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3851 3852
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3853
			memcg->use_hierarchy = val;
3854 3855 3856 3857
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3858 3859

out:
3860 3861 3862 3863 3864
	cgroup_unlock();

	return retval;
}

3865

3866
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3867
					       enum mem_cgroup_stat_index idx)
3868
{
K
KAMEZAWA Hiroyuki 已提交
3869
	struct mem_cgroup *iter;
3870
	long val = 0;
3871

3872
	/* Per-cpu values can be negative, use a signed accumulator */
3873
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3874 3875 3876 3877 3878
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3879 3880
}

3881
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3882
{
K
KAMEZAWA Hiroyuki 已提交
3883
	u64 val;
3884

3885
	if (!mem_cgroup_is_root(memcg)) {
3886
		if (!swap)
3887
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3888
		else
3889
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3890 3891
	}

3892 3893
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3894

K
KAMEZAWA Hiroyuki 已提交
3895
	if (swap)
3896
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3897 3898 3899 3900

	return val << PAGE_SHIFT;
}

3901 3902 3903
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
3904
{
3905
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3906
	char str[64];
3907
	u64 val;
3908
	int type, name, len;
3909 3910 3911

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3912 3913 3914 3915

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3916 3917
	switch (type) {
	case _MEM:
3918
		if (name == RES_USAGE)
3919
			val = mem_cgroup_usage(memcg, false);
3920
		else
3921
			val = res_counter_read_u64(&memcg->res, name);
3922 3923
		break;
	case _MEMSWAP:
3924
		if (name == RES_USAGE)
3925
			val = mem_cgroup_usage(memcg, true);
3926
		else
3927
			val = res_counter_read_u64(&memcg->memsw, name);
3928 3929 3930 3931
		break;
	default:
		BUG();
	}
3932 3933 3934

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
3935
}
3936 3937 3938 3939
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3940 3941
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3942
{
3943
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3944
	int type, name;
3945 3946 3947
	unsigned long long val;
	int ret;

3948 3949
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3950 3951 3952 3953

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3954
	switch (name) {
3955
	case RES_LIMIT:
3956 3957 3958 3959
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3960 3961
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3962 3963 3964
		if (ret)
			break;
		if (type == _MEM)
3965
			ret = mem_cgroup_resize_limit(memcg, val);
3966 3967
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3968
		break;
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3983 3984 3985 3986 3987
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3988 3989
}

3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

4017
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4018
{
4019
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4020
	int type, name;
4021

4022 4023
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
4024 4025 4026 4027

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4028
	switch (name) {
4029
	case RES_MAX_USAGE:
4030
		if (type == _MEM)
4031
			res_counter_reset_max(&memcg->res);
4032
		else
4033
			res_counter_reset_max(&memcg->memsw);
4034 4035
		break;
	case RES_FAILCNT:
4036
		if (type == _MEM)
4037
			res_counter_reset_failcnt(&memcg->res);
4038
		else
4039
			res_counter_reset_failcnt(&memcg->memsw);
4040 4041
		break;
	}
4042

4043
	return 0;
4044 4045
}

4046 4047 4048 4049 4050 4051
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4052
#ifdef CONFIG_MMU
4053 4054 4055
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4056
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4057 4058 4059 4060 4061 4062 4063 4064 4065

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4066
	memcg->move_charge_at_immigrate = val;
4067 4068 4069 4070
	cgroup_unlock();

	return 0;
}
4071 4072 4073 4074 4075 4076 4077
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4078

4079
#ifdef CONFIG_NUMA
4080
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4081
				      struct seq_file *m)
4082 4083 4084 4085
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
4086
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4087

4088
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4089 4090
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4091
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4092 4093 4094 4095
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4096
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4097 4098
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4099
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4100
				LRU_ALL_FILE);
4101 4102 4103 4104
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4105
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4106 4107
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4108
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4109
				LRU_ALL_ANON);
4110 4111 4112 4113
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4114
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4115 4116
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4117
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4118
				BIT(LRU_UNEVICTABLE));
4119 4120 4121 4122 4123 4124 4125
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4139
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4140
				 struct seq_file *m)
4141
{
4142
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4143 4144
	struct mem_cgroup *mi;
	unsigned int i;
4145

4146
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4147
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4148
			continue;
4149 4150
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4151
	}
L
Lee Schermerhorn 已提交
4152

4153 4154 4155 4156 4157 4158 4159 4160
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4161
	/* Hierarchical information */
4162 4163
	{
		unsigned long long limit, memsw_limit;
4164
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4165
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4166
		if (do_swap_account)
4167 4168
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
4169
	}
K
KOSAKI Motohiro 已提交
4170

4171 4172 4173
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4174
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4175
			continue;
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4196
	}
K
KAMEZAWA Hiroyuki 已提交
4197

K
KOSAKI Motohiro 已提交
4198 4199 4200 4201
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4202
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4203 4204 4205 4206 4207
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4208
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4209
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4210

4211 4212 4213 4214
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4215
			}
4216 4217 4218 4219
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4220 4221 4222
	}
#endif

4223 4224 4225
	return 0;
}

K
KOSAKI Motohiro 已提交
4226 4227 4228 4229
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4230
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4231 4232 4233 4234 4235 4236 4237
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4238

K
KOSAKI Motohiro 已提交
4239 4240 4241 4242 4243 4244 4245
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4246 4247 4248

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4249 4250
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4251 4252
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4253
		return -EINVAL;
4254
	}
K
KOSAKI Motohiro 已提交
4255 4256 4257

	memcg->swappiness = val;

4258 4259
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4260 4261 4262
	return 0;
}

4263 4264 4265 4266 4267 4268 4269 4270
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4271
		t = rcu_dereference(memcg->thresholds.primary);
4272
	else
4273
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4274 4275 4276 4277 4278 4279 4280

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
4281
	 * current_threshold points to threshold just below or equal to usage.
4282 4283 4284
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4285
	i = t->current_threshold;
4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4309
	t->current_threshold = i - 1;
4310 4311 4312 4313 4314 4315
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4316 4317 4318 4319 4320 4321 4322
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4333
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4334 4335 4336
{
	struct mem_cgroup_eventfd_list *ev;

4337
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4338 4339 4340 4341
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4342
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4343
{
K
KAMEZAWA Hiroyuki 已提交
4344 4345
	struct mem_cgroup *iter;

4346
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4347
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4348 4349 4350 4351
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4352 4353
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4354 4355
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4356 4357
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4358
	int i, size, ret;
4359 4360 4361 4362 4363 4364

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4365

4366
	if (type == _MEM)
4367
		thresholds = &memcg->thresholds;
4368
	else if (type == _MEMSWAP)
4369
		thresholds = &memcg->memsw_thresholds;
4370 4371 4372 4373 4374 4375
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4376
	if (thresholds->primary)
4377 4378
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4379
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4380 4381

	/* Allocate memory for new array of thresholds */
4382
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4383
			GFP_KERNEL);
4384
	if (!new) {
4385 4386 4387
		ret = -ENOMEM;
		goto unlock;
	}
4388
	new->size = size;
4389 4390

	/* Copy thresholds (if any) to new array */
4391 4392
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4393
				sizeof(struct mem_cgroup_threshold));
4394 4395
	}

4396
	/* Add new threshold */
4397 4398
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4399 4400

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4401
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4402 4403 4404
			compare_thresholds, NULL);

	/* Find current threshold */
4405
	new->current_threshold = -1;
4406
	for (i = 0; i < size; i++) {
4407
		if (new->entries[i].threshold <= usage) {
4408
			/*
4409 4410
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4411 4412
			 * it here.
			 */
4413
			++new->current_threshold;
4414 4415
		} else
			break;
4416 4417
	}

4418 4419 4420 4421 4422
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4423

4424
	/* To be sure that nobody uses thresholds */
4425 4426 4427 4428 4429 4430 4431 4432
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4433
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4434
	struct cftype *cft, struct eventfd_ctx *eventfd)
4435 4436
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4437 4438
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4439 4440
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4441
	int i, j, size;
4442 4443 4444

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4445
		thresholds = &memcg->thresholds;
4446
	else if (type == _MEMSWAP)
4447
		thresholds = &memcg->memsw_thresholds;
4448 4449 4450
	else
		BUG();

4451 4452 4453
	if (!thresholds->primary)
		goto unlock;

4454 4455 4456 4457 4458 4459
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4460 4461 4462
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4463 4464 4465
			size++;
	}

4466
	new = thresholds->spare;
4467

4468 4469
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4470 4471
		kfree(new);
		new = NULL;
4472
		goto swap_buffers;
4473 4474
	}

4475
	new->size = size;
4476 4477

	/* Copy thresholds and find current threshold */
4478 4479 4480
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4481 4482
			continue;

4483
		new->entries[j] = thresholds->primary->entries[i];
4484
		if (new->entries[j].threshold <= usage) {
4485
			/*
4486
			 * new->current_threshold will not be used
4487 4488 4489
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4490
			++new->current_threshold;
4491 4492 4493 4494
		}
		j++;
	}

4495
swap_buffers:
4496 4497
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4498 4499 4500 4501 4502 4503
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4504
	rcu_assign_pointer(thresholds->primary, new);
4505

4506
	/* To be sure that nobody uses thresholds */
4507
	synchronize_rcu();
4508
unlock:
4509 4510
	mutex_unlock(&memcg->thresholds_lock);
}
4511

K
KAMEZAWA Hiroyuki 已提交
4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4524
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4525 4526 4527 4528 4529

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4530
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4531
		eventfd_signal(eventfd, 1);
4532
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4533 4534 4535 4536

	return 0;
}

4537
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4538 4539
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4540
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4541 4542 4543 4544 4545
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4546
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4547

4548
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4549 4550 4551 4552 4553 4554
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4555
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4556 4557
}

4558 4559 4560
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4561
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4562

4563
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4564

4565
	if (atomic_read(&memcg->under_oom))
4566 4567 4568 4569 4570 4571 4572 4573 4574
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4575
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4587
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4588 4589 4590
		cgroup_unlock();
		return -EINVAL;
	}
4591
	memcg->oom_kill_disable = val;
4592
	if (!val)
4593
		memcg_oom_recover(memcg);
4594 4595 4596 4597
	cgroup_unlock();
	return 0;
}

A
Andrew Morton 已提交
4598
#ifdef CONFIG_MEMCG_KMEM
4599
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4600
{
4601
	return mem_cgroup_sockets_init(memcg, ss);
4602 4603
};

4604
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4605
{
4606
	mem_cgroup_sockets_destroy(memcg);
G
Glauber Costa 已提交
4607
}
4608
#else
4609
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4610 4611 4612
{
	return 0;
}
G
Glauber Costa 已提交
4613

4614
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4615 4616
{
}
4617 4618
#endif

B
Balbir Singh 已提交
4619 4620
static struct cftype mem_cgroup_files[] = {
	{
4621
		.name = "usage_in_bytes",
4622
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4623
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4624 4625
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4626
	},
4627 4628
	{
		.name = "max_usage_in_bytes",
4629
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4630
		.trigger = mem_cgroup_reset,
4631
		.read = mem_cgroup_read,
4632
	},
B
Balbir Singh 已提交
4633
	{
4634
		.name = "limit_in_bytes",
4635
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4636
		.write_string = mem_cgroup_write,
4637
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4638
	},
4639 4640 4641 4642
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
4643
		.read = mem_cgroup_read,
4644
	},
B
Balbir Singh 已提交
4645 4646
	{
		.name = "failcnt",
4647
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4648
		.trigger = mem_cgroup_reset,
4649
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4650
	},
4651 4652
	{
		.name = "stat",
4653
		.read_seq_string = memcg_stat_show,
4654
	},
4655 4656 4657 4658
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4659 4660 4661 4662 4663
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4664 4665 4666 4667 4668
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4669 4670 4671 4672 4673
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4674 4675
	{
		.name = "oom_control",
4676 4677
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4678 4679 4680 4681
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4682 4683 4684
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4685
		.read_seq_string = memcg_numa_stat_show,
4686 4687
	},
#endif
A
Andrew Morton 已提交
4688
#ifdef CONFIG_MEMCG_SWAP
4689 4690 4691
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4692
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4693 4694
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4695 4696 4697 4698 4699
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
4700
		.read = mem_cgroup_read,
4701 4702 4703 4704 4705
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
4706
		.read = mem_cgroup_read,
4707 4708 4709 4710 4711
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
4712
		.read = mem_cgroup_read,
4713 4714
	},
#endif
4715
	{ },	/* terminate */
4716
};
4717

4718
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4719 4720
{
	struct mem_cgroup_per_node *pn;
4721
	struct mem_cgroup_per_zone *mz;
4722
	int zone, tmp = node;
4723 4724 4725 4726 4727 4728 4729 4730
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4731 4732
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4733
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4734 4735
	if (!pn)
		return 1;
4736 4737 4738

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4739
		lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4740
		mz->usage_in_excess = 0;
4741
		mz->on_tree = false;
4742
		mz->memcg = memcg;
4743
	}
4744
	memcg->info.nodeinfo[node] = pn;
4745 4746 4747
	return 0;
}

4748
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4749
{
4750
	kfree(memcg->info.nodeinfo[node]);
4751 4752
}

4753 4754
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4755
	struct mem_cgroup *memcg;
4756
	int size = sizeof(struct mem_cgroup);
4757

4758
	/* Can be very big if MAX_NUMNODES is very big */
4759
	if (size < PAGE_SIZE)
4760
		memcg = kzalloc(size, GFP_KERNEL);
4761
	else
4762
		memcg = vzalloc(size);
4763

4764
	if (!memcg)
4765 4766
		return NULL;

4767 4768
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4769
		goto out_free;
4770 4771
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4772 4773 4774

out_free:
	if (size < PAGE_SIZE)
4775
		kfree(memcg);
4776
	else
4777
		vfree(memcg);
4778
	return NULL;
4779 4780
}

4781
/*
4782
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4783 4784 4785
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
4786
static void free_work(struct work_struct *work)
4787 4788
{
	struct mem_cgroup *memcg;
4789
	int size = sizeof(struct mem_cgroup);
4790 4791

	memcg = container_of(work, struct mem_cgroup, work_freeing);
4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
	disarm_sock_keys(memcg);
4804 4805 4806 4807
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
4808
}
4809 4810

static void free_rcu(struct rcu_head *rcu_head)
4811 4812 4813 4814
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4815
	INIT_WORK(&memcg->work_freeing, free_work);
4816 4817 4818
	schedule_work(&memcg->work_freeing);
}

4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4830
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4831
{
K
KAMEZAWA Hiroyuki 已提交
4832 4833
	int node;

4834 4835
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4836

B
Bob Liu 已提交
4837
	for_each_node(node)
4838
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4839

4840
	free_percpu(memcg->stat);
4841
	call_rcu(&memcg->rcu_freeing, free_rcu);
4842 4843
}

4844
static void mem_cgroup_get(struct mem_cgroup *memcg)
4845
{
4846
	atomic_inc(&memcg->refcnt);
4847 4848
}

4849
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4850
{
4851 4852 4853
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4854 4855 4856
		if (parent)
			mem_cgroup_put(parent);
	}
4857 4858
}

4859
static void mem_cgroup_put(struct mem_cgroup *memcg)
4860
{
4861
	__mem_cgroup_put(memcg, 1);
4862 4863
}

4864 4865 4866
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4867
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4868
{
4869
	if (!memcg->res.parent)
4870
		return NULL;
4871
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4872
}
G
Glauber Costa 已提交
4873
EXPORT_SYMBOL(parent_mem_cgroup);
4874

A
Andrew Morton 已提交
4875
#ifdef CONFIG_MEMCG_SWAP
4876 4877
static void __init enable_swap_cgroup(void)
{
4878
	if (!mem_cgroup_disabled() && really_do_swap_account)
4879 4880 4881 4882 4883 4884 4885 4886
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4887 4888 4889 4890 4891 4892
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4893
	for_each_node(node) {
4894 4895 4896 4897 4898
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4899
			goto err_cleanup;
4900 4901 4902 4903 4904 4905 4906 4907 4908 4909

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4910 4911

err_cleanup:
B
Bob Liu 已提交
4912
	for_each_node(node) {
4913 4914 4915 4916 4917 4918 4919
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4920 4921
}

L
Li Zefan 已提交
4922
static struct cgroup_subsys_state * __ref
4923
mem_cgroup_create(struct cgroup *cont)
B
Balbir Singh 已提交
4924
{
4925
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4926
	long error = -ENOMEM;
4927
	int node;
B
Balbir Singh 已提交
4928

4929 4930
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4931
		return ERR_PTR(error);
4932

B
Bob Liu 已提交
4933
	for_each_node(node)
4934
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4935
			goto free_out;
4936

4937
	/* root ? */
4938
	if (cont->parent == NULL) {
4939
		int cpu;
4940
		enable_swap_cgroup();
4941
		parent = NULL;
4942 4943
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4944
		root_mem_cgroup = memcg;
4945 4946 4947 4948 4949
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4950
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4951
	} else {
4952
		parent = mem_cgroup_from_cont(cont->parent);
4953 4954
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4955
	}
4956

4957
	if (parent && parent->use_hierarchy) {
4958 4959
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4960 4961 4962 4963 4964 4965 4966
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4967
	} else {
4968 4969
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
4970 4971 4972 4973 4974 4975 4976
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
		if (parent && parent != root_mem_cgroup)
			mem_cgroup_subsys.broken_hierarchy = true;
4977
	}
4978 4979
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
4980

K
KOSAKI Motohiro 已提交
4981
	if (parent)
4982 4983 4984 4985
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
4986
	spin_lock_init(&memcg->move_lock);
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
4998
	return &memcg->css;
4999
free_out:
5000
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5001
	return ERR_PTR(error);
B
Balbir Singh 已提交
5002 5003
}

5004
static int mem_cgroup_pre_destroy(struct cgroup *cont)
5005
{
5006
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5007

5008
	return mem_cgroup_force_empty(memcg, false);
5009 5010
}

5011
static void mem_cgroup_destroy(struct cgroup *cont)
B
Balbir Singh 已提交
5012
{
5013
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5014

5015
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
5016

5017
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5018 5019
}

5020
#ifdef CONFIG_MMU
5021
/* Handlers for move charge at task migration. */
5022 5023
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5024
{
5025 5026
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5027
	struct mem_cgroup *memcg = mc.to;
5028

5029
	if (mem_cgroup_is_root(memcg)) {
5030 5031 5032 5033 5034 5035 5036 5037
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5038
		 * "memcg" cannot be under rmdir() because we've already checked
5039 5040 5041 5042
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5043
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5044
			goto one_by_one;
5045
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5046
						PAGE_SIZE * count, &dummy)) {
5047
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5064 5065
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5066
		if (ret)
5067
			/* mem_cgroup_clear_mc() will do uncharge later */
5068
			return ret;
5069 5070
		mc.precharge++;
	}
5071 5072 5073 5074
	return ret;
}

/**
5075
 * get_mctgt_type - get target type of moving charge
5076 5077 5078
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5079
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5080 5081 5082 5083 5084 5085
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5086 5087 5088
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5089 5090 5091 5092 5093
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5094
	swp_entry_t	ent;
5095 5096 5097
};

enum mc_target_type {
5098
	MC_TARGET_NONE = 0,
5099
	MC_TARGET_PAGE,
5100
	MC_TARGET_SWAP,
5101 5102
};

D
Daisuke Nishimura 已提交
5103 5104
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5105
{
D
Daisuke Nishimura 已提交
5106
	struct page *page = vm_normal_page(vma, addr, ptent);
5107

D
Daisuke Nishimura 已提交
5108 5109 5110 5111
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5112
		if (!move_anon())
D
Daisuke Nishimura 已提交
5113
			return NULL;
5114 5115
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5116 5117 5118 5119 5120 5121 5122
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5123
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5124 5125 5126 5127 5128 5129 5130 5131
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5132 5133 5134 5135 5136
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
5137 5138 5139 5140 5141
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5142 5143 5144 5145 5146 5147 5148
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5149

5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5169 5170 5171 5172 5173 5174
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5175
		if (do_swap_account)
5176 5177
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5178
	}
5179
#endif
5180 5181 5182
	return page;
}

5183
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5184 5185 5186 5187
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5188
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5189 5190 5191 5192 5193 5194
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5195 5196
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5197 5198

	if (!page && !ent.val)
5199
		return ret;
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5215 5216
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5217
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5218 5219 5220
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5221 5222 5223 5224
	}
	return ret;
}

5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5260 5261 5262 5263 5264 5265 5266 5267
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5268 5269 5270 5271
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5272
		return 0;
5273
	}
5274

5275 5276
	if (pmd_trans_unstable(pmd))
		return 0;
5277 5278
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5279
		if (get_mctgt_type(vma, addr, *pte, NULL))
5280 5281 5282 5283
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5284 5285 5286
	return 0;
}

5287 5288 5289 5290 5291
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5292
	down_read(&mm->mmap_sem);
5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5304
	up_read(&mm->mmap_sem);
5305 5306 5307 5308 5309 5310 5311 5312 5313

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5314 5315 5316 5317 5318
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5319 5320
}

5321 5322
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5323
{
5324 5325 5326
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5327
	/* we must uncharge all the leftover precharges from mc.to */
5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5339
	}
5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5374
	spin_lock(&mc.lock);
5375 5376
	mc.from = NULL;
	mc.to = NULL;
5377
	spin_unlock(&mc.lock);
5378
	mem_cgroup_end_move(from);
5379 5380
}

5381 5382
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5383
{
5384
	struct task_struct *p = cgroup_taskset_first(tset);
5385
	int ret = 0;
5386
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5387

5388
	if (memcg->move_charge_at_immigrate) {
5389 5390 5391
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5392
		VM_BUG_ON(from == memcg);
5393 5394 5395 5396 5397

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5398 5399 5400 5401
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5402
			VM_BUG_ON(mc.moved_charge);
5403
			VM_BUG_ON(mc.moved_swap);
5404
			mem_cgroup_start_move(from);
5405
			spin_lock(&mc.lock);
5406
			mc.from = from;
5407
			mc.to = memcg;
5408
			spin_unlock(&mc.lock);
5409
			/* We set mc.moving_task later */
5410 5411 5412 5413

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5414 5415
		}
		mmput(mm);
5416 5417 5418 5419
	}
	return ret;
}

5420 5421
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5422
{
5423
	mem_cgroup_clear_mc();
5424 5425
}

5426 5427 5428
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5429
{
5430 5431 5432 5433
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5434 5435 5436 5437
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5438

5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5450
		if (mc.precharge < HPAGE_PMD_NR) {
5451 5452 5453 5454 5455 5456 5457 5458 5459
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5460
							pc, mc.from, mc.to)) {
5461 5462 5463 5464 5465 5466 5467 5468
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5469
		return 0;
5470 5471
	}

5472 5473
	if (pmd_trans_unstable(pmd))
		return 0;
5474 5475 5476 5477
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5478
		swp_entry_t ent;
5479 5480 5481 5482

		if (!mc.precharge)
			break;

5483
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5484 5485 5486 5487 5488
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5489
			if (!mem_cgroup_move_account(page, 1, pc,
5490
						     mc.from, mc.to)) {
5491
				mc.precharge--;
5492 5493
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5494 5495
			}
			putback_lru_page(page);
5496
put:			/* get_mctgt_type() gets the page */
5497 5498
			put_page(page);
			break;
5499 5500
		case MC_TARGET_SWAP:
			ent = target.ent;
5501
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5502
				mc.precharge--;
5503 5504 5505
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5506
			break;
5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5521
		ret = mem_cgroup_do_precharge(1);
5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5565
	up_read(&mm->mmap_sem);
5566 5567
}

5568 5569
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5570
{
5571
	struct task_struct *p = cgroup_taskset_first(tset);
5572
	struct mm_struct *mm = get_task_mm(p);
5573 5574

	if (mm) {
5575 5576
		if (mc.to)
			mem_cgroup_move_charge(mm);
5577 5578
		mmput(mm);
	}
5579 5580
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5581
}
5582
#else	/* !CONFIG_MMU */
5583 5584
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5585 5586 5587
{
	return 0;
}
5588 5589
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5590 5591
{
}
5592 5593
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5594 5595 5596
{
}
#endif
B
Balbir Singh 已提交
5597

B
Balbir Singh 已提交
5598 5599 5600 5601
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5602
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5603
	.destroy = mem_cgroup_destroy,
5604 5605
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5606
	.attach = mem_cgroup_move_task,
5607
	.base_cftypes = mem_cgroup_files,
5608
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5609
	.use_id = 1,
5610
	.__DEPRECATED_clear_css_refs = true,
B
Balbir Singh 已提交
5611
};
5612

A
Andrew Morton 已提交
5613
#ifdef CONFIG_MEMCG_SWAP
5614 5615 5616
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5617
	if (!strcmp(s, "1"))
5618
		really_do_swap_account = 1;
5619
	else if (!strcmp(s, "0"))
5620 5621 5622
		really_do_swap_account = 0;
	return 1;
}
5623
__setup("swapaccount=", enable_swap_account);
5624 5625

#endif