memcontrol.c 184.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
57
#include "internal.h"
G
Glauber Costa 已提交
58
#include <net/sock.h>
M
Michal Hocko 已提交
59
#include <net/ip.h>
G
Glauber Costa 已提交
60
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
61

62 63
#include <asm/uaccess.h>

64 65
#include <trace/events/vmscan.h>

66
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 68
EXPORT_SYMBOL(mem_cgroup_subsys);

69
#define MEM_CGROUP_RECLAIM_RETRIES	5
70
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
71

A
Andrew Morton 已提交
72
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
73
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74
int do_swap_account __read_mostly;
75 76

/* for remember boot option*/
A
Andrew Morton 已提交
77
#ifdef CONFIG_MEMCG_SWAP_ENABLED
78 79 80 81 82
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

83
#else
84
#define do_swap_account		0
85 86 87
#endif


88 89 90
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
91
	"rss_huge",
92
	"mapped_file",
93
	"writeback",
94 95 96
	"swap",
};

97 98 99
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
100 101
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 103
	MEM_CGROUP_EVENTS_NSTATS,
};
104 105 106 107 108 109 110 111

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

112 113 114 115 116 117 118 119
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

120 121 122 123 124 125 126 127
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
128
	MEM_CGROUP_TARGET_SOFTLIMIT,
129
	MEM_CGROUP_TARGET_NUMAINFO,
130 131
	MEM_CGROUP_NTARGETS,
};
132 133 134
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
135

136
struct mem_cgroup_stat_cpu {
137
	long count[MEM_CGROUP_STAT_NSTATS];
138
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
139
	unsigned long nr_page_events;
140
	unsigned long targets[MEM_CGROUP_NTARGETS];
141 142
};

143
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
144 145 146 147
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
148
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
149 150
	unsigned long last_dead_count;

151 152 153 154
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

155 156 157 158
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
159
	struct lruvec		lruvec;
160
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
161

162 163
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

164 165 166 167
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
168
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
169
						/* use container_of	   */
170 171 172 173 174 175
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

196 197 198 199 200
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
201
/* For threshold */
202
struct mem_cgroup_threshold_ary {
203
	/* An array index points to threshold just below or equal to usage. */
204
	int current_threshold;
205 206 207 208 209
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
210 211 212 213 214 215 216 217 218 219 220 221

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
222 223 224 225 226
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
227

228 229
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
230

B
Balbir Singh 已提交
231 232 233 234 235 236 237
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
238 239 240
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
241 242 243 244 245 246 247
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
248

249 250 251
	/* vmpressure notifications */
	struct vmpressure vmpressure;

252 253 254 255
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
256

257 258 259 260
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
261 262 263 264
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
265
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
266 267 268

	bool		oom_lock;
	atomic_t	under_oom;
269
	atomic_t	oom_wakeups;
270

271
	int	swappiness;
272 273
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
274

275 276 277
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

278 279 280 281
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
282
	struct mem_cgroup_thresholds thresholds;
283

284
	/* thresholds for mem+swap usage. RCU-protected */
285
	struct mem_cgroup_thresholds memsw_thresholds;
286

K
KAMEZAWA Hiroyuki 已提交
287 288
	/* For oom notifier event fd */
	struct list_head oom_notify;
289

290 291 292 293
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
294
	unsigned long move_charge_at_immigrate;
295 296 297 298
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
299 300
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
301
	/*
302
	 * percpu counter.
303
	 */
304
	struct mem_cgroup_stat_cpu __percpu *stat;
305 306 307 308 309 310
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
311

M
Michal Hocko 已提交
312
	atomic_t	dead_count;
M
Michal Hocko 已提交
313
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
314 315
	struct tcp_memcontrol tcp_mem;
#endif
316 317 318 319 320 321 322 323
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
324 325 326 327 328 329 330

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
331

332 333
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
334 335
};

336 337 338 339 340 341
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

342 343 344
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
345
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
346
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
347 348
};

349 350 351
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
352 353 354 355 356 357

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
358 359 360 361 362 363

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

364 365 366 367 368
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

369 370 371 372 373
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

374 375
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
376 377 378 379 380
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
381 382 383 384 385 386 387 388 389
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
390 391
#endif

392 393
/* Stuffs for move charges at task migration. */
/*
394 395
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
396 397
 */
enum move_type {
398
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
399
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
400 401 402
	NR_MOVE_TYPE,
};

403 404
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
405
	spinlock_t	  lock; /* for from, to */
406 407
	struct mem_cgroup *from;
	struct mem_cgroup *to;
408
	unsigned long immigrate_flags;
409
	unsigned long precharge;
410
	unsigned long moved_charge;
411
	unsigned long moved_swap;
412 413 414
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
415
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
416 417
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
418

D
Daisuke Nishimura 已提交
419 420
static bool move_anon(void)
{
421
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
422 423
}

424 425
static bool move_file(void)
{
426
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
427 428
}

429 430 431 432
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
433
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
434
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
435

436 437
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
438
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
439
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
440
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
441 442 443
	NR_CHARGE_TYPE,
};

444
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
445 446 447 448
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
449
	_KMEM,
G
Glauber Costa 已提交
450 451
};

452 453
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
454
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
455 456
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
457

458 459 460 461 462 463 464 465
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

466 467 468 469 470 471 472
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

473 474
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
475
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
476 477
}

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

496 497 498 499 500
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
501
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
502
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
503 504 505

void sock_update_memcg(struct sock *sk)
{
506
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
507
		struct mem_cgroup *memcg;
508
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
509 510 511

		BUG_ON(!sk->sk_prot->proto_cgroup);

512 513 514 515 516 517 518 519 520 521
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
522
			css_get(&sk->sk_cgrp->memcg->css);
523 524 525
			return;
		}

G
Glauber Costa 已提交
526 527
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
528
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
529 530
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
531
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
532 533 534 535 536 537 538 539
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
540
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
541 542 543
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
544
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
545 546
	}
}
G
Glauber Costa 已提交
547 548 549 550 551 552 553 554 555

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
556

557 558 559 560 561 562 563 564 565 566 567 568
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

569
#ifdef CONFIG_MEMCG_KMEM
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
588 589
int memcg_limited_groups_array_size;

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

605 606 607 608 609 610
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
611
struct static_key memcg_kmem_enabled_key;
612
EXPORT_SYMBOL(memcg_kmem_enabled_key);
613 614 615

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
616
	if (memcg_kmem_is_active(memcg)) {
617
		static_key_slow_dec(&memcg_kmem_enabled_key);
618 619
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
620 621 622 623 624
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
625 626 627 628 629 630 631 632 633 634 635 636 637
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

638
static void drain_all_stock_async(struct mem_cgroup *memcg);
639

640
static struct mem_cgroup_per_zone *
641
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
642
{
643
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
644
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
645 646
}

647
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
648
{
649
	return &memcg->css;
650 651
}

652
static struct mem_cgroup_per_zone *
653
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
654
{
655 656
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
657

658
	return mem_cgroup_zoneinfo(memcg, nid, zid);
659 660
}

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

static void
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
	unsigned long long excess;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
	mctz = soft_limit_tree_from_page(page);

	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
			spin_unlock(&mctz->lock);
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node(node) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
838
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
839
				 enum mem_cgroup_stat_index idx)
840
{
841
	long val = 0;
842 843
	int cpu;

844 845
	get_online_cpus();
	for_each_online_cpu(cpu)
846
		val += per_cpu(memcg->stat->count[idx], cpu);
847
#ifdef CONFIG_HOTPLUG_CPU
848 849 850
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
851 852
#endif
	put_online_cpus();
853 854 855
	return val;
}

856
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
857 858 859
					 bool charge)
{
	int val = (charge) ? 1 : -1;
860
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
861 862
}

863
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
864 865 866 867 868 869
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
870
		val += per_cpu(memcg->stat->events[idx], cpu);
871
#ifdef CONFIG_HOTPLUG_CPU
872 873 874
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
875 876 877 878
#endif
	return val;
}

879
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
880
					 struct page *page,
881
					 bool anon, int nr_pages)
882
{
883 884
	preempt_disable();

885 886 887 888 889 890
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
891
				nr_pages);
892
	else
893
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
894
				nr_pages);
895

896 897 898 899
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

900 901
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
902
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
903
	else {
904
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
905 906
		nr_pages = -nr_pages; /* for event */
	}
907

908
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
909

910
	preempt_enable();
911 912
}

913
unsigned long
914
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
915 916 917 918 919 920 921 922
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
923
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
924
			unsigned int lru_mask)
925 926
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
927
	enum lru_list lru;
928 929
	unsigned long ret = 0;

930
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
931

H
Hugh Dickins 已提交
932 933 934
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
935 936 937 938 939
	}
	return ret;
}

static unsigned long
940
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
941 942
			int nid, unsigned int lru_mask)
{
943 944 945
	u64 total = 0;
	int zid;

946
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
947 948
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
949

950 951
	return total;
}
952

953
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
954
			unsigned int lru_mask)
955
{
956
	int nid;
957 958
	u64 total = 0;

959
	for_each_node_state(nid, N_MEMORY)
960
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
961
	return total;
962 963
}

964 965
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
966 967 968
{
	unsigned long val, next;

969
	val = __this_cpu_read(memcg->stat->nr_page_events);
970
	next = __this_cpu_read(memcg->stat->targets[target]);
971
	/* from time_after() in jiffies.h */
972 973 974 975 976
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
977 978 979
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
980 981 982 983 984 985 986 987
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
988
	}
989
	return false;
990 991 992 993 994 995
}

/*
 * Check events in order.
 *
 */
996
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
997
{
998
	preempt_disable();
999
	/* threshold event is triggered in finer grain than soft limit */
1000 1001
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1002
		bool do_softlimit;
1003
		bool do_numainfo __maybe_unused;
1004

1005 1006
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1007 1008 1009 1010 1011 1012
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1013
		mem_cgroup_threshold(memcg);
1014 1015
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1016
#if MAX_NUMNODES > 1
1017
		if (unlikely(do_numainfo))
1018
			atomic_inc(&memcg->numainfo_events);
1019
#endif
1020 1021
	} else
		preempt_enable();
1022 1023
}

1024
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1025
{
1026 1027 1028 1029 1030 1031 1032 1033
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1034
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1035 1036
}

1037
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1038
{
1039
	struct mem_cgroup *memcg = NULL;
1040 1041 1042

	if (!mm)
		return NULL;
1043 1044 1045 1046 1047 1048 1049
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1050 1051
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1052
			break;
1053
	} while (!css_tryget(&memcg->css));
1054
	rcu_read_unlock();
1055
	return memcg;
1056 1057
}

1058 1059 1060 1061 1062 1063 1064
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1065
		struct mem_cgroup *last_visited)
1066
{
1067
	struct cgroup_subsys_state *prev_css, *next_css;
1068

1069
	prev_css = last_visited ? &last_visited->css : NULL;
1070
skip_node:
1071
	next_css = css_next_descendant_pre(prev_css, &root->css);
1072 1073 1074 1075 1076 1077 1078 1079

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
1080 1081 1082
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

1083 1084 1085
		if (css_tryget(&mem->css))
			return mem;
		else {
1086
			prev_css = next_css;
1087 1088 1089 1090 1091 1092 1093
			goto skip_node;
		}
	}

	return NULL;
}

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1163
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1164
				   struct mem_cgroup *prev,
1165
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1166
{
1167
	struct mem_cgroup *memcg = NULL;
1168
	struct mem_cgroup *last_visited = NULL;
1169

1170 1171
	if (mem_cgroup_disabled())
		return NULL;
1172

1173 1174
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1175

1176
	if (prev && !reclaim)
1177
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1178

1179 1180
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1181
			goto out_css_put;
1182
		return root;
1183
	}
K
KAMEZAWA Hiroyuki 已提交
1184

1185
	rcu_read_lock();
1186
	while (!memcg) {
1187
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1188
		int uninitialized_var(seq);
1189

1190 1191 1192 1193 1194 1195 1196
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1197
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1198
				iter->last_visited = NULL;
1199 1200
				goto out_unlock;
			}
M
Michal Hocko 已提交
1201

1202
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1203
		}
K
KAMEZAWA Hiroyuki 已提交
1204

1205
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1206

1207
		if (reclaim) {
1208
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1209

M
Michal Hocko 已提交
1210
			if (!memcg)
1211 1212 1213 1214
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1215

1216
		if (prev && !memcg)
1217
			goto out_unlock;
1218
	}
1219 1220
out_unlock:
	rcu_read_unlock();
1221 1222 1223 1224
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1225
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1226
}
K
KAMEZAWA Hiroyuki 已提交
1227

1228 1229 1230 1231 1232 1233 1234
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1235 1236 1237 1238 1239 1240
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1241

1242 1243 1244 1245 1246 1247
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1248
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1249
	     iter != NULL;				\
1250
	     iter = mem_cgroup_iter(root, iter, NULL))
1251

1252
#define for_each_mem_cgroup(iter)			\
1253
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1254
	     iter != NULL;				\
1255
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1256

1257
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1258
{
1259
	struct mem_cgroup *memcg;
1260 1261

	rcu_read_lock();
1262 1263
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1264 1265 1266 1267
		goto out;

	switch (idx) {
	case PGFAULT:
1268 1269 1270 1271
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1272 1273 1274 1275 1276 1277 1278
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1279
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1280

1281 1282 1283
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1284
 * @memcg: memcg of the wanted lruvec
1285 1286 1287 1288 1289 1290 1291 1292 1293
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1294
	struct lruvec *lruvec;
1295

1296 1297 1298 1299
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1300 1301

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1312 1313
}

K
KAMEZAWA Hiroyuki 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1327

1328
/**
1329
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1330
 * @page: the page
1331
 * @zone: zone of the page
1332
 */
1333
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1334 1335
{
	struct mem_cgroup_per_zone *mz;
1336 1337
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1338
	struct lruvec *lruvec;
1339

1340 1341 1342 1343
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1344

K
KAMEZAWA Hiroyuki 已提交
1345
	pc = lookup_page_cgroup(page);
1346
	memcg = pc->mem_cgroup;
1347 1348

	/*
1349
	 * Surreptitiously switch any uncharged offlist page to root:
1350 1351 1352 1353 1354 1355 1356
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1357
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1358 1359
		pc->mem_cgroup = memcg = root_mem_cgroup;

1360
	mz = page_cgroup_zoneinfo(memcg, page);
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1371
}
1372

1373
/**
1374 1375 1376 1377
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1378
 *
1379 1380
 * This function must be called when a page is added to or removed from an
 * lru list.
1381
 */
1382 1383
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1384 1385
{
	struct mem_cgroup_per_zone *mz;
1386
	unsigned long *lru_size;
1387 1388 1389 1390

	if (mem_cgroup_disabled())
		return;

1391 1392 1393 1394
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1395
}
1396

1397
/*
1398
 * Checks whether given mem is same or in the root_mem_cgroup's
1399 1400
 * hierarchy subtree
 */
1401 1402
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1403
{
1404 1405
	if (root_memcg == memcg)
		return true;
1406
	if (!root_memcg->use_hierarchy || !memcg)
1407
		return false;
1408 1409 1410 1411 1412 1413 1414 1415
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1416
	rcu_read_lock();
1417
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1418 1419
	rcu_read_unlock();
	return ret;
1420 1421
}

1422 1423
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1424
{
1425
	struct mem_cgroup *curr = NULL;
1426
	struct task_struct *p;
1427
	bool ret;
1428

1429
	p = find_lock_task_mm(task);
1430 1431 1432 1433 1434 1435 1436 1437 1438
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1439
		rcu_read_lock();
1440 1441 1442
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1443
		rcu_read_unlock();
1444
	}
1445
	if (!curr)
1446
		return false;
1447
	/*
1448
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1449
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1450 1451
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1452
	 */
1453
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1454
	css_put(&curr->css);
1455 1456 1457
	return ret;
}

1458
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1459
{
1460
	unsigned long inactive_ratio;
1461
	unsigned long inactive;
1462
	unsigned long active;
1463
	unsigned long gb;
1464

1465 1466
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1467

1468 1469 1470 1471 1472 1473
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1474
	return inactive * inactive_ratio < active;
1475 1476
}

1477 1478 1479
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1480
/**
1481
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1482
 * @memcg: the memory cgroup
1483
 *
1484
 * Returns the maximum amount of memory @mem can be charged with, in
1485
 * pages.
1486
 */
1487
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1488
{
1489 1490
	unsigned long long margin;

1491
	margin = res_counter_margin(&memcg->res);
1492
	if (do_swap_account)
1493
		margin = min(margin, res_counter_margin(&memcg->memsw));
1494
	return margin >> PAGE_SHIFT;
1495 1496
}

1497
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1498 1499
{
	/* root ? */
T
Tejun Heo 已提交
1500
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1501 1502
		return vm_swappiness;

1503
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1504 1505
}

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1520 1521 1522 1523

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1524
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1525
{
1526
	atomic_inc(&memcg_moving);
1527
	atomic_inc(&memcg->moving_account);
1528 1529 1530
	synchronize_rcu();
}

1531
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1532
{
1533 1534 1535 1536
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1537 1538
	if (memcg) {
		atomic_dec(&memcg_moving);
1539
		atomic_dec(&memcg->moving_account);
1540
	}
1541
}
1542

1543 1544 1545
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1546 1547
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1548 1549 1550 1551 1552 1553 1554
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1555
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1556 1557
{
	VM_BUG_ON(!rcu_read_lock_held());
1558
	return atomic_read(&memcg->moving_account) > 0;
1559
}
1560

1561
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1562
{
1563 1564
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1565
	bool ret = false;
1566 1567 1568 1569 1570 1571 1572 1573 1574
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1575

1576 1577
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1578 1579
unlock:
	spin_unlock(&mc.lock);
1580 1581 1582
	return ret;
}

1583
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1584 1585
{
	if (mc.moving_task && current != mc.moving_task) {
1586
		if (mem_cgroup_under_move(memcg)) {
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1599 1600 1601 1602
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1603
 * see mem_cgroup_stolen(), too.
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1617
#define K(x) ((x) << (PAGE_SHIFT-10))
1618
/**
1619
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1637 1638
	struct mem_cgroup *iter;
	unsigned int i;
1639

1640
	if (!p)
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1659
	pr_info("Task in %s killed", memcg_name);
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1672
	pr_cont(" as a result of limit of %s\n", memcg_name);
1673 1674
done:

1675
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1676 1677 1678
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1679
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1680 1681 1682
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1683
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1684 1685 1686
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1711 1712
}

1713 1714 1715 1716
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1717
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1718 1719
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1720 1721
	struct mem_cgroup *iter;

1722
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1723
		num++;
1724 1725 1726
	return num;
}

D
David Rientjes 已提交
1727 1728 1729
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1730
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1731 1732 1733
{
	u64 limit;

1734 1735
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1736
	/*
1737
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1738
	 */
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1753 1754
}

1755 1756
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1757 1758 1759 1760 1761 1762 1763
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1764
	/*
1765 1766 1767
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1768
	 */
1769
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1770 1771 1772 1773 1774
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1775 1776
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1777
		struct css_task_iter it;
1778 1779
		struct task_struct *task;

1780 1781
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1794
				css_task_iter_end(&it);
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1811
		css_task_iter_end(&it);
1812 1813 1814 1815 1816 1817 1818 1819 1820
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1857 1858
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1859
 * @memcg: the target memcg
1860 1861 1862 1863 1864 1865 1866
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1867
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1868 1869
		int nid, bool noswap)
{
1870
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1871 1872 1873
		return true;
	if (noswap || !total_swap_pages)
		return false;
1874
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1875 1876 1877 1878
		return true;
	return false;

}
1879
#if MAX_NUMNODES > 1
1880 1881 1882 1883 1884 1885 1886

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1887
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1888 1889
{
	int nid;
1890 1891 1892 1893
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1894
	if (!atomic_read(&memcg->numainfo_events))
1895
		return;
1896
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1897 1898 1899
		return;

	/* make a nodemask where this memcg uses memory from */
1900
	memcg->scan_nodes = node_states[N_MEMORY];
1901

1902
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1903

1904 1905
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1906
	}
1907

1908 1909
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1924
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1925 1926 1927
{
	int node;

1928 1929
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1930

1931
	node = next_node(node, memcg->scan_nodes);
1932
	if (node == MAX_NUMNODES)
1933
		node = first_node(memcg->scan_nodes);
1934 1935 1936 1937 1938 1939 1940 1941 1942
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1943
	memcg->last_scanned_node = node;
1944 1945 1946
	return node;
}

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

1982
#else
1983
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1984 1985 1986
{
	return 0;
}
1987

1988 1989 1990 1991
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
1992 1993
#endif

1994
/*
1995 1996
 * A group is eligible for the soft limit reclaim if
 * 	a) it is over its soft limit
A
Andrew Morton 已提交
1997
 *	b) any parent up the hierarchy is over its soft limit
1998
 */
1999
bool mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg)
2000
{
2001
	struct mem_cgroup *parent = memcg;
2002 2003

	if (res_counter_soft_limit_excess(&memcg->res))
2004
		return true;
2005 2006

	/*
2007 2008
	 * If any parent up the hierarchy is over its soft limit then we
	 * have to obey and reclaim from this group as well.
2009
	 */
A
Andrew Morton 已提交
2010
	while ((parent = parent_mem_cgroup(parent))) {
2011
		if (res_counter_soft_limit_excess(&parent->res))
2012
			return true;
2013
	}
2014

2015
	return false;
2016 2017
}

2018 2019
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
2020 2021 2022 2023
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
2024
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2025
{
2026
	struct mem_cgroup *iter, *failed = NULL;
2027

2028 2029
	spin_lock(&memcg_oom_lock);

2030
	for_each_mem_cgroup_tree(iter, memcg) {
2031
		if (iter->oom_lock) {
2032 2033 2034 2035 2036
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2037 2038
			mem_cgroup_iter_break(memcg, iter);
			break;
2039 2040
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2041
	}
K
KAMEZAWA Hiroyuki 已提交
2042

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
2054 2055
		}
	}
2056 2057 2058 2059

	spin_unlock(&memcg_oom_lock);

	return !failed;
2060
}
2061

2062
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2063
{
K
KAMEZAWA Hiroyuki 已提交
2064 2065
	struct mem_cgroup *iter;

2066
	spin_lock(&memcg_oom_lock);
2067
	for_each_mem_cgroup_tree(iter, memcg)
2068
		iter->oom_lock = false;
2069
	spin_unlock(&memcg_oom_lock);
2070 2071
}

2072
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2073 2074 2075
{
	struct mem_cgroup *iter;

2076
	for_each_mem_cgroup_tree(iter, memcg)
2077 2078 2079
		atomic_inc(&iter->under_oom);
}

2080
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2081 2082 2083
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2084 2085 2086 2087 2088
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2089
	for_each_mem_cgroup_tree(iter, memcg)
2090
		atomic_add_unless(&iter->under_oom, -1, 0);
2091 2092
}

K
KAMEZAWA Hiroyuki 已提交
2093 2094
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2095
struct oom_wait_info {
2096
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2097 2098 2099 2100 2101 2102
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2103 2104
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2105 2106 2107
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2108
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2109 2110

	/*
2111
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2112 2113
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2114 2115
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2116 2117 2118 2119
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2120
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2121
{
2122
	atomic_inc(&memcg->oom_wakeups);
2123 2124
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2125 2126
}

2127
static void memcg_oom_recover(struct mem_cgroup *memcg)
2128
{
2129 2130
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2131 2132
}

K
KAMEZAWA Hiroyuki 已提交
2133
/*
2134
 * try to call OOM killer
K
KAMEZAWA Hiroyuki 已提交
2135
 */
2136
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2137
{
2138
	bool locked;
2139
	int wakeups;
K
KAMEZAWA Hiroyuki 已提交
2140

2141 2142 2143 2144
	if (!current->memcg_oom.may_oom)
		return;

	current->memcg_oom.in_memcg_oom = 1;
2145

K
KAMEZAWA Hiroyuki 已提交
2146
	/*
2147 2148 2149 2150 2151
	 * As with any blocking lock, a contender needs to start
	 * listening for wakeups before attempting the trylock,
	 * otherwise it can miss the wakeup from the unlock and sleep
	 * indefinitely.  This is just open-coded because our locking
	 * is so particular to memcg hierarchies.
K
KAMEZAWA Hiroyuki 已提交
2152
	 */
2153
	wakeups = atomic_read(&memcg->oom_wakeups);
2154 2155 2156 2157
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

2158
	if (locked)
2159
		mem_cgroup_oom_notify(memcg);
K
KAMEZAWA Hiroyuki 已提交
2160

2161 2162
	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
2163
		mem_cgroup_out_of_memory(memcg, mask, order);
2164 2165 2166 2167 2168 2169 2170
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
2171
	} else {
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
		/*
		 * A system call can just return -ENOMEM, but if this
		 * is a page fault and somebody else is handling the
		 * OOM already, we need to sleep on the OOM waitqueue
		 * for this memcg until the situation is resolved.
		 * Which can take some time because it might be
		 * handled by a userspace task.
		 *
		 * However, this is the charge context, which means
		 * that we may sit on a large call stack and hold
		 * various filesystem locks, the mmap_sem etc. and we
		 * don't want the OOM handler to deadlock on them
		 * while we sit here and wait.  Store the current OOM
		 * context in the task_struct, then return -ENOMEM.
		 * At the end of the page fault handler, with the
		 * stack unwound, pagefault_out_of_memory() will check
		 * back with us by calling
		 * mem_cgroup_oom_synchronize(), possibly putting the
		 * task to sleep.
		 */
		current->memcg_oom.oom_locked = locked;
		current->memcg_oom.wakeups = wakeups;
		css_get(&memcg->css);
		current->memcg_oom.wait_on_memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2196
	}
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
 *
 * This has to be called at the end of a page fault if the the memcg
 * OOM handler was enabled and the fault is returning %VM_FAULT_OOM.
 *
 * Memcg supports userspace OOM handling, so failed allocations must
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
 * the end of the page fault to put the task to sleep and clean up the
 * OOM state.
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
 * finalized, %false otherwise.
 */
bool mem_cgroup_oom_synchronize(void)
{
	struct oom_wait_info owait;
	struct mem_cgroup *memcg;

	/* OOM is global, do not handle */
	if (!current->memcg_oom.in_memcg_oom)
		return false;

	/*
	 * We invoked the OOM killer but there is a chance that a kill
	 * did not free up any charges.  Everybody else might already
	 * be sleeping, so restart the fault and keep the rampage
	 * going until some charges are released.
	 */
	memcg = current->memcg_oom.wait_on_memcg;
	if (!memcg)
		goto out;

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		goto out_memcg;

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2243

2244 2245 2246 2247 2248 2249 2250 2251
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	/* Only sleep if we didn't miss any wakeups since OOM */
	if (atomic_read(&memcg->oom_wakeups) == current->memcg_oom.wakeups)
		schedule();
	finish_wait(&memcg_oom_waitq, &owait.wait);
out_memcg:
	mem_cgroup_unmark_under_oom(memcg);
	if (current->memcg_oom.oom_locked) {
2252 2253 2254 2255 2256 2257 2258 2259
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2260 2261 2262 2263
	css_put(&memcg->css);
	current->memcg_oom.wait_on_memcg = NULL;
out:
	current->memcg_oom.in_memcg_oom = 0;
K
KAMEZAWA Hiroyuki 已提交
2264
	return true;
2265 2266
}

2267 2268 2269
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2287 2288
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2289
 */
2290

2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2304
	 * need to take move_lock_mem_cgroup(). Because we already hold
2305
	 * rcu_read_lock(), any calls to move_account will be delayed until
2306
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2307
	 */
2308
	if (!mem_cgroup_stolen(memcg))
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2326
	 * should take move_lock_mem_cgroup().
2327 2328 2329 2330
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2331
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2332
				 enum mem_cgroup_stat_index idx, int val)
2333
{
2334
	struct mem_cgroup *memcg;
2335
	struct page_cgroup *pc = lookup_page_cgroup(page);
2336
	unsigned long uninitialized_var(flags);
2337

2338
	if (mem_cgroup_disabled())
2339
		return;
2340

2341
	VM_BUG_ON(!rcu_read_lock_held());
2342 2343
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2344
		return;
2345

2346
	this_cpu_add(memcg->stat->count[idx], val);
2347
}
2348

2349 2350 2351 2352
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2353
#define CHARGE_BATCH	32U
2354 2355
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2356
	unsigned int nr_pages;
2357
	struct work_struct work;
2358
	unsigned long flags;
2359
#define FLUSHING_CACHED_CHARGE	0
2360 2361
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2362
static DEFINE_MUTEX(percpu_charge_mutex);
2363

2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2374
 */
2375
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2376 2377 2378 2379
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2380 2381 2382
	if (nr_pages > CHARGE_BATCH)
		return false;

2383
	stock = &get_cpu_var(memcg_stock);
2384 2385
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2399 2400 2401 2402
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2403
		if (do_swap_account)
2404 2405
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2418
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2419 2420
}

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2432 2433
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2434
 * This will be consumed by consume_stock() function, later.
2435
 */
2436
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2437 2438 2439
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2440
	if (stock->cached != memcg) { /* reset if necessary */
2441
		drain_stock(stock);
2442
		stock->cached = memcg;
2443
	}
2444
	stock->nr_pages += nr_pages;
2445 2446 2447 2448
	put_cpu_var(memcg_stock);
}

/*
2449
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2450 2451
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2452
 */
2453
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2454
{
2455
	int cpu, curcpu;
2456

2457 2458
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2459
	curcpu = get_cpu();
2460 2461
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2462
		struct mem_cgroup *memcg;
2463

2464 2465
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2466
			continue;
2467
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2468
			continue;
2469 2470 2471 2472 2473 2474
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2475
	}
2476
	put_cpu();
2477 2478 2479 2480 2481 2482

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2483
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2484 2485 2486
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2487
	put_online_cpus();
2488 2489 2490 2491 2492 2493 2494 2495
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2496
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2497
{
2498 2499 2500 2501 2502
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2503
	drain_all_stock(root_memcg, false);
2504
	mutex_unlock(&percpu_charge_mutex);
2505 2506 2507
}

/* This is a synchronous drain interface. */
2508
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2509 2510
{
	/* called when force_empty is called */
2511
	mutex_lock(&percpu_charge_mutex);
2512
	drain_all_stock(root_memcg, true);
2513
	mutex_unlock(&percpu_charge_mutex);
2514 2515
}

2516 2517 2518 2519
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2520
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2521 2522 2523
{
	int i;

2524
	spin_lock(&memcg->pcp_counter_lock);
2525
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2526
		long x = per_cpu(memcg->stat->count[i], cpu);
2527

2528 2529
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2530
	}
2531
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2532
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2533

2534 2535
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2536
	}
2537
	spin_unlock(&memcg->pcp_counter_lock);
2538 2539
}

2540
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2541 2542 2543 2544 2545
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2546
	struct mem_cgroup *iter;
2547

2548
	if (action == CPU_ONLINE)
2549 2550
		return NOTIFY_OK;

2551
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2552
		return NOTIFY_OK;
2553

2554
	for_each_mem_cgroup(iter)
2555 2556
		mem_cgroup_drain_pcp_counter(iter, cpu);

2557 2558 2559 2560 2561
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2562 2563 2564 2565 2566 2567 2568 2569 2570

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
};

2571
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2572
				unsigned int nr_pages, unsigned int min_pages,
2573
				bool invoke_oom)
2574
{
2575
	unsigned long csize = nr_pages * PAGE_SIZE;
2576 2577 2578 2579 2580
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2581
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2582 2583 2584 2585

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2586
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2587 2588 2589
		if (likely(!ret))
			return CHARGE_OK;

2590
		res_counter_uncharge(&memcg->res, csize);
2591 2592 2593 2594
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2595 2596 2597 2598
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2599
	if (nr_pages > min_pages)
2600 2601 2602 2603 2604
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2605 2606 2607
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2608
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2609
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2610
		return CHARGE_RETRY;
2611
	/*
2612 2613 2614 2615 2616 2617 2618
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2619
	 */
2620
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2621 2622 2623 2624 2625 2626 2627 2628 2629
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

2630 2631
	if (invoke_oom)
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2632

2633
	return CHARGE_NOMEM;
2634 2635
}

2636
/*
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2656
 */
2657
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2658
				   gfp_t gfp_mask,
2659
				   unsigned int nr_pages,
2660
				   struct mem_cgroup **ptr,
2661
				   bool oom)
2662
{
2663
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2664
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2665
	struct mem_cgroup *memcg = NULL;
2666
	int ret;
2667

K
KAMEZAWA Hiroyuki 已提交
2668 2669 2670 2671 2672 2673 2674 2675
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2676

2677
	/*
2678 2679
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2680
	 * thread group leader migrates. It's possible that mm is not
2681
	 * set, if so charge the root memcg (happens for pagecache usage).
2682
	 */
2683
	if (!*ptr && !mm)
2684
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2685
again:
2686 2687 2688
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2689
			goto done;
2690
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2691
			goto done;
2692
		css_get(&memcg->css);
2693
	} else {
K
KAMEZAWA Hiroyuki 已提交
2694
		struct task_struct *p;
2695

K
KAMEZAWA Hiroyuki 已提交
2696 2697 2698
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2699
		 * Because we don't have task_lock(), "p" can exit.
2700
		 * In that case, "memcg" can point to root or p can be NULL with
2701 2702 2703 2704 2705 2706
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2707
		 */
2708
		memcg = mem_cgroup_from_task(p);
2709 2710 2711
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2712 2713 2714
			rcu_read_unlock();
			goto done;
		}
2715
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2728
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2729 2730 2731 2732 2733
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2734

2735
	do {
2736
		bool invoke_oom = oom && !nr_oom_retries;
2737

2738
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2739
		if (fatal_signal_pending(current)) {
2740
			css_put(&memcg->css);
2741
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2742
		}
2743

2744 2745
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
					   nr_pages, invoke_oom);
2746 2747 2748 2749
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2750
			batch = nr_pages;
2751 2752
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2753
			goto again;
2754
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2755
			css_put(&memcg->css);
2756 2757
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
2758
			if (!oom || invoke_oom) {
2759
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2760
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2761
			}
2762 2763
			nr_oom_retries--;
			break;
2764
		}
2765 2766
	} while (ret != CHARGE_OK);

2767
	if (batch > nr_pages)
2768 2769
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2770
done:
2771
	*ptr = memcg;
2772 2773
	return 0;
nomem:
2774
	*ptr = NULL;
2775
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2776
bypass:
2777 2778
	*ptr = root_mem_cgroup;
	return -EINTR;
2779
}
2780

2781 2782 2783 2784 2785
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2786
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2787
				       unsigned int nr_pages)
2788
{
2789
	if (!mem_cgroup_is_root(memcg)) {
2790 2791
		unsigned long bytes = nr_pages * PAGE_SIZE;

2792
		res_counter_uncharge(&memcg->res, bytes);
2793
		if (do_swap_account)
2794
			res_counter_uncharge(&memcg->memsw, bytes);
2795
	}
2796 2797
}

2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2816 2817
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2818 2819 2820
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2832
	return mem_cgroup_from_css(css);
2833 2834
}

2835
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2836
{
2837
	struct mem_cgroup *memcg = NULL;
2838
	struct page_cgroup *pc;
2839
	unsigned short id;
2840 2841
	swp_entry_t ent;

2842 2843 2844
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2845
	lock_page_cgroup(pc);
2846
	if (PageCgroupUsed(pc)) {
2847 2848 2849
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2850
	} else if (PageSwapCache(page)) {
2851
		ent.val = page_private(page);
2852
		id = lookup_swap_cgroup_id(ent);
2853
		rcu_read_lock();
2854 2855 2856
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2857
		rcu_read_unlock();
2858
	}
2859
	unlock_page_cgroup(pc);
2860
	return memcg;
2861 2862
}

2863
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2864
				       struct page *page,
2865
				       unsigned int nr_pages,
2866 2867
				       enum charge_type ctype,
				       bool lrucare)
2868
{
2869
	struct page_cgroup *pc = lookup_page_cgroup(page);
2870
	struct zone *uninitialized_var(zone);
2871
	struct lruvec *lruvec;
2872
	bool was_on_lru = false;
2873
	bool anon;
2874

2875
	lock_page_cgroup(pc);
2876
	VM_BUG_ON(PageCgroupUsed(pc));
2877 2878 2879 2880
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2881 2882 2883 2884 2885 2886 2887 2888 2889

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2890
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2891
			ClearPageLRU(page);
2892
			del_page_from_lru_list(page, lruvec, page_lru(page));
2893 2894 2895 2896
			was_on_lru = true;
		}
	}

2897
	pc->mem_cgroup = memcg;
2898 2899 2900 2901 2902 2903
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2904
	 */
K
KAMEZAWA Hiroyuki 已提交
2905
	smp_wmb();
2906
	SetPageCgroupUsed(pc);
2907

2908 2909
	if (lrucare) {
		if (was_on_lru) {
2910
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2911 2912
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2913
			add_page_to_lru_list(page, lruvec, page_lru(page));
2914 2915 2916 2917
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2918
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2919 2920 2921 2922
		anon = true;
	else
		anon = false;

2923
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2924
	unlock_page_cgroup(pc);
2925

2926
	/*
2927 2928 2929
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
2930
	 */
2931
	memcg_check_events(memcg, page);
2932
}
2933

2934 2935
static DEFINE_MUTEX(set_limit_mutex);

2936 2937 2938 2939 2940 2941 2942
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2956
#ifdef CONFIG_SLABINFO
2957 2958
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
				    struct cftype *cft, struct seq_file *m)
2959
{
2960
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3030 3031 3032 3033 3034

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

3035 3036 3037 3038 3039 3040 3041 3042
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
3043
	if (memcg_kmem_test_and_clear_dead(memcg))
3044
		css_put(&memcg->css);
3045 3046
}

3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3130 3131
static void kmem_cache_destroy_work_func(struct work_struct *w);

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3143
		size += offsetof(struct memcg_cache_params, memcg_caches);
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3183 3184
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3185
{
3186
	size_t size;
3187 3188 3189 3190

	if (!memcg_kmem_enabled())
		return 0;

3191 3192
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3193
		size += memcg_limited_groups_array_size * sizeof(void *);
3194 3195
	} else
		size = sizeof(struct memcg_cache_params);
3196

3197 3198 3199 3200
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3201
	if (memcg) {
3202
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3203
		s->memcg_params->root_cache = root_cache;
3204 3205
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3206 3207 3208
	} else
		s->memcg_params->is_root_cache = true;

3209 3210 3211 3212 3213
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3238
	css_put(&memcg->css);
3239
out:
3240 3241 3242
	kfree(s->memcg_params);
}

3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3274 3275 3276 3277 3278 3279 3280 3281 3282
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3304 3305 3306 3307 3308 3309 3310 3311
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3332 3333 3334 3335 3336 3337 3338
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3339 3340 3341 3342 3343 3344 3345 3346 3347
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3348

3349 3350 3351
/*
 * Called with memcg_cache_mutex held
 */
3352 3353 3354 3355
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3356
	static char *tmp_name = NULL;
3357

3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3376

3377
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3378
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3379

3380 3381 3382
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
3398 3399
	if (new_cachep) {
		css_put(&memcg->css);
3400
		goto out;
3401
	}
3402 3403 3404 3405

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3406
		css_put(&memcg->css);
3407 3408 3409
		goto out;
	}

G
Glauber Costa 已提交
3410
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3462
		cancel_work_sync(&c->memcg_params->destroy);
3463 3464 3465 3466 3467
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3468 3469 3470 3471 3472 3473
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3503 3504
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3505 3506 3507 3508
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3509 3510
	if (cw == NULL) {
		css_put(&memcg->css);
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3561 3562 3563
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3564 3565 3566 3567
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3568
		goto out;
3569 3570 3571 3572 3573 3574 3575 3576

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3577 3578 3579
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3580 3581
	}

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3609 3610 3611
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3648 3649 3650
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3735 3736 3737 3738
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3739 3740
#endif /* CONFIG_MEMCG_KMEM */

3741 3742
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3743
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3744 3745
/*
 * Because tail pages are not marked as "used", set it. We're under
3746 3747 3748
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3749
 */
3750
void mem_cgroup_split_huge_fixup(struct page *head)
3751 3752
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3753
	struct page_cgroup *pc;
3754
	struct mem_cgroup *memcg;
3755
	int i;
3756

3757 3758
	if (mem_cgroup_disabled())
		return;
3759 3760

	memcg = head_pc->mem_cgroup;
3761 3762
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3763
		pc->mem_cgroup = memcg;
3764 3765 3766
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3767 3768
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3769
}
3770
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3771

3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
static inline
void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
					struct mem_cgroup *to,
					unsigned int nr_pages,
					enum mem_cgroup_stat_index idx)
{
	/* Update stat data for mem_cgroup */
	preempt_disable();
	WARN_ON_ONCE(from->stat->count[idx] < nr_pages);
	__this_cpu_add(from->stat->count[idx], -nr_pages);
	__this_cpu_add(to->stat->count[idx], nr_pages);
	preempt_enable();
}

3786
/**
3787
 * mem_cgroup_move_account - move account of the page
3788
 * @page: the page
3789
 * @nr_pages: number of regular pages (>1 for huge pages)
3790 3791 3792 3793 3794
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3795
 * - page is not on LRU (isolate_page() is useful.)
3796
 * - compound_lock is held when nr_pages > 1
3797
 *
3798 3799
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3800
 */
3801 3802 3803 3804
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3805
				   struct mem_cgroup *to)
3806
{
3807 3808
	unsigned long flags;
	int ret;
3809
	bool anon = PageAnon(page);
3810

3811
	VM_BUG_ON(from == to);
3812
	VM_BUG_ON(PageLRU(page));
3813 3814 3815 3816 3817 3818 3819
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3820
	if (nr_pages > 1 && !PageTransHuge(page))
3821 3822 3823 3824 3825 3826 3827 3828
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3829
	move_lock_mem_cgroup(from, &flags);
3830

3831 3832 3833 3834 3835 3836 3837 3838
	if (!anon && page_mapped(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_FILE_MAPPED);

	if (PageWriteback(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_WRITEBACK);

3839
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3840

3841
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3842
	pc->mem_cgroup = to;
3843
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3844
	move_unlock_mem_cgroup(from, &flags);
3845 3846
	ret = 0;
unlock:
3847
	unlock_page_cgroup(pc);
3848 3849 3850
	/*
	 * check events
	 */
3851 3852
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3853
out:
3854 3855 3856
	return ret;
}

3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3877
 */
3878 3879
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3880
				  struct mem_cgroup *child)
3881 3882
{
	struct mem_cgroup *parent;
3883
	unsigned int nr_pages;
3884
	unsigned long uninitialized_var(flags);
3885 3886
	int ret;

3887
	VM_BUG_ON(mem_cgroup_is_root(child));
3888

3889 3890 3891 3892 3893
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3894

3895
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3896

3897 3898 3899 3900 3901 3902
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3903

3904 3905
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3906
		flags = compound_lock_irqsave(page);
3907
	}
3908

3909
	ret = mem_cgroup_move_account(page, nr_pages,
3910
				pc, child, parent);
3911 3912
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3913

3914
	if (nr_pages > 1)
3915
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3916
	putback_lru_page(page);
3917
put:
3918
	put_page(page);
3919
out:
3920 3921 3922
	return ret;
}

3923 3924 3925 3926 3927 3928 3929
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3930
				gfp_t gfp_mask, enum charge_type ctype)
3931
{
3932
	struct mem_cgroup *memcg = NULL;
3933
	unsigned int nr_pages = 1;
3934
	bool oom = true;
3935
	int ret;
A
Andrea Arcangeli 已提交
3936

A
Andrea Arcangeli 已提交
3937
	if (PageTransHuge(page)) {
3938
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3939
		VM_BUG_ON(!PageTransHuge(page));
3940 3941 3942 3943 3944
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3945
	}
3946

3947
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3948
	if (ret == -ENOMEM)
3949
		return ret;
3950
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3951 3952 3953
	return 0;
}

3954 3955
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3956
{
3957
	if (mem_cgroup_disabled())
3958
		return 0;
3959 3960 3961
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3962
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3963
					MEM_CGROUP_CHARGE_TYPE_ANON);
3964 3965
}

3966 3967 3968
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3969
 * struct page_cgroup is acquired. This refcnt will be consumed by
3970 3971
 * "commit()" or removed by "cancel()"
 */
3972 3973 3974 3975
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3976
{
3977
	struct mem_cgroup *memcg;
3978
	struct page_cgroup *pc;
3979
	int ret;
3980

3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3991 3992
	if (!do_swap_account)
		goto charge_cur_mm;
3993 3994
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3995
		goto charge_cur_mm;
3996 3997
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3998
	css_put(&memcg->css);
3999 4000
	if (ret == -EINTR)
		ret = 0;
4001
	return ret;
4002
charge_cur_mm:
4003 4004 4005 4006
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
4007 4008
}

4009 4010 4011 4012 4013 4014
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
4029 4030 4031
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

4032 4033 4034 4035 4036 4037 4038 4039 4040
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
4041
static void
4042
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
4043
					enum charge_type ctype)
4044
{
4045
	if (mem_cgroup_disabled())
4046
		return;
4047
	if (!memcg)
4048
		return;
4049

4050
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4051 4052 4053
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
4054 4055 4056
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
4057
	 */
4058
	if (do_swap_account && PageSwapCache(page)) {
4059
		swp_entry_t ent = {.val = page_private(page)};
4060
		mem_cgroup_uncharge_swap(ent);
4061
	}
4062 4063
}

4064 4065
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4066
{
4067
	__mem_cgroup_commit_charge_swapin(page, memcg,
4068
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4069 4070
}

4071 4072
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4073
{
4074 4075 4076 4077
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4078
	if (mem_cgroup_disabled())
4079 4080 4081 4082 4083 4084 4085
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4086 4087
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4088 4089 4090 4091
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4092 4093
}

4094
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4095 4096
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4097 4098 4099
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4100

4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4112
		batch->memcg = memcg;
4113 4114
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4115
	 * In those cases, all pages freed continuously can be expected to be in
4116 4117 4118 4119 4120 4121 4122 4123
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4124
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4125 4126
		goto direct_uncharge;

4127 4128 4129 4130 4131
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4132
	if (batch->memcg != memcg)
4133 4134
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4135
	batch->nr_pages++;
4136
	if (uncharge_memsw)
4137
		batch->memsw_nr_pages++;
4138 4139
	return;
direct_uncharge:
4140
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4141
	if (uncharge_memsw)
4142 4143 4144
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4145
}
4146

4147
/*
4148
 * uncharge if !page_mapped(page)
4149
 */
4150
static struct mem_cgroup *
4151 4152
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4153
{
4154
	struct mem_cgroup *memcg = NULL;
4155 4156
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4157
	bool anon;
4158

4159
	if (mem_cgroup_disabled())
4160
		return NULL;
4161

A
Andrea Arcangeli 已提交
4162
	if (PageTransHuge(page)) {
4163
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4164 4165
		VM_BUG_ON(!PageTransHuge(page));
	}
4166
	/*
4167
	 * Check if our page_cgroup is valid
4168
	 */
4169
	pc = lookup_page_cgroup(page);
4170
	if (unlikely(!PageCgroupUsed(pc)))
4171
		return NULL;
4172

4173
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4174

4175
	memcg = pc->mem_cgroup;
4176

K
KAMEZAWA Hiroyuki 已提交
4177 4178 4179
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4180 4181
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4182
	switch (ctype) {
4183
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4184 4185 4186 4187 4188
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4189 4190
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4191
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4192
		/* See mem_cgroup_prepare_migration() */
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4214
	}
K
KAMEZAWA Hiroyuki 已提交
4215

4216
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4217

4218
	ClearPageCgroupUsed(pc);
4219 4220 4221 4222 4223 4224
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4225

4226
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4227
	/*
4228
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4229
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4230
	 */
4231
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4232
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4233
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4234
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4235
	}
4236 4237 4238 4239 4240 4241
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4242
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4243

4244
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4245 4246 4247

unlock_out:
	unlock_page_cgroup(pc);
4248
	return NULL;
4249 4250
}

4251 4252
void mem_cgroup_uncharge_page(struct page *page)
{
4253 4254 4255
	/* early check. */
	if (page_mapped(page))
		return;
4256
	VM_BUG_ON(page->mapping && !PageAnon(page));
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4269 4270
	if (PageSwapCache(page))
		return;
4271
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4272 4273 4274 4275 4276
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4277
	VM_BUG_ON(page->mapping);
4278
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4279 4280
}

4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4295 4296
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4317 4318 4319 4320 4321 4322
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4323
	memcg_oom_recover(batch->memcg);
4324 4325 4326 4327
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4328
#ifdef CONFIG_SWAP
4329
/*
4330
 * called after __delete_from_swap_cache() and drop "page" account.
4331 4332
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4333 4334
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4335 4336
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4337 4338 4339 4340 4341
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4342
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4343

K
KAMEZAWA Hiroyuki 已提交
4344 4345
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4346
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4347 4348
	 */
	if (do_swap_account && swapout && memcg)
4349
		swap_cgroup_record(ent, css_id(&memcg->css));
4350
}
4351
#endif
4352

A
Andrew Morton 已提交
4353
#ifdef CONFIG_MEMCG_SWAP
4354 4355 4356 4357 4358
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4359
{
4360
	struct mem_cgroup *memcg;
4361
	unsigned short id;
4362 4363 4364 4365

	if (!do_swap_account)
		return;

4366 4367 4368
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4369
	if (memcg) {
4370 4371 4372 4373
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4374
		if (!mem_cgroup_is_root(memcg))
4375
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4376
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4377
		css_put(&memcg->css);
4378
	}
4379
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4380
}
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4397
				struct mem_cgroup *from, struct mem_cgroup *to)
4398 4399 4400 4401 4402 4403 4404 4405
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4406
		mem_cgroup_swap_statistics(to, true);
4407
		/*
4408 4409 4410
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4411 4412 4413 4414 4415 4416
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4417
		 */
L
Li Zefan 已提交
4418
		css_get(&to->css);
4419 4420 4421 4422 4423 4424
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4425
				struct mem_cgroup *from, struct mem_cgroup *to)
4426 4427 4428
{
	return -EINVAL;
}
4429
#endif
K
KAMEZAWA Hiroyuki 已提交
4430

4431
/*
4432 4433
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4434
 */
4435 4436
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4437
{
4438
	struct mem_cgroup *memcg = NULL;
4439
	unsigned int nr_pages = 1;
4440
	struct page_cgroup *pc;
4441
	enum charge_type ctype;
4442

4443
	*memcgp = NULL;
4444

4445
	if (mem_cgroup_disabled())
4446
		return;
4447

4448 4449 4450
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4451 4452 4453
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4454 4455
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4487
	}
4488
	unlock_page_cgroup(pc);
4489 4490 4491 4492
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4493
	if (!memcg)
4494
		return;
4495

4496
	*memcgp = memcg;
4497 4498 4499 4500 4501 4502 4503
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4504
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4505
	else
4506
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4507 4508 4509 4510 4511
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4512
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4513
}
4514

4515
/* remove redundant charge if migration failed*/
4516
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4517
	struct page *oldpage, struct page *newpage, bool migration_ok)
4518
{
4519
	struct page *used, *unused;
4520
	struct page_cgroup *pc;
4521
	bool anon;
4522

4523
	if (!memcg)
4524
		return;
4525

4526
	if (!migration_ok) {
4527 4528
		used = oldpage;
		unused = newpage;
4529
	} else {
4530
		used = newpage;
4531 4532
		unused = oldpage;
	}
4533
	anon = PageAnon(used);
4534 4535 4536 4537
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4538
	css_put(&memcg->css);
4539
	/*
4540 4541 4542
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4543
	 */
4544 4545 4546 4547 4548
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4549
	/*
4550 4551 4552 4553 4554 4555
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4556
	 */
4557
	if (anon)
4558
		mem_cgroup_uncharge_page(used);
4559
}
4560

4561 4562 4563 4564 4565 4566 4567 4568
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4569
	struct mem_cgroup *memcg = NULL;
4570 4571 4572 4573 4574 4575 4576 4577 4578
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4579 4580
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4581
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4582 4583
		ClearPageCgroupUsed(pc);
	}
4584 4585
	unlock_page_cgroup(pc);

4586 4587 4588 4589 4590 4591
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4592 4593 4594 4595 4596
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4597
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4598 4599
}

4600 4601 4602 4603 4604 4605
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4606 4607 4608 4609 4610
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4630 4631
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4632 4633 4634 4635
	}
}
#endif

4636
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4637
				unsigned long long val)
4638
{
4639
	int retry_count;
4640
	u64 memswlimit, memlimit;
4641
	int ret = 0;
4642 4643
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4644
	int enlarge;
4645 4646 4647 4648 4649 4650 4651 4652 4653

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4654

4655
	enlarge = 0;
4656
	while (retry_count) {
4657 4658 4659 4660
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4661 4662 4663
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4664
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4665 4666 4667 4668 4669 4670
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4671 4672
			break;
		}
4673 4674 4675 4676 4677

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4678
		ret = res_counter_set_limit(&memcg->res, val);
4679 4680 4681 4682 4683 4684
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4685 4686 4687 4688 4689
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4690 4691
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4692 4693
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4694
		if (curusage >= oldusage)
4695 4696 4697
			retry_count--;
		else
			oldusage = curusage;
4698
	}
4699 4700
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4701

4702 4703 4704
	return ret;
}

L
Li Zefan 已提交
4705 4706
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4707
{
4708
	int retry_count;
4709
	u64 memlimit, memswlimit, oldusage, curusage;
4710 4711
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4712
	int enlarge = 0;
4713

4714
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4715
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4716
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4717 4718 4719 4720 4721 4722 4723 4724
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4725
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4726 4727 4728 4729 4730 4731 4732 4733
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4734 4735 4736
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4737
		ret = res_counter_set_limit(&memcg->memsw, val);
4738 4739 4740 4741 4742 4743
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4744 4745 4746 4747 4748
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4749 4750 4751
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4752
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4753
		/* Usage is reduced ? */
4754
		if (curusage >= oldusage)
4755
			retry_count--;
4756 4757
		else
			oldusage = curusage;
4758
	}
4759 4760
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4761 4762 4763
	return ret;
}

4764 4765 4766 4767 4768 4769 4770
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4771
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4772 4773
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4774
 */
4775
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4776
				int node, int zid, enum lru_list lru)
4777
{
4778
	struct lruvec *lruvec;
4779
	unsigned long flags;
4780
	struct list_head *list;
4781 4782
	struct page *busy;
	struct zone *zone;
4783

K
KAMEZAWA Hiroyuki 已提交
4784
	zone = &NODE_DATA(node)->node_zones[zid];
4785 4786
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4787

4788
	busy = NULL;
4789
	do {
4790
		struct page_cgroup *pc;
4791 4792
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4793
		spin_lock_irqsave(&zone->lru_lock, flags);
4794
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4795
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4796
			break;
4797
		}
4798 4799 4800
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4801
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4802
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4803 4804
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4805
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4806

4807
		pc = lookup_page_cgroup(page);
4808

4809
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4810
			/* found lock contention or "pc" is obsolete. */
4811
			busy = page;
4812 4813 4814
			cond_resched();
		} else
			busy = NULL;
4815
	} while (!list_empty(list));
4816 4817 4818
}

/*
4819 4820
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4821
 * This enables deleting this mem_cgroup.
4822 4823
 *
 * Caller is responsible for holding css reference on the memcg.
4824
 */
4825
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4826
{
4827
	int node, zid;
4828
	u64 usage;
4829

4830
	do {
4831 4832
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4833 4834
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4835
		for_each_node_state(node, N_MEMORY) {
4836
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4837 4838
				enum lru_list lru;
				for_each_lru(lru) {
4839
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4840
							node, zid, lru);
4841
				}
4842
			}
4843
		}
4844 4845
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4846
		cond_resched();
4847

4848
		/*
4849 4850 4851 4852 4853
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4854 4855 4856 4857 4858 4859
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4860 4861 4862
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4863 4864
}

4865 4866 4867 4868 4869 4870 4871
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
4872
	struct cgroup_subsys_state *pos;
4873 4874

	/* bounce at first found */
4875
	css_for_each_child(pos, &memcg->css)
4876 4877 4878 4879 4880
		return true;
	return false;
}

/*
4881 4882
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4883 4884 4885 4886 4887 4888 4889 4890 4891
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4902

4903
	/* returns EBUSY if there is a task or if we come here twice. */
4904 4905 4906
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4907 4908
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4909
	/* try to free all pages in this cgroup */
4910
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4911
		int progress;
4912

4913 4914 4915
		if (signal_pending(current))
			return -EINTR;

4916
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4917
						false);
4918
		if (!progress) {
4919
			nr_retries--;
4920
			/* maybe some writeback is necessary */
4921
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4922
		}
4923 4924

	}
K
KAMEZAWA Hiroyuki 已提交
4925
	lru_add_drain();
4926 4927 4928
	mem_cgroup_reparent_charges(memcg);

	return 0;
4929 4930
}

4931 4932
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
4933
{
4934
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4935

4936 4937
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4938
	return mem_cgroup_force_empty(memcg);
4939 4940
}

4941 4942
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
4943
{
4944
	return mem_cgroup_from_css(css)->use_hierarchy;
4945 4946
}

4947 4948
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
4949 4950
{
	int retval = 0;
4951
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4952
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4953

4954
	mutex_lock(&memcg_create_mutex);
4955 4956 4957 4958

	if (memcg->use_hierarchy == val)
		goto out;

4959
	/*
4960
	 * If parent's use_hierarchy is set, we can't make any modifications
4961 4962 4963 4964 4965 4966
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4967
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4968
				(val == 1 || val == 0)) {
4969
		if (!__memcg_has_children(memcg))
4970
			memcg->use_hierarchy = val;
4971 4972 4973 4974
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4975 4976

out:
4977
	mutex_unlock(&memcg_create_mutex);
4978 4979 4980 4981

	return retval;
}

4982

4983
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4984
					       enum mem_cgroup_stat_index idx)
4985
{
K
KAMEZAWA Hiroyuki 已提交
4986
	struct mem_cgroup *iter;
4987
	long val = 0;
4988

4989
	/* Per-cpu values can be negative, use a signed accumulator */
4990
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4991 4992 4993 4994 4995
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4996 4997
}

4998
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4999
{
K
KAMEZAWA Hiroyuki 已提交
5000
	u64 val;
5001

5002
	if (!mem_cgroup_is_root(memcg)) {
5003
		if (!swap)
5004
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5005
		else
5006
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5007 5008
	}

5009 5010 5011 5012
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
5013 5014
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5015

K
KAMEZAWA Hiroyuki 已提交
5016
	if (swap)
5017
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5018 5019 5020 5021

	return val << PAGE_SHIFT;
}

5022 5023 5024
static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
5025
{
5026
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5027
	char str[64];
5028
	u64 val;
G
Glauber Costa 已提交
5029 5030
	int name, len;
	enum res_type type;
5031 5032 5033

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5034

5035 5036
	switch (type) {
	case _MEM:
5037
		if (name == RES_USAGE)
5038
			val = mem_cgroup_usage(memcg, false);
5039
		else
5040
			val = res_counter_read_u64(&memcg->res, name);
5041 5042
		break;
	case _MEMSWAP:
5043
		if (name == RES_USAGE)
5044
			val = mem_cgroup_usage(memcg, true);
5045
		else
5046
			val = res_counter_read_u64(&memcg->memsw, name);
5047
		break;
5048 5049 5050
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5051 5052 5053
	default:
		BUG();
	}
5054 5055 5056

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
5057
}
5058

5059
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5060 5061 5062
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
5063
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5076
	mutex_lock(&memcg_create_mutex);
5077
	mutex_lock(&set_limit_mutex);
5078
	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5079
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5080 5081 5082 5083 5084 5085
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5086 5087
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
5088
			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5089 5090
			goto out;
		}
5091 5092 5093 5094 5095 5096
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
5097 5098 5099 5100
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5101
	mutex_unlock(&memcg_create_mutex);
5102 5103 5104 5105
#endif
	return ret;
}

5106
#ifdef CONFIG_MEMCG_KMEM
5107
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5108
{
5109
	int ret = 0;
5110 5111
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5112 5113
		goto out;

5114
	memcg->kmem_account_flags = parent->kmem_account_flags;
5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5125 5126 5127 5128
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
5129 5130 5131
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
5132 5133 5134 5135
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
5136
	memcg_stop_kmem_account();
5137
	ret = memcg_update_cache_sizes(memcg);
5138
	memcg_resume_kmem_account();
5139 5140 5141
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5142
}
5143
#endif /* CONFIG_MEMCG_KMEM */
5144

5145 5146 5147 5148
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5149
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5150
			    const char *buffer)
B
Balbir Singh 已提交
5151
{
5152
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5153 5154
	enum res_type type;
	int name;
5155 5156 5157
	unsigned long long val;
	int ret;

5158 5159
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5160

5161
	switch (name) {
5162
	case RES_LIMIT:
5163 5164 5165 5166
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5167 5168
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5169 5170 5171
		if (ret)
			break;
		if (type == _MEM)
5172
			ret = mem_cgroup_resize_limit(memcg, val);
5173
		else if (type == _MEMSWAP)
5174
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5175
		else if (type == _KMEM)
5176
			ret = memcg_update_kmem_limit(css, val);
5177 5178
		else
			return -EINVAL;
5179
		break;
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5194 5195 5196 5197 5198
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5199 5200
}

5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5211 5212
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5225
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5226
{
5227
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5228 5229
	int name;
	enum res_type type;
5230

5231 5232
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5233

5234
	switch (name) {
5235
	case RES_MAX_USAGE:
5236
		if (type == _MEM)
5237
			res_counter_reset_max(&memcg->res);
5238
		else if (type == _MEMSWAP)
5239
			res_counter_reset_max(&memcg->memsw);
5240 5241 5242 5243
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5244 5245
		break;
	case RES_FAILCNT:
5246
		if (type == _MEM)
5247
			res_counter_reset_failcnt(&memcg->res);
5248
		else if (type == _MEMSWAP)
5249
			res_counter_reset_failcnt(&memcg->memsw);
5250 5251 5252 5253
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5254 5255
		break;
	}
5256

5257
	return 0;
5258 5259
}

5260
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5261 5262
					struct cftype *cft)
{
5263
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5264 5265
}

5266
#ifdef CONFIG_MMU
5267
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5268 5269
					struct cftype *cft, u64 val)
{
5270
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5271 5272 5273

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5274

5275
	/*
5276 5277 5278 5279
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5280
	 */
5281
	memcg->move_charge_at_immigrate = val;
5282 5283
	return 0;
}
5284
#else
5285
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5286 5287 5288 5289 5290
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5291

5292
#ifdef CONFIG_NUMA
5293 5294
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
				struct cftype *cft, struct seq_file *m)
5295 5296 5297 5298
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5299
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5300

5301
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5302
	seq_printf(m, "total=%lu", total_nr);
5303
	for_each_node_state(nid, N_MEMORY) {
5304
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5305 5306 5307 5308
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5309
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5310
	seq_printf(m, "file=%lu", file_nr);
5311
	for_each_node_state(nid, N_MEMORY) {
5312
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5313
				LRU_ALL_FILE);
5314 5315 5316 5317
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5318
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5319
	seq_printf(m, "anon=%lu", anon_nr);
5320
	for_each_node_state(nid, N_MEMORY) {
5321
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5322
				LRU_ALL_ANON);
5323 5324 5325 5326
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5327
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5328
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5329
	for_each_node_state(nid, N_MEMORY) {
5330
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5331
				BIT(LRU_UNEVICTABLE));
5332 5333 5334 5335 5336 5337 5338
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5339 5340 5341 5342 5343
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5344
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5345
				 struct seq_file *m)
5346
{
5347
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5348 5349
	struct mem_cgroup *mi;
	unsigned int i;
5350

5351
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5352
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5353
			continue;
5354 5355
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5356
	}
L
Lee Schermerhorn 已提交
5357

5358 5359 5360 5361 5362 5363 5364 5365
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5366
	/* Hierarchical information */
5367 5368
	{
		unsigned long long limit, memsw_limit;
5369
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5370
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5371
		if (do_swap_account)
5372 5373
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5374
	}
K
KOSAKI Motohiro 已提交
5375

5376 5377 5378
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5379
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5380
			continue;
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5401
	}
K
KAMEZAWA Hiroyuki 已提交
5402

K
KOSAKI Motohiro 已提交
5403 5404 5405 5406
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5407
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5408 5409 5410 5411 5412
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5413
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5414
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5415

5416 5417 5418 5419
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5420
			}
5421 5422 5423 5424
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5425 5426 5427
	}
#endif

5428 5429 5430
	return 0;
}

5431 5432
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5433
{
5434
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5435

5436
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5437 5438
}

5439 5440
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5441
{
5442
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5443
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5444

T
Tejun Heo 已提交
5445
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5446 5447
		return -EINVAL;

5448
	mutex_lock(&memcg_create_mutex);
5449

K
KOSAKI Motohiro 已提交
5450
	/* If under hierarchy, only empty-root can set this value */
5451
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5452
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5453
		return -EINVAL;
5454
	}
K
KOSAKI Motohiro 已提交
5455 5456 5457

	memcg->swappiness = val;

5458
	mutex_unlock(&memcg_create_mutex);
5459

K
KOSAKI Motohiro 已提交
5460 5461 5462
	return 0;
}

5463 5464 5465 5466 5467 5468 5469 5470
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5471
		t = rcu_dereference(memcg->thresholds.primary);
5472
	else
5473
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5474 5475 5476 5477 5478 5479 5480

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5481
	 * current_threshold points to threshold just below or equal to usage.
5482 5483 5484
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5485
	i = t->current_threshold;
5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5509
	t->current_threshold = i - 1;
5510 5511 5512 5513 5514 5515
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5516 5517 5518 5519 5520 5521 5522
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5523 5524 5525 5526 5527 5528 5529
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5530 5531 5532 5533 5534 5535 5536
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5537 5538
}

5539
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5540 5541 5542
{
	struct mem_cgroup_eventfd_list *ev;

5543
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5544 5545 5546 5547
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5548
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5549
{
K
KAMEZAWA Hiroyuki 已提交
5550 5551
	struct mem_cgroup *iter;

5552
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5553
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5554 5555
}

5556
static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5557
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5558
{
5559
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5560 5561
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5562
	enum res_type type = MEMFILE_TYPE(cft->private);
5563
	u64 threshold, usage;
5564
	int i, size, ret;
5565 5566 5567 5568 5569 5570

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5571

5572
	if (type == _MEM)
5573
		thresholds = &memcg->thresholds;
5574
	else if (type == _MEMSWAP)
5575
		thresholds = &memcg->memsw_thresholds;
5576 5577 5578 5579 5580 5581
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5582
	if (thresholds->primary)
5583 5584
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5585
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5586 5587

	/* Allocate memory for new array of thresholds */
5588
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5589
			GFP_KERNEL);
5590
	if (!new) {
5591 5592 5593
		ret = -ENOMEM;
		goto unlock;
	}
5594
	new->size = size;
5595 5596

	/* Copy thresholds (if any) to new array */
5597 5598
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5599
				sizeof(struct mem_cgroup_threshold));
5600 5601
	}

5602
	/* Add new threshold */
5603 5604
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5605 5606

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5607
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5608 5609 5610
			compare_thresholds, NULL);

	/* Find current threshold */
5611
	new->current_threshold = -1;
5612
	for (i = 0; i < size; i++) {
5613
		if (new->entries[i].threshold <= usage) {
5614
			/*
5615 5616
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5617 5618
			 * it here.
			 */
5619
			++new->current_threshold;
5620 5621
		} else
			break;
5622 5623
	}

5624 5625 5626 5627 5628
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5629

5630
	/* To be sure that nobody uses thresholds */
5631 5632 5633 5634 5635 5636 5637 5638
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5639
static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5640
	struct cftype *cft, struct eventfd_ctx *eventfd)
5641
{
5642
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5643 5644
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5645
	enum res_type type = MEMFILE_TYPE(cft->private);
5646
	u64 usage;
5647
	int i, j, size;
5648 5649 5650

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5651
		thresholds = &memcg->thresholds;
5652
	else if (type == _MEMSWAP)
5653
		thresholds = &memcg->memsw_thresholds;
5654 5655 5656
	else
		BUG();

5657 5658 5659
	if (!thresholds->primary)
		goto unlock;

5660 5661 5662 5663 5664 5665
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5666 5667 5668
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5669 5670 5671
			size++;
	}

5672
	new = thresholds->spare;
5673

5674 5675
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5676 5677
		kfree(new);
		new = NULL;
5678
		goto swap_buffers;
5679 5680
	}

5681
	new->size = size;
5682 5683

	/* Copy thresholds and find current threshold */
5684 5685 5686
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5687 5688
			continue;

5689
		new->entries[j] = thresholds->primary->entries[i];
5690
		if (new->entries[j].threshold <= usage) {
5691
			/*
5692
			 * new->current_threshold will not be used
5693 5694 5695
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5696
			++new->current_threshold;
5697 5698 5699 5700
		}
		j++;
	}

5701
swap_buffers:
5702 5703
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5704 5705 5706 5707 5708 5709
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5710
	rcu_assign_pointer(thresholds->primary, new);
5711

5712
	/* To be sure that nobody uses thresholds */
5713
	synchronize_rcu();
5714
unlock:
5715 5716
	mutex_unlock(&memcg->thresholds_lock);
}
5717

5718
static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5719 5720
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
5721
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5722
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5723
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5724 5725 5726 5727 5728 5729

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5730
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5731 5732 5733 5734 5735

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5736
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5737
		eventfd_signal(eventfd, 1);
5738
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5739 5740 5741 5742

	return 0;
}

5743
static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5744 5745
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5746
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5747
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5748
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5749 5750 5751

	BUG_ON(type != _OOM_TYPE);

5752
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5753

5754
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5755 5756 5757 5758 5759 5760
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5761
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5762 5763
}

5764
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5765 5766
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5767
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5768

5769
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5770

5771
	if (atomic_read(&memcg->under_oom))
5772 5773 5774 5775 5776 5777
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

5778
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5779 5780
	struct cftype *cft, u64 val)
{
5781
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5782
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5783 5784

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5785
	if (!parent || !((val == 0) || (val == 1)))
5786 5787
		return -EINVAL;

5788
	mutex_lock(&memcg_create_mutex);
5789
	/* oom-kill-disable is a flag for subhierarchy. */
5790
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5791
		mutex_unlock(&memcg_create_mutex);
5792 5793
		return -EINVAL;
	}
5794
	memcg->oom_kill_disable = val;
5795
	if (!val)
5796
		memcg_oom_recover(memcg);
5797
	mutex_unlock(&memcg_create_mutex);
5798 5799 5800
	return 0;
}

A
Andrew Morton 已提交
5801
#ifdef CONFIG_MEMCG_KMEM
5802
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5803
{
5804 5805
	int ret;

5806
	memcg->kmemcg_id = -1;
5807 5808 5809
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5810

5811
	return mem_cgroup_sockets_init(memcg, ss);
5812
}
5813

5814
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5815
{
5816
	mem_cgroup_sockets_destroy(memcg);
5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5843 5844 5845 5846 5847 5848 5849

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5850
		css_put(&memcg->css);
G
Glauber Costa 已提交
5851
}
5852
#else
5853
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5854 5855 5856
{
	return 0;
}
G
Glauber Costa 已提交
5857

5858 5859 5860 5861 5862
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5863 5864
{
}
5865 5866
#endif

B
Balbir Singh 已提交
5867 5868
static struct cftype mem_cgroup_files[] = {
	{
5869
		.name = "usage_in_bytes",
5870
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5871
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5872 5873
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5874
	},
5875 5876
	{
		.name = "max_usage_in_bytes",
5877
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5878
		.trigger = mem_cgroup_reset,
5879
		.read = mem_cgroup_read,
5880
	},
B
Balbir Singh 已提交
5881
	{
5882
		.name = "limit_in_bytes",
5883
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5884
		.write_string = mem_cgroup_write,
5885
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5886
	},
5887 5888 5889 5890
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5891
		.read = mem_cgroup_read,
5892
	},
B
Balbir Singh 已提交
5893 5894
	{
		.name = "failcnt",
5895
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5896
		.trigger = mem_cgroup_reset,
5897
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5898
	},
5899 5900
	{
		.name = "stat",
5901
		.read_seq_string = memcg_stat_show,
5902
	},
5903 5904 5905 5906
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5907 5908
	{
		.name = "use_hierarchy",
5909
		.flags = CFTYPE_INSANE,
5910 5911 5912
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5913 5914 5915 5916 5917
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5918 5919 5920 5921 5922
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5923 5924
	{
		.name = "oom_control",
5925 5926
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5927 5928 5929 5930
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5931 5932 5933 5934 5935
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
5936 5937 5938
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5939
		.read_seq_string = memcg_numa_stat_show,
5940 5941
	},
#endif
5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5966 5967 5968 5969 5970 5971
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
5972
#endif
5973
	{ },	/* terminate */
5974
};
5975

5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
6006
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6007 6008
{
	struct mem_cgroup_per_node *pn;
6009
	struct mem_cgroup_per_zone *mz;
6010
	int zone, tmp = node;
6011 6012 6013 6014 6015 6016 6017 6018
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6019 6020
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6021
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6022 6023
	if (!pn)
		return 1;
6024 6025 6026

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6027
		lruvec_init(&mz->lruvec);
6028 6029
		mz->usage_in_excess = 0;
		mz->on_tree = false;
6030
		mz->memcg = memcg;
6031
	}
6032
	memcg->nodeinfo[node] = pn;
6033 6034 6035
	return 0;
}

6036
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6037
{
6038
	kfree(memcg->nodeinfo[node]);
6039 6040
}

6041 6042
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6043
	struct mem_cgroup *memcg;
6044
	size_t size = memcg_size();
6045

6046
	/* Can be very big if nr_node_ids is very big */
6047
	if (size < PAGE_SIZE)
6048
		memcg = kzalloc(size, GFP_KERNEL);
6049
	else
6050
		memcg = vzalloc(size);
6051

6052
	if (!memcg)
6053 6054
		return NULL;

6055 6056
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6057
		goto out_free;
6058 6059
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6060 6061 6062

out_free:
	if (size < PAGE_SIZE)
6063
		kfree(memcg);
6064
	else
6065
		vfree(memcg);
6066
	return NULL;
6067 6068
}

6069
/*
6070 6071 6072 6073 6074 6075 6076 6077
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6078
 */
6079 6080

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6081
{
6082
	int node;
6083
	size_t size = memcg_size();
6084

6085
	mem_cgroup_remove_from_trees(memcg);
6086 6087 6088 6089 6090 6091 6092
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6104
	disarm_static_keys(memcg);
6105 6106 6107 6108
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6109
}
6110

6111 6112 6113
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6114
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6115
{
6116
	if (!memcg->res.parent)
6117
		return NULL;
6118
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6119
}
G
Glauber Costa 已提交
6120
EXPORT_SYMBOL(parent_mem_cgroup);
6121

6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6145
static struct cgroup_subsys_state * __ref
6146
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6147
{
6148
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6149
	long error = -ENOMEM;
6150
	int node;
B
Balbir Singh 已提交
6151

6152 6153
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6154
		return ERR_PTR(error);
6155

B
Bob Liu 已提交
6156
	for_each_node(node)
6157
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6158
			goto free_out;
6159

6160
	/* root ? */
6161
	if (parent_css == NULL) {
6162
		root_mem_cgroup = memcg;
6163 6164 6165
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6166
	}
6167

6168 6169 6170 6171 6172
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6173
	vmpressure_init(&memcg->vmpressure);
6174 6175 6176 6177 6178 6179 6180 6181 6182

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6183
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6184
{
6185 6186
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6187 6188
	int error = 0;

T
Tejun Heo 已提交
6189
	if (!parent)
6190 6191
		return 0;

6192
	mutex_lock(&memcg_create_mutex);
6193 6194 6195 6196 6197 6198

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6199 6200
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6201
		res_counter_init(&memcg->kmem, &parent->kmem);
6202

6203
		/*
6204 6205
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6206
		 */
6207
	} else {
6208 6209
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6210
		res_counter_init(&memcg->kmem, NULL);
6211 6212 6213 6214 6215
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6216
		if (parent != root_mem_cgroup)
6217
			mem_cgroup_subsys.broken_hierarchy = true;
6218
	}
6219 6220

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6221
	mutex_unlock(&memcg_create_mutex);
6222
	return error;
B
Balbir Singh 已提交
6223 6224
}

M
Michal Hocko 已提交
6225 6226 6227 6228 6229 6230 6231 6232
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6233
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6234 6235 6236 6237 6238 6239

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6240
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6241 6242
}

6243
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6244
{
6245
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6246

6247 6248
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6249
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6250
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6251
	mem_cgroup_destroy_all_caches(memcg);
6252
	vmpressure_cleanup(&memcg->vmpressure);
6253 6254
}

6255
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6256
{
6257
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6258

6259
	memcg_destroy_kmem(memcg);
6260
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6261 6262
}

6263
#ifdef CONFIG_MMU
6264
/* Handlers for move charge at task migration. */
6265 6266
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6267
{
6268 6269
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6270
	struct mem_cgroup *memcg = mc.to;
6271

6272
	if (mem_cgroup_is_root(memcg)) {
6273 6274 6275 6276 6277 6278 6279 6280
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6281
		 * "memcg" cannot be under rmdir() because we've already checked
6282 6283 6284 6285
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6286
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6287
			goto one_by_one;
6288
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6289
						PAGE_SIZE * count, &dummy)) {
6290
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6307 6308
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6309
		if (ret)
6310
			/* mem_cgroup_clear_mc() will do uncharge later */
6311
			return ret;
6312 6313
		mc.precharge++;
	}
6314 6315 6316 6317
	return ret;
}

/**
6318
 * get_mctgt_type - get target type of moving charge
6319 6320 6321
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6322
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6323 6324 6325 6326 6327 6328
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6329 6330 6331
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6332 6333 6334 6335 6336
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6337
	swp_entry_t	ent;
6338 6339 6340
};

enum mc_target_type {
6341
	MC_TARGET_NONE = 0,
6342
	MC_TARGET_PAGE,
6343
	MC_TARGET_SWAP,
6344 6345
};

D
Daisuke Nishimura 已提交
6346 6347
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6348
{
D
Daisuke Nishimura 已提交
6349
	struct page *page = vm_normal_page(vma, addr, ptent);
6350

D
Daisuke Nishimura 已提交
6351 6352 6353 6354
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6355
		if (!move_anon())
D
Daisuke Nishimura 已提交
6356
			return NULL;
6357 6358
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6359 6360 6361 6362 6363 6364 6365
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6366
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6367 6368 6369 6370 6371 6372 6373 6374
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6375 6376 6377 6378
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6379
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6380 6381 6382 6383 6384
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6385 6386 6387 6388 6389 6390 6391
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6392

6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6412 6413 6414 6415 6416 6417
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6418
		if (do_swap_account)
6419
			*entry = swap;
6420
		page = find_get_page(swap_address_space(swap), swap.val);
6421
	}
6422
#endif
6423 6424 6425
	return page;
}

6426
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6427 6428 6429 6430
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6431
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6432 6433 6434 6435 6436 6437
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6438 6439
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6440 6441

	if (!page && !ent.val)
6442
		return ret;
6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6458 6459
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6460
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6461 6462 6463
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6464 6465 6466 6467
	}
	return ret;
}

6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6503 6504 6505 6506 6507 6508 6509 6510
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6511 6512 6513 6514
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6515
		return 0;
6516
	}
6517

6518 6519
	if (pmd_trans_unstable(pmd))
		return 0;
6520 6521
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6522
		if (get_mctgt_type(vma, addr, *pte, NULL))
6523 6524 6525 6526
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6527 6528 6529
	return 0;
}

6530 6531 6532 6533 6534
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6535
	down_read(&mm->mmap_sem);
6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6547
	up_read(&mm->mmap_sem);
6548 6549 6550 6551 6552 6553 6554 6555 6556

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6557 6558 6559 6560 6561
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6562 6563
}

6564 6565
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6566
{
6567 6568
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6569
	int i;
6570

6571
	/* we must uncharge all the leftover precharges from mc.to */
6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6583
	}
6584 6585 6586 6587 6588 6589
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6590 6591 6592

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6593 6594 6595 6596 6597 6598 6599 6600 6601

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6602
		/* we've already done css_get(mc.to) */
6603 6604
		mc.moved_swap = 0;
	}
6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6620
	spin_lock(&mc.lock);
6621 6622
	mc.from = NULL;
	mc.to = NULL;
6623
	spin_unlock(&mc.lock);
6624
	mem_cgroup_end_move(from);
6625 6626
}

6627
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6628
				 struct cgroup_taskset *tset)
6629
{
6630
	struct task_struct *p = cgroup_taskset_first(tset);
6631
	int ret = 0;
6632
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6633
	unsigned long move_charge_at_immigrate;
6634

6635 6636 6637 6638 6639 6640 6641
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6642 6643 6644
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6645
		VM_BUG_ON(from == memcg);
6646 6647 6648 6649 6650

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6651 6652 6653 6654
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6655
			VM_BUG_ON(mc.moved_charge);
6656
			VM_BUG_ON(mc.moved_swap);
6657
			mem_cgroup_start_move(from);
6658
			spin_lock(&mc.lock);
6659
			mc.from = from;
6660
			mc.to = memcg;
6661
			mc.immigrate_flags = move_charge_at_immigrate;
6662
			spin_unlock(&mc.lock);
6663
			/* We set mc.moving_task later */
6664 6665 6666 6667

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6668 6669
		}
		mmput(mm);
6670 6671 6672 6673
	}
	return ret;
}

6674
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6675
				     struct cgroup_taskset *tset)
6676
{
6677
	mem_cgroup_clear_mc();
6678 6679
}

6680 6681 6682
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6683
{
6684 6685 6686 6687
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6688 6689 6690 6691
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6692

6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6704
		if (mc.precharge < HPAGE_PMD_NR) {
6705 6706 6707 6708 6709 6710 6711 6712 6713
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6714
							pc, mc.from, mc.to)) {
6715 6716 6717 6718 6719 6720 6721 6722
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6723
		return 0;
6724 6725
	}

6726 6727
	if (pmd_trans_unstable(pmd))
		return 0;
6728 6729 6730 6731
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6732
		swp_entry_t ent;
6733 6734 6735 6736

		if (!mc.precharge)
			break;

6737
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6738 6739 6740 6741 6742
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6743
			if (!mem_cgroup_move_account(page, 1, pc,
6744
						     mc.from, mc.to)) {
6745
				mc.precharge--;
6746 6747
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6748 6749
			}
			putback_lru_page(page);
6750
put:			/* get_mctgt_type() gets the page */
6751 6752
			put_page(page);
			break;
6753 6754
		case MC_TARGET_SWAP:
			ent = target.ent;
6755
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6756
				mc.precharge--;
6757 6758 6759
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6760
			break;
6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6775
		ret = mem_cgroup_do_precharge(1);
6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6819
	up_read(&mm->mmap_sem);
6820 6821
}

6822
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6823
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6824
{
6825
	struct task_struct *p = cgroup_taskset_first(tset);
6826
	struct mm_struct *mm = get_task_mm(p);
6827 6828

	if (mm) {
6829 6830
		if (mc.to)
			mem_cgroup_move_charge(mm);
6831 6832
		mmput(mm);
	}
6833 6834
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6835
}
6836
#else	/* !CONFIG_MMU */
6837
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6838
				 struct cgroup_taskset *tset)
6839 6840 6841
{
	return 0;
}
6842
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6843
				     struct cgroup_taskset *tset)
6844 6845
{
}
6846
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6847
				 struct cgroup_taskset *tset)
6848 6849 6850
{
}
#endif
B
Balbir Singh 已提交
6851

6852 6853 6854 6855
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
6856
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6857 6858 6859 6860 6861 6862
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6863 6864
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6865 6866
}

B
Balbir Singh 已提交
6867 6868 6869
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6870
	.css_alloc = mem_cgroup_css_alloc,
6871
	.css_online = mem_cgroup_css_online,
6872 6873
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6874 6875
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6876
	.attach = mem_cgroup_move_task,
6877
	.bind = mem_cgroup_bind,
6878
	.base_cftypes = mem_cgroup_files,
6879
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6880
	.use_id = 1,
B
Balbir Singh 已提交
6881
};
6882

A
Andrew Morton 已提交
6883
#ifdef CONFIG_MEMCG_SWAP
6884 6885
static int __init enable_swap_account(char *s)
{
6886
	if (!strcmp(s, "1"))
6887
		really_do_swap_account = 1;
6888
	else if (!strcmp(s, "0"))
6889 6890 6891
		really_do_swap_account = 0;
	return 1;
}
6892
__setup("swapaccount=", enable_swap_account);
6893

6894 6895
static void __init memsw_file_init(void)
{
6896 6897 6898 6899 6900 6901 6902 6903 6904
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6905
}
6906

6907
#else
6908
static void __init enable_swap_cgroup(void)
6909 6910
{
}
6911
#endif
6912 6913

/*
6914 6915 6916 6917 6918 6919
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6920 6921 6922 6923
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6924
	enable_swap_cgroup();
6925
	mem_cgroup_soft_limit_tree_init();
6926
	memcg_stock_init();
6927 6928 6929
	return 0;
}
subsys_initcall(mem_cgroup_init);