memcontrol.c 174.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82
static int really_do_swap_account __initdata = 1;
#else
83
static int really_do_swap_account __initdata;
84 85
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
147 148 149 150
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
151
	struct mem_cgroup *last_visited;
152
	int last_dead_count;
M
Michal Hocko 已提交
153

154 155 156 157
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

158 159 160 161
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
162
	struct lruvec		lruvec;
163
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
164

165 166
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

167 168 169 170
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
171
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
172
						/* use container_of	   */
173 174 175 176 177 178
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

199 200 201 202 203
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
204
/* For threshold */
205
struct mem_cgroup_threshold_ary {
206
	/* An array index points to threshold just below or equal to usage. */
207
	int current_threshold;
208 209 210 211 212
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
213 214 215 216 217 218 219 220 221 222 223 224

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
225 226 227 228 229
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
230

231 232 233
/*
 * cgroup_event represents events which userspace want to receive.
 */
234
struct mem_cgroup_event {
235
	/*
236
	 * memcg which the event belongs to.
237
	 */
238
	struct mem_cgroup *memcg;
239 240 241 242 243 244 245 246
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
247 248 249 250 251
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
252
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
253
			      struct eventfd_ctx *eventfd, const char *args);
254 255 256 257 258
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
259
	void (*unregister_event)(struct mem_cgroup *memcg,
260
				 struct eventfd_ctx *eventfd);
261 262 263 264 265 266 267 268 269 270
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

271 272
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273

B
Balbir Singh 已提交
274 275 276 277 278 279 280
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 282 283
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
284 285 286 287 288 289 290
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
291

292 293 294
	/* vmpressure notifications */
	struct vmpressure vmpressure;

295 296 297
	/* css_online() has been completed */
	int initialized;

298 299 300 301
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
302

303 304 305 306
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
307 308 309 310
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
311
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
312 313 314

	bool		oom_lock;
	atomic_t	under_oom;
315
	atomic_t	oom_wakeups;
316

317
	int	swappiness;
318 319
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
320

321 322 323 324
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
325
	struct mem_cgroup_thresholds thresholds;
326

327
	/* thresholds for mem+swap usage. RCU-protected */
328
	struct mem_cgroup_thresholds memsw_thresholds;
329

K
KAMEZAWA Hiroyuki 已提交
330 331
	/* For oom notifier event fd */
	struct list_head oom_notify;
332

333 334 335 336
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
337
	unsigned long move_charge_at_immigrate;
338 339 340 341
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
342 343
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
344
	/*
345
	 * percpu counter.
346
	 */
347
	struct mem_cgroup_stat_cpu __percpu *stat;
348 349 350 351 352 353
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
354

M
Michal Hocko 已提交
355
	atomic_t	dead_count;
M
Michal Hocko 已提交
356
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
358
#endif
359
#if defined(CONFIG_MEMCG_KMEM)
360 361
	/* analogous to slab_common's slab_caches list, but per-memcg;
	 * protected by memcg_slab_mutex */
362 363 364 365
	struct list_head memcg_slab_caches;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
366 367 368 369 370 371 372

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
373

374 375 376 377
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

378 379
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
380 381
};

382 383
/* internal only representation about the status of kmem accounting. */
enum {
384
	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
385
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
386 387 388 389 390 391 392
};

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
393 394 395 396 397 398 399 400

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
401 402 403 404 405
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
406 407 408 409 410 411 412 413 414
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
415 416
#endif

417 418
/* Stuffs for move charges at task migration. */
/*
419 420
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
421 422
 */
enum move_type {
423
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
424
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
425 426 427
	NR_MOVE_TYPE,
};

428 429
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
430
	spinlock_t	  lock; /* for from, to */
431 432
	struct mem_cgroup *from;
	struct mem_cgroup *to;
433
	unsigned long immigrate_flags;
434
	unsigned long precharge;
435
	unsigned long moved_charge;
436
	unsigned long moved_swap;
437 438 439
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
440
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
441 442
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
443

D
Daisuke Nishimura 已提交
444 445
static bool move_anon(void)
{
446
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
447 448
}

449 450
static bool move_file(void)
{
451
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
452 453
}

454 455 456 457
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
458
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
459
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
460

461 462
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
463
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
464
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
465
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
466 467 468
	NR_CHARGE_TYPE,
};

469
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
470 471 472 473
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
474
	_KMEM,
G
Glauber Costa 已提交
475 476
};

477 478
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
479
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
480 481
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
482

483 484 485 486 487 488 489 490
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

491 492 493 494 495 496 497
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

498 499
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
500
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
501 502
}

503 504 505 506 507 508 509 510 511 512 513 514 515
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

516 517 518 519 520
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

521 522 523 524 525 526
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
527 528
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
529
	return memcg->css.id;
L
Li Zefan 已提交
530 531 532 533 534 535
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

536
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
537 538 539
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
540
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
541
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
542 543 544

void sock_update_memcg(struct sock *sk)
{
545
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
546
		struct mem_cgroup *memcg;
547
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
548 549 550

		BUG_ON(!sk->sk_prot->proto_cgroup);

551 552 553 554 555 556 557 558 559 560
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
561
			css_get(&sk->sk_cgrp->memcg->css);
562 563 564
			return;
		}

G
Glauber Costa 已提交
565 566
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
567
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
568
		if (!mem_cgroup_is_root(memcg) &&
569 570
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
571
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
572 573 574 575 576 577 578 579
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
580
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
581 582 583
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
584
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
585 586
	}
}
G
Glauber Costa 已提交
587 588 589 590 591 592

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

593
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
594 595
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
596

597 598
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
599
	if (!memcg_proto_activated(&memcg->tcp_mem))
600 601 602 603 604 605 606 607 608
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

609
#ifdef CONFIG_MEMCG_KMEM
610 611
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
612 613 614 615 616
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
617 618 619 620 621 622
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
623 624
int memcg_limited_groups_array_size;

625 626 627 628 629 630
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
631
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
632 633
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
634
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
635 636 637
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
638
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
639

640 641 642 643 644 645
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
646
struct static_key memcg_kmem_enabled_key;
647
EXPORT_SYMBOL(memcg_kmem_enabled_key);
648

649 650
static void memcg_free_cache_id(int id);

651 652
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
653
	if (memcg_kmem_is_active(memcg)) {
654
		static_key_slow_dec(&memcg_kmem_enabled_key);
655
		memcg_free_cache_id(memcg->kmemcg_id);
656
	}
657 658 659 660 661
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
662 663 664 665 666 667 668 669 670 671 672 673 674
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

675
static void drain_all_stock_async(struct mem_cgroup *memcg);
676

677
static struct mem_cgroup_per_zone *
678
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
679
{
680 681 682
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

683
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
684 685
}

686
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
687
{
688
	return &memcg->css;
689 690
}

691
static struct mem_cgroup_per_zone *
692
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
693
{
694 695
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
696

697
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
698 699
}

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

715 716 717
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
					 unsigned long long new_usage_in_excess)
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

747 748
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
749 750 751 752 753 754 755
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

756 757
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
758
{
759 760 761
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
762
	__mem_cgroup_remove_exceeded(mz, mctz);
763
	spin_unlock_irqrestore(&mctz->lock, flags);
764 765 766 767 768 769 770 771 772
}


static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
	unsigned long long excess;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

773
	mctz = soft_limit_tree_from_page(page);
774 775 776 777 778
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
779
		mz = mem_cgroup_page_zoneinfo(memcg, page);
780 781 782 783 784 785
		excess = res_counter_soft_limit_excess(&memcg->res);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
786 787 788
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
789 790
			/* if on-tree, remove it */
			if (mz->on_tree)
791
				__mem_cgroup_remove_exceeded(mz, mctz);
792 793 794 795
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
796
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
797
			spin_unlock_irqrestore(&mctz->lock, flags);
798 799 800 801 802 803 804
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
805 806
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
807

808 809 810 811
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
812
			mem_cgroup_remove_exceeded(mz, mctz);
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
835
	__mem_cgroup_remove_exceeded(mz, mctz);
836
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
837
	    !css_tryget_online(&mz->memcg->css))
838 839 840 841 842 843 844 845 846 847
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

848
	spin_lock_irq(&mctz->lock);
849
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
850
	spin_unlock_irq(&mctz->lock);
851 852 853
	return mz;
}

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
873
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
874
				 enum mem_cgroup_stat_index idx)
875
{
876
	long val = 0;
877 878
	int cpu;

879 880
	get_online_cpus();
	for_each_online_cpu(cpu)
881
		val += per_cpu(memcg->stat->count[idx], cpu);
882
#ifdef CONFIG_HOTPLUG_CPU
883 884 885
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
886 887
#endif
	put_online_cpus();
888 889 890
	return val;
}

891
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
892 893 894 895 896
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

897
	get_online_cpus();
898
	for_each_online_cpu(cpu)
899
		val += per_cpu(memcg->stat->events[idx], cpu);
900
#ifdef CONFIG_HOTPLUG_CPU
901 902 903
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
904
#endif
905
	put_online_cpus();
906 907 908
	return val;
}

909
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
910
					 struct page *page,
911
					 int nr_pages)
912
{
913 914 915 916
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
917
	if (PageAnon(page))
918
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
919
				nr_pages);
920
	else
921
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
922
				nr_pages);
923

924 925 926 927
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

928 929
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
930
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
931
	else {
932
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
933 934
		nr_pages = -nr_pages; /* for event */
	}
935

936
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
937 938
}

939
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
940 941 942 943 944 945 946
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

947 948 949
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
950
{
951
	unsigned long nr = 0;
952 953
	int zid;

954
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
955

956 957 958 959 960 961 962 963 964 965 966 967
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
968
}
969

970
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
971
			unsigned int lru_mask)
972
{
973
	unsigned long nr = 0;
974
	int nid;
975

976
	for_each_node_state(nid, N_MEMORY)
977 978
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
979 980
}

981 982
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
983 984 985
{
	unsigned long val, next;

986
	val = __this_cpu_read(memcg->stat->nr_page_events);
987
	next = __this_cpu_read(memcg->stat->targets[target]);
988
	/* from time_after() in jiffies.h */
989 990 991 992 993
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
994 995 996
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
997 998 999 1000 1001 1002 1003 1004
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1005
	}
1006
	return false;
1007 1008 1009 1010 1011 1012
}

/*
 * Check events in order.
 *
 */
1013
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1014 1015
{
	/* threshold event is triggered in finer grain than soft limit */
1016 1017
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1018
		bool do_softlimit;
1019
		bool do_numainfo __maybe_unused;
1020

1021 1022
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1023 1024 1025 1026
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
1027
		mem_cgroup_threshold(memcg);
1028 1029
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1030
#if MAX_NUMNODES > 1
1031
		if (unlikely(do_numainfo))
1032
			atomic_inc(&memcg->numainfo_events);
1033
#endif
1034
	}
1035 1036
}

1037
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1038
{
1039 1040 1041 1042 1043 1044 1045 1046
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1047
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1048 1049
}

1050
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1051
{
1052
	struct mem_cgroup *memcg = NULL;
1053

1054 1055
	rcu_read_lock();
	do {
1056 1057 1058 1059 1060 1061
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1062
			memcg = root_mem_cgroup;
1063 1064 1065 1066 1067
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1068
	} while (!css_tryget_online(&memcg->css));
1069
	rcu_read_unlock();
1070
	return memcg;
1071 1072
}

1073 1074 1075 1076 1077 1078 1079
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1080
		struct mem_cgroup *last_visited)
1081
{
1082
	struct cgroup_subsys_state *prev_css, *next_css;
1083

1084
	prev_css = last_visited ? &last_visited->css : NULL;
1085
skip_node:
1086
	next_css = css_next_descendant_pre(prev_css, &root->css);
1087 1088 1089 1090 1091 1092 1093

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
1094 1095 1096 1097 1098 1099 1100 1101
	 *
	 * We do not take a reference on the root of the tree walk
	 * because we might race with the root removal when it would
	 * be the only node in the iterated hierarchy and mem_cgroup_iter
	 * would end up in an endless loop because it expects that at
	 * least one valid node will be returned. Root cannot disappear
	 * because caller of the iterator should hold it already so
	 * skipping css reference should be safe.
1102
	 */
1103
	if (next_css) {
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
		struct mem_cgroup *memcg = mem_cgroup_from_css(next_css);

		if (next_css == &root->css)
			return memcg;

		if (css_tryget_online(next_css)) {
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				return memcg;
			css_put(next_css);
		}
1119 1120 1121

		prev_css = next_css;
		goto skip_node;
1122 1123 1124 1125 1126
	}

	return NULL;
}

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
1155 1156 1157 1158 1159 1160 1161 1162

		/*
		 * We cannot take a reference to root because we might race
		 * with root removal and returning NULL would end up in
		 * an endless loop on the iterator user level when root
		 * would be returned all the time.
		 */
		if (position && position != root &&
1163
		    !css_tryget_online(&position->css))
1164 1165 1166 1167 1168 1169 1170 1171
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
1172
				   struct mem_cgroup *root,
1173 1174
				   int sequence)
{
1175 1176
	/* root reference counting symmetric to mem_cgroup_iter_load */
	if (last_visited && last_visited != root)
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1206
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1207
				   struct mem_cgroup *prev,
1208
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1209
{
1210
	struct mem_cgroup *memcg = NULL;
1211
	struct mem_cgroup *last_visited = NULL;
1212

1213 1214
	if (mem_cgroup_disabled())
		return NULL;
1215

1216 1217
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1218

1219
	if (prev && !reclaim)
1220
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1221

1222 1223
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1224
			goto out_css_put;
1225
		return root;
1226
	}
K
KAMEZAWA Hiroyuki 已提交
1227

1228
	rcu_read_lock();
1229
	while (!memcg) {
1230
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1231
		int uninitialized_var(seq);
1232

1233 1234 1235
		if (reclaim) {
			struct mem_cgroup_per_zone *mz;

1236
			mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1237
			iter = &mz->reclaim_iter[reclaim->priority];
1238
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1239
				iter->last_visited = NULL;
1240 1241
				goto out_unlock;
			}
M
Michal Hocko 已提交
1242

1243
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1244
		}
K
KAMEZAWA Hiroyuki 已提交
1245

1246
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1247

1248
		if (reclaim) {
1249 1250
			mem_cgroup_iter_update(iter, last_visited, memcg, root,
					seq);
1251

M
Michal Hocko 已提交
1252
			if (!memcg)
1253 1254 1255 1256
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1257

1258
		if (prev && !memcg)
1259
			goto out_unlock;
1260
	}
1261 1262
out_unlock:
	rcu_read_unlock();
1263 1264 1265 1266
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1267
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1268
}
K
KAMEZAWA Hiroyuki 已提交
1269

1270 1271 1272 1273 1274 1275 1276
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1277 1278 1279 1280 1281 1282
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1283

1284 1285 1286 1287 1288 1289
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1290
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1291
	     iter != NULL;				\
1292
	     iter = mem_cgroup_iter(root, iter, NULL))
1293

1294
#define for_each_mem_cgroup(iter)			\
1295
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1296
	     iter != NULL;				\
1297
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1298

1299
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1300
{
1301
	struct mem_cgroup *memcg;
1302 1303

	rcu_read_lock();
1304 1305
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1306 1307 1308 1309
		goto out;

	switch (idx) {
	case PGFAULT:
1310 1311 1312 1313
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1314 1315 1316 1317 1318 1319 1320
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1321
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1322

1323 1324 1325
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1326
 * @memcg: memcg of the wanted lruvec
1327 1328 1329 1330 1331 1332 1333 1334 1335
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1336
	struct lruvec *lruvec;
1337

1338 1339 1340 1341
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1342

1343
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1354 1355 1356
}

/**
1357
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1358
 * @page: the page
1359
 * @zone: zone of the page
1360
 */
1361
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1362 1363
{
	struct mem_cgroup_per_zone *mz;
1364 1365
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1366
	struct lruvec *lruvec;
1367

1368 1369 1370 1371
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1372

K
KAMEZAWA Hiroyuki 已提交
1373
	pc = lookup_page_cgroup(page);
1374
	memcg = pc->mem_cgroup;
1375 1376

	/*
1377
	 * Surreptitiously switch any uncharged offlist page to root:
1378 1379 1380 1381 1382 1383 1384
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1385
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1386 1387
		pc->mem_cgroup = memcg = root_mem_cgroup;

1388
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1399
}
1400

1401
/**
1402 1403 1404 1405
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1406
 *
1407 1408
 * This function must be called when a page is added to or removed from an
 * lru list.
1409
 */
1410 1411
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1412 1413
{
	struct mem_cgroup_per_zone *mz;
1414
	unsigned long *lru_size;
1415 1416 1417 1418

	if (mem_cgroup_disabled())
		return;

1419 1420 1421 1422
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1423
}
1424

1425
/*
1426
 * Checks whether given mem is same or in the root_mem_cgroup's
1427 1428
 * hierarchy subtree
 */
1429 1430
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1431
{
1432 1433
	if (root_memcg == memcg)
		return true;
1434
	if (!root_memcg->use_hierarchy || !memcg)
1435
		return false;
1436
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1437 1438 1439 1440 1441 1442 1443
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1444
	rcu_read_lock();
1445
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1446 1447
	rcu_read_unlock();
	return ret;
1448 1449
}

1450 1451
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1452
{
1453
	struct mem_cgroup *curr = NULL;
1454
	struct task_struct *p;
1455
	bool ret;
1456

1457
	p = find_lock_task_mm(task);
1458
	if (p) {
1459
		curr = get_mem_cgroup_from_mm(p->mm);
1460 1461 1462 1463 1464 1465 1466
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1467
		rcu_read_lock();
1468 1469 1470
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1471
		rcu_read_unlock();
1472
	}
1473
	/*
1474
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1475
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1476 1477
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1478
	 */
1479
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1480
	css_put(&curr->css);
1481 1482 1483
	return ret;
}

1484
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1485
{
1486
	unsigned long inactive_ratio;
1487
	unsigned long inactive;
1488
	unsigned long active;
1489
	unsigned long gb;
1490

1491 1492
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1493

1494 1495 1496 1497 1498 1499
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1500
	return inactive * inactive_ratio < active;
1501 1502
}

1503 1504 1505
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1506
/**
1507
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1508
 * @memcg: the memory cgroup
1509
 *
1510
 * Returns the maximum amount of memory @mem can be charged with, in
1511
 * pages.
1512
 */
1513
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1514
{
1515 1516
	unsigned long long margin;

1517
	margin = res_counter_margin(&memcg->res);
1518
	if (do_swap_account)
1519
		margin = min(margin, res_counter_margin(&memcg->memsw));
1520
	return margin >> PAGE_SHIFT;
1521 1522
}

1523
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1524 1525
{
	/* root ? */
1526
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1527 1528
		return vm_swappiness;

1529
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1530 1531
}

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1546 1547 1548 1549

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1550
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1551
{
1552
	atomic_inc(&memcg_moving);
1553
	atomic_inc(&memcg->moving_account);
1554 1555 1556
	synchronize_rcu();
}

1557
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1558
{
1559 1560 1561 1562
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1563 1564
	if (memcg) {
		atomic_dec(&memcg_moving);
1565
		atomic_dec(&memcg->moving_account);
1566
	}
1567
}
1568

1569
/*
Q
Qiang Huang 已提交
1570
 * A routine for checking "mem" is under move_account() or not.
1571
 *
Q
Qiang Huang 已提交
1572 1573 1574
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1575
 */
1576
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1577
{
1578 1579
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1580
	bool ret = false;
1581 1582 1583 1584 1585 1586 1587 1588 1589
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1590

1591 1592
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1593 1594
unlock:
	spin_unlock(&mc.lock);
1595 1596 1597
	return ret;
}

1598
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1599 1600
{
	if (mc.moving_task && current != mc.moving_task) {
1601
		if (mem_cgroup_under_move(memcg)) {
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1631
#define K(x) ((x) << (PAGE_SHIFT-10))
1632
/**
1633
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1634 1635 1636 1637 1638 1639 1640 1641
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1642
	/* oom_info_lock ensures that parallel ooms do not interleave */
1643
	static DEFINE_MUTEX(oom_info_lock);
1644 1645
	struct mem_cgroup *iter;
	unsigned int i;
1646

1647
	if (!p)
1648 1649
		return;

1650
	mutex_lock(&oom_info_lock);
1651 1652
	rcu_read_lock();

T
Tejun Heo 已提交
1653 1654 1655 1656 1657
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	pr_info(" killed as a result of limit of ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_info("\n");
1658 1659 1660

	rcu_read_unlock();

1661
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1662 1663 1664
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1665
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1666 1667 1668
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1669
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1670 1671 1672
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1673 1674

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1675 1676
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1692
	mutex_unlock(&oom_info_lock);
1693 1694
}

1695 1696 1697 1698
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1699
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1700 1701
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1702 1703
	struct mem_cgroup *iter;

1704
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1705
		num++;
1706 1707 1708
	return num;
}

D
David Rientjes 已提交
1709 1710 1711
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1712
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1713 1714 1715
{
	u64 limit;

1716 1717
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1718
	/*
1719
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1720
	 */
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1735 1736
}

1737 1738
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1739 1740 1741 1742 1743 1744 1745
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1746
	/*
1747 1748 1749
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1750
	 */
1751
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1752 1753 1754 1755 1756
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1757 1758
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1759
		struct css_task_iter it;
1760 1761
		struct task_struct *task;

1762 1763
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1776
				css_task_iter_end(&it);
1777 1778 1779 1780 1781 1782 1783 1784
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1797
		}
1798
		css_task_iter_end(&it);
1799 1800 1801 1802 1803 1804 1805 1806 1807
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1842 1843
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1844
 * @memcg: the target memcg
1845 1846 1847 1848 1849 1850 1851
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1852
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1853 1854
		int nid, bool noswap)
{
1855
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1856 1857 1858
		return true;
	if (noswap || !total_swap_pages)
		return false;
1859
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1860 1861 1862 1863
		return true;
	return false;

}
1864
#if MAX_NUMNODES > 1
1865 1866 1867 1868 1869 1870 1871

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1872
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1873 1874
{
	int nid;
1875 1876 1877 1878
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1879
	if (!atomic_read(&memcg->numainfo_events))
1880
		return;
1881
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1882 1883 1884
		return;

	/* make a nodemask where this memcg uses memory from */
1885
	memcg->scan_nodes = node_states[N_MEMORY];
1886

1887
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1888

1889 1890
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1891
	}
1892

1893 1894
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1909
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1910 1911 1912
{
	int node;

1913 1914
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1915

1916
	node = next_node(node, memcg->scan_nodes);
1917
	if (node == MAX_NUMNODES)
1918
		node = first_node(memcg->scan_nodes);
1919 1920 1921 1922 1923 1924 1925 1926 1927
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1928
	memcg->last_scanned_node = node;
1929 1930 1931
	return node;
}

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

1967
#else
1968
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1969 1970 1971
{
	return 0;
}
1972

1973 1974 1975 1976
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
1977 1978
#endif

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
			break;
2027
	}
2028 2029
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
2030 2031
}

2032 2033 2034 2035 2036 2037
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

2038 2039
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
2040 2041 2042 2043
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
2044
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2045
{
2046
	struct mem_cgroup *iter, *failed = NULL;
2047

2048 2049
	spin_lock(&memcg_oom_lock);

2050
	for_each_mem_cgroup_tree(iter, memcg) {
2051
		if (iter->oom_lock) {
2052 2053 2054 2055 2056
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2057 2058
			mem_cgroup_iter_break(memcg, iter);
			break;
2059 2060
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2061
	}
K
KAMEZAWA Hiroyuki 已提交
2062

2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
2074
		}
2075 2076
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2077 2078 2079 2080

	spin_unlock(&memcg_oom_lock);

	return !failed;
2081
}
2082

2083
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2084
{
K
KAMEZAWA Hiroyuki 已提交
2085 2086
	struct mem_cgroup *iter;

2087
	spin_lock(&memcg_oom_lock);
2088
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2089
	for_each_mem_cgroup_tree(iter, memcg)
2090
		iter->oom_lock = false;
2091
	spin_unlock(&memcg_oom_lock);
2092 2093
}

2094
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2095 2096 2097
{
	struct mem_cgroup *iter;

2098
	for_each_mem_cgroup_tree(iter, memcg)
2099 2100 2101
		atomic_inc(&iter->under_oom);
}

2102
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2103 2104 2105
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2106 2107 2108 2109 2110
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2111
	for_each_mem_cgroup_tree(iter, memcg)
2112
		atomic_add_unless(&iter->under_oom, -1, 0);
2113 2114
}

K
KAMEZAWA Hiroyuki 已提交
2115 2116
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2117
struct oom_wait_info {
2118
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2119 2120 2121 2122 2123 2124
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2125 2126
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2127 2128 2129
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2130
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2131 2132

	/*
2133
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2134 2135
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2136 2137
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2138 2139 2140 2141
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2142
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2143
{
2144
	atomic_inc(&memcg->oom_wakeups);
2145 2146
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2147 2148
}

2149
static void memcg_oom_recover(struct mem_cgroup *memcg)
2150
{
2151 2152
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2153 2154
}

2155
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2156
{
2157 2158
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2159
	/*
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2172
	 */
2173 2174 2175 2176
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2177 2178 2179 2180
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2181
 * @handle: actually kill/wait or just clean up the OOM state
2182
 *
2183 2184
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2185
 *
2186
 * Memcg supports userspace OOM handling where failed allocations must
2187 2188 2189 2190
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2191
 * the end of the page fault to complete the OOM handling.
2192 2193
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2194
 * completed, %false otherwise.
2195
 */
2196
bool mem_cgroup_oom_synchronize(bool handle)
2197
{
2198
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2199
	struct oom_wait_info owait;
2200
	bool locked;
2201 2202 2203

	/* OOM is global, do not handle */
	if (!memcg)
2204
		return false;
2205

2206 2207
	if (!handle)
		goto cleanup;
2208 2209 2210 2211 2212 2213

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2214

2215
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2229
		schedule();
2230 2231 2232 2233 2234
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2235 2236 2237 2238 2239 2240 2241 2242
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2243 2244
cleanup:
	current->memcg_oom.memcg = NULL;
2245
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2246
	return true;
2247 2248
}

2249
/*
2250
 * Used to update mapped file or writeback or other statistics.
2251 2252 2253
 *
 * Notes: Race condition
 *
2254 2255 2256
 * Charging occurs during page instantiation, while the page is
 * unmapped and locked in page migration, or while the page table is
 * locked in THP migration.  No race is possible.
2257
 *
2258
 * Uncharge happens to pages with zero references, no race possible.
2259
 *
2260 2261
 * Charge moving between groups is protected by checking mm->moving
 * account and taking the move_lock in the slowpath.
2262
 */
2263

2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2277
	 * need to take move_lock_mem_cgroup(). Because we already hold
2278
	 * rcu_read_lock(), any calls to move_account will be delayed until
Q
Qiang Huang 已提交
2279
	 * rcu_read_unlock().
2280
	 */
Q
Qiang Huang 已提交
2281 2282
	VM_BUG_ON(!rcu_read_lock_held());
	if (atomic_read(&memcg->moving_account) <= 0)
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2300
	 * should take move_lock_mem_cgroup().
2301 2302 2303 2304
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2305
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2306
				 enum mem_cgroup_stat_index idx, int val)
2307
{
2308
	struct mem_cgroup *memcg;
2309
	struct page_cgroup *pc = lookup_page_cgroup(page);
2310
	unsigned long uninitialized_var(flags);
2311

2312
	if (mem_cgroup_disabled())
2313
		return;
2314

2315
	VM_BUG_ON(!rcu_read_lock_held());
2316 2317
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2318
		return;
2319

2320
	this_cpu_add(memcg->stat->count[idx], val);
2321
}
2322

2323 2324 2325 2326
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2327
#define CHARGE_BATCH	32U
2328 2329
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2330
	unsigned int nr_pages;
2331
	struct work_struct work;
2332
	unsigned long flags;
2333
#define FLUSHING_CACHED_CHARGE	0
2334 2335
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2336
static DEFINE_MUTEX(percpu_charge_mutex);
2337

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2348
 */
2349
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2350 2351 2352 2353
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2354 2355 2356
	if (nr_pages > CHARGE_BATCH)
		return false;

2357
	stock = &get_cpu_var(memcg_stock);
2358 2359
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2373 2374 2375 2376
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2377
		if (do_swap_account)
2378 2379
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2390
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2391
	drain_stock(stock);
2392
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2393 2394
}

2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2406 2407
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2408
 * This will be consumed by consume_stock() function, later.
2409
 */
2410
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2411 2412 2413
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2414
	if (stock->cached != memcg) { /* reset if necessary */
2415
		drain_stock(stock);
2416
		stock->cached = memcg;
2417
	}
2418
	stock->nr_pages += nr_pages;
2419 2420 2421 2422
	put_cpu_var(memcg_stock);
}

/*
2423
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2424 2425
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2426
 */
2427
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2428
{
2429
	int cpu, curcpu;
2430

2431 2432
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2433
	curcpu = get_cpu();
2434 2435
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2436
		struct mem_cgroup *memcg;
2437

2438 2439
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2440
			continue;
2441
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2442
			continue;
2443 2444 2445 2446 2447 2448
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2449
	}
2450
	put_cpu();
2451 2452 2453 2454 2455 2456

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2457
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2458 2459 2460
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2461
	put_online_cpus();
2462 2463 2464 2465 2466 2467 2468 2469
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2470
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2471
{
2472 2473 2474 2475 2476
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2477
	drain_all_stock(root_memcg, false);
2478
	mutex_unlock(&percpu_charge_mutex);
2479 2480 2481
}

/* This is a synchronous drain interface. */
2482
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2483 2484
{
	/* called when force_empty is called */
2485
	mutex_lock(&percpu_charge_mutex);
2486
	drain_all_stock(root_memcg, true);
2487
	mutex_unlock(&percpu_charge_mutex);
2488 2489
}

2490 2491 2492 2493
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2494
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2495 2496 2497
{
	int i;

2498
	spin_lock(&memcg->pcp_counter_lock);
2499
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2500
		long x = per_cpu(memcg->stat->count[i], cpu);
2501

2502 2503
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2504
	}
2505
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2506
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2507

2508 2509
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2510
	}
2511
	spin_unlock(&memcg->pcp_counter_lock);
2512 2513
}

2514
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2515 2516 2517 2518 2519
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2520
	struct mem_cgroup *iter;
2521

2522
	if (action == CPU_ONLINE)
2523 2524
		return NOTIFY_OK;

2525
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2526
		return NOTIFY_OK;
2527

2528
	for_each_mem_cgroup(iter)
2529 2530
		mem_cgroup_drain_pcp_counter(iter, cpu);

2531 2532 2533 2534 2535
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2536 2537
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2538
{
2539
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2540
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2541 2542 2543 2544 2545
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long nr_reclaimed;
	unsigned long flags = 0;
	unsigned long long size;
2546
	int ret = 0;
2547

2548 2549
	if (mem_cgroup_is_root(memcg))
		goto done;
2550
retry:
2551 2552
	if (consume_stock(memcg, nr_pages))
		goto done;
2553

2554
	size = batch * PAGE_SIZE;
2555 2556 2557
	if (!do_swap_account ||
	    !res_counter_charge(&memcg->memsw, size, &fail_res)) {
		if (!res_counter_charge(&memcg->res, size, &fail_res))
2558
			goto done_restock;
2559 2560 2561 2562
		if (do_swap_account)
			res_counter_uncharge(&memcg->memsw, size);
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
	} else {
2563 2564
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2565
	}
2566

2567 2568 2569 2570
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2571

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2586 2587
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2588

2589 2590
	nr_reclaimed = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);

2591
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2592
		goto retry;
2593 2594 2595

	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2596 2597 2598 2599 2600 2601 2602 2603 2604
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2605
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2606 2607 2608 2609 2610 2611 2612 2613
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2614 2615 2616
	if (nr_retries--)
		goto retry;

2617 2618 2619
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2620 2621 2622
	if (fatal_signal_pending(current))
		goto bypass;

2623
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2624
nomem:
2625
	if (!(gfp_mask & __GFP_NOFAIL))
2626
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2627
bypass:
2628
	return -EINTR;
2629 2630 2631 2632 2633

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
done:
2634
	return ret;
2635
}
2636

2637
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2638
{
2639
	unsigned long bytes = nr_pages * PAGE_SIZE;
2640

2641 2642 2643
	if (mem_cgroup_is_root(memcg))
		return;

2644 2645 2646
	res_counter_uncharge(&memcg->res, bytes);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, bytes);
2647 2648
}

2649 2650 2651 2652 2653 2654 2655 2656 2657
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

2658 2659 2660
	if (mem_cgroup_is_root(memcg))
		return;

2661 2662 2663 2664 2665 2666
	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2667 2668
/*
 * A helper function to get mem_cgroup from ID. must be called under
2669 2670 2671
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2672 2673 2674 2675 2676 2677
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2678
	return mem_cgroup_from_id(id);
2679 2680
}

2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2691
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2692
{
2693
	struct mem_cgroup *memcg = NULL;
2694
	struct page_cgroup *pc;
2695
	unsigned short id;
2696 2697
	swp_entry_t ent;

2698
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2699 2700

	pc = lookup_page_cgroup(page);
2701
	if (PageCgroupUsed(pc)) {
2702
		memcg = pc->mem_cgroup;
2703
		if (memcg && !css_tryget_online(&memcg->css))
2704
			memcg = NULL;
2705
	} else if (PageSwapCache(page)) {
2706
		ent.val = page_private(page);
2707
		id = lookup_swap_cgroup_id(ent);
2708
		rcu_read_lock();
2709
		memcg = mem_cgroup_lookup(id);
2710
		if (memcg && !css_tryget_online(&memcg->css))
2711
			memcg = NULL;
2712
		rcu_read_unlock();
2713
	}
2714
	return memcg;
2715 2716
}

2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2748
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2749
			  bool lrucare)
2750
{
2751
	struct page_cgroup *pc = lookup_page_cgroup(page);
2752
	int isolated;
2753

2754
	VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2755 2756 2757 2758
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2759 2760 2761 2762 2763

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2764 2765
	if (lrucare)
		lock_page_lru(page, &isolated);
2766

2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
	/*
	 * Nobody should be changing or seriously looking at
	 * pc->mem_cgroup and pc->flags at this point:
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2781
	pc->mem_cgroup = memcg;
2782
	pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
2783

2784 2785
	if (lrucare)
		unlock_page_lru(page, isolated);
2786
}
2787

2788 2789
static DEFINE_MUTEX(set_limit_mutex);

2790
#ifdef CONFIG_MEMCG_KMEM
2791 2792 2793 2794 2795 2796
/*
 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
 */
static DEFINE_MUTEX(memcg_slab_mutex);

2797 2798
static DEFINE_MUTEX(activate_kmem_mutex);

2799 2800 2801
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2802
		memcg_kmem_is_active(memcg);
2803 2804
}

G
Glauber Costa 已提交
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
2815
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
2816 2817
}

2818
#ifdef CONFIG_SLABINFO
2819
static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2820
{
2821
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2822 2823 2824 2825 2826 2827 2828
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

2829
	mutex_lock(&memcg_slab_mutex);
2830 2831
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
2832
	mutex_unlock(&memcg_slab_mutex);
2833 2834 2835 2836 2837

	return 0;
}
#endif

2838
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2839 2840 2841 2842 2843 2844 2845 2846
{
	struct res_counter *fail_res;
	int ret = 0;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

2847
	ret = try_charge(memcg, gfp, size >> PAGE_SHIFT);
2848 2849
	if (ret == -EINTR)  {
		/*
2850 2851 2852 2853 2854 2855
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2856 2857 2858
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2859 2860 2861
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

2875
static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2876 2877 2878 2879
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2880 2881 2882 2883 2884

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

2885 2886 2887 2888 2889 2890 2891 2892
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
2893
	if (memcg_kmem_test_and_clear_dead(memcg))
2894
		css_put(&memcg->css);
2895 2896
}

2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2907
static int memcg_alloc_cache_id(void)
2908
{
2909 2910 2911 2912 2913 2914 2915
	int id, size;
	int err;

	id = ida_simple_get(&kmem_limited_groups,
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2916

2917 2918 2919 2920 2921 2922 2923 2924 2925
	if (id < memcg_limited_groups_array_size)
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */

	size = 2 * (id + 1);
2926 2927 2928 2929 2930
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
	mutex_lock(&memcg_slab_mutex);
	err = memcg_update_all_caches(size);
	mutex_unlock(&memcg_slab_mutex);

	if (err) {
		ida_simple_remove(&kmem_limited_groups, id);
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
	ida_simple_remove(&kmem_limited_groups, id);
2945 2946 2947 2948 2949 2950 2951 2952 2953
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
2954
	memcg_limited_groups_array_size = num;
2955 2956
}

2957 2958
static void memcg_register_cache(struct mem_cgroup *memcg,
				 struct kmem_cache *root_cache)
2959
{
2960 2961
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by
						     memcg_slab_mutex */
2962
	struct kmem_cache *cachep;
2963 2964
	int id;

2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
	lockdep_assert_held(&memcg_slab_mutex);

	id = memcg_cache_id(memcg);

	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
	if (cache_from_memcg_idx(root_cache, id))
2975 2976
		return;

2977
	cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
2978
	cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2979
	/*
2980 2981 2982
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
2983
	 */
2984 2985
	if (!cachep)
		return;
2986

2987
	css_get(&memcg->css);
2988
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2989

2990
	/*
2991 2992 2993
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
2994
	 */
2995 2996
	smp_wmb();

2997 2998
	BUG_ON(root_cache->memcg_params->memcg_caches[id]);
	root_cache->memcg_params->memcg_caches[id] = cachep;
2999
}
3000

3001
static void memcg_unregister_cache(struct kmem_cache *cachep)
3002
{
3003
	struct kmem_cache *root_cache;
3004 3005 3006
	struct mem_cgroup *memcg;
	int id;

3007
	lockdep_assert_held(&memcg_slab_mutex);
3008

3009
	BUG_ON(is_root_cache(cachep));
3010

3011 3012
	root_cache = cachep->memcg_params->root_cache;
	memcg = cachep->memcg_params->memcg;
3013
	id = memcg_cache_id(memcg);
3014

3015 3016
	BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
	root_cache->memcg_params->memcg_caches[id] = NULL;
3017

3018 3019 3020
	list_del(&cachep->memcg_params->list);

	kmem_cache_destroy(cachep);
3021 3022 3023

	/* drop the reference taken in memcg_register_cache */
	css_put(&memcg->css);
3024 3025
}

3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

3057
int __memcg_cleanup_cache_params(struct kmem_cache *s)
3058 3059
{
	struct kmem_cache *c;
3060
	int i, failed = 0;
3061

3062
	mutex_lock(&memcg_slab_mutex);
3063 3064
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
3065 3066 3067
		if (!c)
			continue;

3068
		memcg_unregister_cache(c);
3069 3070 3071

		if (cache_from_memcg_idx(s, i))
			failed++;
3072
	}
3073
	mutex_unlock(&memcg_slab_mutex);
3074
	return failed;
3075 3076
}

3077
static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3078 3079
{
	struct kmem_cache *cachep;
3080
	struct memcg_cache_params *params, *tmp;
G
Glauber Costa 已提交
3081 3082 3083 3084

	if (!memcg_kmem_is_active(memcg))
		return;

3085 3086
	mutex_lock(&memcg_slab_mutex);
	list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
G
Glauber Costa 已提交
3087
		cachep = memcg_params_to_cache(params);
3088 3089
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3090
			memcg_unregister_cache(cachep);
G
Glauber Costa 已提交
3091
	}
3092
	mutex_unlock(&memcg_slab_mutex);
G
Glauber Costa 已提交
3093 3094
}

3095
struct memcg_register_cache_work {
3096 3097 3098 3099 3100
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

3101
static void memcg_register_cache_func(struct work_struct *w)
3102
{
3103 3104
	struct memcg_register_cache_work *cw =
		container_of(w, struct memcg_register_cache_work, work);
3105 3106
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
3107

3108
	mutex_lock(&memcg_slab_mutex);
3109
	memcg_register_cache(memcg, cachep);
3110 3111
	mutex_unlock(&memcg_slab_mutex);

3112
	css_put(&memcg->css);
3113 3114 3115 3116 3117 3118
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3119 3120
static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
					    struct kmem_cache *cachep)
3121
{
3122
	struct memcg_register_cache_work *cw;
3123

3124
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
3125 3126
	if (cw == NULL) {
		css_put(&memcg->css);
3127 3128 3129 3130 3131 3132
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

3133
	INIT_WORK(&cw->work, memcg_register_cache_func);
3134 3135 3136
	schedule_work(&cw->work);
}

3137 3138
static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
					  struct kmem_cache *cachep)
3139 3140 3141 3142
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
3143
	 * in __memcg_schedule_register_cache will recurse.
3144 3145 3146 3147 3148 3149 3150 3151
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
3152
	__memcg_schedule_register_cache(memcg, cachep);
3153 3154
	memcg_resume_kmem_account();
}
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172

int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
{
	int res;

	res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
				PAGE_SIZE << order);
	if (!res)
		atomic_add(1 << order, &cachep->memcg_params->nr_pages);
	return res;
}

void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
{
	memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
	atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
}

3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
3190
	struct kmem_cache *memcg_cachep;
3191 3192 3193 3194

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3195 3196 3197
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3198 3199 3200 3201
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3202
		goto out;
3203

3204 3205 3206
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
	if (likely(memcg_cachep)) {
		cachep = memcg_cachep;
3207
		goto out;
3208 3209
	}

3210
	/* The corresponding put will be done in the workqueue. */
3211
	if (!css_tryget_online(&memcg->css))
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
3223 3224 3225
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
3226
	 */
3227
	memcg_schedule_register_cache(memcg, cachep);
3228 3229 3230 3231
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3232 3233
}

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3255 3256 3257 3258

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
V
Vladimir Davydov 已提交
3259 3260 3261 3262 3263 3264
	 * check here, since direct calls to the page allocator that are
	 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
	 * outside memcg core. We are mostly concerned with cache allocations,
	 * and by having this test at memcg_kmem_get_cache, we are already able
	 * to relay the allocation to the root cache and bypass the memcg cache
	 * altogether.
3265 3266 3267 3268 3269 3270
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3271 3272 3273
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3284
	memcg = get_mem_cgroup_from_mm(current->mm);
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}
3311 3312 3313 3314
	/*
	 * The page is freshly allocated and not visible to any
	 * outside callers yet.  Set up pc non-atomically.
	 */
3315 3316
	pc = lookup_page_cgroup(page);
	pc->mem_cgroup = memcg;
3317
	pc->flags = PCG_USED;
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	if (!PageCgroupUsed(pc))
		return;

3330 3331
	memcg = pc->mem_cgroup;
	pc->flags = 0;
3332 3333 3334 3335 3336 3337 3338 3339

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

3340
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3341 3342
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3343
#else
3344
static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3345 3346
{
}
3347 3348
#endif /* CONFIG_MEMCG_KMEM */

3349 3350 3351 3352
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
3353 3354 3355
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3356
 */
3357
void mem_cgroup_split_huge_fixup(struct page *head)
3358 3359
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3360
	struct page_cgroup *pc;
3361
	struct mem_cgroup *memcg;
3362
	int i;
3363

3364 3365
	if (mem_cgroup_disabled())
		return;
3366 3367

	memcg = head_pc->mem_cgroup;
3368 3369
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3370
		pc->mem_cgroup = memcg;
3371
		pc->flags = head_pc->flags;
3372
	}
3373 3374
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3375
}
3376
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3377

3378
/**
3379
 * mem_cgroup_move_account - move account of the page
3380
 * @page: the page
3381
 * @nr_pages: number of regular pages (>1 for huge pages)
3382 3383 3384 3385 3386
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3387
 * - page is not on LRU (isolate_page() is useful.)
3388
 * - compound_lock is held when nr_pages > 1
3389
 *
3390 3391
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3392
 */
3393 3394 3395 3396
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3397
				   struct mem_cgroup *to)
3398
{
3399 3400
	unsigned long flags;
	int ret;
3401

3402
	VM_BUG_ON(from == to);
3403
	VM_BUG_ON_PAGE(PageLRU(page), page);
3404 3405 3406 3407 3408 3409 3410
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3411
	if (nr_pages > 1 && !PageTransHuge(page))
3412 3413
		goto out;

3414 3415 3416 3417 3418 3419 3420
	/*
	 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;
3421 3422 3423

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3424
		goto out_unlock;
3425

3426
	move_lock_mem_cgroup(from, &flags);
3427

3428
	if (!PageAnon(page) && page_mapped(page)) {
3429 3430 3431 3432 3433
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
3434

3435 3436 3437 3438 3439 3440
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
3441

3442 3443 3444 3445 3446
	/*
	 * It is safe to change pc->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */
3447

3448
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3449
	pc->mem_cgroup = to;
3450
	move_unlock_mem_cgroup(from, &flags);
3451
	ret = 0;
3452 3453 3454

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
3455
	memcg_check_events(to, page);
3456
	mem_cgroup_charge_statistics(from, page, -nr_pages);
3457
	memcg_check_events(from, page);
3458 3459 3460
	local_irq_enable();
out_unlock:
	unlock_page(page);
3461
out:
3462 3463 3464
	return ret;
}

3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3485
 */
3486 3487
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3488
				  struct mem_cgroup *child)
3489 3490
{
	struct mem_cgroup *parent;
3491
	unsigned int nr_pages;
3492
	unsigned long uninitialized_var(flags);
3493 3494
	int ret;

3495
	VM_BUG_ON(mem_cgroup_is_root(child));
3496

3497 3498 3499 3500 3501
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3502

3503
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3504

3505 3506 3507 3508 3509 3510
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3511

3512
	if (nr_pages > 1) {
3513
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3514
		flags = compound_lock_irqsave(page);
3515
	}
3516

3517
	ret = mem_cgroup_move_account(page, nr_pages,
3518
				pc, child, parent);
3519 3520
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3521

3522
	if (nr_pages > 1)
3523
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3524
	putback_lru_page(page);
3525
put:
3526
	put_page(page);
3527
out:
3528 3529 3530
	return ret;
}

A
Andrew Morton 已提交
3531
#ifdef CONFIG_MEMCG_SWAP
3532 3533
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
3534
{
3535 3536
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
3537
}
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3554
				struct mem_cgroup *from, struct mem_cgroup *to)
3555 3556 3557
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3558 3559
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3560 3561 3562

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3563
		mem_cgroup_swap_statistics(to, true);
3564
		/*
3565 3566 3567
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
3568 3569 3570 3571 3572 3573
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
3574
		 */
L
Li Zefan 已提交
3575
		css_get(&to->css);
3576 3577 3578 3579 3580 3581
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3582
				struct mem_cgroup *from, struct mem_cgroup *to)
3583 3584 3585
{
	return -EINVAL;
}
3586
#endif
K
KAMEZAWA Hiroyuki 已提交
3587

3588 3589 3590 3591 3592 3593
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3594 3595 3596 3597 3598
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3618 3619
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
3620 3621 3622 3623
	}
}
#endif

3624
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3625
				unsigned long long val)
3626
{
3627
	int retry_count;
3628
	int ret = 0;
3629 3630
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3631
	int enlarge;
3632 3633 3634 3635 3636 3637 3638 3639 3640

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3641

3642
	enlarge = 0;
3643
	while (retry_count) {
3644 3645 3646 3647
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3648 3649 3650
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3651
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3652 3653
		 */
		mutex_lock(&set_limit_mutex);
3654
		if (res_counter_read_u64(&memcg->memsw, RES_LIMIT) < val) {
3655 3656
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3657 3658
			break;
		}
3659

3660
		if (res_counter_read_u64(&memcg->res, RES_LIMIT) < val)
3661 3662
			enlarge = 1;

3663 3664 3665 3666 3667 3668
		ret = res_counter_set_limit(&memcg->res, val);
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3669 3670
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3671 3672
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
3673
		if (curusage >= oldusage)
3674 3675 3676
			retry_count--;
		else
			oldusage = curusage;
3677
	}
3678 3679
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3680

3681 3682 3683
	return ret;
}

L
Li Zefan 已提交
3684 3685
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3686
{
3687
	int retry_count;
3688
	u64 oldusage, curusage;
3689 3690
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3691
	int enlarge = 0;
3692

3693
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
3694
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3695
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3696 3697 3698 3699 3700 3701 3702 3703
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3704
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3705 3706
		 */
		mutex_lock(&set_limit_mutex);
3707
		if (res_counter_read_u64(&memcg->res, RES_LIMIT) > val) {
3708 3709 3710 3711
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3712
		if (res_counter_read_u64(&memcg->memsw, RES_LIMIT) < val)
3713
			enlarge = 1;
3714 3715 3716 3717 3718 3719
		ret = res_counter_set_limit(&memcg->memsw, val);
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3720 3721 3722
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3723
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3724
		/* Usage is reduced ? */
3725
		if (curusage >= oldusage)
3726
			retry_count--;
3727 3728
		else
			oldusage = curusage;
3729
	}
3730 3731
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3732 3733 3734
	return ret;
}

3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
	unsigned long long excess;
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3769
		spin_lock_irq(&mctz->lock);
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
3797
		__mem_cgroup_remove_exceeded(mz, mctz);
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3808
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3809
		spin_unlock_irq(&mctz->lock);
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3827 3828 3829 3830 3831 3832 3833
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
3834
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
3835 3836
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
3837
 */
3838
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3839
				int node, int zid, enum lru_list lru)
3840
{
3841
	struct lruvec *lruvec;
3842
	unsigned long flags;
3843
	struct list_head *list;
3844 3845
	struct page *busy;
	struct zone *zone;
3846

K
KAMEZAWA Hiroyuki 已提交
3847
	zone = &NODE_DATA(node)->node_zones[zid];
3848 3849
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
3850

3851
	busy = NULL;
3852
	do {
3853
		struct page_cgroup *pc;
3854 3855
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
3856
		spin_lock_irqsave(&zone->lru_lock, flags);
3857
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3858
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3859
			break;
3860
		}
3861 3862 3863
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3864
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3865
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3866 3867
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3868
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3869

3870
		pc = lookup_page_cgroup(page);
3871

3872
		if (mem_cgroup_move_parent(page, pc, memcg)) {
3873
			/* found lock contention or "pc" is obsolete. */
3874
			busy = page;
3875 3876
		} else
			busy = NULL;
3877
		cond_resched();
3878
	} while (!list_empty(list));
3879 3880 3881
}

/*
3882 3883
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
3884
 * This enables deleting this mem_cgroup.
3885 3886
 *
 * Caller is responsible for holding css reference on the memcg.
3887
 */
3888
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
3889
{
3890
	int node, zid;
3891
	u64 usage;
3892

3893
	do {
3894 3895
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3896 3897
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
3898
		for_each_node_state(node, N_MEMORY) {
3899
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3900 3901
				enum lru_list lru;
				for_each_lru(lru) {
3902
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3903
							node, zid, lru);
3904
				}
3905
			}
3906
		}
3907 3908
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3909
		cond_resched();
3910

3911
		/*
3912 3913 3914 3915 3916
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
3917 3918 3919 3920 3921 3922
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
3923 3924 3925
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
3926 3927
}

3928 3929 3930 3931 3932 3933
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3934 3935
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3936 3937
	bool ret;

3938
	/*
3939 3940 3941 3942
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3943
	 */
3944 3945 3946 3947 3948 3949
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3950 3951
}

3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3962 3963
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3964
	/* try to free all pages in this cgroup */
3965
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3966
		int progress;
3967

3968 3969 3970
		if (signal_pending(current))
			return -EINTR;

3971
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3972
						false);
3973
		if (!progress) {
3974
			nr_retries--;
3975
			/* maybe some writeback is necessary */
3976
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3977
		}
3978 3979

	}
3980 3981

	return 0;
3982 3983
}

3984 3985 3986
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3987
{
3988
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3989

3990 3991
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3992
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3993 3994
}

3995 3996
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3997
{
3998
	return mem_cgroup_from_css(css)->use_hierarchy;
3999 4000
}

4001 4002
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
4003 4004
{
	int retval = 0;
4005
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4006
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
4007

4008
	mutex_lock(&memcg_create_mutex);
4009 4010 4011 4012

	if (memcg->use_hierarchy == val)
		goto out;

4013
	/*
4014
	 * If parent's use_hierarchy is set, we can't make any modifications
4015 4016 4017 4018 4019 4020
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4021
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4022
				(val == 1 || val == 0)) {
4023
		if (!memcg_has_children(memcg))
4024
			memcg->use_hierarchy = val;
4025 4026 4027 4028
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4029 4030

out:
4031
	mutex_unlock(&memcg_create_mutex);
4032 4033 4034 4035

	return retval;
}

4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
					       enum mem_cgroup_stat_index idx)
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

	if (!mem_cgroup_is_root(memcg)) {
		if (!swap)
			return res_counter_read_u64(&memcg->res, RES_USAGE);
		else
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
	}

	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);

	if (swap)
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);

	return val << PAGE_SHIFT;
}


4076
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4077
			       struct cftype *cft)
B
Balbir Singh 已提交
4078
{
4079
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4080 4081
	enum res_type type = MEMFILE_TYPE(cft->private);
	int name = MEMFILE_ATTR(cft->private);
4082

4083 4084
	switch (type) {
	case _MEM:
4085 4086
		if (name == RES_USAGE)
			return mem_cgroup_usage(memcg, false);
4087
		return res_counter_read_u64(&memcg->res, name);
4088
	case _MEMSWAP:
4089 4090
		if (name == RES_USAGE)
			return mem_cgroup_usage(memcg, true);
4091
		return res_counter_read_u64(&memcg->memsw, name);
4092
	case _KMEM:
4093
		return res_counter_read_u64(&memcg->kmem, name);
4094
		break;
4095 4096 4097
	default:
		BUG();
	}
B
Balbir Singh 已提交
4098
}
4099 4100

#ifdef CONFIG_MEMCG_KMEM
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
/* should be called with activate_kmem_mutex held */
static int __memcg_activate_kmem(struct mem_cgroup *memcg,
				 unsigned long long limit)
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

	/*
	 * We are going to allocate memory for data shared by all memory
	 * cgroups so let's stop accounting here.
	 */
	memcg_stop_kmem_account();

4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
4129
	mutex_lock(&memcg_create_mutex);
4130 4131
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
4132 4133 4134 4135
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
4136

4137
	memcg_id = memcg_alloc_cache_id();
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	memcg->kmemcg_id = memcg_id;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);

	/*
	 * We couldn't have accounted to this cgroup, because it hasn't got the
	 * active bit set yet, so this should succeed.
	 */
	err = res_counter_set_limit(&memcg->kmem, limit);
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
	 * Setting the active bit after enabling static branching will
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
	memcg_kmem_set_active(memcg);
4160
out:
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
	memcg_resume_kmem_account();
	return err;
}

static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long long limit)
{
	int ret;

	mutex_lock(&activate_kmem_mutex);
	ret = __memcg_activate_kmem(memcg, limit);
	mutex_unlock(&activate_kmem_mutex);
	return ret;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	int ret;

	if (!memcg_kmem_is_active(memcg))
		ret = memcg_activate_kmem(memcg, val);
	else
		ret = res_counter_set_limit(&memcg->kmem, val);
4185 4186 4187
	return ret;
}

4188
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4189
{
4190
	int ret = 0;
4191
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4192

4193 4194
	if (!parent)
		return 0;
4195

4196
	mutex_lock(&activate_kmem_mutex);
4197
	/*
4198 4199
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
4200
	 */
4201 4202 4203
	if (memcg_kmem_is_active(parent))
		ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
	mutex_unlock(&activate_kmem_mutex);
4204
	return ret;
4205
}
4206 4207 4208 4209 4210 4211
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	return -EINVAL;
}
4212
#endif /* CONFIG_MEMCG_KMEM */
4213

4214 4215 4216 4217
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4218 4219
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
4220
{
4221
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
G
Glauber Costa 已提交
4222 4223
	enum res_type type;
	int name;
4224 4225 4226
	unsigned long long val;
	int ret;

4227 4228 4229
	buf = strstrip(buf);
	type = MEMFILE_TYPE(of_cft(of)->private);
	name = MEMFILE_ATTR(of_cft(of)->private);
4230

4231
	switch (name) {
4232
	case RES_LIMIT:
4233 4234 4235 4236
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4237
		/* This function does all necessary parse...reuse it */
4238
		ret = res_counter_memparse_write_strategy(buf, &val);
4239 4240 4241
		if (ret)
			break;
		if (type == _MEM)
4242
			ret = mem_cgroup_resize_limit(memcg, val);
4243
		else if (type == _MEMSWAP)
4244
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4245
		else if (type == _KMEM)
4246
			ret = memcg_update_kmem_limit(memcg, val);
4247 4248
		else
			return -EINVAL;
4249
		break;
4250
	case RES_SOFT_LIMIT:
4251
		ret = res_counter_memparse_write_strategy(buf, &val);
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4264 4265 4266 4267
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
4268
	return ret ?: nbytes;
B
Balbir Singh 已提交
4269 4270
}

4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
4281 4282
	while (memcg->css.parent) {
		memcg = mem_cgroup_from_css(memcg->css.parent);
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

4295 4296
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
4297
{
4298
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
G
Glauber Costa 已提交
4299 4300
	int name;
	enum res_type type;
4301

4302 4303
	type = MEMFILE_TYPE(of_cft(of)->private);
	name = MEMFILE_ATTR(of_cft(of)->private);
4304

4305
	switch (name) {
4306
	case RES_MAX_USAGE:
4307
		if (type == _MEM)
4308
			res_counter_reset_max(&memcg->res);
4309
		else if (type == _MEMSWAP)
4310
			res_counter_reset_max(&memcg->memsw);
4311 4312 4313 4314
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
4315 4316
		break;
	case RES_FAILCNT:
4317
		if (type == _MEM)
4318
			res_counter_reset_failcnt(&memcg->res);
4319
		else if (type == _MEMSWAP)
4320
			res_counter_reset_failcnt(&memcg->memsw);
4321 4322 4323 4324
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
4325 4326
		break;
	}
4327

4328
	return nbytes;
4329 4330
}

4331
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
4332 4333
					struct cftype *cft)
{
4334
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
4335 4336
}

4337
#ifdef CONFIG_MMU
4338
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4339 4340
					struct cftype *cft, u64 val)
{
4341
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4342 4343 4344

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
4345

4346
	/*
4347 4348 4349 4350
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
4351
	 */
4352
	memcg->move_charge_at_immigrate = val;
4353 4354
	return 0;
}
4355
#else
4356
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4357 4358 4359 4360 4361
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4362

4363
#ifdef CONFIG_NUMA
4364
static int memcg_numa_stat_show(struct seq_file *m, void *v)
4365
{
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
4378
	int nid;
4379
	unsigned long nr;
4380
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4381

4382 4383 4384 4385 4386 4387 4388 4389 4390
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
4391 4392
	}

4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
4408 4409 4410 4411 4412 4413
	}

	return 0;
}
#endif /* CONFIG_NUMA */

4414 4415 4416 4417 4418
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4419
static int memcg_stat_show(struct seq_file *m, void *v)
4420
{
4421
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4422 4423
	struct mem_cgroup *mi;
	unsigned int i;
4424

4425
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4426
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4427
			continue;
4428 4429
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4430
	}
L
Lee Schermerhorn 已提交
4431

4432 4433 4434 4435 4436 4437 4438 4439
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4440
	/* Hierarchical information */
4441 4442
	{
		unsigned long long limit, memsw_limit;
4443
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4444
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4445
		if (do_swap_account)
4446 4447
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
4448
	}
K
KOSAKI Motohiro 已提交
4449

4450 4451 4452
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4453
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4454
			continue;
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4475
	}
K
KAMEZAWA Hiroyuki 已提交
4476

K
KOSAKI Motohiro 已提交
4477 4478 4479 4480
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4481
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4482 4483 4484 4485 4486
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4487
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
4488
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4489

4490 4491 4492 4493
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4494
			}
4495 4496 4497 4498
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4499 4500 4501
	}
#endif

4502 4503 4504
	return 0;
}

4505 4506
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4507
{
4508
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4509

4510
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4511 4512
}

4513 4514
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4515
{
4516
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4517

4518
	if (val > 100)
K
KOSAKI Motohiro 已提交
4519 4520
		return -EINVAL;

4521
	if (css->parent)
4522 4523 4524
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4525

K
KOSAKI Motohiro 已提交
4526 4527 4528
	return 0;
}

4529 4530 4531 4532 4533 4534 4535 4536
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4537
		t = rcu_dereference(memcg->thresholds.primary);
4538
	else
4539
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4540 4541 4542 4543

	if (!t)
		goto unlock;

4544
	usage = mem_cgroup_usage(memcg, swap);
4545 4546

	/*
4547
	 * current_threshold points to threshold just below or equal to usage.
4548 4549 4550
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4551
	i = t->current_threshold;
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4575
	t->current_threshold = i - 1;
4576 4577 4578 4579 4580 4581
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4582 4583 4584 4585 4586 4587 4588
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4589 4590 4591 4592 4593 4594 4595
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4596 4597 4598 4599 4600 4601 4602
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4603 4604
}

4605
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4606 4607 4608
{
	struct mem_cgroup_eventfd_list *ev;

4609 4610
	spin_lock(&memcg_oom_lock);

4611
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4612
		eventfd_signal(ev->eventfd, 1);
4613 4614

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4615 4616 4617
	return 0;
}

4618
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4619
{
K
KAMEZAWA Hiroyuki 已提交
4620 4621
	struct mem_cgroup *iter;

4622
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4623
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4624 4625
}

4626
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4627
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4628
{
4629 4630
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4631
	u64 threshold, usage;
4632
	int i, size, ret;
4633 4634 4635 4636 4637 4638

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4639

4640
	if (type == _MEM) {
4641
		thresholds = &memcg->thresholds;
4642
		usage = mem_cgroup_usage(memcg, false);
4643
	} else if (type == _MEMSWAP) {
4644
		thresholds = &memcg->memsw_thresholds;
4645
		usage = mem_cgroup_usage(memcg, true);
4646
	} else
4647 4648 4649
		BUG();

	/* Check if a threshold crossed before adding a new one */
4650
	if (thresholds->primary)
4651 4652
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4653
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4654 4655

	/* Allocate memory for new array of thresholds */
4656
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4657
			GFP_KERNEL);
4658
	if (!new) {
4659 4660 4661
		ret = -ENOMEM;
		goto unlock;
	}
4662
	new->size = size;
4663 4664

	/* Copy thresholds (if any) to new array */
4665 4666
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4667
				sizeof(struct mem_cgroup_threshold));
4668 4669
	}

4670
	/* Add new threshold */
4671 4672
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4673 4674

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4675
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4676 4677 4678
			compare_thresholds, NULL);

	/* Find current threshold */
4679
	new->current_threshold = -1;
4680
	for (i = 0; i < size; i++) {
4681
		if (new->entries[i].threshold <= usage) {
4682
			/*
4683 4684
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4685 4686
			 * it here.
			 */
4687
			++new->current_threshold;
4688 4689
		} else
			break;
4690 4691
	}

4692 4693 4694 4695 4696
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4697

4698
	/* To be sure that nobody uses thresholds */
4699 4700 4701 4702 4703 4704 4705 4706
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4707
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4708 4709
	struct eventfd_ctx *eventfd, const char *args)
{
4710
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4711 4712
}

4713
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4714 4715
	struct eventfd_ctx *eventfd, const char *args)
{
4716
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4717 4718
}

4719
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4720
	struct eventfd_ctx *eventfd, enum res_type type)
4721
{
4722 4723
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4724
	u64 usage;
4725
	int i, j, size;
4726 4727

	mutex_lock(&memcg->thresholds_lock);
4728 4729

	if (type == _MEM) {
4730
		thresholds = &memcg->thresholds;
4731
		usage = mem_cgroup_usage(memcg, false);
4732
	} else if (type == _MEMSWAP) {
4733
		thresholds = &memcg->memsw_thresholds;
4734
		usage = mem_cgroup_usage(memcg, true);
4735
	} else
4736 4737
		BUG();

4738 4739 4740
	if (!thresholds->primary)
		goto unlock;

4741 4742 4743 4744
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4745 4746 4747
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4748 4749 4750
			size++;
	}

4751
	new = thresholds->spare;
4752

4753 4754
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4755 4756
		kfree(new);
		new = NULL;
4757
		goto swap_buffers;
4758 4759
	}

4760
	new->size = size;
4761 4762

	/* Copy thresholds and find current threshold */
4763 4764 4765
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4766 4767
			continue;

4768
		new->entries[j] = thresholds->primary->entries[i];
4769
		if (new->entries[j].threshold <= usage) {
4770
			/*
4771
			 * new->current_threshold will not be used
4772 4773 4774
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4775
			++new->current_threshold;
4776 4777 4778 4779
		}
		j++;
	}

4780
swap_buffers:
4781 4782
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4783 4784 4785 4786 4787 4788
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4789
	rcu_assign_pointer(thresholds->primary, new);
4790

4791
	/* To be sure that nobody uses thresholds */
4792
	synchronize_rcu();
4793
unlock:
4794 4795
	mutex_unlock(&memcg->thresholds_lock);
}
4796

4797
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4798 4799
	struct eventfd_ctx *eventfd)
{
4800
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4801 4802
}

4803
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4804 4805
	struct eventfd_ctx *eventfd)
{
4806
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4807 4808
}

4809
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4810
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4811 4812 4813 4814 4815 4816 4817
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4818
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4819 4820 4821 4822 4823

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4824
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4825
		eventfd_signal(eventfd, 1);
4826
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4827 4828 4829 4830

	return 0;
}

4831
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4832
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4833 4834 4835
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4836
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4837

4838
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4839 4840 4841 4842 4843 4844
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4845
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4846 4847
}

4848
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4849
{
4850
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4851

4852 4853
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4854 4855 4856
	return 0;
}

4857
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4858 4859
	struct cftype *cft, u64 val)
{
4860
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4861 4862

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4863
	if (!css->parent || !((val == 0) || (val == 1)))
4864 4865
		return -EINVAL;

4866
	memcg->oom_kill_disable = val;
4867
	if (!val)
4868
		memcg_oom_recover(memcg);
4869

4870 4871 4872
	return 0;
}

A
Andrew Morton 已提交
4873
#ifdef CONFIG_MEMCG_KMEM
4874
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4875
{
4876 4877
	int ret;

4878
	memcg->kmemcg_id = -1;
4879 4880 4881
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
4882

4883
	return mem_cgroup_sockets_init(memcg, ss);
4884
}
4885

4886
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4887
{
4888
	mem_cgroup_sockets_destroy(memcg);
4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
4909 4910 4911 4912
	 * css_offline() when the referencemight have dropped down to 0 and
	 * shouldn't be incremented anymore (css_tryget_online() would
	 * fail) we do not have other options because of the kmem
	 * allocations lifetime.
4913 4914
	 */
	css_get(&memcg->css);
4915 4916 4917 4918 4919 4920 4921

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
4922
		css_put(&memcg->css);
G
Glauber Costa 已提交
4923
}
4924
#else
4925
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4926 4927 4928
{
	return 0;
}
G
Glauber Costa 已提交
4929

4930 4931 4932 4933 4934
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4935 4936
{
}
4937 4938
#endif

4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4952 4953 4954 4955 4956
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4957
static void memcg_event_remove(struct work_struct *work)
4958
{
4959 4960
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4961
	struct mem_cgroup *memcg = event->memcg;
4962 4963 4964

	remove_wait_queue(event->wqh, &event->wait);

4965
	event->unregister_event(memcg, event->eventfd);
4966 4967 4968 4969 4970 4971

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4972
	css_put(&memcg->css);
4973 4974 4975 4976 4977 4978 4979
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4980 4981
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4982
{
4983 4984
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4985
	struct mem_cgroup *memcg = event->memcg;
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4998
		spin_lock(&memcg->event_list_lock);
4999 5000 5001 5002 5003 5004 5005 5006
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
5007
		spin_unlock(&memcg->event_list_lock);
5008 5009 5010 5011 5012
	}

	return 0;
}

5013
static void memcg_event_ptable_queue_proc(struct file *file,
5014 5015
		wait_queue_head_t *wqh, poll_table *pt)
{
5016 5017
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
5018 5019 5020 5021 5022 5023

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
5024 5025
 * DO NOT USE IN NEW FILES.
 *
5026 5027 5028 5029 5030
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
5031 5032
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
5033
{
5034
	struct cgroup_subsys_state *css = of_css(of);
5035
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5036
	struct mem_cgroup_event *event;
5037 5038 5039 5040
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
5041
	const char *name;
5042 5043 5044
	char *endp;
	int ret;

5045 5046 5047
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
5048 5049
	if (*endp != ' ')
		return -EINVAL;
5050
	buf = endp + 1;
5051

5052
	cfd = simple_strtoul(buf, &endp, 10);
5053 5054
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
5055
	buf = endp + 1;
5056 5057 5058 5059 5060

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5061
	event->memcg = memcg;
5062
	INIT_LIST_HEAD(&event->list);
5063 5064 5065
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

5091 5092 5093 5094 5095
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
5096 5097
	 *
	 * DO NOT ADD NEW FILES.
5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110
	 */
	name = cfile.file->f_dentry->d_name.name;

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
5111 5112
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
5113 5114 5115 5116 5117
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

5118
	/*
5119 5120 5121
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
5122
	 */
5123 5124
	cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
					       &memory_cgrp_subsys);
5125
	ret = -EINVAL;
5126
	if (IS_ERR(cfile_css))
5127
		goto out_put_cfile;
5128 5129
	if (cfile_css != css) {
		css_put(cfile_css);
5130
		goto out_put_cfile;
5131
	}
5132

5133
	ret = event->register_event(memcg, event->eventfd, buf);
5134 5135 5136 5137 5138
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

5139 5140 5141
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
5142 5143 5144 5145

	fdput(cfile);
	fdput(efile);

5146
	return nbytes;
5147 5148

out_put_css:
5149
	css_put(css);
5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
5162 5163
static struct cftype mem_cgroup_files[] = {
	{
5164
		.name = "usage_in_bytes",
5165
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5166
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5167
	},
5168 5169
	{
		.name = "max_usage_in_bytes",
5170
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5171
		.write = mem_cgroup_reset,
5172
		.read_u64 = mem_cgroup_read_u64,
5173
	},
B
Balbir Singh 已提交
5174
	{
5175
		.name = "limit_in_bytes",
5176
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5177
		.write = mem_cgroup_write,
5178
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5179
	},
5180 5181 5182
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5183
		.write = mem_cgroup_write,
5184
		.read_u64 = mem_cgroup_read_u64,
5185
	},
B
Balbir Singh 已提交
5186 5187
	{
		.name = "failcnt",
5188
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5189
		.write = mem_cgroup_reset,
5190
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5191
	},
5192 5193
	{
		.name = "stat",
5194
		.seq_show = memcg_stat_show,
5195
	},
5196 5197
	{
		.name = "force_empty",
5198
		.write = mem_cgroup_force_empty_write,
5199
	},
5200 5201 5202 5203 5204
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
5205
	{
5206
		.name = "cgroup.event_control",		/* XXX: for compat */
5207
		.write = memcg_write_event_control,
5208 5209 5210
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
5211 5212 5213 5214 5215
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5216 5217 5218 5219 5220
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5221 5222
	{
		.name = "oom_control",
5223
		.seq_show = mem_cgroup_oom_control_read,
5224
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5225 5226
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5227 5228 5229
	{
		.name = "pressure_level",
	},
5230 5231 5232
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5233
		.seq_show = memcg_numa_stat_show,
5234 5235
	},
#endif
5236 5237 5238 5239
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5240
		.write = mem_cgroup_write,
5241
		.read_u64 = mem_cgroup_read_u64,
5242 5243 5244 5245
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5246
		.read_u64 = mem_cgroup_read_u64,
5247 5248 5249 5250
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5251
		.write = mem_cgroup_reset,
5252
		.read_u64 = mem_cgroup_read_u64,
5253 5254 5255 5256
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5257
		.write = mem_cgroup_reset,
5258
		.read_u64 = mem_cgroup_read_u64,
5259
	},
5260 5261 5262
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
5263
		.seq_show = mem_cgroup_slabinfo_read,
5264 5265
	},
#endif
5266
#endif
5267
	{ },	/* terminate */
5268
};
5269

5270 5271 5272 5273 5274
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5275
		.read_u64 = mem_cgroup_read_u64,
5276 5277 5278 5279
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5280
		.write = mem_cgroup_reset,
5281
		.read_u64 = mem_cgroup_read_u64,
5282 5283 5284 5285
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5286
		.write = mem_cgroup_write,
5287
		.read_u64 = mem_cgroup_read_u64,
5288 5289 5290 5291
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5292
		.write = mem_cgroup_reset,
5293
		.read_u64 = mem_cgroup_read_u64,
5294 5295 5296 5297
	},
	{ },	/* terminate */
};
#endif
5298
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5299 5300
{
	struct mem_cgroup_per_node *pn;
5301
	struct mem_cgroup_per_zone *mz;
5302
	int zone, tmp = node;
5303 5304 5305 5306 5307 5308 5309 5310
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5311 5312
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5313
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5314 5315
	if (!pn)
		return 1;
5316 5317 5318

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5319
		lruvec_init(&mz->lruvec);
5320 5321
		mz->usage_in_excess = 0;
		mz->on_tree = false;
5322
		mz->memcg = memcg;
5323
	}
5324
	memcg->nodeinfo[node] = pn;
5325 5326 5327
	return 0;
}

5328
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5329
{
5330
	kfree(memcg->nodeinfo[node]);
5331 5332
}

5333 5334
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5335
	struct mem_cgroup *memcg;
5336
	size_t size;
5337

5338 5339
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5340

5341
	memcg = kzalloc(size, GFP_KERNEL);
5342
	if (!memcg)
5343 5344
		return NULL;

5345 5346
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5347
		goto out_free;
5348 5349
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5350 5351

out_free:
5352
	kfree(memcg);
5353
	return NULL;
5354 5355
}

5356
/*
5357 5358 5359 5360 5361 5362 5363 5364
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
5365
 */
5366 5367

static void __mem_cgroup_free(struct mem_cgroup *memcg)
5368
{
5369
	int node;
5370

5371
	mem_cgroup_remove_from_trees(memcg);
5372 5373 5374 5375 5376 5377

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5389
	disarm_static_keys(memcg);
5390
	kfree(memcg);
5391
}
5392

5393 5394 5395
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
5396
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5397
{
5398
	if (!memcg->res.parent)
5399
		return NULL;
5400
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
5401
}
G
Glauber Costa 已提交
5402
EXPORT_SYMBOL(parent_mem_cgroup);
5403

5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
5427
static struct cgroup_subsys_state * __ref
5428
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
5429
{
5430
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
5431
	long error = -ENOMEM;
5432
	int node;
B
Balbir Singh 已提交
5433

5434 5435
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5436
		return ERR_PTR(error);
5437

B
Bob Liu 已提交
5438
	for_each_node(node)
5439
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5440
			goto free_out;
5441

5442
	/* root ? */
5443
	if (parent_css == NULL) {
5444
		root_mem_cgroup = memcg;
5445 5446 5447
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
5448
	}
5449

5450 5451 5452 5453 5454
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5455
	vmpressure_init(&memcg->vmpressure);
5456 5457
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5458 5459 5460 5461 5462 5463 5464 5465 5466

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
5467
mem_cgroup_css_online(struct cgroup_subsys_state *css)
5468
{
5469
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5470
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
5471
	int ret;
5472

5473
	if (css->id > MEM_CGROUP_ID_MAX)
5474 5475
		return -ENOSPC;

T
Tejun Heo 已提交
5476
	if (!parent)
5477 5478
		return 0;

5479
	mutex_lock(&memcg_create_mutex);
5480 5481 5482 5483 5484 5485

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
5486 5487
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5488
		res_counter_init(&memcg->kmem, &parent->kmem);
5489

5490
		/*
5491 5492
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
5493
		 */
5494
	} else {
5495 5496 5497
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
5498 5499 5500 5501 5502
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5503
		if (parent != root_mem_cgroup)
5504
			memory_cgrp_subsys.broken_hierarchy = true;
5505
	}
5506
	mutex_unlock(&memcg_create_mutex);
5507

5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
5520 5521
}

M
Michal Hocko 已提交
5522 5523 5524 5525 5526 5527 5528 5529
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
5530
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
5531 5532 5533 5534 5535 5536

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
5537
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
5538 5539
}

5540
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5541
{
5542
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5543
	struct mem_cgroup_event *event, *tmp;
5544
	struct cgroup_subsys_state *iter;
5545 5546 5547 5548 5549 5550

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5551 5552
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5553 5554 5555
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5556
	spin_unlock(&memcg->event_list_lock);
5557

5558 5559
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
5560
	mem_cgroup_invalidate_reclaim_iterators(memcg);
5561 5562 5563 5564 5565 5566 5567 5568

	/*
	 * This requires that offlining is serialized.  Right now that is
	 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
	 */
	css_for_each_descendant_post(iter, css)
		mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));

5569
	memcg_unregister_all_caches(memcg);
5570
	vmpressure_cleanup(&memcg->vmpressure);
5571 5572
}

5573
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5574
{
5575
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5576 5577 5578
	/*
	 * XXX: css_offline() would be where we should reparent all
	 * memory to prepare the cgroup for destruction.  However,
5579
	 * memcg does not do css_tryget_online() and res_counter charging
5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
	 * under the same RCU lock region, which means that charging
	 * could race with offlining.  Offlining only happens to
	 * cgroups with no tasks in them but charges can show up
	 * without any tasks from the swapin path when the target
	 * memcg is looked up from the swapout record and not from the
	 * current task as it usually is.  A race like this can leak
	 * charges and put pages with stale cgroup pointers into
	 * circulation:
	 *
	 * #0                        #1
	 *                           lookup_swap_cgroup_id()
	 *                           rcu_read_lock()
	 *                           mem_cgroup_lookup()
5593
	 *                           css_tryget_online()
5594
	 *                           rcu_read_unlock()
5595
	 * disable css_tryget_online()
5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611
	 * call_rcu()
	 *   offline_css()
	 *     reparent_charges()
	 *                           res_counter_charge()
	 *                           css_put()
	 *                             css_free()
	 *                           pc->mem_cgroup = dead memcg
	 *                           add page to lru
	 *
	 * The bulk of the charges are still moved in offline_css() to
	 * avoid pinning a lot of pages in case a long-term reference
	 * like a swapout record is deferring the css_free() to long
	 * after offlining.  But this makes sure we catch any charges
	 * made after offlining:
	 */
	mem_cgroup_reparent_charges(memcg);
5612

5613
	memcg_destroy_kmem(memcg);
5614
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5615 5616
}

5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	mem_cgroup_resize_limit(memcg, ULLONG_MAX);
	mem_cgroup_resize_memsw_limit(memcg, ULLONG_MAX);
	memcg_update_kmem_limit(memcg, ULLONG_MAX);
	res_counter_set_soft_limit(&memcg->res, ULLONG_MAX);
}

5640
#ifdef CONFIG_MMU
5641
/* Handlers for move charge at task migration. */
5642
static int mem_cgroup_do_precharge(unsigned long count)
5643
{
5644
	int ret;
5645 5646

	/* Try a single bulk charge without reclaim first */
5647
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
5648
	if (!ret) {
5649 5650 5651
		mc.precharge += count;
		return ret;
	}
5652
	if (ret == -EINTR) {
5653
		cancel_charge(root_mem_cgroup, count);
5654 5655
		return ret;
	}
5656 5657

	/* Try charges one by one with reclaim */
5658
	while (count--) {
5659
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
5660 5661 5662
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
5663 5664
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
5665
		 */
5666
		if (ret == -EINTR)
5667
			cancel_charge(root_mem_cgroup, 1);
5668 5669
		if (ret)
			return ret;
5670
		mc.precharge++;
5671
		cond_resched();
5672
	}
5673
	return 0;
5674 5675 5676
}

/**
5677
 * get_mctgt_type - get target type of moving charge
5678 5679 5680
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5681
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5682 5683 5684 5685 5686 5687
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5688 5689 5690
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5691 5692 5693 5694 5695
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5696
	swp_entry_t	ent;
5697 5698 5699
};

enum mc_target_type {
5700
	MC_TARGET_NONE = 0,
5701
	MC_TARGET_PAGE,
5702
	MC_TARGET_SWAP,
5703 5704
};

D
Daisuke Nishimura 已提交
5705 5706
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5707
{
D
Daisuke Nishimura 已提交
5708
	struct page *page = vm_normal_page(vma, addr, ptent);
5709

D
Daisuke Nishimura 已提交
5710 5711 5712 5713
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5714
		if (!move_anon())
D
Daisuke Nishimura 已提交
5715
			return NULL;
5716 5717
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5718 5719 5720 5721 5722 5723 5724
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5725
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5726 5727 5728 5729 5730 5731 5732 5733
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5734 5735 5736 5737
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5738
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
5739 5740 5741 5742 5743
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5744 5745 5746 5747 5748 5749 5750
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5751

5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5771 5772
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
5785
#endif
5786 5787 5788
	return page;
}

5789
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5790 5791 5792 5793
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5794
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5795 5796 5797 5798 5799 5800
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5801 5802
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5803 5804

	if (!page && !ent.val)
5805
		return ret;
5806 5807 5808
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
5809 5810 5811
		 * Do only loose check w/o serialization.
		 * mem_cgroup_move_account() checks the pc is valid or
		 * not under LRU exclusion.
5812 5813 5814 5815 5816 5817 5818 5819 5820
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5821 5822
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
5823
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5824 5825 5826
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5827 5828 5829 5830
	}
	return ret;
}

5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
5845
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5866 5867 5868 5869 5870 5871 5872 5873
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5874
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5875 5876
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5877
		spin_unlock(ptl);
5878
		return 0;
5879
	}
5880

5881 5882
	if (pmd_trans_unstable(pmd))
		return 0;
5883 5884
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5885
		if (get_mctgt_type(vma, addr, *pte, NULL))
5886 5887 5888 5889
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5890 5891 5892
	return 0;
}

5893 5894 5895 5896 5897
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5898
	down_read(&mm->mmap_sem);
5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5910
	up_read(&mm->mmap_sem);
5911 5912 5913 5914 5915 5916 5917 5918 5919

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5920 5921 5922 5923 5924
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5925 5926
}

5927 5928
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5929
{
5930 5931
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
5932
	int i;
5933

5934
	/* we must uncharge all the leftover precharges from mc.to */
5935
	if (mc.precharge) {
5936
		cancel_charge(mc.to, mc.precharge);
5937 5938 5939 5940 5941 5942 5943
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5944
		cancel_charge(mc.from, mc.moved_charge);
5945
		mc.moved_charge = 0;
5946
	}
5947 5948 5949
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5950 5951 5952
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
					     PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
5953 5954 5955

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
5956

5957 5958 5959 5960
		/*
		 * we charged both to->res and to->memsw, so we should
		 * uncharge to->res.
		 */
5961 5962 5963
		if (!mem_cgroup_is_root(mc.to))
			res_counter_uncharge(&mc.to->res,
					     PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
5964
		/* we've already done css_get(mc.to) */
5965 5966
		mc.moved_swap = 0;
	}
5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5982
	spin_lock(&mc.lock);
5983 5984
	mc.from = NULL;
	mc.to = NULL;
5985
	spin_unlock(&mc.lock);
5986
	mem_cgroup_end_move(from);
5987 5988
}

5989
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5990
				 struct cgroup_taskset *tset)
5991
{
5992
	struct task_struct *p = cgroup_taskset_first(tset);
5993
	int ret = 0;
5994
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5995
	unsigned long move_charge_at_immigrate;
5996

5997 5998 5999 6000 6001 6002 6003
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6004 6005 6006
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6007
		VM_BUG_ON(from == memcg);
6008 6009 6010 6011 6012

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6013 6014 6015 6016
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6017
			VM_BUG_ON(mc.moved_charge);
6018
			VM_BUG_ON(mc.moved_swap);
6019
			mem_cgroup_start_move(from);
6020
			spin_lock(&mc.lock);
6021
			mc.from = from;
6022
			mc.to = memcg;
6023
			mc.immigrate_flags = move_charge_at_immigrate;
6024
			spin_unlock(&mc.lock);
6025
			/* We set mc.moving_task later */
6026 6027 6028 6029

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6030 6031
		}
		mmput(mm);
6032 6033 6034 6035
	}
	return ret;
}

6036
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6037
				     struct cgroup_taskset *tset)
6038
{
6039
	mem_cgroup_clear_mc();
6040 6041
}

6042 6043 6044
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6045
{
6046 6047 6048 6049
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6050 6051 6052 6053
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6054

6055 6056 6057 6058 6059 6060 6061 6062 6063 6064
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
6065
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6066
		if (mc.precharge < HPAGE_PMD_NR) {
6067
			spin_unlock(ptl);
6068 6069 6070 6071 6072 6073 6074 6075
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6076
							pc, mc.from, mc.to)) {
6077 6078 6079 6080 6081 6082 6083
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
6084
		spin_unlock(ptl);
6085
		return 0;
6086 6087
	}

6088 6089
	if (pmd_trans_unstable(pmd))
		return 0;
6090 6091 6092 6093
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6094
		swp_entry_t ent;
6095 6096 6097 6098

		if (!mc.precharge)
			break;

6099
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6100 6101 6102 6103 6104
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6105
			if (!mem_cgroup_move_account(page, 1, pc,
6106
						     mc.from, mc.to)) {
6107
				mc.precharge--;
6108 6109
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6110 6111
			}
			putback_lru_page(page);
6112
put:			/* get_mctgt_type() gets the page */
6113 6114
			put_page(page);
			break;
6115 6116
		case MC_TARGET_SWAP:
			ent = target.ent;
6117
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6118
				mc.precharge--;
6119 6120 6121
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6122
			break;
6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6137
		ret = mem_cgroup_do_precharge(1);
6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6181
	up_read(&mm->mmap_sem);
6182 6183
}

6184
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6185
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6186
{
6187
	struct task_struct *p = cgroup_taskset_first(tset);
6188
	struct mm_struct *mm = get_task_mm(p);
6189 6190

	if (mm) {
6191 6192
		if (mc.to)
			mem_cgroup_move_charge(mm);
6193 6194
		mmput(mm);
	}
6195 6196
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6197
}
6198
#else	/* !CONFIG_MMU */
6199
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6200
				 struct cgroup_taskset *tset)
6201 6202 6203
{
	return 0;
}
6204
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6205
				     struct cgroup_taskset *tset)
6206 6207
{
}
6208
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6209
				 struct cgroup_taskset *tset)
6210 6211 6212
{
}
#endif
B
Balbir Singh 已提交
6213

6214 6215
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6216 6217
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
6218
 */
6219
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6220 6221
{
	/*
6222
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6223 6224 6225
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6226
	if (cgroup_on_dfl(root_css->cgroup))
6227
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6228 6229
}

6230
struct cgroup_subsys memory_cgrp_subsys = {
6231
	.css_alloc = mem_cgroup_css_alloc,
6232
	.css_online = mem_cgroup_css_online,
6233 6234
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6235
	.css_reset = mem_cgroup_css_reset,
6236 6237
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6238
	.attach = mem_cgroup_move_task,
6239
	.bind = mem_cgroup_bind,
6240
	.legacy_cftypes = mem_cgroup_files,
6241
	.early_init = 0,
B
Balbir Singh 已提交
6242
};
6243

A
Andrew Morton 已提交
6244
#ifdef CONFIG_MEMCG_SWAP
6245 6246
static int __init enable_swap_account(char *s)
{
6247
	if (!strcmp(s, "1"))
6248
		really_do_swap_account = 1;
6249
	else if (!strcmp(s, "0"))
6250 6251 6252
		really_do_swap_account = 0;
	return 1;
}
6253
__setup("swapaccount=", enable_swap_account);
6254

6255 6256
static void __init memsw_file_init(void)
{
6257 6258
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
					  memsw_cgroup_files));
6259 6260 6261 6262 6263 6264 6265 6266
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6267
}
6268

6269
#else
6270
static void __init enable_swap_cgroup(void)
6271 6272
{
}
6273
#endif
6274

6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327
#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct page_cgroup *pc;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	pc = lookup_page_cgroup(page);

	/* Readahead page, never charged */
	if (!PageCgroupUsed(pc))
		return;

	VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);

	oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
	VM_BUG_ON_PAGE(oldid, page);

	pc->flags &= ~PCG_MEMSW;
	css_get(&pc->mem_cgroup->css);
	mem_cgroup_swap_statistics(pc->mem_cgroup, true);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
6328 6329
		if (!mem_cgroup_is_root(memcg))
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
6330 6331 6332 6333 6334 6335 6336
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}
#endif

6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		struct page_cgroup *pc = lookup_page_cgroup(page);
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
		if (PageCgroupUsed(pc))
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

6434 6435
	commit_charge(page, memcg, lrucare);

6436 6437 6438 6439 6440
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

6441 6442 6443 6444
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

6486 6487 6488 6489 6490 6491 6492
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_mem, unsigned long nr_memsw,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
	unsigned long flags;

6493 6494 6495 6496 6497 6498 6499 6500 6501
	if (!mem_cgroup_is_root(memcg)) {
		if (nr_mem)
			res_counter_uncharge(&memcg->res,
					     nr_mem * PAGE_SIZE);
		if (nr_memsw)
			res_counter_uncharge(&memcg->memsw,
					     nr_memsw * PAGE_SIZE);
		memcg_oom_recover(memcg);
	}
6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
	__this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file);
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_memsw = 0;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	unsigned long nr_mem = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;
		struct page_cgroup *pc;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

		pc = lookup_page_cgroup(page);
		if (!PageCgroupUsed(pc))
			continue;

		/*
		 * Nobody should be changing or seriously looking at
		 * pc->mem_cgroup and pc->flags at this point, we have
		 * fully exclusive access to the page.
		 */

		if (memcg != pc->mem_cgroup) {
			if (memcg) {
				uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
					       nr_anon, nr_file, nr_huge, page);
				pgpgout = nr_mem = nr_memsw = 0;
				nr_anon = nr_file = nr_huge = 0;
			}
			memcg = pc->mem_cgroup;
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

		if (pc->flags & PCG_MEM)
			nr_mem += nr_pages;
		if (pc->flags & PCG_MEMSW)
			nr_memsw += nr_pages;
		pc->flags = 0;

		pgpgout++;
	} while (next != page_list);

	if (memcg)
		uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
			       nr_anon, nr_file, nr_huge, page);
}

6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

6595
	/* Don't touch page->lru of any random page, pre-check: */
6596 6597 6598 6599
	pc = lookup_page_cgroup(page);
	if (!PageCgroupUsed(pc))
		return;

6600 6601 6602
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
6603

6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6615

6616 6617
	if (!list_empty(page_list))
		uncharge_list(page_list);
6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
 * @lrucare: both pages might be on the LRU already
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
	struct page_cgroup *pc;
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6641 6642
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
	pc = lookup_page_cgroup(newpage);
	if (PageCgroupUsed(pc))
		return;

	/* Re-entrant migration: old page already uncharged? */
	pc = lookup_page_cgroup(oldpage);
	if (!PageCgroupUsed(pc))
		return;

	VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
	VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

	pc->flags = 0;

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

6668
	commit_charge(newpage, pc->mem_cgroup, lrucare);
6669 6670
}

6671
/*
6672 6673 6674 6675 6676 6677
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6678 6679 6680 6681
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6682
	enable_swap_cgroup();
6683
	mem_cgroup_soft_limit_tree_init();
6684
	memcg_stock_init();
6685 6686 6687
	return 0;
}
subsys_initcall(mem_cgroup_init);