memcontrol.c 58.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
K
KAMEZAWA Hiroyuki 已提交
24
#include <linux/pagemap.h>
25
#include <linux/smp.h>
26
#include <linux/page-flags.h>
27
#include <linux/backing-dev.h>
28 29
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
30
#include <linux/mutex.h>
31
#include <linux/slab.h>
32 33 34
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
35
#include <linux/seq_file.h>
36
#include <linux/vmalloc.h>
37
#include <linux/mm_inline.h>
38
#include <linux/page_cgroup.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include "internal.h"
B
Balbir Singh 已提交
40

41 42
#include <asm/uaccess.h>

43 44
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
45

46 47 48 49 50 51 52 53
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

54
static DEFINE_MUTEX(memcg_tasklist);	/* can be hold under cgroup_mutex */
55

56 57 58 59 60 61 62 63 64
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */
65 66
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
67 68 69 70 71 72 73 74 75

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
76
	struct mem_cgroup_stat_cpu cpustat[0];
77 78 79 80 81
};

/*
 * For accounting under irq disable, no need for increment preempt count.
 */
82
static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
83 84
		enum mem_cgroup_stat_index idx, int val)
{
85
	stat->count[idx] += val;
86 87 88 89 90 91 92 93 94 95 96 97
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

K
KAMEZAWA Hiroyuki 已提交
98 99 100 101 102 103 104 105 106
static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
{
	s64 ret;

	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
	return ret;
}

107 108 109 110
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
111 112 113
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
114 115
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
116 117

	struct zone_reclaim_stat reclaim_stat;
118 119 120 121 122 123 124 125 126 127 128 129
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

B
Balbir Singh 已提交
130 131 132 133 134 135 136
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
137 138 139
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
140 141 142 143 144 145 146
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
147 148 149 150
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
151 152 153 154
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
155
	struct mem_cgroup_lru_info info;
156

K
KOSAKI Motohiro 已提交
157 158 159 160 161
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

162
	int	prev_priority;	/* for recording reclaim priority */
163 164 165

	/*
	 * While reclaiming in a hiearchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
166
	 * reclaimed from.
167
	 */
K
KAMEZAWA Hiroyuki 已提交
168
	int last_scanned_child;
169 170 171 172
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
173
	unsigned long	last_oom_jiffies;
174
	atomic_t	refcnt;
175

K
KOSAKI Motohiro 已提交
176 177
	unsigned int	swappiness;

178
	/*
179
	 * statistics. This must be placed at the end of memcg.
180 181
	 */
	struct mem_cgroup_stat stat;
B
Balbir Singh 已提交
182 183
};

184 185 186
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
187
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
188
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
189
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
190 191 192
	NR_CHARGE_TYPE,
};

193 194 195 196
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
197 198
static const unsigned long
pcg_default_flags[NR_CHARGE_TYPE] = {
K
KAMEZAWA Hiroyuki 已提交
199 200 201
	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
	PCGF_USED | PCGF_LOCK, /* Anon */
	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
202
	0, /* FORCE */
203 204
};

205 206 207 208 209 210 211 212 213
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)

static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
214
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
215

216 217 218
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
219 220 221
{
	int val = (charge)? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
222
	struct mem_cgroup_stat_cpu *cpustat;
K
KAMEZAWA Hiroyuki 已提交
223
	int cpu = get_cpu();
224

K
KAMEZAWA Hiroyuki 已提交
225
	cpustat = &stat->cpustat[cpu];
226
	if (PageCgroupCache(pc))
227
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
228
	else
229
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
230 231

	if (charge)
232
		__mem_cgroup_stat_add_safe(cpustat,
233 234
				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
	else
235
		__mem_cgroup_stat_add_safe(cpustat,
236
				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
K
KAMEZAWA Hiroyuki 已提交
237
	put_cpu();
238 239
}

240
static struct mem_cgroup_per_zone *
241 242 243 244 245
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

246
static struct mem_cgroup_per_zone *
247 248 249 250 251
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);
252

253 254 255
	if (!mem)
		return NULL;

256 257 258
	return mem_cgroup_zoneinfo(mem, nid, zid);
}

K
KAMEZAWA Hiroyuki 已提交
259
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
260
					enum lru_list idx)
261 262 263 264 265 266 267 268 269 270 271
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
272 273
}

274
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
275 276 277 278 279 280
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

281
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
282
{
283 284 285 286 287 288 289 290
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

291 292 293 294
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

295 296 297
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
298 299 300

	if (!mm)
		return NULL;
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
{
	if (!mem)
		return true;
	return css_is_removed(&mem->css);
}

K
KAMEZAWA Hiroyuki 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

K
KAMEZAWA Hiroyuki 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
372

K
KAMEZAWA Hiroyuki 已提交
373 374 375 376 377
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup *mem;
	struct mem_cgroup_per_zone *mz;
378

379
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
380 381 382
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
383
	if (list_empty(&pc->lru) || !pc->mem_cgroup)
K
KAMEZAWA Hiroyuki 已提交
384
		return;
385 386 387 388
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
389 390
	mz = page_cgroup_zoneinfo(pc);
	mem = pc->mem_cgroup;
391
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
K
KAMEZAWA Hiroyuki 已提交
392 393
	list_del_init(&pc->lru);
	return;
394 395
}

K
KAMEZAWA Hiroyuki 已提交
396
void mem_cgroup_del_lru(struct page *page)
397
{
K
KAMEZAWA Hiroyuki 已提交
398 399
	mem_cgroup_del_lru_list(page, page_lru(page));
}
400

K
KAMEZAWA Hiroyuki 已提交
401 402 403 404
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
405

406
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
407
		return;
408

K
KAMEZAWA Hiroyuki 已提交
409
	pc = lookup_page_cgroup(page);
410 411 412 413
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
414 415 416 417 418 419
	smp_rmb();
	/* unused page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
420 421
}

K
KAMEZAWA Hiroyuki 已提交
422
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
423
{
K
KAMEZAWA Hiroyuki 已提交
424 425
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
426

427
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
428 429
		return;
	pc = lookup_page_cgroup(page);
430 431 432 433
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
434 435
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
436
		return;
437

K
KAMEZAWA Hiroyuki 已提交
438
	mz = page_cgroup_zoneinfo(pc);
439
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
K
KAMEZAWA Hiroyuki 已提交
440 441
	list_add(&pc->lru, &mz->lists[lru]);
}
442

K
KAMEZAWA Hiroyuki 已提交
443
/*
444 445 446 447 448
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
449
 */
450
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
451
{
452 453 454 455 456 457 458 459 460 461 462 463
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
464 465
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
	if (PageLRU(page) && list_empty(&pc->lru))
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
480 481 482
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
483
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
484 485 486
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
487 488
}

489 490 491
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
492
	struct mem_cgroup *curr = NULL;
493 494

	task_lock(task);
495 496 497
	rcu_read_lock();
	curr = try_get_mem_cgroup_from_mm(task->mm);
	rcu_read_unlock();
498
	task_unlock(task);
499 500 501 502 503 504 505
	if (!curr)
		return 0;
	if (curr->use_hierarchy)
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
506 507 508
	return ret;
}

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
/*
 * Calculate mapped_ratio under memory controller. This will be used in
 * vmscan.c for deteremining we have to reclaim mapped pages.
 */
int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
{
	long total, rss;

	/*
	 * usage is recorded in bytes. But, here, we assume the number of
	 * physical pages can be represented by "long" on any arch.
	 */
	total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
	rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	return (int)((rss * 100L) / total);
}
525

526 527 528 529 530
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
K
KOSAKI Motohiro 已提交
531 532 533 534 535 536 537
	int prev_priority;

	spin_lock(&mem->reclaim_param_lock);
	prev_priority = mem->prev_priority;
	spin_unlock(&mem->reclaim_param_lock);

	return prev_priority;
538 539 540 541
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
542
	spin_lock(&mem->reclaim_param_lock);
543 544
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
545
	spin_unlock(&mem->reclaim_param_lock);
546 547 548 549
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
550
	spin_lock(&mem->reclaim_param_lock);
551
	mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
552
	spin_unlock(&mem->reclaim_param_lock);
553 554
}

555
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
556 557 558
{
	unsigned long active;
	unsigned long inactive;
559 560
	unsigned long gb;
	unsigned long inactive_ratio;
561

K
KAMEZAWA Hiroyuki 已提交
562 563
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
564

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
592 593 594 595 596
		return 1;

	return 0;
}

597 598 599 600 601 602 603 604 605 606 607
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
628 629 630 631 632 633 634 635
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
636 637 638 639 640 641 642
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

643 644 645 646 647
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
648
					int active, int file)
649 650 651 652 653 654
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
655
	struct page_cgroup *pc, *tmp;
656 657 658
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
659
	int lru = LRU_FILE * !!file + !!active;
660

661
	BUG_ON(!mem_cont);
662
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
663
	src = &mz->lists[lru];
664

665 666
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
667
		if (scan >= nr_to_scan)
668
			break;
K
KAMEZAWA Hiroyuki 已提交
669 670

		page = pc->page;
671 672
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
673
		if (unlikely(!PageLRU(page)))
674 675
			continue;

H
Hugh Dickins 已提交
676
		scan++;
677
		if (__isolate_lru_page(page, mode, file) == 0) {
678 679 680 681 682 683 684 685 686
			list_move(&page->lru, dst);
			nr_taken++;
		}
	}

	*scanned = scan;
	return nr_taken;
}

687 688 689
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

690 691 692 693 694 695 696 697 698 699 700 701
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

735
/*
K
KAMEZAWA Hiroyuki 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
778 779
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
780 781 782
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
783 784
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
785 786
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
787
				   gfp_t gfp_mask, bool noswap, bool shrink)
788
{
K
KAMEZAWA Hiroyuki 已提交
789 790 791 792 793 794 795 796 797 798 799
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;

	while (loop < 2) {
		victim = mem_cgroup_select_victim(root_mem);
		if (victim == root_mem)
			loop++;
		if (!mem_cgroup_local_usage(&victim->stat)) {
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
800 801
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
802 803 804 805
		/* we use swappiness of local cgroup */
		ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
						   get_swappiness(victim));
		css_put(&victim->css);
806 807 808 809 810 811 812
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
813
		total += ret;
814
		if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
815
			return 1 + total;
816
	}
K
KAMEZAWA Hiroyuki 已提交
817
	return total;
818 819
}

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
bool mem_cgroup_oom_called(struct task_struct *task)
{
	bool ret = false;
	struct mem_cgroup *mem;
	struct mm_struct *mm;

	rcu_read_lock();
	mm = task->mm;
	if (!mm)
		mm = &init_mm;
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
		ret = true;
	rcu_read_unlock();
	return ret;
}
836 837 838 839 840 841 842 843 844 845 846 847 848

static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
{
	mem->last_oom_jiffies = jiffies;
	return 0;
}

static void record_last_oom(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
}


849 850 851
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
852
 */
853
static int __mem_cgroup_try_charge(struct mm_struct *mm,
854 855
			gfp_t gfp_mask, struct mem_cgroup **memcg,
			bool oom)
856
{
857
	struct mem_cgroup *mem, *mem_over_limit;
858
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
859
	struct res_counter *fail_res;
860 861 862 863 864 865 866

	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
		/* Don't account this! */
		*memcg = NULL;
		return 0;
	}

867
	/*
868 869
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
870 871 872
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
873 874 875
	mem = *memcg;
	if (likely(!mem)) {
		mem = try_get_mem_cgroup_from_mm(mm);
876
		*memcg = mem;
877
	} else {
878
		css_get(&mem->css);
879
	}
880 881 882 883
	if (unlikely(!mem))
		return 0;

	VM_BUG_ON(mem_cgroup_is_obsolete(mem));
884

885 886 887
	while (1) {
		int ret;
		bool noswap = false;
888

889
		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
890 891 892
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
893 894
			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
							&fail_res);
895 896 897 898 899
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
			res_counter_uncharge(&mem->res, PAGE_SIZE);
			noswap = true;
900 901 902 903 904 905 906
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

907
		if (!(gfp_mask & __GFP_WAIT))
908
			goto nomem;
909

910
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
911
							noswap, false);
912 913
		if (ret)
			continue;
914 915

		/*
916 917 918 919 920
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
921
		 *
922
		 */
923 924
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
925 926

		if (!nr_retries--) {
927
			if (oom) {
928
				mutex_lock(&memcg_tasklist);
929
				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
930
				mutex_unlock(&memcg_tasklist);
931
				record_last_oom(mem_over_limit);
932
			}
933
			goto nomem;
934
		}
935
	}
936 937 938 939 940
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
}
941

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
{
	struct mem_cgroup *mem;
	swp_entry_t ent;

	if (!PageSwapCache(page))
		return NULL;

	ent.val = page_private(page);
	mem = lookup_swap_cgroup(ent);
	if (!mem)
		return NULL;
	if (!css_tryget(&mem->css))
		return NULL;
	return mem;
}

959
/*
960
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
961 962 963 964 965 966 967 968 969 970
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
971 972 973 974 975

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
		res_counter_uncharge(&mem->res, PAGE_SIZE);
976 977
		if (do_swap_account)
			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
978
		css_put(&mem->css);
979
		return;
980
	}
981
	pc->mem_cgroup = mem;
K
KAMEZAWA Hiroyuki 已提交
982
	smp_wmb();
983
	pc->flags = pcg_default_flags[ctype];
984

K
KAMEZAWA Hiroyuki 已提交
985
	mem_cgroup_charge_statistics(mem, pc, true);
986 987

	unlock_page_cgroup(pc);
988
}
989

990 991 992 993 994 995 996
/**
 * mem_cgroup_move_account - move account of the page
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
997
 * - page is not on LRU (isolate_page() is useful.)
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
 *
 * returns 0 at success,
 * returns -EBUSY when lock is busy or "pc" is unstable.
 *
 * This function does "uncharge" from old cgroup but doesn't do "charge" to
 * new cgroup. It should be done by a caller.
 */

static int mem_cgroup_move_account(struct page_cgroup *pc,
	struct mem_cgroup *from, struct mem_cgroup *to)
{
	struct mem_cgroup_per_zone *from_mz, *to_mz;
	int nid, zid;
	int ret = -EBUSY;

	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1014
	VM_BUG_ON(PageLRU(pc->page));
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029

	nid = page_cgroup_nid(pc);
	zid = page_cgroup_zid(pc);
	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);

	if (!trylock_page_cgroup(pc))
		return ret;

	if (!PageCgroupUsed(pc))
		goto out;

	if (pc->mem_cgroup != from)
		goto out;

K
KAMEZAWA Hiroyuki 已提交
1030 1031 1032 1033
	res_counter_uncharge(&from->res, PAGE_SIZE);
	mem_cgroup_charge_statistics(from, pc, false);
	if (do_swap_account)
		res_counter_uncharge(&from->memsw, PAGE_SIZE);
1034 1035 1036
	css_put(&from->css);

	css_get(&to->css);
K
KAMEZAWA Hiroyuki 已提交
1037 1038 1039
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
	ret = 0;
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
out:
	unlock_page_cgroup(pc);
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1053
	struct page *page = pc->page;
1054 1055 1056 1057 1058 1059 1060 1061 1062
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

K
KAMEZAWA Hiroyuki 已提交
1063

1064 1065
	parent = mem_cgroup_from_cont(pcg);

K
KAMEZAWA Hiroyuki 已提交
1066

1067
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1068
	if (ret || !parent)
1069 1070
		return ret;

1071 1072 1073 1074
	if (!get_page_unless_zero(page)) {
		ret = -EBUSY;
		goto uncharge;
	}
K
KAMEZAWA Hiroyuki 已提交
1075 1076 1077 1078 1079

	ret = isolate_lru_page(page);

	if (ret)
		goto cancel;
1080 1081 1082

	ret = mem_cgroup_move_account(pc, child, parent);

K
KAMEZAWA Hiroyuki 已提交
1083 1084 1085
	putback_lru_page(page);
	if (!ret) {
		put_page(page);
1086 1087
		/* drop extra refcnt by try_charge() */
		css_put(&parent->css);
K
KAMEZAWA Hiroyuki 已提交
1088
		return 0;
1089
	}
1090

K
KAMEZAWA Hiroyuki 已提交
1091
cancel:
1092 1093 1094 1095 1096
	put_page(page);
uncharge:
	/* drop extra refcnt by try_charge() */
	css_put(&parent->css);
	/* uncharge if move fails */
K
KAMEZAWA Hiroyuki 已提交
1097 1098 1099
	res_counter_uncharge(&parent->res, PAGE_SIZE);
	if (do_swap_account)
		res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1100 1101 1102
	return ret;
}

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
1124
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1125
	if (ret || !mem)
1126 1127 1128
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
1129 1130 1131
	return 0;
}

1132 1133
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
1134
{
1135
	if (mem_cgroup_disabled())
1136
		return 0;
1137 1138
	if (PageCompound(page))
		return 0;
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
1150
	return mem_cgroup_charge_common(page, mm, gfp_mask,
1151
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1152 1153
}

1154 1155
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
1156
{
1157 1158 1159
	struct mem_cgroup *mem = NULL;
	int ret;

1160
	if (mem_cgroup_disabled())
1161
		return 0;
1162 1163
	if (PageCompound(page))
		return 0;
1164 1165 1166 1167 1168 1169 1170 1171
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
1172 1173
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
1174 1175 1176 1177
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

1178 1179 1180 1181 1182 1183 1184

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
1185 1186
			return 0;
		}
1187
		unlock_page_cgroup(pc);
1188 1189
	}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	if (do_swap_account && PageSwapCache(page)) {
		mem = try_get_mem_cgroup_from_swapcache(page);
		if (mem)
			mm = NULL;
		  else
			mem = NULL;
		/* SwapCache may be still linked to LRU now. */
		mem_cgroup_lru_del_before_commit_swapcache(page);
	}

	if (unlikely(!mm && !mem))
1201
		mm = &init_mm;
1202

1203 1204
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
1205
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223

	ret = mem_cgroup_charge_common(page, mm, gfp_mask,
				MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
	if (mem)
		css_put(&mem->css);
	if (PageSwapCache(page))
		mem_cgroup_lru_add_after_commit_swapcache(page);

	if (do_swap_account && !ret && PageSwapCache(page)) {
		swp_entry_t ent = {.val = page_private(page)};
		/* avoid double counting */
		mem = swap_cgroup_record(ent, NULL);
		if (mem) {
			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
			mem_cgroup_put(mem);
		}
	}
	return ret;
1224 1225
}

1226 1227 1228 1229 1230 1231
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
 * struct page_cgroup is aquired. This refcnt will be cumsumed by
 * "commit()" or removed by "cancel()"
 */
1232 1233 1234 1235 1236
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
1237
	int ret;
1238

1239
	if (mem_cgroup_disabled())
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
	 * the pte, and even removed page from swap cache: return success
	 * to go on to do_swap_page()'s pte_same() test, which should fail.
	 */
	if (!PageSwapCache(page))
		return 0;
1251
	mem = try_get_mem_cgroup_from_swapcache(page);
1252 1253
	if (!mem)
		goto charge_cur_mm;
1254
	*ptr = mem;
1255 1256 1257 1258
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
1259 1260 1261 1262 1263 1264
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
	return __mem_cgroup_try_charge(mm, mask, ptr, true);
}

1265 1266 1267 1268
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	struct page_cgroup *pc;

1269
	if (mem_cgroup_disabled())
1270 1271 1272 1273
		return;
	if (!ptr)
		return;
	pc = lookup_page_cgroup(page);
1274
	mem_cgroup_lru_del_before_commit_swapcache(page);
1275
	__mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1276
	mem_cgroup_lru_add_after_commit_swapcache(page);
1277 1278 1279
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
1280 1281 1282
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
1283
	 */
1284
	if (do_swap_account && PageSwapCache(page)) {
1285 1286 1287 1288 1289 1290 1291 1292 1293
		swp_entry_t ent = {.val = page_private(page)};
		struct mem_cgroup *memcg;
		memcg = swap_cgroup_record(ent, NULL);
		if (memcg) {
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
			mem_cgroup_put(memcg);
		}

	}
K
KAMEZAWA Hiroyuki 已提交
1294
	/* add this page(page_cgroup) to the LRU we want. */
1295

1296 1297 1298 1299
}

void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
1300
	if (mem_cgroup_disabled())
1301 1302 1303 1304
		return;
	if (!mem)
		return;
	res_counter_uncharge(&mem->res, PAGE_SIZE);
1305 1306
	if (do_swap_account)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1307 1308 1309 1310
	css_put(&mem->css);
}


1311
/*
1312
 * uncharge if !page_mapped(page)
1313
 */
1314
static struct mem_cgroup *
1315
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1316
{
H
Hugh Dickins 已提交
1317
	struct page_cgroup *pc;
1318
	struct mem_cgroup *mem = NULL;
1319
	struct mem_cgroup_per_zone *mz;
1320

1321
	if (mem_cgroup_disabled())
1322
		return NULL;
1323

K
KAMEZAWA Hiroyuki 已提交
1324
	if (PageSwapCache(page))
1325
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
1326

1327
	/*
1328
	 * Check if our page_cgroup is valid
1329
	 */
1330 1331
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
1332
		return NULL;
1333

1334
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
1335

1336 1337
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		if (page_mapped(page))
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
1355
	}
K
KAMEZAWA Hiroyuki 已提交
1356

1357 1358 1359
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
1360
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
1361

1362
	ClearPageCgroupUsed(pc);
1363 1364 1365 1366 1367 1368
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
1369

1370
	mz = page_cgroup_zoneinfo(pc);
1371
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
1372

K
KAMEZAWA Hiroyuki 已提交
1373 1374 1375
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
1376

1377
	return mem;
K
KAMEZAWA Hiroyuki 已提交
1378 1379 1380

unlock_out:
	unlock_page_cgroup(pc);
1381
	return NULL;
1382 1383
}

1384 1385
void mem_cgroup_uncharge_page(struct page *page)
{
1386 1387 1388 1389 1390
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
1391 1392 1393 1394 1395 1396
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
1397
	VM_BUG_ON(page->mapping);
1398 1399 1400
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
/*
 * called from __delete_from_swap_cache() and drop "page" account.
 * memcg information is recorded to swap_cgroup of "ent"
 */
void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
{
	struct mem_cgroup *memcg;

	memcg = __mem_cgroup_uncharge_common(page,
					MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
	/* record memcg information */
	if (do_swap_account && memcg) {
		swap_cgroup_record(ent, memcg);
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
1416 1417
	if (memcg)
		css_put(&memcg->css);
1418 1419 1420 1421 1422 1423 1424 1425
}

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
1426
{
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	struct mem_cgroup *memcg;

	if (!do_swap_account)
		return;

	memcg = swap_cgroup_record(ent, NULL);
	if (memcg) {
		res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
		mem_cgroup_put(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
1437
}
1438
#endif
K
KAMEZAWA Hiroyuki 已提交
1439

1440
/*
1441 1442
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
1443
 */
1444
int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1445 1446
{
	struct page_cgroup *pc;
1447 1448
	struct mem_cgroup *mem = NULL;
	int ret = 0;
1449

1450
	if (mem_cgroup_disabled())
1451 1452
		return 0;

1453 1454 1455
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
1456 1457 1458
		mem = pc->mem_cgroup;
		css_get(&mem->css);
	}
1459
	unlock_page_cgroup(pc);
1460

1461
	if (mem) {
1462
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1463 1464
		css_put(&mem->css);
	}
1465
	*ptr = mem;
1466
	return ret;
1467
}
1468

1469
/* remove redundant charge if migration failed*/
1470 1471
void mem_cgroup_end_migration(struct mem_cgroup *mem,
		struct page *oldpage, struct page *newpage)
1472
{
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	struct page *target, *unused;
	struct page_cgroup *pc;
	enum charge_type ctype;

	if (!mem)
		return;

	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
		target = oldpage;
		unused = NULL;
	} else {
		target = newpage;
		unused = oldpage;
	}

	if (PageAnon(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/* unused page is not on radix-tree now. */
K
KAMEZAWA Hiroyuki 已提交
1497
	if (unused)
1498 1499 1500
		__mem_cgroup_uncharge_common(unused, ctype);

	pc = lookup_page_cgroup(target);
1501
	/*
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
	 * So, double-counting is effectively avoided.
	 */
	__mem_cgroup_commit_charge(mem, pc, ctype);

	/*
	 * Both of oldpage and newpage are still under lock_page().
	 * Then, we don't have to care about race in radix-tree.
	 * But we have to be careful that this page is unmapped or not.
	 *
	 * There is a case for !page_mapped(). At the start of
	 * migration, oldpage was mapped. But now, it's zapped.
	 * But we know *target* page is not freed/reused under us.
	 * mem_cgroup_uncharge_page() does all necessary checks.
1516
	 */
1517 1518
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		mem_cgroup_uncharge_page(target);
1519
}
1520

1521 1522 1523 1524 1525
/*
 * A call to try to shrink memory usage under specified resource controller.
 * This is typically used for page reclaiming for shmem for reducing side
 * effect of page allocation from shmem, which is used by some mem_cgroup.
 */
1526 1527 1528
int mem_cgroup_shrink_usage(struct page *page,
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
1529
{
1530
	struct mem_cgroup *mem = NULL;
1531 1532 1533
	int progress = 0;
	int retry = MEM_CGROUP_RECLAIM_RETRIES;

1534
	if (mem_cgroup_disabled())
1535
		return 0;
1536 1537 1538 1539
	if (page)
		mem = try_get_mem_cgroup_from_swapcache(page);
	if (!mem && mm)
		mem = try_get_mem_cgroup_from_mm(mm);
1540
	if (unlikely(!mem))
1541
		return 0;
1542 1543

	do {
1544 1545
		progress = mem_cgroup_hierarchical_reclaim(mem,
					gfp_mask, true, false);
1546
		progress += mem_cgroup_check_under_limit(mem);
1547 1548 1549 1550 1551 1552 1553 1554
	} while (!progress && --retry);

	css_put(&mem->css);
	if (!retry)
		return -ENOMEM;
	return 0;
}

1555 1556
static DEFINE_MUTEX(set_limit_mutex);

1557
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1558
				unsigned long long val)
1559
{
1560
	int retry_count;
1561
	int progress;
1562
	u64 memswlimit;
1563
	int ret = 0;
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1575

1576
	while (retry_count) {
1577 1578 1579 1580
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
1591 1592
			break;
		}
1593 1594 1595 1596 1597 1598
		ret = res_counter_set_limit(&memcg->res, val);
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

1599
		progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1600 1601 1602 1603 1604 1605 1606
						   false, true);
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
1607
	}
1608

1609 1610 1611 1612 1613 1614
	return ret;
}

int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
				unsigned long long val)
{
1615
	int retry_count;
1616
	u64 memlimit, oldusage, curusage;
1617 1618
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
1619 1620 1621

	if (!do_swap_account)
		return -EINVAL;
1622 1623 1624
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
		ret = res_counter_set_limit(&memcg->memsw, val);
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

1648
		mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true);
1649
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1650
		/* Usage is reduced ? */
1651
		if (curusage >= oldusage)
1652
			retry_count--;
1653 1654
		else
			oldusage = curusage;
1655 1656 1657 1658
	}
	return ret;
}

1659 1660 1661 1662
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
1663
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
1664
				int node, int zid, enum lru_list lru)
1665
{
K
KAMEZAWA Hiroyuki 已提交
1666 1667
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
1668
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
1669
	unsigned long flags, loop;
1670
	struct list_head *list;
1671
	int ret = 0;
1672

K
KAMEZAWA Hiroyuki 已提交
1673 1674
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
1675
	list = &mz->lists[lru];
1676

1677 1678 1679 1680 1681 1682
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
1683
		spin_lock_irqsave(&zone->lru_lock, flags);
1684
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
1685
			spin_unlock_irqrestore(&zone->lru_lock, flags);
1686
			break;
1687 1688 1689 1690 1691
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
			busy = 0;
K
KAMEZAWA Hiroyuki 已提交
1692
			spin_unlock_irqrestore(&zone->lru_lock, flags);
1693 1694
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1695
		spin_unlock_irqrestore(&zone->lru_lock, flags);
1696

K
KAMEZAWA Hiroyuki 已提交
1697
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1698
		if (ret == -ENOMEM)
1699
			break;
1700 1701 1702 1703 1704 1705 1706

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
1707
	}
K
KAMEZAWA Hiroyuki 已提交
1708

1709 1710 1711
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
1712 1713 1714 1715 1716 1717
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
1718
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1719
{
1720 1721 1722
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1723
	struct cgroup *cgrp = mem->css.cgroup;
1724

1725
	css_get(&mem->css);
1726 1727

	shrink = 0;
1728 1729 1730
	/* should free all ? */
	if (free_all)
		goto try_to_free;
1731
move_account:
1732
	while (mem->res.usage > 0) {
1733
		ret = -EBUSY;
1734 1735 1736 1737
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
1738
			goto out;
1739 1740
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
1741
		ret = 0;
1742
		for_each_node_state(node, N_HIGH_MEMORY) {
1743
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1744
				enum lru_list l;
1745 1746
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
1747
							node, zid, l);
1748 1749 1750
					if (ret)
						break;
				}
1751
			}
1752 1753 1754 1755 1756 1757
			if (ret)
				break;
		}
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
1758
		cond_resched();
1759 1760 1761 1762 1763
	}
	ret = 0;
out:
	css_put(&mem->css);
	return ret;
1764 1765

try_to_free:
1766 1767
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1768 1769 1770
		ret = -EBUSY;
		goto out;
	}
1771 1772
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
1773 1774 1775 1776
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
1777 1778 1779 1780 1781

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
1782 1783
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
1784
		if (!progress) {
1785
			nr_retries--;
1786 1787 1788
			/* maybe some writeback is necessary */
			congestion_wait(WRITE, HZ/10);
		}
1789 1790

	}
K
KAMEZAWA Hiroyuki 已提交
1791
	lru_add_drain();
1792 1793 1794 1795 1796
	/* try move_account...there may be some *locked* pages. */
	if (mem->res.usage)
		goto move_account;
	ret = 0;
	goto out;
1797 1798
}

1799 1800 1801 1802 1803 1804
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
	 * If parent's use_hiearchy is set, we can't make any modifications
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

1843
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
1844
{
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	u64 val = 0;
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
		val = res_counter_read_u64(&mem->res, name);
		break;
	case _MEMSWAP:
		if (do_swap_account)
			val = res_counter_read_u64(&mem->memsw, name);
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
1864
}
1865 1866 1867 1868
/*
 * The user of this function is...
 * RES_LIMIT.
 */
1869 1870
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
1871
{
1872
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1873
	int type, name;
1874 1875 1876
	unsigned long long val;
	int ret;

1877 1878 1879
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
1880 1881 1882
	case RES_LIMIT:
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
1883 1884 1885
		if (ret)
			break;
		if (type == _MEM)
1886
			ret = mem_cgroup_resize_limit(memcg, val);
1887 1888
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
1889 1890 1891 1892 1893 1894
		break;
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
1895 1896
}

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

1925
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1926 1927
{
	struct mem_cgroup *mem;
1928
	int type, name;
1929 1930

	mem = mem_cgroup_from_cont(cont);
1931 1932 1933
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
1934
	case RES_MAX_USAGE:
1935 1936 1937 1938
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
1939 1940
		break;
	case RES_FAILCNT:
1941 1942 1943 1944
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
1945 1946
		break;
	}
1947
	return 0;
1948 1949
}

K
KAMEZAWA Hiroyuki 已提交
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
	MCS_PGPGIN,
	MCS_PGPGOUT,
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
1967 1968
};

K
KAMEZAWA Hiroyuki 已提交
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	s->stat[MCS_RSS] += val * PAGE_SIZE;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
	s->stat[MCS_PGPGIN] += val;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
	s->stat[MCS_PGPGOUT] += val;

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

2020 2021
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
2022 2023
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
2024
	struct mcs_total_stat mystat;
2025 2026
	int i;

K
KAMEZAWA Hiroyuki 已提交
2027 2028
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
2029

K
KAMEZAWA Hiroyuki 已提交
2030 2031
	for (i = 0; i < NR_MCS_STAT; i++)
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
L
Lee Schermerhorn 已提交
2032

K
KAMEZAWA Hiroyuki 已提交
2033
	/* Hierarchical information */
2034 2035 2036 2037 2038 2039 2040
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
2041

K
KAMEZAWA Hiroyuki 已提交
2042 2043 2044 2045 2046 2047
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
	for (i = 0; i < NR_MCS_STAT; i++)
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);


K
KOSAKI Motohiro 已提交
2048
#ifdef CONFIG_DEBUG_VM
2049
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

2077 2078 2079
	return 0;
}

K
KOSAKI Motohiro 已提交
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
2092

K
KOSAKI Motohiro 已提交
2093 2094 2095 2096 2097 2098 2099
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
2100 2101 2102

	cgroup_lock();

K
KOSAKI Motohiro 已提交
2103 2104
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
2105 2106
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
2107
		return -EINVAL;
2108
	}
K
KOSAKI Motohiro 已提交
2109 2110 2111 2112 2113

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

2114 2115
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
2116 2117 2118
	return 0;
}

2119

B
Balbir Singh 已提交
2120 2121
static struct cftype mem_cgroup_files[] = {
	{
2122
		.name = "usage_in_bytes",
2123
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2124
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2125
	},
2126 2127
	{
		.name = "max_usage_in_bytes",
2128
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2129
		.trigger = mem_cgroup_reset,
2130 2131
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
2132
	{
2133
		.name = "limit_in_bytes",
2134
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2135
		.write_string = mem_cgroup_write,
2136
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2137 2138 2139
	},
	{
		.name = "failcnt",
2140
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2141
		.trigger = mem_cgroup_reset,
2142
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2143
	},
2144 2145
	{
		.name = "stat",
2146
		.read_map = mem_control_stat_show,
2147
	},
2148 2149 2150 2151
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
2152 2153 2154 2155 2156
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
2157 2158 2159 2160 2161
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
B
Balbir Singh 已提交
2162 2163
};

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

2205 2206 2207
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
2208
	struct mem_cgroup_per_zone *mz;
2209
	enum lru_list l;
2210
	int zone, tmp = node;
2211 2212 2213 2214 2215 2216 2217 2218
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
2219 2220 2221
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2222 2223
	if (!pn)
		return 1;
2224

2225 2226
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
2227 2228 2229

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
2230 2231
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
2232
	}
2233 2234 2235
	return 0;
}

2236 2237 2238 2239 2240
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

2241 2242 2243 2244 2245 2246
static int mem_cgroup_size(void)
{
	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
	return sizeof(struct mem_cgroup) + cpustat_size;
}

2247 2248 2249
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
2250
	int size = mem_cgroup_size();
2251

2252 2253
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
2254
	else
2255
		mem = vmalloc(size);
2256 2257

	if (mem)
2258
		memset(mem, 0, size);
2259 2260 2261
	return mem;
}

2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

2273
static void __mem_cgroup_free(struct mem_cgroup *mem)
2274
{
K
KAMEZAWA Hiroyuki 已提交
2275 2276
	int node;

K
KAMEZAWA Hiroyuki 已提交
2277 2278
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
2279 2280 2281
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

2282
	if (mem_cgroup_size() < PAGE_SIZE)
2283 2284 2285 2286 2287
		kfree(mem);
	else
		vfree(mem);
}

2288 2289 2290 2291 2292 2293 2294
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

static void mem_cgroup_put(struct mem_cgroup *mem)
{
2295 2296
	if (atomic_dec_and_test(&mem->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
2297
		__mem_cgroup_free(mem);
2298 2299 2300
		if (parent)
			mem_cgroup_put(parent);
	}
2301 2302
}

2303 2304 2305 2306 2307 2308 2309 2310 2311
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
2312

2313 2314 2315
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
2316
	if (!mem_cgroup_disabled() && really_do_swap_account)
2317 2318 2319 2320 2321 2322 2323 2324
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

L
Li Zefan 已提交
2325
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
2326 2327
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
2328
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
2329
	long error = -ENOMEM;
2330
	int node;
B
Balbir Singh 已提交
2331

2332 2333
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
2334
		return ERR_PTR(error);
2335

2336 2337 2338
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
2339
	/* root ? */
2340
	if (cont->parent == NULL) {
2341
		enable_swap_cgroup();
2342
		parent = NULL;
2343
	} else {
2344
		parent = mem_cgroup_from_cont(cont->parent);
2345 2346
		mem->use_hierarchy = parent->use_hierarchy;
	}
2347

2348 2349 2350
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
2351 2352 2353 2354 2355 2356 2357
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
2358 2359 2360 2361
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
2362
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
2363
	spin_lock_init(&mem->reclaim_param_lock);
2364

K
KOSAKI Motohiro 已提交
2365 2366
	if (parent)
		mem->swappiness = get_swappiness(parent);
2367
	atomic_set(&mem->refcnt, 1);
B
Balbir Singh 已提交
2368
	return &mem->css;
2369
free_out:
2370
	__mem_cgroup_free(mem);
K
KAMEZAWA Hiroyuki 已提交
2371
	return ERR_PTR(error);
B
Balbir Singh 已提交
2372 2373
}

2374
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2375 2376 2377
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2378 2379

	return mem_cgroup_force_empty(mem, false);
2380 2381
}

B
Balbir Singh 已提交
2382 2383 2384
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
2385 2386 2387
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
2388 2389 2390 2391 2392
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
2393 2394 2395 2396 2397 2398 2399 2400
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
2401 2402
}

B
Balbir Singh 已提交
2403 2404 2405 2406 2407
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p)
{
2408
	mutex_lock(&memcg_tasklist);
B
Balbir Singh 已提交
2409
	/*
2410 2411
	 * FIXME: It's better to move charges of this process from old
	 * memcg to new memcg. But it's just on TODO-List now.
B
Balbir Singh 已提交
2412
	 */
2413
	mutex_unlock(&memcg_tasklist);
B
Balbir Singh 已提交
2414 2415
}

B
Balbir Singh 已提交
2416 2417 2418 2419
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
2420
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
2421 2422
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
B
Balbir Singh 已提交
2423
	.attach = mem_cgroup_move_task,
2424
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
2425
	.use_id = 1,
B
Balbir Singh 已提交
2426
};
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif