memcontrol.c 72.2 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
K
KAMEZAWA Hiroyuki 已提交
24
#include <linux/pagemap.h>
25
#include <linux/smp.h>
26
#include <linux/page-flags.h>
27
#include <linux/backing-dev.h>
28 29
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
30
#include <linux/limits.h>
31
#include <linux/mutex.h>
32
#include <linux/rbtree.h>
33
#include <linux/slab.h>
34 35 36
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
37
#include <linux/seq_file.h>
38
#include <linux/vmalloc.h>
39
#include <linux/mm_inline.h>
40
#include <linux/page_cgroup.h>
K
KAMEZAWA Hiroyuki 已提交
41
#include "internal.h"
B
Balbir Singh 已提交
42

43 44
#include <asm/uaccess.h>

45 46
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
47
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
48

49
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
50
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
51 52 53 54 55 56
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

57
static DEFINE_MUTEX(memcg_tasklist);	/* can be hold under cgroup_mutex */
58
#define SOFTLIMIT_EVENTS_THRESH (1000)
59

60 61 62 63 64 65 66 67
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
68 69
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
	MEM_CGROUP_STAT_MAPPED_FILE,  /* # of pages charged as file rss */
70 71
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
72
	MEM_CGROUP_STAT_EVENTS,	/* sum of pagein + pageout for internal use */
73 74 75 76 77 78 79 80 81

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
82
	struct mem_cgroup_stat_cpu cpustat[0];
83 84
};

85 86 87 88 89 90 91 92 93 94 95 96 97 98
static inline void
__mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
				enum mem_cgroup_stat_index idx)
{
	stat->count[idx] = 0;
}

static inline s64
__mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
				enum mem_cgroup_stat_index idx)
{
	return stat->count[idx];
}

99 100 101
/*
 * For accounting under irq disable, no need for increment preempt count.
 */
102
static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
103 104
		enum mem_cgroup_stat_index idx, int val)
{
105
	stat->count[idx] += val;
106 107 108 109 110 111 112 113 114 115 116 117
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

K
KAMEZAWA Hiroyuki 已提交
118 119 120 121 122 123 124 125 126
static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
{
	s64 ret;

	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
	return ret;
}

127 128 129 130
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
131 132 133
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
134 135
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
136 137

	struct zone_reclaim_stat reclaim_stat;
138 139 140 141
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
142 143 144 145 146 147 148 149 150 151 152 153
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

B
Balbir Singh 已提交
174 175 176 177 178 179 180
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
181 182 183
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
184 185 186 187 188 189 190
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
191 192 193 194
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
195 196 197 198
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
199
	struct mem_cgroup_lru_info info;
200

K
KOSAKI Motohiro 已提交
201 202 203 204 205
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

206
	int	prev_priority;	/* for recording reclaim priority */
207 208 209

	/*
	 * While reclaiming in a hiearchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
210
	 * reclaimed from.
211
	 */
K
KAMEZAWA Hiroyuki 已提交
212
	int last_scanned_child;
213 214 215 216
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
217
	unsigned long	last_oom_jiffies;
218
	atomic_t	refcnt;
219

K
KOSAKI Motohiro 已提交
220 221
	unsigned int	swappiness;

222 223 224
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

225
	/*
226
	 * statistics. This must be placed at the end of memcg.
227 228
	 */
	struct mem_cgroup_stat stat;
B
Balbir Singh 已提交
229 230
};

231 232 233
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
234
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
235
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
236
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
237
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
238 239 240
	NR_CHARGE_TYPE,
};

241 242 243 244
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
245 246
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
247

248 249 250 251 252 253 254
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)

255 256 257 258 259 260 261 262
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

263 264
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
265
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
266

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = res_counter_soft_limit_excess(&mem->res);
	spin_lock(&mctz->lock);
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
	spin_unlock(&mctz->lock);
}

static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
	spin_unlock(&mctz->lock);
}

static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
{
	bool ret = false;
	int cpu;
	s64 val;
	struct mem_cgroup_stat_cpu *cpustat;

	cpu = get_cpu();
	cpustat = &mem->stat.cpustat[cpu];
	val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
	if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
		__mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
		ret = true;
	}
	put_cpu();
	return ret;
}

static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
	unsigned long long prev_usage_in_excess, new_usage_in_excess;
	bool updated_tree = false;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	mz = mem_cgroup_zoneinfo(mem, page_to_nid(page), page_zonenum(page));
	mctz = soft_limit_tree_from_page(page);

	/*
	 * We do updates in lazy mode, mem's are removed
	 * lazily from the per-zone, per-node rb tree
	 */
	prev_usage_in_excess = mz->usage_in_excess;

	new_usage_in_excess = res_counter_soft_limit_excess(&mem->res);
	if (prev_usage_in_excess) {
		mem_cgroup_remove_exceeded(mem, mz, mctz);
		updated_tree = true;
	}
	if (!new_usage_in_excess)
		goto done;
	mem_cgroup_insert_exceeded(mem, mz, mctz);

done:
	if (updated_tree) {
		spin_lock(&mctz->lock);
		mz->usage_in_excess = new_usage_in_excess;
		spin_unlock(&mctz->lock);
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

411 412 413
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
414 415 416
{
	int val = (charge)? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
417
	struct mem_cgroup_stat_cpu *cpustat;
K
KAMEZAWA Hiroyuki 已提交
418
	int cpu = get_cpu();
419

K
KAMEZAWA Hiroyuki 已提交
420
	cpustat = &stat->cpustat[cpu];
421
	if (PageCgroupCache(pc))
422
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
423
	else
424
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
425 426

	if (charge)
427
		__mem_cgroup_stat_add_safe(cpustat,
428 429
				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
	else
430
		__mem_cgroup_stat_add_safe(cpustat,
431
				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
432
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
K
KAMEZAWA Hiroyuki 已提交
433
	put_cpu();
434 435
}

K
KAMEZAWA Hiroyuki 已提交
436
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
437
					enum lru_list idx)
438 439 440 441 442 443 444 445 446 447 448
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
449 450
}

451
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
452 453 454 455 456 457
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

458
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
459
{
460 461 462 463 464 465 466 467
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

468 469 470 471
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

472 473 474
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
475 476 477

	if (!mm)
		return NULL;
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

528 529 530 531 532
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
546

K
KAMEZAWA Hiroyuki 已提交
547 548 549 550
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
551

552
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
553 554 555
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
556
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
557
		return;
558
	VM_BUG_ON(!pc->mem_cgroup);
559 560 561 562
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
563
	mz = page_cgroup_zoneinfo(pc);
564
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
565 566 567
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
568 569
	list_del_init(&pc->lru);
	return;
570 571
}

K
KAMEZAWA Hiroyuki 已提交
572
void mem_cgroup_del_lru(struct page *page)
573
{
K
KAMEZAWA Hiroyuki 已提交
574 575
	mem_cgroup_del_lru_list(page, page_lru(page));
}
576

K
KAMEZAWA Hiroyuki 已提交
577 578 579 580
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
581

582
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
583
		return;
584

K
KAMEZAWA Hiroyuki 已提交
585
	pc = lookup_page_cgroup(page);
586 587 588 589
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
590
	smp_rmb();
591 592
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
593 594 595
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
596 597
}

K
KAMEZAWA Hiroyuki 已提交
598
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
599
{
K
KAMEZAWA Hiroyuki 已提交
600 601
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
602

603
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
604 605
		return;
	pc = lookup_page_cgroup(page);
606
	VM_BUG_ON(PageCgroupAcctLRU(pc));
607 608 609 610
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
611 612
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
613
		return;
614

K
KAMEZAWA Hiroyuki 已提交
615
	mz = page_cgroup_zoneinfo(pc);
616
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
617 618 619
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
620 621
	list_add(&pc->lru, &mz->lists[lru]);
}
622

K
KAMEZAWA Hiroyuki 已提交
623
/*
624 625 626 627 628
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
629
 */
630
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
631
{
632 633 634 635 636 637 638 639 640 641 642 643
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
644 645
}

646 647 648 649 650 651 652 653
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
654
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
655 656 657 658 659
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
660 661 662
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
663
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
664 665 666
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
667 668
}

669 670 671
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
672
	struct mem_cgroup *curr = NULL;
673 674

	task_lock(task);
675 676 677
	rcu_read_lock();
	curr = try_get_mem_cgroup_from_mm(task->mm);
	rcu_read_unlock();
678
	task_unlock(task);
679 680 681 682 683 684 685
	if (!curr)
		return 0;
	if (curr->use_hierarchy)
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
686 687 688
	return ret;
}

689 690 691 692 693
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
K
KOSAKI Motohiro 已提交
694 695 696 697 698 699 700
	int prev_priority;

	spin_lock(&mem->reclaim_param_lock);
	prev_priority = mem->prev_priority;
	spin_unlock(&mem->reclaim_param_lock);

	return prev_priority;
701 702 703 704
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
705
	spin_lock(&mem->reclaim_param_lock);
706 707
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
708
	spin_unlock(&mem->reclaim_param_lock);
709 710 711 712
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
713
	spin_lock(&mem->reclaim_param_lock);
714
	mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
715
	spin_unlock(&mem->reclaim_param_lock);
716 717
}

718
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
719 720 721
{
	unsigned long active;
	unsigned long inactive;
722 723
	unsigned long gb;
	unsigned long inactive_ratio;
724

K
KAMEZAWA Hiroyuki 已提交
725 726
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
727

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
755 756 757 758 759
		return 1;

	return 0;
}

760 761 762 763 764 765 766 767 768 769 770
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

771 772 773 774 775 776 777 778 779 780 781
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
802 803 804 805 806 807 808 809
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
810 811 812 813 814 815 816
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

817 818 819 820 821
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
822
					int active, int file)
823 824 825 826 827 828
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
829
	struct page_cgroup *pc, *tmp;
830 831 832
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
833
	int lru = LRU_FILE * file + active;
834
	int ret;
835

836
	BUG_ON(!mem_cont);
837
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
838
	src = &mz->lists[lru];
839

840 841
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
842
		if (scan >= nr_to_scan)
843
			break;
K
KAMEZAWA Hiroyuki 已提交
844 845

		page = pc->page;
846 847
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
848
		if (unlikely(!PageLRU(page)))
849 850
			continue;

H
Hugh Dickins 已提交
851
		scan++;
852 853 854
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
855
			list_move(&page->lru, dst);
856
			mem_cgroup_del_lru(page);
857
			nr_taken++;
858 859 860 861 862 863 864
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
865 866 867 868 869 870 871
		}
	}

	*scanned = scan;
	return nr_taken;
}

872 873 874
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

875 876 877 878 879 880 881 882 883 884 885 886
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

903 904 905 906 907 908
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976

/**
 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

	if (!memcg)
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

977 978 979 980 981 982 983 984 985 986 987
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

988
/*
K
KAMEZAWA Hiroyuki 已提交
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1031 1032
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1033 1034 1035
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1036 1037
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1038 1039
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1040 1041
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1042
{
K
KAMEZAWA Hiroyuki 已提交
1043 1044 1045
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1046 1047
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
K
KAMEZAWA Hiroyuki 已提交
1048

1049 1050 1051 1052
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

K
KAMEZAWA Hiroyuki 已提交
1053 1054 1055 1056 1057 1058 1059
	while (loop < 2) {
		victim = mem_cgroup_select_victim(root_mem);
		if (victim == root_mem)
			loop++;
		if (!mem_cgroup_local_usage(&victim->stat)) {
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1060 1061
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1062 1063 1064 1065
		/* we use swappiness of local cgroup */
		ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
						   get_swappiness(victim));
		css_put(&victim->css);
1066 1067 1068 1069 1070 1071 1072
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1073
		total += ret;
1074
		if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1075
			return 1 + total;
1076
	}
K
KAMEZAWA Hiroyuki 已提交
1077
	return total;
1078 1079
}

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
bool mem_cgroup_oom_called(struct task_struct *task)
{
	bool ret = false;
	struct mem_cgroup *mem;
	struct mm_struct *mm;

	rcu_read_lock();
	mm = task->mm;
	if (!mm)
		mm = &init_mm;
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
		ret = true;
	rcu_read_unlock();
	return ret;
}
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
{
	mem->last_oom_jiffies = jiffies;
	return 0;
}

static void record_last_oom(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
}

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
 */
void mem_cgroup_update_mapped_file_stat(struct page *page, int val)
{
	struct mem_cgroup *mem;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
	int cpu;
	struct page_cgroup *pc;

	if (!page_is_file_cache(page))
		return;

	pc = lookup_page_cgroup(page);
	if (unlikely(!pc))
		return;

	lock_page_cgroup(pc);
	mem = pc->mem_cgroup;
	if (!mem)
		goto done;

	if (!PageCgroupUsed(pc))
		goto done;

	/*
	 * Preemption is already disabled, we don't need get_cpu()
	 */
	cpu = smp_processor_id();
	stat = &mem->stat;
	cpustat = &stat->cpustat[cpu];

	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, val);
done:
	unlock_page_cgroup(pc);
}
1146

1147 1148 1149
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1150
 */
1151
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1152
			gfp_t gfp_mask, struct mem_cgroup **memcg,
1153
			bool oom, struct page *page)
1154
{
1155
	struct mem_cgroup *mem, *mem_over_limit, *mem_over_soft_limit;
1156
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1157
	struct res_counter *fail_res, *soft_fail_res = NULL;
1158 1159 1160 1161 1162 1163 1164

	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
		/* Don't account this! */
		*memcg = NULL;
		return 0;
	}

1165
	/*
1166 1167
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1168 1169 1170
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
1171 1172 1173
	mem = *memcg;
	if (likely(!mem)) {
		mem = try_get_mem_cgroup_from_mm(mm);
1174
		*memcg = mem;
1175
	} else {
1176
		css_get(&mem->css);
1177
	}
1178 1179 1180
	if (unlikely(!mem))
		return 0;

1181
	VM_BUG_ON(css_is_removed(&mem->css));
1182

1183 1184
	while (1) {
		int ret;
1185
		unsigned long flags = 0;
1186

1187 1188
		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res,
						&soft_fail_res);
1189 1190 1191
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
1192
			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
1193
							&fail_res, NULL);
1194 1195 1196
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
1197
			res_counter_uncharge(&mem->res, PAGE_SIZE, NULL);
1198
			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1199 1200 1201 1202 1203 1204 1205
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

1206
		if (!(gfp_mask & __GFP_WAIT))
1207
			goto nomem;
1208

1209
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
1210
							flags);
1211 1212
		if (ret)
			continue;
1213 1214

		/*
1215 1216 1217 1218 1219
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
1220
		 *
1221
		 */
1222 1223
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
1224 1225

		if (!nr_retries--) {
1226
			if (oom) {
1227
				mutex_lock(&memcg_tasklist);
1228
				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1229
				mutex_unlock(&memcg_tasklist);
1230
				record_last_oom(mem_over_limit);
1231
			}
1232
			goto nomem;
1233
		}
1234
	}
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	/*
	 * Insert just the ancestor, we should trickle down to the correct
	 * cgroup for reclaim, since the other nodes will be below their
	 * soft limit
	 */
	if (soft_fail_res) {
		mem_over_soft_limit =
			mem_cgroup_from_res_counter(soft_fail_res, res);
		if (mem_cgroup_soft_limit_check(mem_over_soft_limit))
			mem_cgroup_update_tree(mem_over_soft_limit, page);
	}
1246 1247 1248 1249 1250
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
}
1251

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

1271 1272 1273
static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
{
	struct mem_cgroup *mem;
1274
	struct page_cgroup *pc;
1275
	unsigned short id;
1276 1277
	swp_entry_t ent;

1278 1279
	VM_BUG_ON(!PageLocked(page));

1280 1281 1282
	if (!PageSwapCache(page))
		return NULL;

1283
	pc = lookup_page_cgroup(page);
1284
	lock_page_cgroup(pc);
1285
	if (PageCgroupUsed(pc)) {
1286
		mem = pc->mem_cgroup;
1287 1288 1289
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
	} else {
1290
		ent.val = page_private(page);
1291 1292 1293 1294 1295 1296
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
1297
	}
1298
	unlock_page_cgroup(pc);
1299 1300 1301
	return mem;
}

1302
/*
1303
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1314 1315 1316 1317

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
1318
		res_counter_uncharge(&mem->res, PAGE_SIZE, NULL);
1319
		if (do_swap_account)
1320
			res_counter_uncharge(&mem->memsw, PAGE_SIZE, NULL);
1321
		css_put(&mem->css);
1322
		return;
1323
	}
1324

1325
	pc->mem_cgroup = mem;
1326 1327 1328 1329 1330 1331 1332
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
1333
	smp_wmb();
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
1347

K
KAMEZAWA Hiroyuki 已提交
1348
	mem_cgroup_charge_statistics(mem, pc, true);
1349 1350

	unlock_page_cgroup(pc);
1351
}
1352

1353 1354 1355 1356 1357 1358 1359
/**
 * mem_cgroup_move_account - move account of the page
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
1360
 * - page is not on LRU (isolate_page() is useful.)
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
 *
 * returns 0 at success,
 * returns -EBUSY when lock is busy or "pc" is unstable.
 *
 * This function does "uncharge" from old cgroup but doesn't do "charge" to
 * new cgroup. It should be done by a caller.
 */

static int mem_cgroup_move_account(struct page_cgroup *pc,
	struct mem_cgroup *from, struct mem_cgroup *to)
{
	struct mem_cgroup_per_zone *from_mz, *to_mz;
	int nid, zid;
	int ret = -EBUSY;
1375 1376 1377 1378
	struct page *page;
	int cpu;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
1379 1380

	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1381
	VM_BUG_ON(PageLRU(pc->page));
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396

	nid = page_cgroup_nid(pc);
	zid = page_cgroup_zid(pc);
	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);

	if (!trylock_page_cgroup(pc))
		return ret;

	if (!PageCgroupUsed(pc))
		goto out;

	if (pc->mem_cgroup != from)
		goto out;

1397
	res_counter_uncharge(&from->res, PAGE_SIZE, NULL);
K
KAMEZAWA Hiroyuki 已提交
1398
	mem_cgroup_charge_statistics(from, pc, false);
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

	page = pc->page;
	if (page_is_file_cache(page) && page_mapped(page)) {
		cpu = smp_processor_id();
		/* Update mapped_file data for mem_cgroup "from" */
		stat = &from->stat;
		cpustat = &stat->cpustat[cpu];
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
						-1);

		/* Update mapped_file data for mem_cgroup "to" */
		stat = &to->stat;
		cpustat = &stat->cpustat[cpu];
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
						1);
	}

K
KAMEZAWA Hiroyuki 已提交
1416
	if (do_swap_account)
1417
		res_counter_uncharge(&from->memsw, PAGE_SIZE, NULL);
1418 1419 1420
	css_put(&from->css);

	css_get(&to->css);
K
KAMEZAWA Hiroyuki 已提交
1421 1422 1423
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
	ret = 0;
1424 1425
out:
	unlock_page_cgroup(pc);
1426 1427 1428 1429 1430 1431
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
	 * this function is just force_empty() and it's garanteed that
	 * "to" is never removed. So, we don't check rmdir status here.
	 */
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1443
	struct page *page = pc->page;
1444 1445 1446 1447 1448 1449 1450 1451 1452
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

K
KAMEZAWA Hiroyuki 已提交
1453

1454 1455
	parent = mem_cgroup_from_cont(pcg);

K
KAMEZAWA Hiroyuki 已提交
1456

1457
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
1458
	if (ret || !parent)
1459 1460
		return ret;

1461 1462 1463 1464
	if (!get_page_unless_zero(page)) {
		ret = -EBUSY;
		goto uncharge;
	}
K
KAMEZAWA Hiroyuki 已提交
1465 1466 1467 1468 1469

	ret = isolate_lru_page(page);

	if (ret)
		goto cancel;
1470 1471 1472

	ret = mem_cgroup_move_account(pc, child, parent);

K
KAMEZAWA Hiroyuki 已提交
1473 1474 1475
	putback_lru_page(page);
	if (!ret) {
		put_page(page);
1476 1477
		/* drop extra refcnt by try_charge() */
		css_put(&parent->css);
K
KAMEZAWA Hiroyuki 已提交
1478
		return 0;
1479
	}
1480

K
KAMEZAWA Hiroyuki 已提交
1481
cancel:
1482 1483 1484 1485 1486
	put_page(page);
uncharge:
	/* drop extra refcnt by try_charge() */
	css_put(&parent->css);
	/* uncharge if move fails */
1487
	res_counter_uncharge(&parent->res, PAGE_SIZE, NULL);
K
KAMEZAWA Hiroyuki 已提交
1488
	if (do_swap_account)
1489
		res_counter_uncharge(&parent->memsw, PAGE_SIZE, NULL);
1490 1491 1492
	return ret;
}

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
1514
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
1515
	if (ret || !mem)
1516 1517 1518
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
1519 1520 1521
	return 0;
}

1522 1523
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
1524
{
1525
	if (mem_cgroup_disabled())
1526
		return 0;
1527 1528
	if (PageCompound(page))
		return 0;
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
1540
	return mem_cgroup_charge_common(page, mm, gfp_mask,
1541
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1542 1543
}

D
Daisuke Nishimura 已提交
1544 1545 1546 1547
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

1548 1549
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
1550
{
1551 1552 1553
	struct mem_cgroup *mem = NULL;
	int ret;

1554
	if (mem_cgroup_disabled())
1555
		return 0;
1556 1557
	if (PageCompound(page))
		return 0;
1558 1559 1560 1561 1562 1563 1564 1565
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
1566 1567
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
1568 1569 1570 1571
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

1572 1573 1574 1575 1576 1577 1578

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
1579 1580
			return 0;
		}
1581
		unlock_page_cgroup(pc);
1582 1583
	}

1584
	if (unlikely(!mm && !mem))
1585
		mm = &init_mm;
1586

1587 1588
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
1589
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1590

D
Daisuke Nishimura 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1600 1601

	return ret;
1602 1603
}

1604 1605 1606 1607 1608 1609
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
 * struct page_cgroup is aquired. This refcnt will be cumsumed by
 * "commit()" or removed by "cancel()"
 */
1610 1611 1612 1613 1614
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
1615
	int ret;
1616

1617
	if (mem_cgroup_disabled())
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
	 * the pte, and even removed page from swap cache: return success
	 * to go on to do_swap_page()'s pte_same() test, which should fail.
	 */
	if (!PageSwapCache(page))
		return 0;
1629
	mem = try_get_mem_cgroup_from_swapcache(page);
1630 1631
	if (!mem)
		goto charge_cur_mm;
1632
	*ptr = mem;
1633
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
1634 1635 1636
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
1637 1638 1639
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
1640
	return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
1641 1642
}

D
Daisuke Nishimura 已提交
1643 1644 1645
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
1646 1647 1648
{
	struct page_cgroup *pc;

1649
	if (mem_cgroup_disabled())
1650 1651 1652
		return;
	if (!ptr)
		return;
1653
	cgroup_exclude_rmdir(&ptr->css);
1654
	pc = lookup_page_cgroup(page);
1655
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
1656
	__mem_cgroup_commit_charge(ptr, pc, ctype);
1657
	mem_cgroup_lru_add_after_commit_swapcache(page);
1658 1659 1660
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
1661 1662 1663
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
1664
	 */
1665
	if (do_swap_account && PageSwapCache(page)) {
1666
		swp_entry_t ent = {.val = page_private(page)};
1667
		unsigned short id;
1668
		struct mem_cgroup *memcg;
1669 1670 1671 1672

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
1673
		if (memcg) {
1674 1675 1676 1677
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
1678
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE, NULL);
1679 1680
			mem_cgroup_put(memcg);
		}
1681
		rcu_read_unlock();
1682
	}
1683 1684 1685 1686 1687 1688
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
1689 1690
}

D
Daisuke Nishimura 已提交
1691 1692 1693 1694 1695 1696
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

1697 1698
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
1699
	if (mem_cgroup_disabled())
1700 1701 1702
		return;
	if (!mem)
		return;
1703
	res_counter_uncharge(&mem->res, PAGE_SIZE, NULL);
1704
	if (do_swap_account)
1705
		res_counter_uncharge(&mem->memsw, PAGE_SIZE, NULL);
1706 1707 1708 1709
	css_put(&mem->css);
}


1710
/*
1711
 * uncharge if !page_mapped(page)
1712
 */
1713
static struct mem_cgroup *
1714
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1715
{
H
Hugh Dickins 已提交
1716
	struct page_cgroup *pc;
1717
	struct mem_cgroup *mem = NULL;
1718
	struct mem_cgroup_per_zone *mz;
1719
	bool soft_limit_excess = false;
1720

1721
	if (mem_cgroup_disabled())
1722
		return NULL;
1723

K
KAMEZAWA Hiroyuki 已提交
1724
	if (PageSwapCache(page))
1725
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
1726

1727
	/*
1728
	 * Check if our page_cgroup is valid
1729
	 */
1730 1731
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
1732
		return NULL;
1733

1734
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
1735

1736 1737
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
1738 1739 1740 1741 1742
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
1743
	case MEM_CGROUP_CHARGE_TYPE_DROP:
K
KAMEZAWA Hiroyuki 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
		if (page_mapped(page))
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
1756
	}
K
KAMEZAWA Hiroyuki 已提交
1757

1758
	res_counter_uncharge(&mem->res, PAGE_SIZE, &soft_limit_excess);
1759
	if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1760
		res_counter_uncharge(&mem->memsw, PAGE_SIZE, NULL);
K
KAMEZAWA Hiroyuki 已提交
1761
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
1762

1763
	ClearPageCgroupUsed(pc);
1764 1765 1766 1767 1768 1769
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
1770

1771
	mz = page_cgroup_zoneinfo(pc);
1772
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
1773

1774 1775
	if (soft_limit_excess && mem_cgroup_soft_limit_check(mem))
		mem_cgroup_update_tree(mem, page);
K
KAMEZAWA Hiroyuki 已提交
1776 1777 1778
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
1779

1780
	return mem;
K
KAMEZAWA Hiroyuki 已提交
1781 1782 1783

unlock_out:
	unlock_page_cgroup(pc);
1784
	return NULL;
1785 1786
}

1787 1788
void mem_cgroup_uncharge_page(struct page *page)
{
1789 1790 1791 1792 1793
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
1794 1795 1796 1797 1798 1799
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
1800
	VM_BUG_ON(page->mapping);
1801 1802 1803
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

1804
#ifdef CONFIG_SWAP
1805
/*
1806
 * called after __delete_from_swap_cache() and drop "page" account.
1807 1808
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
1809 1810
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
1811 1812
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1813 1814 1815 1816 1817 1818
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
1819 1820

	/* record memcg information */
K
KAMEZAWA Hiroyuki 已提交
1821
	if (do_swap_account && swapout && memcg) {
1822
		swap_cgroup_record(ent, css_id(&memcg->css));
1823 1824
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
1825
	if (swapout && memcg)
K
KAMEZAWA Hiroyuki 已提交
1826
		css_put(&memcg->css);
1827
}
1828
#endif
1829 1830 1831 1832 1833 1834 1835

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
1836
{
1837
	struct mem_cgroup *memcg;
1838
	unsigned short id;
1839 1840 1841 1842

	if (!do_swap_account)
		return;

1843 1844 1845
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
1846
	if (memcg) {
1847 1848 1849 1850
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
1851
		res_counter_uncharge(&memcg->memsw, PAGE_SIZE, NULL);
1852 1853
		mem_cgroup_put(memcg);
	}
1854
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
1855
}
1856
#endif
K
KAMEZAWA Hiroyuki 已提交
1857

1858
/*
1859 1860
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
1861
 */
1862
int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1863 1864
{
	struct page_cgroup *pc;
1865 1866
	struct mem_cgroup *mem = NULL;
	int ret = 0;
1867

1868
	if (mem_cgroup_disabled())
1869 1870
		return 0;

1871 1872 1873
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
1874 1875 1876
		mem = pc->mem_cgroup;
		css_get(&mem->css);
	}
1877
	unlock_page_cgroup(pc);
1878

1879
	if (mem) {
1880 1881
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
						page);
1882 1883
		css_put(&mem->css);
	}
1884
	*ptr = mem;
1885
	return ret;
1886
}
1887

1888
/* remove redundant charge if migration failed*/
1889 1890
void mem_cgroup_end_migration(struct mem_cgroup *mem,
		struct page *oldpage, struct page *newpage)
1891
{
1892 1893 1894 1895 1896 1897
	struct page *target, *unused;
	struct page_cgroup *pc;
	enum charge_type ctype;

	if (!mem)
		return;
1898
	cgroup_exclude_rmdir(&mem->css);
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
		target = oldpage;
		unused = NULL;
	} else {
		target = newpage;
		unused = oldpage;
	}

	if (PageAnon(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/* unused page is not on radix-tree now. */
K
KAMEZAWA Hiroyuki 已提交
1916
	if (unused)
1917 1918 1919
		__mem_cgroup_uncharge_common(unused, ctype);

	pc = lookup_page_cgroup(target);
1920
	/*
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
	 * So, double-counting is effectively avoided.
	 */
	__mem_cgroup_commit_charge(mem, pc, ctype);

	/*
	 * Both of oldpage and newpage are still under lock_page().
	 * Then, we don't have to care about race in radix-tree.
	 * But we have to be careful that this page is unmapped or not.
	 *
	 * There is a case for !page_mapped(). At the start of
	 * migration, oldpage was mapped. But now, it's zapped.
	 * But we know *target* page is not freed/reused under us.
	 * mem_cgroup_uncharge_page() does all necessary checks.
1935
	 */
1936 1937
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		mem_cgroup_uncharge_page(target);
1938 1939 1940 1941 1942 1943
	/*
	 * At migration, we may charge account against cgroup which has no tasks
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
1944
}
1945

1946
/*
1947 1948 1949 1950 1951 1952
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
1953
 */
1954
int mem_cgroup_shmem_charge_fallback(struct page *page,
1955 1956
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
1957
{
1958
	struct mem_cgroup *mem = NULL;
1959
	int ret;
1960

1961
	if (mem_cgroup_disabled())
1962
		return 0;
1963

1964 1965 1966
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
1967

1968
	return ret;
1969 1970
}

1971 1972
static DEFINE_MUTEX(set_limit_mutex);

1973
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1974
				unsigned long long val)
1975
{
1976
	int retry_count;
1977
	int progress;
1978
	u64 memswlimit;
1979
	int ret = 0;
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1991

1992
	while (retry_count) {
1993 1994 1995 1996
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2007 2008
			break;
		}
2009
		ret = res_counter_set_limit(&memcg->res, val);
2010 2011 2012 2013 2014 2015
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2016 2017 2018 2019 2020
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2021
		progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
2022
						   MEM_CGROUP_RECLAIM_SHRINK);
2023 2024 2025 2026 2027 2028
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2029
	}
2030

2031 2032 2033
	return ret;
}

L
Li Zefan 已提交
2034 2035
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
2036
{
2037
	int retry_count;
2038
	u64 memlimit, oldusage, curusage;
2039 2040
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
2041

2042 2043 2044
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
		ret = res_counter_set_limit(&memcg->memsw, val);
2063 2064 2065 2066 2067 2068
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2069 2070 2071 2072 2073
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2074 2075 2076
		mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
2077
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2078
		/* Usage is reduced ? */
2079
		if (curusage >= oldusage)
2080
			retry_count--;
2081 2082
		else
			oldusage = curusage;
2083 2084 2085 2086
	}
	return ret;
}

2087 2088 2089 2090
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
2091
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
2092
				int node, int zid, enum lru_list lru)
2093
{
K
KAMEZAWA Hiroyuki 已提交
2094 2095
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
2096
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
2097
	unsigned long flags, loop;
2098
	struct list_head *list;
2099
	int ret = 0;
2100

K
KAMEZAWA Hiroyuki 已提交
2101 2102
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
2103
	list = &mz->lists[lru];
2104

2105 2106 2107 2108 2109 2110
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
2111
		spin_lock_irqsave(&zone->lru_lock, flags);
2112
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
2113
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2114
			break;
2115 2116 2117 2118 2119
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
			busy = 0;
K
KAMEZAWA Hiroyuki 已提交
2120
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2121 2122
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
2123
		spin_unlock_irqrestore(&zone->lru_lock, flags);
2124

K
KAMEZAWA Hiroyuki 已提交
2125
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2126
		if (ret == -ENOMEM)
2127
			break;
2128 2129 2130 2131 2132 2133 2134

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
2135
	}
K
KAMEZAWA Hiroyuki 已提交
2136

2137 2138 2139
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
2140 2141 2142 2143 2144 2145
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
2146
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2147
{
2148 2149 2150
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2151
	struct cgroup *cgrp = mem->css.cgroup;
2152

2153
	css_get(&mem->css);
2154 2155

	shrink = 0;
2156 2157 2158
	/* should free all ? */
	if (free_all)
		goto try_to_free;
2159
move_account:
2160
	while (mem->res.usage > 0) {
2161
		ret = -EBUSY;
2162 2163 2164 2165
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
2166
			goto out;
2167 2168
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
2169
		ret = 0;
2170
		for_each_node_state(node, N_HIGH_MEMORY) {
2171
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2172
				enum lru_list l;
2173 2174
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
2175
							node, zid, l);
2176 2177 2178
					if (ret)
						break;
				}
2179
			}
2180 2181 2182 2183 2184 2185
			if (ret)
				break;
		}
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
2186
		cond_resched();
2187 2188 2189 2190 2191
	}
	ret = 0;
out:
	css_put(&mem->css);
	return ret;
2192 2193

try_to_free:
2194 2195
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2196 2197 2198
		ret = -EBUSY;
		goto out;
	}
2199 2200
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2201 2202 2203 2204
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
2205 2206 2207 2208 2209

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
2210 2211
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
2212
		if (!progress) {
2213
			nr_retries--;
2214
			/* maybe some writeback is necessary */
2215
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2216
		}
2217 2218

	}
K
KAMEZAWA Hiroyuki 已提交
2219
	lru_add_drain();
2220 2221 2222 2223 2224
	/* try move_account...there may be some *locked* pages. */
	if (mem->res.usage)
		goto move_account;
	ret = 0;
	goto out;
2225 2226
}

2227 2228 2229 2230 2231 2232
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
	 * If parent's use_hiearchy is set, we can't make any modifications
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

2271
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
2272
{
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	u64 val = 0;
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
		val = res_counter_read_u64(&mem->res, name);
		break;
	case _MEMSWAP:
L
Li Zefan 已提交
2284
		val = res_counter_read_u64(&mem->memsw, name);
2285 2286 2287 2288 2289 2290
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
2291
}
2292 2293 2294 2295
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2296 2297
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
2298
{
2299
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2300
	int type, name;
2301 2302 2303
	unsigned long long val;
	int ret;

2304 2305 2306
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
2307
	case RES_LIMIT:
2308 2309 2310 2311
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2312 2313
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
2314 2315 2316
		if (ret)
			break;
		if (type == _MEM)
2317
			ret = mem_cgroup_resize_limit(memcg, val);
2318 2319
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
2320
		break;
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
2335 2336 2337 2338 2339
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
2340 2341
}

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

2370
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2371 2372
{
	struct mem_cgroup *mem;
2373
	int type, name;
2374 2375

	mem = mem_cgroup_from_cont(cont);
2376 2377 2378
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
2379
	case RES_MAX_USAGE:
2380 2381 2382 2383
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
2384 2385
		break;
	case RES_FAILCNT:
2386 2387 2388 2389
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
2390 2391
		break;
	}
2392

2393
	return 0;
2394 2395
}

K
KAMEZAWA Hiroyuki 已提交
2396 2397 2398 2399 2400

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
2401
	MCS_MAPPED_FILE,
K
KAMEZAWA Hiroyuki 已提交
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
	MCS_PGPGIN,
	MCS_PGPGOUT,
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
2414 2415
};

K
KAMEZAWA Hiroyuki 已提交
2416 2417 2418 2419 2420 2421
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
2422
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	s->stat[MCS_RSS] += val * PAGE_SIZE;
2443 2444
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_MAPPED_FILE);
	s->stat[MCS_MAPPED_FILE] += val * PAGE_SIZE;
K
KAMEZAWA Hiroyuki 已提交
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
	s->stat[MCS_PGPGIN] += val;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
	s->stat[MCS_PGPGOUT] += val;

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

2470 2471
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
2472 2473
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
2474
	struct mcs_total_stat mystat;
2475 2476
	int i;

K
KAMEZAWA Hiroyuki 已提交
2477 2478
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
2479

K
KAMEZAWA Hiroyuki 已提交
2480 2481
	for (i = 0; i < NR_MCS_STAT; i++)
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
L
Lee Schermerhorn 已提交
2482

K
KAMEZAWA Hiroyuki 已提交
2483
	/* Hierarchical information */
2484 2485 2486 2487 2488 2489 2490
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
2491

K
KAMEZAWA Hiroyuki 已提交
2492 2493 2494 2495 2496 2497
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
	for (i = 0; i < NR_MCS_STAT; i++)
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);


K
KOSAKI Motohiro 已提交
2498
#ifdef CONFIG_DEBUG_VM
2499
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

2527 2528 2529
	return 0;
}

K
KOSAKI Motohiro 已提交
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
2542

K
KOSAKI Motohiro 已提交
2543 2544 2545 2546 2547 2548 2549
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
2550 2551 2552

	cgroup_lock();

K
KOSAKI Motohiro 已提交
2553 2554
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
2555 2556
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
2557
		return -EINVAL;
2558
	}
K
KOSAKI Motohiro 已提交
2559 2560 2561 2562 2563

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

2564 2565
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
2566 2567 2568
	return 0;
}

2569

B
Balbir Singh 已提交
2570 2571
static struct cftype mem_cgroup_files[] = {
	{
2572
		.name = "usage_in_bytes",
2573
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2574
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2575
	},
2576 2577
	{
		.name = "max_usage_in_bytes",
2578
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2579
		.trigger = mem_cgroup_reset,
2580 2581
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
2582
	{
2583
		.name = "limit_in_bytes",
2584
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2585
		.write_string = mem_cgroup_write,
2586
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2587
	},
2588 2589 2590 2591 2592 2593
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
2594 2595
	{
		.name = "failcnt",
2596
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2597
		.trigger = mem_cgroup_reset,
2598
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2599
	},
2600 2601
	{
		.name = "stat",
2602
		.read_map = mem_control_stat_show,
2603
	},
2604 2605 2606 2607
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
2608 2609 2610 2611 2612
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
2613 2614 2615 2616 2617
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
B
Balbir Singh 已提交
2618 2619
};

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

2661 2662 2663
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
2664
	struct mem_cgroup_per_zone *mz;
2665
	enum lru_list l;
2666
	int zone, tmp = node;
2667 2668 2669 2670 2671 2672 2673 2674
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
2675 2676 2677
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2678 2679
	if (!pn)
		return 1;
2680

2681 2682
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
2683 2684 2685

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
2686 2687
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
2688
		mz->usage_in_excess = 0;
2689
	}
2690 2691 2692
	return 0;
}

2693 2694 2695 2696 2697
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

2698 2699 2700 2701 2702 2703
static int mem_cgroup_size(void)
{
	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
	return sizeof(struct mem_cgroup) + cpustat_size;
}

2704 2705 2706
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
2707
	int size = mem_cgroup_size();
2708

2709 2710
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
2711
	else
2712
		mem = vmalloc(size);
2713 2714

	if (mem)
2715
		memset(mem, 0, size);
2716 2717 2718
	return mem;
}

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

2730
static void __mem_cgroup_free(struct mem_cgroup *mem)
2731
{
K
KAMEZAWA Hiroyuki 已提交
2732 2733
	int node;

2734
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
2735 2736
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
2737 2738 2739
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

2740
	if (mem_cgroup_size() < PAGE_SIZE)
2741 2742 2743 2744 2745
		kfree(mem);
	else
		vfree(mem);
}

2746 2747 2748 2749 2750 2751 2752
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

static void mem_cgroup_put(struct mem_cgroup *mem)
{
2753 2754
	if (atomic_dec_and_test(&mem->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
2755
		__mem_cgroup_free(mem);
2756 2757 2758
		if (parent)
			mem_cgroup_put(parent);
	}
2759 2760
}

2761 2762 2763 2764 2765 2766 2767 2768 2769
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
2770

2771 2772 2773
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
2774
	if (!mem_cgroup_disabled() && really_do_swap_account)
2775 2776 2777 2778 2779 2780 2781 2782
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
2808
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
2809 2810
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
2811
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
2812
	long error = -ENOMEM;
2813
	int node;
B
Balbir Singh 已提交
2814

2815 2816
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
2817
		return ERR_PTR(error);
2818

2819 2820 2821
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
2822

2823
	/* root ? */
2824
	if (cont->parent == NULL) {
2825
		enable_swap_cgroup();
2826
		parent = NULL;
2827
		root_mem_cgroup = mem;
2828 2829 2830
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;

2831
	} else {
2832
		parent = mem_cgroup_from_cont(cont->parent);
2833 2834
		mem->use_hierarchy = parent->use_hierarchy;
	}
2835

2836 2837 2838
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
2839 2840 2841 2842 2843 2844 2845
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
2846 2847 2848 2849
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
2850
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
2851
	spin_lock_init(&mem->reclaim_param_lock);
2852

K
KOSAKI Motohiro 已提交
2853 2854
	if (parent)
		mem->swappiness = get_swappiness(parent);
2855
	atomic_set(&mem->refcnt, 1);
B
Balbir Singh 已提交
2856
	return &mem->css;
2857
free_out:
2858
	__mem_cgroup_free(mem);
2859
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
2860
	return ERR_PTR(error);
B
Balbir Singh 已提交
2861 2862
}

2863
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2864 2865 2866
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2867 2868

	return mem_cgroup_force_empty(mem, false);
2869 2870
}

B
Balbir Singh 已提交
2871 2872 2873
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
2874 2875 2876
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
2877 2878 2879 2880 2881
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
2882 2883 2884 2885 2886 2887 2888 2889
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
2890 2891
}

B
Balbir Singh 已提交
2892 2893 2894
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
2895 2896
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
2897
{
2898
	mutex_lock(&memcg_tasklist);
B
Balbir Singh 已提交
2899
	/*
2900 2901
	 * FIXME: It's better to move charges of this process from old
	 * memcg to new memcg. But it's just on TODO-List now.
B
Balbir Singh 已提交
2902
	 */
2903
	mutex_unlock(&memcg_tasklist);
B
Balbir Singh 已提交
2904 2905
}

B
Balbir Singh 已提交
2906 2907 2908 2909
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
2910
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
2911 2912
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
B
Balbir Singh 已提交
2913
	.attach = mem_cgroup_move_task,
2914
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
2915
	.use_id = 1,
B
Balbir Singh 已提交
2916
};
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif