memcontrol.c 149.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
65
#include "internal.h"
G
Glauber Costa 已提交
66
#include <net/sock.h>
M
Michal Hocko 已提交
67
#include <net/ip.h>
G
Glauber Costa 已提交
68
#include <net/tcp_memcontrol.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78
#define MEM_CGROUP_RECLAIM_RETRIES	5
79
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
80

81
/* Whether the swap controller is active */
A
Andrew Morton 已提交
82
#ifdef CONFIG_MEMCG_SWAP
83 84
int do_swap_account __read_mostly;
#else
85
#define do_swap_account		0
86 87
#endif

88 89 90
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
91
	"rss_huge",
92
	"mapped_file",
93
	"writeback",
94 95 96 97 98 99 100 101 102 103
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

104 105 106 107 108 109 110 111
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

112 113 114 115 116 117 118 119
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
120
	MEM_CGROUP_TARGET_SOFTLIMIT,
121
	MEM_CGROUP_TARGET_NUMAINFO,
122 123
	MEM_CGROUP_NTARGETS,
};
124 125 126
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
127

128
struct mem_cgroup_stat_cpu {
129
	long count[MEM_CGROUP_STAT_NSTATS];
130
	unsigned long events[MEMCG_NR_EVENTS];
131
	unsigned long nr_page_events;
132
	unsigned long targets[MEM_CGROUP_NTARGETS];
133 134
};

135 136
struct reclaim_iter {
	struct mem_cgroup *position;
137 138 139 140
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

141 142 143 144
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
145
	struct lruvec		lruvec;
146
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
147

148
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
149

150
	struct rb_node		tree_node;	/* RB tree node */
151
	unsigned long		usage_in_excess;/* Set to the value by which */
152 153
						/* the soft limit is exceeded*/
	bool			on_tree;
154
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
155
						/* use container_of	   */
156 157 158 159 160 161
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

182 183
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
184
	unsigned long threshold;
185 186
};

K
KAMEZAWA Hiroyuki 已提交
187
/* For threshold */
188
struct mem_cgroup_threshold_ary {
189
	/* An array index points to threshold just below or equal to usage. */
190
	int current_threshold;
191 192 193 194 195
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
196 197 198 199 200 201 202 203 204 205 206 207

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
208 209 210 211 212
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
213

214 215 216
/*
 * cgroup_event represents events which userspace want to receive.
 */
217
struct mem_cgroup_event {
218
	/*
219
	 * memcg which the event belongs to.
220
	 */
221
	struct mem_cgroup *memcg;
222 223 224 225 226 227 228 229
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
230 231 232 233 234
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
235
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
236
			      struct eventfd_ctx *eventfd, const char *args);
237 238 239 240 241
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
242
	void (*unregister_event)(struct mem_cgroup *memcg,
243
				 struct eventfd_ctx *eventfd);
244 245 246 247 248 249 250 251 252 253
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

254 255
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
256

B
Balbir Singh 已提交
257 258 259 260 261 262 263 264
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
265 266 267 268 269 270

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

271 272 273 274
	/* Normal memory consumption range */
	unsigned long low;
	unsigned long high;

275
	unsigned long soft_limit;
276

277 278 279
	/* vmpressure notifications */
	struct vmpressure vmpressure;

280 281 282
	/* css_online() has been completed */
	int initialized;

283 284 285 286
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
287 288 289

	bool		oom_lock;
	atomic_t	under_oom;
290
	atomic_t	oom_wakeups;
291

292
	int	swappiness;
293 294
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
295

296 297 298 299
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
300
	struct mem_cgroup_thresholds thresholds;
301

302
	/* thresholds for mem+swap usage. RCU-protected */
303
	struct mem_cgroup_thresholds memsw_thresholds;
304

K
KAMEZAWA Hiroyuki 已提交
305 306
	/* For oom notifier event fd */
	struct list_head oom_notify;
307

308 309 310 311
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
312
	unsigned long move_charge_at_immigrate;
313 314 315
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
316
	atomic_t		moving_account;
317
	/* taken only while moving_account > 0 */
318 319 320
	spinlock_t		move_lock;
	struct task_struct	*move_lock_task;
	unsigned long		move_lock_flags;
321
	/*
322
	 * percpu counter.
323
	 */
324
	struct mem_cgroup_stat_cpu __percpu *stat;
325 326 327 328 329 330
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
331

M
Michal Hocko 已提交
332
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
333
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
334
#endif
335
#if defined(CONFIG_MEMCG_KMEM)
336
        /* Index in the kmem_cache->memcg_params.memcg_caches array */
337
	int kmemcg_id;
338
	bool kmem_acct_activated;
339
	bool kmem_acct_active;
340
#endif
341 342 343 344 345 346 347

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
348

349 350 351 352
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

353 354
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
355 356
};

357
#ifdef CONFIG_MEMCG_KMEM
358
bool memcg_kmem_is_active(struct mem_cgroup *memcg)
359
{
360
	return memcg->kmem_acct_active;
361
}
362 363
#endif

364 365
/* Stuffs for move charges at task migration. */
/*
366
 * Types of charges to be moved.
367
 */
368 369 370
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
371

372 373
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
374
	spinlock_t	  lock; /* for from, to */
375 376
	struct mem_cgroup *from;
	struct mem_cgroup *to;
377
	unsigned long flags;
378
	unsigned long precharge;
379
	unsigned long moved_charge;
380
	unsigned long moved_swap;
381 382 383
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
384
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
385 386
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
387

388 389 390 391
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
392
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
393
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
394

395 396
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
397
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
398
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
399
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
400 401 402
	NR_CHARGE_TYPE,
};

403
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
404 405 406 407
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
408
	_KMEM,
G
Glauber Costa 已提交
409 410
};

411 412
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
413
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
414 415
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
416

417 418 419 420 421 422 423
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

424 425
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
426
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
427 428
}

429 430 431 432 433 434 435 436 437 438 439 440 441
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

442 443 444 445 446
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

447 448 449 450 451 452
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
453 454
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
455
	return memcg->css.id;
L
Li Zefan 已提交
456 457
}

458 459 460 461 462 463
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
 */
L
Li Zefan 已提交
464 465 466 467
static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

468
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
469 470 471
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
472
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
473
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
474 475 476

void sock_update_memcg(struct sock *sk)
{
477
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
478
		struct mem_cgroup *memcg;
479
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
480 481 482

		BUG_ON(!sk->sk_prot->proto_cgroup);

483 484 485 486 487 488 489 490 491 492
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
493
			css_get(&sk->sk_cgrp->memcg->css);
494 495 496
			return;
		}

G
Glauber Costa 已提交
497 498
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
499
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
500
		if (!mem_cgroup_is_root(memcg) &&
501 502
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
503
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
504 505 506 507 508 509 510 511
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
512
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
513 514 515
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
516
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
517 518
	}
}
G
Glauber Costa 已提交
519 520 521 522 523 524

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

525
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
526 527
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
528

529 530
#endif

531
#ifdef CONFIG_MEMCG_KMEM
532
/*
533
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
534 535 536 537 538
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
539
 *
540 541
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
542
 */
543 544
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
545

546 547 548 549 550 551 552 553 554 555 556 557 558
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

559 560 561 562 563 564
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
565
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
566 567
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
568
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
569 570 571
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
572
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
573

574 575 576 577 578 579
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
580
struct static_key memcg_kmem_enabled_key;
581
EXPORT_SYMBOL(memcg_kmem_enabled_key);
582 583 584

#endif /* CONFIG_MEMCG_KMEM */

585
static struct mem_cgroup_per_zone *
586
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
587
{
588 589 590
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

591
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
592 593
}

594
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
595
{
596
	return &memcg->css;
597 598
}

599
static struct mem_cgroup_per_zone *
600
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
601
{
602 603
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
604

605
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
606 607
}

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

623 624
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
625
					 unsigned long new_usage_in_excess)
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

655 656
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
657 658 659 660 661 662 663
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

664 665
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
666
{
667 668 669
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
670
	__mem_cgroup_remove_exceeded(mz, mctz);
671
	spin_unlock_irqrestore(&mctz->lock, flags);
672 673
}

674 675 676
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
677
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
678 679 680 681 682 683 684
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
685 686 687

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
688
	unsigned long excess;
689 690 691
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

692
	mctz = soft_limit_tree_from_page(page);
693 694 695 696 697
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
698
		mz = mem_cgroup_page_zoneinfo(memcg, page);
699
		excess = soft_limit_excess(memcg);
700 701 702 703 704
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
705 706 707
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
708 709
			/* if on-tree, remove it */
			if (mz->on_tree)
710
				__mem_cgroup_remove_exceeded(mz, mctz);
711 712 713 714
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
715
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
716
			spin_unlock_irqrestore(&mctz->lock, flags);
717 718 719 720 721 722 723
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
724 725
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
726

727 728 729 730
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
731
			mem_cgroup_remove_exceeded(mz, mctz);
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
754
	__mem_cgroup_remove_exceeded(mz, mctz);
755
	if (!soft_limit_excess(mz->memcg) ||
756
	    !css_tryget_online(&mz->memcg->css))
757 758 759 760 761 762 763 764 765 766
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

767
	spin_lock_irq(&mctz->lock);
768
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
769
	spin_unlock_irq(&mctz->lock);
770 771 772
	return mz;
}

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
792
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
793
				 enum mem_cgroup_stat_index idx)
794
{
795
	long val = 0;
796 797
	int cpu;

798 799
	get_online_cpus();
	for_each_online_cpu(cpu)
800
		val += per_cpu(memcg->stat->count[idx], cpu);
801
#ifdef CONFIG_HOTPLUG_CPU
802 803 804
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
805 806
#endif
	put_online_cpus();
807 808 809
	return val;
}

810
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
811 812 813 814 815
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

816
	get_online_cpus();
817
	for_each_online_cpu(cpu)
818
		val += per_cpu(memcg->stat->events[idx], cpu);
819
#ifdef CONFIG_HOTPLUG_CPU
820 821 822
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
823
#endif
824
	put_online_cpus();
825 826 827
	return val;
}

828
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
829
					 struct page *page,
830
					 int nr_pages)
831
{
832 833 834 835
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
836
	if (PageAnon(page))
837
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
838
				nr_pages);
839
	else
840
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
841
				nr_pages);
842

843 844 845 846
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

847 848
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
849
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
850
	else {
851
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
852 853
		nr_pages = -nr_pages; /* for event */
	}
854

855
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
856 857
}

858
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
859 860 861 862 863 864 865
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

866 867 868
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
869
{
870
	unsigned long nr = 0;
871 872
	int zid;

873
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
874

875 876 877 878 879 880 881 882 883 884 885 886
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
887
}
888

889
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
890
			unsigned int lru_mask)
891
{
892
	unsigned long nr = 0;
893
	int nid;
894

895
	for_each_node_state(nid, N_MEMORY)
896 897
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
898 899
}

900 901
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
902 903 904
{
	unsigned long val, next;

905
	val = __this_cpu_read(memcg->stat->nr_page_events);
906
	next = __this_cpu_read(memcg->stat->targets[target]);
907
	/* from time_after() in jiffies.h */
908 909 910 911 912
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
913 914 915
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
916 917 918 919 920 921 922 923
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
924
	}
925
	return false;
926 927 928 929 930 931
}

/*
 * Check events in order.
 *
 */
932
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
933 934
{
	/* threshold event is triggered in finer grain than soft limit */
935 936
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
937
		bool do_softlimit;
938
		bool do_numainfo __maybe_unused;
939

940 941
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
942 943 944 945
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
946
		mem_cgroup_threshold(memcg);
947 948
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
949
#if MAX_NUMNODES > 1
950
		if (unlikely(do_numainfo))
951
			atomic_inc(&memcg->numainfo_events);
952
#endif
953
	}
954 955
}

956
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
957
{
958 959 960 961 962 963 964 965
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

966
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
967 968
}

969
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
970
{
971
	struct mem_cgroup *memcg = NULL;
972

973 974
	rcu_read_lock();
	do {
975 976 977 978 979 980
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
981
			memcg = root_mem_cgroup;
982 983 984 985 986
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
987
	} while (!css_tryget_online(&memcg->css));
988
	rcu_read_unlock();
989
	return memcg;
990 991
}

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1009
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1010
				   struct mem_cgroup *prev,
1011
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1012
{
1013 1014
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1015
	struct mem_cgroup *memcg = NULL;
1016
	struct mem_cgroup *pos = NULL;
1017

1018 1019
	if (mem_cgroup_disabled())
		return NULL;
1020

1021 1022
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1023

1024
	if (prev && !reclaim)
1025
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1026

1027 1028
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1029
			goto out;
1030
		return root;
1031
	}
K
KAMEZAWA Hiroyuki 已提交
1032

1033
	rcu_read_lock();
M
Michal Hocko 已提交
1034

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
1045
			pos = READ_ONCE(iter->position);
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1069
		}
K
KAMEZAWA Hiroyuki 已提交
1070

1071 1072 1073 1074 1075 1076
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1077

1078 1079
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1080

1081
		if (css_tryget(css)) {
1082 1083 1084 1085 1086 1087 1088
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
1089

1090
			css_put(css);
1091
		}
1092

1093
		memcg = NULL;
1094
	}
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1115
	}
1116

1117 1118
out_unlock:
	rcu_read_unlock();
1119
out:
1120 1121 1122
	if (prev && prev != root)
		css_put(&prev->css);

1123
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1124
}
K
KAMEZAWA Hiroyuki 已提交
1125

1126 1127 1128 1129 1130 1131 1132
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1133 1134 1135 1136 1137 1138
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1139

1140 1141 1142 1143 1144 1145
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1146
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1147
	     iter != NULL;				\
1148
	     iter = mem_cgroup_iter(root, iter, NULL))
1149

1150
#define for_each_mem_cgroup(iter)			\
1151
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1152
	     iter != NULL;				\
1153
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1154

1155
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1156
{
1157
	struct mem_cgroup *memcg;
1158 1159

	rcu_read_lock();
1160 1161
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1162 1163 1164 1165
		goto out;

	switch (idx) {
	case PGFAULT:
1166 1167 1168 1169
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1170 1171 1172 1173 1174 1175 1176
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1177
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1178

1179 1180 1181
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1182
 * @memcg: memcg of the wanted lruvec
1183 1184 1185 1186 1187 1188 1189 1190 1191
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1192
	struct lruvec *lruvec;
1193

1194 1195 1196 1197
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1198

1199
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1210 1211 1212
}

/**
1213
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1214
 * @page: the page
1215
 * @zone: zone of the page
1216 1217 1218 1219
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1220
 */
1221
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1222 1223
{
	struct mem_cgroup_per_zone *mz;
1224
	struct mem_cgroup *memcg;
1225
	struct lruvec *lruvec;
1226

1227 1228 1229 1230
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1231

1232
	memcg = page->mem_cgroup;
1233
	/*
1234
	 * Swapcache readahead pages are added to the LRU - and
1235
	 * possibly migrated - before they are charged.
1236
	 */
1237 1238
	if (!memcg)
		memcg = root_mem_cgroup;
1239

1240
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1251
}
1252

1253
/**
1254 1255 1256 1257
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1258
 *
1259 1260
 * This function must be called when a page is added to or removed from an
 * lru list.
1261
 */
1262 1263
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1264 1265
{
	struct mem_cgroup_per_zone *mz;
1266
	unsigned long *lru_size;
1267 1268 1269 1270

	if (mem_cgroup_disabled())
		return;

1271 1272 1273 1274
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1275
}
1276

1277
bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1278
{
1279
	if (root == memcg)
1280
		return true;
1281
	if (!root->use_hierarchy)
1282
		return false;
1283
	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1284 1285
}

1286
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1287
{
1288
	struct mem_cgroup *task_memcg;
1289
	struct task_struct *p;
1290
	bool ret;
1291

1292
	p = find_lock_task_mm(task);
1293
	if (p) {
1294
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1295 1296 1297 1298 1299 1300 1301
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1302
		rcu_read_lock();
1303 1304
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1305
		rcu_read_unlock();
1306
	}
1307 1308
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1309 1310 1311
	return ret;
}

1312
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1313
{
1314
	unsigned long inactive_ratio;
1315
	unsigned long inactive;
1316
	unsigned long active;
1317
	unsigned long gb;
1318

1319 1320
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1321

1322 1323 1324 1325 1326 1327
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1328
	return inactive * inactive_ratio < active;
1329 1330
}

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
{
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return true;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	memcg = mz->memcg;

	return !!(memcg->css.flags & CSS_ONLINE);
}

1345
#define mem_cgroup_from_counter(counter, member)	\
1346 1347
	container_of(counter, struct mem_cgroup, member)

1348
/**
1349
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1350
 * @memcg: the memory cgroup
1351
 *
1352
 * Returns the maximum amount of memory @mem can be charged with, in
1353
 * pages.
1354
 */
1355
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1356
{
1357 1358 1359
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1360

1361
	count = page_counter_read(&memcg->memory);
1362
	limit = READ_ONCE(memcg->memory.limit);
1363 1364 1365 1366 1367
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
1368
		limit = READ_ONCE(memcg->memsw.limit);
1369 1370 1371 1372 1373
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1374 1375
}

1376
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1377 1378
{
	/* root ? */
1379
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1380 1381
		return vm_swappiness;

1382
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1383 1384
}

1385
/*
Q
Qiang Huang 已提交
1386
 * A routine for checking "mem" is under move_account() or not.
1387
 *
Q
Qiang Huang 已提交
1388 1389 1390
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1391
 */
1392
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1393
{
1394 1395
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1396
	bool ret = false;
1397 1398 1399 1400 1401 1402 1403 1404 1405
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1406

1407 1408
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1409 1410
unlock:
	spin_unlock(&mc.lock);
1411 1412 1413
	return ret;
}

1414
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1415 1416
{
	if (mc.moving_task && current != mc.moving_task) {
1417
		if (mem_cgroup_under_move(memcg)) {
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1430
#define K(x) ((x) << (PAGE_SHIFT-10))
1431
/**
1432
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1433 1434 1435 1436 1437 1438 1439 1440
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1441
	/* oom_info_lock ensures that parallel ooms do not interleave */
1442
	static DEFINE_MUTEX(oom_info_lock);
1443 1444
	struct mem_cgroup *iter;
	unsigned int i;
1445

1446
	mutex_lock(&oom_info_lock);
1447 1448
	rcu_read_lock();

1449 1450 1451 1452 1453 1454 1455 1456
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1457
	pr_cont_cgroup_path(memcg->css.cgroup);
1458
	pr_cont("\n");
1459 1460 1461

	rcu_read_unlock();

1462 1463 1464 1465 1466 1467 1468 1469 1470
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1471 1472

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1473 1474
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1490
	mutex_unlock(&oom_info_lock);
1491 1492
}

1493 1494 1495 1496
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1497
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1498 1499
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1500 1501
	struct mem_cgroup *iter;

1502
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1503
		num++;
1504 1505 1506
	return num;
}

D
David Rientjes 已提交
1507 1508 1509
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1510
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1511
{
1512
	unsigned long limit;
1513

1514
	limit = memcg->memory.limit;
1515
	if (mem_cgroup_swappiness(memcg)) {
1516
		unsigned long memsw_limit;
1517

1518 1519
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1520 1521
	}
	return limit;
D
David Rientjes 已提交
1522 1523
}

1524 1525
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1526 1527 1528 1529 1530 1531 1532
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1533
	/*
1534 1535 1536
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1537
	 */
1538
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1539
		mark_tsk_oom_victim(current);
1540 1541 1542
		return;
	}

1543
	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL, memcg);
1544
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1545
	for_each_mem_cgroup_tree(iter, memcg) {
1546
		struct css_task_iter it;
1547 1548
		struct task_struct *task;

1549 1550
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1563
				css_task_iter_end(&it);
1564 1565 1566 1567 1568 1569 1570 1571
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1584
		}
1585
		css_task_iter_end(&it);
1586 1587 1588 1589 1590 1591 1592 1593 1594
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1595 1596
#if MAX_NUMNODES > 1

1597 1598
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1599
 * @memcg: the target memcg
1600 1601 1602 1603 1604 1605 1606
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1607
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1608 1609
		int nid, bool noswap)
{
1610
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1611 1612 1613
		return true;
	if (noswap || !total_swap_pages)
		return false;
1614
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1615 1616 1617 1618
		return true;
	return false;

}
1619 1620 1621 1622 1623 1624 1625

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1626
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1627 1628
{
	int nid;
1629 1630 1631 1632
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1633
	if (!atomic_read(&memcg->numainfo_events))
1634
		return;
1635
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1636 1637 1638
		return;

	/* make a nodemask where this memcg uses memory from */
1639
	memcg->scan_nodes = node_states[N_MEMORY];
1640

1641
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1642

1643 1644
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1645
	}
1646

1647 1648
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1663
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1664 1665 1666
{
	int node;

1667 1668
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1669

1670
	node = next_node(node, memcg->scan_nodes);
1671
	if (node == MAX_NUMNODES)
1672
		node = first_node(memcg->scan_nodes);
1673 1674 1675 1676 1677 1678 1679 1680 1681
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1682
	memcg->last_scanned_node = node;
1683 1684 1685
	return node;
}
#else
1686
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1687 1688 1689 1690 1691
{
	return 0;
}
#endif

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1707
	excess = soft_limit_excess(root_memcg);
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1736
		if (!soft_limit_excess(root_memcg))
1737
			break;
1738
	}
1739 1740
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1741 1742
}

1743 1744 1745 1746 1747 1748
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1749 1750
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1751 1752 1753 1754
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1755
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1756
{
1757
	struct mem_cgroup *iter, *failed = NULL;
1758

1759 1760
	spin_lock(&memcg_oom_lock);

1761
	for_each_mem_cgroup_tree(iter, memcg) {
1762
		if (iter->oom_lock) {
1763 1764 1765 1766 1767
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1768 1769
			mem_cgroup_iter_break(memcg, iter);
			break;
1770 1771
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1772
	}
K
KAMEZAWA Hiroyuki 已提交
1773

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1785
		}
1786 1787
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1788 1789 1790 1791

	spin_unlock(&memcg_oom_lock);

	return !failed;
1792
}
1793

1794
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1795
{
K
KAMEZAWA Hiroyuki 已提交
1796 1797
	struct mem_cgroup *iter;

1798
	spin_lock(&memcg_oom_lock);
1799
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1800
	for_each_mem_cgroup_tree(iter, memcg)
1801
		iter->oom_lock = false;
1802
	spin_unlock(&memcg_oom_lock);
1803 1804
}

1805
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1806 1807 1808
{
	struct mem_cgroup *iter;

1809
	for_each_mem_cgroup_tree(iter, memcg)
1810 1811 1812
		atomic_inc(&iter->under_oom);
}

1813
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1814 1815 1816
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1817 1818 1819 1820 1821
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1822
	for_each_mem_cgroup_tree(iter, memcg)
1823
		atomic_add_unless(&iter->under_oom, -1, 0);
1824 1825
}

K
KAMEZAWA Hiroyuki 已提交
1826 1827
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1828
struct oom_wait_info {
1829
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1830 1831 1832 1833 1834 1835
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1836 1837
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1838 1839 1840
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1841
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1842

1843 1844
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1845 1846 1847 1848
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1849
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1850
{
1851
	atomic_inc(&memcg->oom_wakeups);
1852 1853
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1854 1855
}

1856
static void memcg_oom_recover(struct mem_cgroup *memcg)
1857
{
1858 1859
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1860 1861
}

1862
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1863
{
1864 1865
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
1866
	/*
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1879
	 */
1880 1881 1882 1883
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
1884 1885 1886 1887
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1888
 * @handle: actually kill/wait or just clean up the OOM state
1889
 *
1890 1891
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1892
 *
1893
 * Memcg supports userspace OOM handling where failed allocations must
1894 1895 1896 1897
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1898
 * the end of the page fault to complete the OOM handling.
1899 1900
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1901
 * completed, %false otherwise.
1902
 */
1903
bool mem_cgroup_oom_synchronize(bool handle)
1904
{
1905
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1906
	struct oom_wait_info owait;
1907
	bool locked;
1908 1909 1910

	/* OOM is global, do not handle */
	if (!memcg)
1911
		return false;
1912

1913
	if (!handle || oom_killer_disabled)
1914
		goto cleanup;
1915 1916 1917 1918 1919 1920

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1921

1922
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
1936
		schedule();
1937 1938 1939 1940 1941
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1942 1943 1944 1945 1946 1947 1948 1949
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1950 1951
cleanup:
	current->memcg_oom.memcg = NULL;
1952
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1953
	return true;
1954 1955
}

1956 1957 1958
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1959
 *
1960 1961 1962
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1963
 *
1964
 *   memcg = mem_cgroup_begin_page_stat(page);
1965 1966
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1967
 *   mem_cgroup_end_page_stat(memcg);
1968
 */
1969
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1970 1971
{
	struct mem_cgroup *memcg;
1972
	unsigned long flags;
1973

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
1986 1987 1988 1989
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
1990
again:
1991
	memcg = page->mem_cgroup;
1992
	if (unlikely(!memcg))
1993 1994
		return NULL;

Q
Qiang Huang 已提交
1995
	if (atomic_read(&memcg->moving_account) <= 0)
1996
		return memcg;
1997

1998
	spin_lock_irqsave(&memcg->move_lock, flags);
1999
	if (memcg != page->mem_cgroup) {
2000
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2001 2002
		goto again;
	}
2003 2004 2005 2006 2007 2008 2009 2010

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2011 2012

	return memcg;
2013 2014
}

2015 2016 2017 2018
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
2019
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2020
{
2021 2022 2023 2024 2025 2026 2027 2028
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2029

2030
	rcu_read_unlock();
2031 2032
}

2033 2034 2035 2036 2037 2038 2039 2040 2041
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2042
				 enum mem_cgroup_stat_index idx, int val)
2043
{
2044
	VM_BUG_ON(!rcu_read_lock_held());
2045

2046 2047
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2048
}
2049

2050 2051 2052 2053
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2054
#define CHARGE_BATCH	32U
2055 2056
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2057
	unsigned int nr_pages;
2058
	struct work_struct work;
2059
	unsigned long flags;
2060
#define FLUSHING_CACHED_CHARGE	0
2061 2062
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2063
static DEFINE_MUTEX(percpu_charge_mutex);
2064

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2075
 */
2076
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2077 2078
{
	struct memcg_stock_pcp *stock;
2079
	bool ret = false;
2080

2081
	if (nr_pages > CHARGE_BATCH)
2082
		return ret;
2083

2084
	stock = &get_cpu_var(memcg_stock);
2085
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2086
		stock->nr_pages -= nr_pages;
2087 2088
		ret = true;
	}
2089 2090 2091 2092 2093
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2094
 * Returns stocks cached in percpu and reset cached information.
2095 2096 2097 2098 2099
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2100
	if (stock->nr_pages) {
2101
		page_counter_uncharge(&old->memory, stock->nr_pages);
2102
		if (do_swap_account)
2103
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2104
		css_put_many(&old->css, stock->nr_pages);
2105
		stock->nr_pages = 0;
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2116
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2117
	drain_stock(stock);
2118
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2119 2120 2121
}

/*
2122
 * Cache charges(val) to local per_cpu area.
2123
 * This will be consumed by consume_stock() function, later.
2124
 */
2125
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2126 2127 2128
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2129
	if (stock->cached != memcg) { /* reset if necessary */
2130
		drain_stock(stock);
2131
		stock->cached = memcg;
2132
	}
2133
	stock->nr_pages += nr_pages;
2134 2135 2136 2137
	put_cpu_var(memcg_stock);
}

/*
2138
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2139
 * of the hierarchy under it.
2140
 */
2141
static void drain_all_stock(struct mem_cgroup *root_memcg)
2142
{
2143
	int cpu, curcpu;
2144

2145 2146 2147
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2148 2149
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2150
	curcpu = get_cpu();
2151 2152
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2153
		struct mem_cgroup *memcg;
2154

2155 2156
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2157
			continue;
2158
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
2159
			continue;
2160 2161 2162 2163 2164 2165
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2166
	}
2167
	put_cpu();
A
Andrew Morton 已提交
2168
	put_online_cpus();
2169
	mutex_unlock(&percpu_charge_mutex);
2170 2171
}

2172 2173 2174 2175
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2176
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2177 2178 2179
{
	int i;

2180
	spin_lock(&memcg->pcp_counter_lock);
2181
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2182
		long x = per_cpu(memcg->stat->count[i], cpu);
2183

2184 2185
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2186
	}
2187
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2188
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2189

2190 2191
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2192
	}
2193
	spin_unlock(&memcg->pcp_counter_lock);
2194 2195
}

2196
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2197 2198 2199 2200 2201
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2202
	struct mem_cgroup *iter;
2203

2204
	if (action == CPU_ONLINE)
2205 2206
		return NOTIFY_OK;

2207
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2208
		return NOTIFY_OK;
2209

2210
	for_each_mem_cgroup(iter)
2211 2212
		mem_cgroup_drain_pcp_counter(iter, cpu);

2213 2214 2215 2216 2217
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2218 2219
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2220
{
2221
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2222
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2223
	struct mem_cgroup *mem_over_limit;
2224
	struct page_counter *counter;
2225
	unsigned long nr_reclaimed;
2226 2227
	bool may_swap = true;
	bool drained = false;
2228
	int ret = 0;
2229

2230 2231
	if (mem_cgroup_is_root(memcg))
		goto done;
2232
retry:
2233 2234
	if (consume_stock(memcg, nr_pages))
		goto done;
2235

2236
	if (!do_swap_account ||
2237 2238
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2239
			goto done_restock;
2240
		if (do_swap_account)
2241 2242
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2243
	} else {
2244
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2245
		may_swap = false;
2246
	}
2247

2248 2249 2250 2251
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2252

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2267 2268
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2269

2270 2271
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2272 2273
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2274

2275
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2276
		goto retry;
2277

2278
	if (!drained) {
2279
		drain_all_stock(mem_over_limit);
2280 2281 2282 2283
		drained = true;
		goto retry;
	}

2284 2285
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2286 2287 2288 2289 2290 2291 2292 2293 2294
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2295
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2296 2297 2298 2299 2300 2301 2302 2303
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2304 2305 2306
	if (nr_retries--)
		goto retry;

2307 2308 2309
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2310 2311 2312
	if (fatal_signal_pending(current))
		goto bypass;

2313 2314
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2315
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2316
nomem:
2317
	if (!(gfp_mask & __GFP_NOFAIL))
2318
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2319
bypass:
2320
	return -EINTR;
2321 2322

done_restock:
2323
	css_get_many(&memcg->css, batch);
2324 2325
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
	/*
	 * If the hierarchy is above the normal consumption range,
	 * make the charging task trim their excess contribution.
	 */
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
2336
done:
2337
	return ret;
2338
}
2339

2340
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2341
{
2342 2343 2344
	if (mem_cgroup_is_root(memcg))
		return;

2345
	page_counter_uncharge(&memcg->memory, nr_pages);
2346
	if (do_swap_account)
2347
		page_counter_uncharge(&memcg->memsw, nr_pages);
2348

2349
	css_put_many(&memcg->css, nr_pages);
2350 2351
}

2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2362
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2363
{
2364
	struct mem_cgroup *memcg;
2365
	unsigned short id;
2366 2367
	swp_entry_t ent;

2368
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2369

2370
	memcg = page->mem_cgroup;
2371 2372
	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2373
			memcg = NULL;
2374
	} else if (PageSwapCache(page)) {
2375
		ent.val = page_private(page);
2376
		id = lookup_swap_cgroup_id(ent);
2377
		rcu_read_lock();
2378
		memcg = mem_cgroup_from_id(id);
2379
		if (memcg && !css_tryget_online(&memcg->css))
2380
			memcg = NULL;
2381
		rcu_read_unlock();
2382
	}
2383
	return memcg;
2384 2385
}

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2417
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2418
			  bool lrucare)
2419
{
2420
	int isolated;
2421

2422
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2423 2424 2425 2426 2427

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2428 2429
	if (lrucare)
		lock_page_lru(page, &isolated);
2430

2431 2432
	/*
	 * Nobody should be changing or seriously looking at
2433
	 * page->mem_cgroup at this point:
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2445
	page->mem_cgroup = memcg;
2446

2447 2448
	if (lrucare)
		unlock_page_lru(page, isolated);
2449
}
2450

2451
#ifdef CONFIG_MEMCG_KMEM
2452 2453
int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
		      unsigned long nr_pages)
2454
{
2455
	struct page_counter *counter;
2456 2457
	int ret = 0;

2458 2459
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2460 2461
		return ret;

2462
	ret = try_charge(memcg, gfp, nr_pages);
2463 2464
	if (ret == -EINTR)  {
		/*
2465 2466 2467 2468 2469 2470
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2471 2472 2473
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2474 2475 2476
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2477 2478
		 * directed to the root cgroup in memcontrol.h
		 */
2479
		page_counter_charge(&memcg->memory, nr_pages);
2480
		if (do_swap_account)
2481
			page_counter_charge(&memcg->memsw, nr_pages);
2482
		css_get_many(&memcg->css, nr_pages);
2483 2484
		ret = 0;
	} else if (ret)
2485
		page_counter_uncharge(&memcg->kmem, nr_pages);
2486 2487 2488 2489

	return ret;
}

2490
void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2491
{
2492
	page_counter_uncharge(&memcg->memory, nr_pages);
2493
	if (do_swap_account)
2494
		page_counter_uncharge(&memcg->memsw, nr_pages);
2495

2496
	page_counter_uncharge(&memcg->kmem, nr_pages);
2497

2498
	css_put_many(&memcg->css, nr_pages);
2499 2500
}

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2511
static int memcg_alloc_cache_id(void)
2512
{
2513 2514 2515
	int id, size;
	int err;

2516
	id = ida_simple_get(&memcg_cache_ida,
2517 2518 2519
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2520

2521
	if (id < memcg_nr_cache_ids)
2522 2523 2524 2525 2526 2527
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2528
	down_write(&memcg_cache_ids_sem);
2529 2530

	size = 2 * (id + 1);
2531 2532 2533 2534 2535
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2536
	err = memcg_update_all_caches(size);
2537 2538
	if (!err)
		err = memcg_update_all_list_lrus(size);
2539 2540 2541 2542 2543
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2544
	if (err) {
2545
		ida_simple_remove(&memcg_cache_ida, id);
2546 2547 2548 2549 2550 2551 2552
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2553
	ida_simple_remove(&memcg_cache_ida, id);
2554 2555
}

2556
struct memcg_kmem_cache_create_work {
2557 2558 2559 2560 2561
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2562
static void memcg_kmem_cache_create_func(struct work_struct *w)
2563
{
2564 2565
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2566 2567
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2568

2569
	memcg_create_kmem_cache(memcg, cachep);
2570

2571
	css_put(&memcg->css);
2572 2573 2574 2575 2576 2577
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2578 2579
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2580
{
2581
	struct memcg_kmem_cache_create_work *cw;
2582

2583
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2584
	if (!cw)
2585
		return;
2586 2587

	css_get(&memcg->css);
2588 2589 2590

	cw->memcg = memcg;
	cw->cachep = cachep;
2591
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2592 2593 2594 2595

	schedule_work(&cw->work);
}

2596 2597
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2598 2599 2600 2601
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2602
	 * in __memcg_schedule_kmem_cache_create will recurse.
2603 2604 2605 2606 2607 2608 2609
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2610
	current->memcg_kmem_skip_account = 1;
2611
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2612
	current->memcg_kmem_skip_account = 0;
2613
}
2614

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
2628
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2629 2630
{
	struct mem_cgroup *memcg;
2631
	struct kmem_cache *memcg_cachep;
2632
	int kmemcg_id;
2633

2634
	VM_BUG_ON(!is_root_cache(cachep));
2635

2636
	if (current->memcg_kmem_skip_account)
2637 2638
		return cachep;

2639
	memcg = get_mem_cgroup_from_mm(current->mm);
2640
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2641
	if (kmemcg_id < 0)
2642
		goto out;
2643

2644
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2645 2646
	if (likely(memcg_cachep))
		return memcg_cachep;
2647 2648 2649 2650 2651 2652 2653 2654 2655

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2656 2657 2658
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2659
	 */
2660
	memcg_schedule_kmem_cache_create(memcg, cachep);
2661
out:
2662
	css_put(&memcg->css);
2663
	return cachep;
2664 2665
}

2666 2667 2668
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2669
		css_put(&cachep->memcg_params.memcg->css);
2670 2671
}

2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2693

2694
	memcg = get_mem_cgroup_from_mm(current->mm);
2695

2696
	if (!memcg_kmem_is_active(memcg)) {
2697 2698 2699 2700
		css_put(&memcg->css);
		return true;
	}

2701
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
2716
		memcg_uncharge_kmem(memcg, 1 << order);
2717 2718
		return;
	}
2719
	page->mem_cgroup = memcg;
2720 2721 2722 2723
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
2724
	struct mem_cgroup *memcg = page->mem_cgroup;
2725 2726 2727 2728

	if (!memcg)
		return;

2729
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2730

2731
	memcg_uncharge_kmem(memcg, 1 << order);
2732
	page->mem_cgroup = NULL;
2733
}
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744

struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
{
	struct mem_cgroup *memcg = NULL;
	struct kmem_cache *cachep;
	struct page *page;

	page = virt_to_head_page(ptr);
	if (PageSlab(page)) {
		cachep = page->slab_cache;
		if (!is_root_cache(cachep))
2745
			memcg = cachep->memcg_params.memcg;
2746 2747 2748 2749 2750 2751
	} else
		/* page allocated by alloc_kmem_pages */
		memcg = page->mem_cgroup;

	return memcg;
}
2752 2753
#endif /* CONFIG_MEMCG_KMEM */

2754 2755 2756 2757
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2758 2759 2760
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2761
 */
2762
void mem_cgroup_split_huge_fixup(struct page *head)
2763
{
2764
	int i;
2765

2766 2767
	if (mem_cgroup_disabled())
		return;
2768

2769
	for (i = 1; i < HPAGE_PMD_NR; i++)
2770
		head[i].mem_cgroup = head->mem_cgroup;
2771

2772
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2773
		       HPAGE_PMD_NR);
2774
}
2775
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2776

A
Andrew Morton 已提交
2777
#ifdef CONFIG_MEMCG_SWAP
2778 2779
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2780
{
2781 2782
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2783
}
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2796
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2797 2798 2799
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2800
				struct mem_cgroup *from, struct mem_cgroup *to)
2801 2802 2803
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2804 2805
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2806 2807 2808

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2809
		mem_cgroup_swap_statistics(to, true);
2810 2811 2812 2813 2814 2815
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2816
				struct mem_cgroup *from, struct mem_cgroup *to)
2817 2818 2819
{
	return -EINVAL;
}
2820
#endif
K
KAMEZAWA Hiroyuki 已提交
2821

2822
static DEFINE_MUTEX(memcg_limit_mutex);
2823

2824
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2825
				   unsigned long limit)
2826
{
2827 2828 2829
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2830
	int retry_count;
2831
	int ret;
2832 2833 2834 2835 2836 2837

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2838 2839
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2840

2841
	oldusage = page_counter_read(&memcg->memory);
2842

2843
	do {
2844 2845 2846 2847
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2848 2849 2850 2851

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2852
			ret = -EINVAL;
2853 2854
			break;
		}
2855 2856 2857 2858
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2859 2860 2861 2862

		if (!ret)
			break;

2863 2864
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2865
		curusage = page_counter_read(&memcg->memory);
2866
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2867
		if (curusage >= oldusage)
2868 2869 2870
			retry_count--;
		else
			oldusage = curusage;
2871 2872
	} while (retry_count);

2873 2874
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2875

2876 2877 2878
	return ret;
}

L
Li Zefan 已提交
2879
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2880
					 unsigned long limit)
2881
{
2882 2883 2884
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2885
	int retry_count;
2886
	int ret;
2887

2888
	/* see mem_cgroup_resize_res_limit */
2889 2890 2891 2892 2893 2894
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2895 2896 2897 2898
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2899 2900 2901 2902

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2903 2904 2905
			ret = -EINVAL;
			break;
		}
2906 2907 2908 2909
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2910 2911 2912 2913

		if (!ret)
			break;

2914 2915
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2916
		curusage = page_counter_read(&memcg->memsw);
2917
		/* Usage is reduced ? */
2918
		if (curusage >= oldusage)
2919
			retry_count--;
2920 2921
		else
			oldusage = curusage;
2922 2923
	} while (retry_count);

2924 2925
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2926

2927 2928 2929
	return ret;
}

2930 2931 2932 2933 2934 2935 2936 2937 2938
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2939
	unsigned long excess;
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2964
		spin_lock_irq(&mctz->lock);
2965
		__mem_cgroup_remove_exceeded(mz, mctz);
2966 2967 2968 2969 2970 2971

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2972 2973 2974
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2975
		excess = soft_limit_excess(mz->memcg);
2976 2977 2978 2979 2980 2981 2982 2983 2984
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2985
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2986
		spin_unlock_irq(&mctz->lock);
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3004 3005 3006 3007 3008 3009
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3010 3011
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3012 3013
	bool ret;

3014
	/*
3015 3016 3017 3018
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3019
	 */
3020 3021 3022 3023 3024 3025
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3026 3027
}

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3038 3039
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3040
	/* try to free all pages in this cgroup */
3041
	while (nr_retries && page_counter_read(&memcg->memory)) {
3042
		int progress;
3043

3044 3045 3046
		if (signal_pending(current))
			return -EINTR;

3047 3048
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3049
		if (!progress) {
3050
			nr_retries--;
3051
			/* maybe some writeback is necessary */
3052
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3053
		}
3054 3055

	}
3056 3057

	return 0;
3058 3059
}

3060 3061 3062
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3063
{
3064
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3065

3066 3067
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3068
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3069 3070
}

3071 3072
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3073
{
3074
	return mem_cgroup_from_css(css)->use_hierarchy;
3075 3076
}

3077 3078
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3079 3080
{
	int retval = 0;
3081
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3082
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3083

3084
	mutex_lock(&memcg_create_mutex);
3085 3086 3087 3088

	if (memcg->use_hierarchy == val)
		goto out;

3089
	/*
3090
	 * If parent's use_hierarchy is set, we can't make any modifications
3091 3092 3093 3094 3095 3096
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3097
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3098
				(val == 1 || val == 0)) {
3099
		if (!memcg_has_children(memcg))
3100
			memcg->use_hierarchy = val;
3101 3102 3103 3104
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3105 3106

out:
3107
	mutex_unlock(&memcg_create_mutex);
3108 3109 3110 3111

	return retval;
}

3112 3113
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3131 3132 3133 3134 3135 3136
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3137
		if (!swap)
3138
			val = page_counter_read(&memcg->memory);
3139
		else
3140
			val = page_counter_read(&memcg->memsw);
3141 3142 3143 3144
	}
	return val << PAGE_SHIFT;
}

3145 3146 3147 3148 3149 3150 3151
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3152

3153
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3154
			       struct cftype *cft)
B
Balbir Singh 已提交
3155
{
3156
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3157
	struct page_counter *counter;
3158

3159
	switch (MEMFILE_TYPE(cft->private)) {
3160
	case _MEM:
3161 3162
		counter = &memcg->memory;
		break;
3163
	case _MEMSWAP:
3164 3165
		counter = &memcg->memsw;
		break;
3166
	case _KMEM:
3167
		counter = &memcg->kmem;
3168
		break;
3169 3170 3171
	default:
		BUG();
	}
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3191
}
3192 3193

#ifdef CONFIG_MEMCG_KMEM
3194 3195
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
3196 3197 3198 3199
{
	int err = 0;
	int memcg_id;

3200
	BUG_ON(memcg->kmemcg_id >= 0);
3201
	BUG_ON(memcg->kmem_acct_activated);
3202
	BUG_ON(memcg->kmem_acct_active);
3203

3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
3216
	mutex_lock(&memcg_create_mutex);
3217 3218
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3219 3220 3221 3222
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
3223

3224
	memcg_id = memcg_alloc_cache_id();
3225 3226 3227 3228 3229 3230
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
3231 3232
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
3233
	 */
3234
	err = page_counter_limit(&memcg->kmem, nr_pages);
3235 3236 3237 3238
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
3239 3240
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
3241 3242 3243
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3244
	memcg->kmemcg_id = memcg_id;
3245
	memcg->kmem_acct_activated = true;
3246
	memcg->kmem_acct_active = true;
3247
out:
3248 3249 3250 3251
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3252
				   unsigned long limit)
3253 3254 3255
{
	int ret;

3256
	mutex_lock(&memcg_limit_mutex);
3257
	if (!memcg_kmem_is_active(memcg))
3258
		ret = memcg_activate_kmem(memcg, limit);
3259
	else
3260 3261
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
3262 3263 3264
	return ret;
}

3265
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3266
{
3267
	int ret = 0;
3268
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3269

3270 3271
	if (!parent)
		return 0;
3272

3273
	mutex_lock(&memcg_limit_mutex);
3274
	/*
3275 3276
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3277
	 */
3278
	if (memcg_kmem_is_active(parent))
3279 3280
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3281
	return ret;
3282
}
3283 3284
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3285
				   unsigned long limit)
3286 3287 3288
{
	return -EINVAL;
}
3289
#endif /* CONFIG_MEMCG_KMEM */
3290

3291 3292 3293 3294
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3295 3296
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3297
{
3298
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3299
	unsigned long nr_pages;
3300 3301
	int ret;

3302
	buf = strstrip(buf);
3303
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3304 3305
	if (ret)
		return ret;
3306

3307
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3308
	case RES_LIMIT:
3309 3310 3311 3312
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3313 3314 3315
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3316
			break;
3317 3318
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3319
			break;
3320 3321 3322 3323
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3324
		break;
3325 3326 3327
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3328 3329
		break;
	}
3330
	return ret ?: nbytes;
B
Balbir Singh 已提交
3331 3332
}

3333 3334
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3335
{
3336
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3337
	struct page_counter *counter;
3338

3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3352

3353
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3354
	case RES_MAX_USAGE:
3355
		page_counter_reset_watermark(counter);
3356 3357
		break;
	case RES_FAILCNT:
3358
		counter->failcnt = 0;
3359
		break;
3360 3361
	default:
		BUG();
3362
	}
3363

3364
	return nbytes;
3365 3366
}

3367
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3368 3369
					struct cftype *cft)
{
3370
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3371 3372
}

3373
#ifdef CONFIG_MMU
3374
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3375 3376
					struct cftype *cft, u64 val)
{
3377
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3378

3379
	if (val & ~MOVE_MASK)
3380
		return -EINVAL;
3381

3382
	/*
3383 3384 3385 3386
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3387
	 */
3388
	memcg->move_charge_at_immigrate = val;
3389 3390
	return 0;
}
3391
#else
3392
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3393 3394 3395 3396 3397
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3398

3399
#ifdef CONFIG_NUMA
3400
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3401
{
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3414
	int nid;
3415
	unsigned long nr;
3416
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3417

3418 3419 3420 3421 3422 3423 3424 3425 3426
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3427 3428
	}

3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3444 3445 3446 3447 3448 3449
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3450
static int memcg_stat_show(struct seq_file *m, void *v)
3451
{
3452
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3453
	unsigned long memory, memsw;
3454 3455
	struct mem_cgroup *mi;
	unsigned int i;
3456

3457 3458 3459 3460
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3461 3462
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3463
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3464
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3465
			continue;
3466 3467
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3468
	}
L
Lee Schermerhorn 已提交
3469

3470 3471 3472 3473 3474 3475 3476 3477
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3478
	/* Hierarchical information */
3479 3480 3481 3482
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3483
	}
3484 3485 3486 3487 3488
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3489

3490 3491 3492
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

3493
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3494
			continue;
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3515
	}
K
KAMEZAWA Hiroyuki 已提交
3516

K
KOSAKI Motohiro 已提交
3517 3518 3519 3520
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3521
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3522 3523 3524 3525 3526
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3527
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3528
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3529

3530 3531 3532 3533
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3534
			}
3535 3536 3537 3538
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3539 3540 3541
	}
#endif

3542 3543 3544
	return 0;
}

3545 3546
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3547
{
3548
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3549

3550
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3551 3552
}

3553 3554
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3555
{
3556
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3557

3558
	if (val > 100)
K
KOSAKI Motohiro 已提交
3559 3560
		return -EINVAL;

3561
	if (css->parent)
3562 3563 3564
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3565

K
KOSAKI Motohiro 已提交
3566 3567 3568
	return 0;
}

3569 3570 3571
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3572
	unsigned long usage;
3573 3574 3575 3576
	int i;

	rcu_read_lock();
	if (!swap)
3577
		t = rcu_dereference(memcg->thresholds.primary);
3578
	else
3579
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3580 3581 3582 3583

	if (!t)
		goto unlock;

3584
	usage = mem_cgroup_usage(memcg, swap);
3585 3586

	/*
3587
	 * current_threshold points to threshold just below or equal to usage.
3588 3589 3590
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3591
	i = t->current_threshold;
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3615
	t->current_threshold = i - 1;
3616 3617 3618 3619 3620 3621
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3622 3623 3624 3625 3626 3627 3628
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3629 3630 3631 3632 3633 3634 3635
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3636 3637 3638 3639 3640 3641 3642
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3643 3644
}

3645
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3646 3647 3648
{
	struct mem_cgroup_eventfd_list *ev;

3649 3650
	spin_lock(&memcg_oom_lock);

3651
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3652
		eventfd_signal(ev->eventfd, 1);
3653 3654

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3655 3656 3657
	return 0;
}

3658
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3659
{
K
KAMEZAWA Hiroyuki 已提交
3660 3661
	struct mem_cgroup *iter;

3662
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3663
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3664 3665
}

3666
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3667
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3668
{
3669 3670
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3671 3672
	unsigned long threshold;
	unsigned long usage;
3673
	int i, size, ret;
3674

3675
	ret = page_counter_memparse(args, "-1", &threshold);
3676 3677 3678 3679
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3680

3681
	if (type == _MEM) {
3682
		thresholds = &memcg->thresholds;
3683
		usage = mem_cgroup_usage(memcg, false);
3684
	} else if (type == _MEMSWAP) {
3685
		thresholds = &memcg->memsw_thresholds;
3686
		usage = mem_cgroup_usage(memcg, true);
3687
	} else
3688 3689 3690
		BUG();

	/* Check if a threshold crossed before adding a new one */
3691
	if (thresholds->primary)
3692 3693
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3694
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3695 3696

	/* Allocate memory for new array of thresholds */
3697
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3698
			GFP_KERNEL);
3699
	if (!new) {
3700 3701 3702
		ret = -ENOMEM;
		goto unlock;
	}
3703
	new->size = size;
3704 3705

	/* Copy thresholds (if any) to new array */
3706 3707
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3708
				sizeof(struct mem_cgroup_threshold));
3709 3710
	}

3711
	/* Add new threshold */
3712 3713
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3714 3715

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3716
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3717 3718 3719
			compare_thresholds, NULL);

	/* Find current threshold */
3720
	new->current_threshold = -1;
3721
	for (i = 0; i < size; i++) {
3722
		if (new->entries[i].threshold <= usage) {
3723
			/*
3724 3725
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3726 3727
			 * it here.
			 */
3728
			++new->current_threshold;
3729 3730
		} else
			break;
3731 3732
	}

3733 3734 3735 3736 3737
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3738

3739
	/* To be sure that nobody uses thresholds */
3740 3741 3742 3743 3744 3745 3746 3747
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3748
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3749 3750
	struct eventfd_ctx *eventfd, const char *args)
{
3751
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3752 3753
}

3754
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3755 3756
	struct eventfd_ctx *eventfd, const char *args)
{
3757
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3758 3759
}

3760
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3761
	struct eventfd_ctx *eventfd, enum res_type type)
3762
{
3763 3764
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3765
	unsigned long usage;
3766
	int i, j, size;
3767 3768

	mutex_lock(&memcg->thresholds_lock);
3769 3770

	if (type == _MEM) {
3771
		thresholds = &memcg->thresholds;
3772
		usage = mem_cgroup_usage(memcg, false);
3773
	} else if (type == _MEMSWAP) {
3774
		thresholds = &memcg->memsw_thresholds;
3775
		usage = mem_cgroup_usage(memcg, true);
3776
	} else
3777 3778
		BUG();

3779 3780 3781
	if (!thresholds->primary)
		goto unlock;

3782 3783 3784 3785
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3786 3787 3788
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3789 3790 3791
			size++;
	}

3792
	new = thresholds->spare;
3793

3794 3795
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3796 3797
		kfree(new);
		new = NULL;
3798
		goto swap_buffers;
3799 3800
	}

3801
	new->size = size;
3802 3803

	/* Copy thresholds and find current threshold */
3804 3805 3806
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3807 3808
			continue;

3809
		new->entries[j] = thresholds->primary->entries[i];
3810
		if (new->entries[j].threshold <= usage) {
3811
			/*
3812
			 * new->current_threshold will not be used
3813 3814 3815
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3816
			++new->current_threshold;
3817 3818 3819 3820
		}
		j++;
	}

3821
swap_buffers:
3822 3823
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3824 3825 3826 3827 3828 3829
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3830
	rcu_assign_pointer(thresholds->primary, new);
3831

3832
	/* To be sure that nobody uses thresholds */
3833
	synchronize_rcu();
3834
unlock:
3835 3836
	mutex_unlock(&memcg->thresholds_lock);
}
3837

3838
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3839 3840
	struct eventfd_ctx *eventfd)
{
3841
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3842 3843
}

3844
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3845 3846
	struct eventfd_ctx *eventfd)
{
3847
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3848 3849
}

3850
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3851
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3852 3853 3854 3855 3856 3857 3858
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3859
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3860 3861 3862 3863 3864

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3865
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
3866
		eventfd_signal(eventfd, 1);
3867
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3868 3869 3870 3871

	return 0;
}

3872
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3873
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3874 3875 3876
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3877
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3878

3879
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3880 3881 3882 3883 3884 3885
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3886
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3887 3888
}

3889
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3890
{
3891
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3892

3893 3894
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3895 3896 3897
	return 0;
}

3898
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3899 3900
	struct cftype *cft, u64 val)
{
3901
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3902 3903

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3904
	if (!css->parent || !((val == 0) || (val == 1)))
3905 3906
		return -EINVAL;

3907
	memcg->oom_kill_disable = val;
3908
	if (!val)
3909
		memcg_oom_recover(memcg);
3910

3911 3912 3913
	return 0;
}

A
Andrew Morton 已提交
3914
#ifdef CONFIG_MEMCG_KMEM
3915
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3916
{
3917 3918 3919 3920 3921
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
3922

3923
	return mem_cgroup_sockets_init(memcg, ss);
3924
}
3925

3926 3927
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
3928 3929 3930 3931
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
	if (!memcg->kmem_acct_active)
		return;

	/*
	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
	 * guarantees no cache will be created for this cgroup after we are
	 * done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_acct_active = false;

	memcg_deactivate_kmem_caches(memcg);
3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
3970 3971
}

3972
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3973
{
3974 3975 3976 3977 3978
	if (memcg->kmem_acct_activated) {
		memcg_destroy_kmem_caches(memcg);
		static_key_slow_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
3979
	mem_cgroup_sockets_destroy(memcg);
3980
}
3981
#else
3982
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3983 3984 3985
{
	return 0;
}
G
Glauber Costa 已提交
3986

3987 3988 3989 3990
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
}

3991 3992 3993
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
3994 3995
#endif

3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4009 4010 4011 4012 4013
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4014
static void memcg_event_remove(struct work_struct *work)
4015
{
4016 4017
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4018
	struct mem_cgroup *memcg = event->memcg;
4019 4020 4021

	remove_wait_queue(event->wqh, &event->wait);

4022
	event->unregister_event(memcg, event->eventfd);
4023 4024 4025 4026 4027 4028

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4029
	css_put(&memcg->css);
4030 4031 4032 4033 4034 4035 4036
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4037 4038
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4039
{
4040 4041
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4042
	struct mem_cgroup *memcg = event->memcg;
4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4055
		spin_lock(&memcg->event_list_lock);
4056 4057 4058 4059 4060 4061 4062 4063
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4064
		spin_unlock(&memcg->event_list_lock);
4065 4066 4067 4068 4069
	}

	return 0;
}

4070
static void memcg_event_ptable_queue_proc(struct file *file,
4071 4072
		wait_queue_head_t *wqh, poll_table *pt)
{
4073 4074
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4075 4076 4077 4078 4079 4080

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4081 4082
 * DO NOT USE IN NEW FILES.
 *
4083 4084 4085 4086 4087
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4088 4089
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4090
{
4091
	struct cgroup_subsys_state *css = of_css(of);
4092
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4093
	struct mem_cgroup_event *event;
4094 4095 4096 4097
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4098
	const char *name;
4099 4100 4101
	char *endp;
	int ret;

4102 4103 4104
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4105 4106
	if (*endp != ' ')
		return -EINVAL;
4107
	buf = endp + 1;
4108

4109
	cfd = simple_strtoul(buf, &endp, 10);
4110 4111
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4112
	buf = endp + 1;
4113 4114 4115 4116 4117

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4118
	event->memcg = memcg;
4119
	INIT_LIST_HEAD(&event->list);
4120 4121 4122
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4148 4149 4150 4151 4152
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4153 4154
	 *
	 * DO NOT ADD NEW FILES.
4155
	 */
A
Al Viro 已提交
4156
	name = cfile.file->f_path.dentry->d_name.name;
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4168 4169
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4170 4171 4172 4173 4174
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4175
	/*
4176 4177 4178
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4179
	 */
A
Al Viro 已提交
4180
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4181
					       &memory_cgrp_subsys);
4182
	ret = -EINVAL;
4183
	if (IS_ERR(cfile_css))
4184
		goto out_put_cfile;
4185 4186
	if (cfile_css != css) {
		css_put(cfile_css);
4187
		goto out_put_cfile;
4188
	}
4189

4190
	ret = event->register_event(memcg, event->eventfd, buf);
4191 4192 4193 4194 4195
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4196 4197 4198
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4199 4200 4201 4202

	fdput(cfile);
	fdput(efile);

4203
	return nbytes;
4204 4205

out_put_css:
4206
	css_put(css);
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4219
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4220
	{
4221
		.name = "usage_in_bytes",
4222
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4223
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4224
	},
4225 4226
	{
		.name = "max_usage_in_bytes",
4227
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4228
		.write = mem_cgroup_reset,
4229
		.read_u64 = mem_cgroup_read_u64,
4230
	},
B
Balbir Singh 已提交
4231
	{
4232
		.name = "limit_in_bytes",
4233
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4234
		.write = mem_cgroup_write,
4235
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4236
	},
4237 4238 4239
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4240
		.write = mem_cgroup_write,
4241
		.read_u64 = mem_cgroup_read_u64,
4242
	},
B
Balbir Singh 已提交
4243 4244
	{
		.name = "failcnt",
4245
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4246
		.write = mem_cgroup_reset,
4247
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4248
	},
4249 4250
	{
		.name = "stat",
4251
		.seq_show = memcg_stat_show,
4252
	},
4253 4254
	{
		.name = "force_empty",
4255
		.write = mem_cgroup_force_empty_write,
4256
	},
4257 4258 4259 4260 4261
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4262
	{
4263
		.name = "cgroup.event_control",		/* XXX: for compat */
4264
		.write = memcg_write_event_control,
4265 4266 4267
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4268 4269 4270 4271 4272
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4273 4274 4275 4276 4277
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4278 4279
	{
		.name = "oom_control",
4280
		.seq_show = mem_cgroup_oom_control_read,
4281
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4282 4283
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4284 4285 4286
	{
		.name = "pressure_level",
	},
4287 4288 4289
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4290
		.seq_show = memcg_numa_stat_show,
4291 4292
	},
#endif
4293 4294 4295 4296
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4297
		.write = mem_cgroup_write,
4298
		.read_u64 = mem_cgroup_read_u64,
4299 4300 4301 4302
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4303
		.read_u64 = mem_cgroup_read_u64,
4304 4305 4306 4307
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4308
		.write = mem_cgroup_reset,
4309
		.read_u64 = mem_cgroup_read_u64,
4310 4311 4312 4313
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4314
		.write = mem_cgroup_reset,
4315
		.read_u64 = mem_cgroup_read_u64,
4316
	},
4317 4318 4319
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4320 4321 4322 4323
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4324 4325
	},
#endif
4326
#endif
4327
	{ },	/* terminate */
4328
};
4329

4330
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4331 4332
{
	struct mem_cgroup_per_node *pn;
4333
	struct mem_cgroup_per_zone *mz;
4334
	int zone, tmp = node;
4335 4336 4337 4338 4339 4340 4341 4342
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4343 4344
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4345
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4346 4347
	if (!pn)
		return 1;
4348 4349 4350

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4351
		lruvec_init(&mz->lruvec);
4352 4353
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4354
		mz->memcg = memcg;
4355
	}
4356
	memcg->nodeinfo[node] = pn;
4357 4358 4359
	return 0;
}

4360
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4361
{
4362
	kfree(memcg->nodeinfo[node]);
4363 4364
}

4365 4366
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4367
	struct mem_cgroup *memcg;
4368
	size_t size;
4369

4370 4371
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4372

4373
	memcg = kzalloc(size, GFP_KERNEL);
4374
	if (!memcg)
4375 4376
		return NULL;

4377 4378
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4379
		goto out_free;
4380 4381
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4382 4383

out_free:
4384
	kfree(memcg);
4385
	return NULL;
4386 4387
}

4388
/*
4389 4390 4391 4392 4393 4394 4395 4396
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4397
 */
4398 4399

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4400
{
4401
	int node;
4402

4403
	mem_cgroup_remove_from_trees(memcg);
4404 4405 4406 4407 4408

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);
4409
	kfree(memcg);
4410
}
4411

4412 4413 4414
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4415
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4416
{
4417
	if (!memcg->memory.parent)
4418
		return NULL;
4419
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4420
}
G
Glauber Costa 已提交
4421
EXPORT_SYMBOL(parent_mem_cgroup);
4422

L
Li Zefan 已提交
4423
static struct cgroup_subsys_state * __ref
4424
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4425
{
4426
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4427
	long error = -ENOMEM;
4428
	int node;
B
Balbir Singh 已提交
4429

4430 4431
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4432
		return ERR_PTR(error);
4433

B
Bob Liu 已提交
4434
	for_each_node(node)
4435
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4436
			goto free_out;
4437

4438
	/* root ? */
4439
	if (parent_css == NULL) {
4440
		root_mem_cgroup = memcg;
4441
		page_counter_init(&memcg->memory, NULL);
4442
		memcg->high = PAGE_COUNTER_MAX;
4443
		memcg->soft_limit = PAGE_COUNTER_MAX;
4444 4445
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4446
	}
4447

4448 4449 4450 4451 4452
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4453
	vmpressure_init(&memcg->vmpressure);
4454 4455
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4456 4457 4458
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4459 4460 4461 4462 4463 4464 4465 4466 4467

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4468
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4469
{
4470
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4471
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4472
	int ret;
4473

4474
	if (css->id > MEM_CGROUP_ID_MAX)
4475 4476
		return -ENOSPC;

T
Tejun Heo 已提交
4477
	if (!parent)
4478 4479
		return 0;

4480
	mutex_lock(&memcg_create_mutex);
4481 4482 4483 4484 4485 4486

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4487
		page_counter_init(&memcg->memory, &parent->memory);
4488
		memcg->high = PAGE_COUNTER_MAX;
4489
		memcg->soft_limit = PAGE_COUNTER_MAX;
4490 4491
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4492

4493
		/*
4494 4495
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4496
		 */
4497
	} else {
4498
		page_counter_init(&memcg->memory, NULL);
4499
		memcg->high = PAGE_COUNTER_MAX;
4500
		memcg->soft_limit = PAGE_COUNTER_MAX;
4501 4502
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4503 4504 4505 4506 4507
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4508
		if (parent != root_mem_cgroup)
4509
			memory_cgrp_subsys.broken_hierarchy = true;
4510
	}
4511
	mutex_unlock(&memcg_create_mutex);
4512

4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4525 4526
}

4527
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4528
{
4529
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4530
	struct mem_cgroup_event *event, *tmp;
4531 4532 4533 4534 4535 4536

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4537 4538
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4539 4540 4541
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4542
	spin_unlock(&memcg->event_list_lock);
4543

4544
	vmpressure_cleanup(&memcg->vmpressure);
4545 4546

	memcg_deactivate_kmem(memcg);
4547 4548
}

4549
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4550
{
4551
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4552

4553
	memcg_destroy_kmem(memcg);
4554
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4555 4556
}

4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4574 4575 4576
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4577 4578
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4579
	memcg->soft_limit = PAGE_COUNTER_MAX;
4580 4581
}

4582
#ifdef CONFIG_MMU
4583
/* Handlers for move charge at task migration. */
4584
static int mem_cgroup_do_precharge(unsigned long count)
4585
{
4586
	int ret;
4587 4588

	/* Try a single bulk charge without reclaim first */
4589
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4590
	if (!ret) {
4591 4592 4593
		mc.precharge += count;
		return ret;
	}
4594
	if (ret == -EINTR) {
4595
		cancel_charge(root_mem_cgroup, count);
4596 4597
		return ret;
	}
4598 4599

	/* Try charges one by one with reclaim */
4600
	while (count--) {
4601
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4602 4603 4604
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
4605 4606
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
4607
		 */
4608
		if (ret == -EINTR)
4609
			cancel_charge(root_mem_cgroup, 1);
4610 4611
		if (ret)
			return ret;
4612
		mc.precharge++;
4613
		cond_resched();
4614
	}
4615
	return 0;
4616 4617 4618
}

/**
4619
 * get_mctgt_type - get target type of moving charge
4620 4621 4622
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4623
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4624 4625 4626 4627 4628 4629
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4630 4631 4632
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4633 4634 4635 4636 4637
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4638
	swp_entry_t	ent;
4639 4640 4641
};

enum mc_target_type {
4642
	MC_TARGET_NONE = 0,
4643
	MC_TARGET_PAGE,
4644
	MC_TARGET_SWAP,
4645 4646
};

D
Daisuke Nishimura 已提交
4647 4648
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4649
{
D
Daisuke Nishimura 已提交
4650
	struct page *page = vm_normal_page(vma, addr, ptent);
4651

D
Daisuke Nishimura 已提交
4652 4653 4654
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4655
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4656
			return NULL;
4657 4658 4659 4660
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4661 4662 4663 4664 4665 4666
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4667
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4668 4669 4670 4671 4672 4673
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4674
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4675
		return NULL;
4676 4677 4678 4679
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4680
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4681 4682 4683 4684 4685
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4686 4687 4688 4689 4690 4691 4692
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4693

4694 4695 4696 4697 4698 4699 4700 4701 4702
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4703
	if (!(mc.flags & MOVE_FILE))
4704 4705 4706
		return NULL;

	mapping = vma->vm_file->f_mapping;
4707
	pgoff = linear_page_index(vma, addr);
4708 4709

	/* page is moved even if it's not RSS of this task(page-faulted). */
4710 4711
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4724
#endif
4725 4726 4727
	return page;
}

4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
 * - page is not on LRU (isolate_page() is useful.)
 * - compound_lock is held when nr_pages > 1
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
	if (nr_pages > 1 && !PageTransHuge(page))
		goto out;

	/*
	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

	spin_lock_irqsave(&from->move_lock, flags);

	if (!PageAnon(page) && page_mapped(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
	memcg_check_events(to, page);
	mem_cgroup_charge_statistics(from, page, -nr_pages);
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4814
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4815 4816 4817
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4818
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4819 4820 4821 4822 4823 4824
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4825
	else if (pte_none(ptent))
4826
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4827 4828

	if (!page && !ent.val)
4829
		return ret;
4830 4831
	if (page) {
		/*
4832
		 * Do only loose check w/o serialization.
4833
		 * mem_cgroup_move_account() checks the page is valid or
4834
		 * not under LRU exclusion.
4835
		 */
4836
		if (page->mem_cgroup == mc.from) {
4837 4838 4839 4840 4841 4842 4843
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4844 4845
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4846
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4847 4848 4849
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4850 4851 4852 4853
	}
	return ret;
}

4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4867
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4868
	if (!(mc.flags & MOVE_ANON))
4869
		return ret;
4870
	if (page->mem_cgroup == mc.from) {
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4887 4888 4889 4890
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4891
	struct vm_area_struct *vma = walk->vma;
4892 4893 4894
	pte_t *pte;
	spinlock_t *ptl;

4895
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4896 4897
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4898
		spin_unlock(ptl);
4899
		return 0;
4900
	}
4901

4902 4903
	if (pmd_trans_unstable(pmd))
		return 0;
4904 4905
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4906
		if (get_mctgt_type(vma, addr, *pte, NULL))
4907 4908 4909 4910
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4911 4912 4913
	return 0;
}

4914 4915 4916 4917
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4918 4919 4920 4921
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4922
	down_read(&mm->mmap_sem);
4923
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4924
	up_read(&mm->mmap_sem);
4925 4926 4927 4928 4929 4930 4931 4932 4933

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4934 4935 4936 4937 4938
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4939 4940
}

4941 4942
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4943
{
4944 4945 4946
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4947
	/* we must uncharge all the leftover precharges from mc.to */
4948
	if (mc.precharge) {
4949
		cancel_charge(mc.to, mc.precharge);
4950 4951 4952 4953 4954 4955 4956
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4957
		cancel_charge(mc.from, mc.moved_charge);
4958
		mc.moved_charge = 0;
4959
	}
4960 4961 4962
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4963
		if (!mem_cgroup_is_root(mc.from))
4964
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4965

4966
		/*
4967 4968
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4969
		 */
4970
		if (!mem_cgroup_is_root(mc.to))
4971 4972
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4973
		css_put_many(&mc.from->css, mc.moved_swap);
4974

L
Li Zefan 已提交
4975
		/* we've already done css_get(mc.to) */
4976 4977
		mc.moved_swap = 0;
	}
4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4991
	spin_lock(&mc.lock);
4992 4993
	mc.from = NULL;
	mc.to = NULL;
4994
	spin_unlock(&mc.lock);
4995 4996
}

4997
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
4998
				 struct cgroup_taskset *tset)
4999
{
5000
	struct task_struct *p = cgroup_taskset_first(tset);
5001
	int ret = 0;
5002
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5003
	unsigned long move_flags;
5004

5005 5006 5007 5008 5009
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
5010
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5011
	if (move_flags) {
5012 5013 5014
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5015
		VM_BUG_ON(from == memcg);
5016 5017 5018 5019 5020

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5021 5022 5023 5024
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5025
			VM_BUG_ON(mc.moved_charge);
5026
			VM_BUG_ON(mc.moved_swap);
5027

5028
			spin_lock(&mc.lock);
5029
			mc.from = from;
5030
			mc.to = memcg;
5031
			mc.flags = move_flags;
5032
			spin_unlock(&mc.lock);
5033
			/* We set mc.moving_task later */
5034 5035 5036 5037

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5038 5039
		}
		mmput(mm);
5040 5041 5042 5043
	}
	return ret;
}

5044
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5045
				     struct cgroup_taskset *tset)
5046
{
5047 5048
	if (mc.to)
		mem_cgroup_clear_mc();
5049 5050
}

5051 5052 5053
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5054
{
5055
	int ret = 0;
5056
	struct vm_area_struct *vma = walk->vma;
5057 5058
	pte_t *pte;
	spinlock_t *ptl;
5059 5060 5061
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5062

5063 5064 5065 5066 5067 5068 5069 5070 5071 5072
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5073
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5074
		if (mc.precharge < HPAGE_PMD_NR) {
5075
			spin_unlock(ptl);
5076 5077 5078 5079 5080 5081 5082
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5083
							     mc.from, mc.to)) {
5084 5085 5086 5087 5088 5089 5090
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5091
		spin_unlock(ptl);
5092
		return 0;
5093 5094
	}

5095 5096
	if (pmd_trans_unstable(pmd))
		return 0;
5097 5098 5099 5100
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5101
		swp_entry_t ent;
5102 5103 5104 5105

		if (!mc.precharge)
			break;

5106
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5107 5108 5109 5110
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
5111
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5112
				mc.precharge--;
5113 5114
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5115 5116
			}
			putback_lru_page(page);
5117
put:			/* get_mctgt_type() gets the page */
5118 5119
			put_page(page);
			break;
5120 5121
		case MC_TARGET_SWAP:
			ent = target.ent;
5122
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5123
				mc.precharge--;
5124 5125 5126
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5127
			break;
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5142
		ret = mem_cgroup_do_precharge(1);
5143 5144 5145 5146 5147 5148 5149 5150 5151
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
5152 5153 5154 5155
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
5156 5157

	lru_add_drain_all();
5158 5159 5160 5161 5162 5163 5164
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5178 5179 5180 5181 5182
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5183
	up_read(&mm->mmap_sem);
5184
	atomic_dec(&mc.from->moving_account);
5185 5186
}

5187
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5188
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5189
{
5190
	struct task_struct *p = cgroup_taskset_first(tset);
5191
	struct mm_struct *mm = get_task_mm(p);
5192 5193

	if (mm) {
5194 5195
		if (mc.to)
			mem_cgroup_move_charge(mm);
5196 5197
		mmput(mm);
	}
5198 5199
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5200
}
5201
#else	/* !CONFIG_MMU */
5202
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5203
				 struct cgroup_taskset *tset)
5204 5205 5206
{
	return 0;
}
5207
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5208
				     struct cgroup_taskset *tset)
5209 5210
{
}
5211
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5212
				 struct cgroup_taskset *tset)
5213 5214 5215
{
}
#endif
B
Balbir Singh 已提交
5216

5217 5218
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5219 5220
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5221
 */
5222
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5223 5224
{
	/*
5225
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5226 5227 5228
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5229
	if (cgroup_on_dfl(root_css->cgroup))
5230 5231 5232
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5233 5234
}

5235 5236 5237 5238 5239 5240 5241 5242 5243
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	return mem_cgroup_usage(mem_cgroup_from_css(css), false);
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5244
	unsigned long low = READ_ONCE(memcg->low);
5245 5246

	if (low == PAGE_COUNTER_MAX)
5247
		seq_puts(m, "max\n");
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5262
	err = page_counter_memparse(buf, "max", &low);
5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5274
	unsigned long high = READ_ONCE(memcg->high);
5275 5276

	if (high == PAGE_COUNTER_MAX)
5277
		seq_puts(m, "max\n");
5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
5292
	err = page_counter_memparse(buf, "max", &high);
5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303
	if (err)
		return err;

	memcg->high = high;

	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5304
	unsigned long max = READ_ONCE(memcg->memory.limit);
5305 5306

	if (max == PAGE_COUNTER_MAX)
5307
		seq_puts(m, "max\n");
5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
5322
	err = page_counter_memparse(buf, "max", &max);
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5376
struct cgroup_subsys memory_cgrp_subsys = {
5377
	.css_alloc = mem_cgroup_css_alloc,
5378
	.css_online = mem_cgroup_css_online,
5379 5380
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5381
	.css_reset = mem_cgroup_css_reset,
5382 5383
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5384
	.attach = mem_cgroup_move_task,
5385
	.bind = mem_cgroup_bind,
5386 5387
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5388
	.early_init = 0,
B
Balbir Singh 已提交
5389
};
5390

5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425
/**
 * mem_cgroup_events - count memory events against a cgroup
 * @memcg: the memory cgroup
 * @idx: the event index
 * @nr: the number of events to account for
 */
void mem_cgroup_events(struct mem_cgroup *memcg,
		       enum mem_cgroup_events_index idx,
		       unsigned int nr)
{
	this_cpu_add(memcg->stat->events[idx], nr);
}

/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5426
	if (page_counter_read(&memcg->memory) >= memcg->low)
5427 5428 5429 5430 5431 5432 5433 5434
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5435
		if (page_counter_read(&memcg->memory) >= memcg->low)
5436 5437 5438 5439 5440
			return false;
	}
	return true;
}

5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5476
		if (page->mem_cgroup)
5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5537 5538
	commit_charge(page, memcg, lrucare);

5539 5540 5541 5542 5543
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5544 5545 5546 5547
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5589 5590 5591 5592
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5593
	unsigned long nr_pages = nr_anon + nr_file;
5594 5595
	unsigned long flags;

5596
	if (!mem_cgroup_is_root(memcg)) {
5597 5598 5599
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5600 5601
		memcg_oom_recover(memcg);
	}
5602 5603 5604 5605 5606 5607

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5608
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5609 5610
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5611 5612

	if (!mem_cgroup_is_root(memcg))
5613
		css_put_many(&memcg->css, nr_pages);
5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5636
		if (!page->mem_cgroup)
5637 5638 5639 5640
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5641
		 * page->mem_cgroup at this point, we have fully
5642
		 * exclusive access to the page.
5643 5644
		 */

5645
		if (memcg != page->mem_cgroup) {
5646
			if (memcg) {
5647 5648 5649
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5650
			}
5651
			memcg = page->mem_cgroup;
5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5665
		page->mem_cgroup = NULL;
5666 5667 5668 5669 5670

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5671 5672
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5673 5674
}

5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5687
	/* Don't touch page->lru of any random page, pre-check: */
5688
	if (!page->mem_cgroup)
5689 5690
		return;

5691 5692 5693
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5694

5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5706

5707 5708
	if (!list_empty(page_list))
		uncharge_list(page_list);
5709 5710 5711 5712 5713 5714
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
5715
 * @lrucare: either or both pages might be on the LRU already
5716 5717 5718 5719 5720 5721 5722 5723
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
5724
	struct mem_cgroup *memcg;
5725 5726 5727 5728 5729 5730 5731
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5732 5733
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5734 5735 5736 5737 5738

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5739
	if (newpage->mem_cgroup)
5740 5741
		return;

5742 5743 5744 5745 5746 5747
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
5748
	memcg = oldpage->mem_cgroup;
5749
	if (!memcg)
5750 5751 5752 5753 5754
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

5755
	oldpage->mem_cgroup = NULL;
5756 5757 5758 5759

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

5760
	commit_charge(newpage, memcg, lrucare);
5761 5762
}

5763
/*
5764 5765 5766 5767 5768 5769
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5770 5771 5772
 */
static int __init mem_cgroup_init(void)
{
5773 5774
	int cpu, node;

5775
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5798 5799 5800
	return 0;
}
subsys_initcall(mem_cgroup_init);
5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

	/* XXX: caller holds IRQ-safe mapping->tree_lock */
	VM_BUG_ON(!irqs_disabled());

	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5859
	memcg = mem_cgroup_from_id(id);
5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924
	if (memcg) {
		if (!mem_cgroup_is_root(memcg))
			page_counter_uncharge(&memcg->memsw, 1);
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */