memcontrol.c 146.7 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/shmem_fs.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
B
Balbir Singh 已提交
53

54 55
#include <asm/uaccess.h>

56 57
#include <trace/events/vmscan.h>

58 59
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
60
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
61

62
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
63
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64
int do_swap_account __read_mostly;
65 66 67 68 69 70 71 72

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

73 74 75 76 77
#else
#define do_swap_account		(0)
#endif


78 79 80 81 82 83 84 85
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
86
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
87
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
88
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
90
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
91 92 93
	MEM_CGROUP_STAT_NSTATS,
};

94 95 96 97
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
98 99
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
100 101
	MEM_CGROUP_EVENTS_NSTATS,
};
102 103 104 105 106 107 108 109 110
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
111
	MEM_CGROUP_TARGET_NUMAINFO,
112 113 114 115
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
116
#define NUMAINFO_EVENTS_TARGET	(1024)
117

118
struct mem_cgroup_stat_cpu {
119
	long count[MEM_CGROUP_STAT_NSTATS];
120
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
121
	unsigned long targets[MEM_CGROUP_NTARGETS];
122 123
};

124 125 126 127
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
128 129 130
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
131 132
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
133 134

	struct zone_reclaim_stat reclaim_stat;
135 136 137 138
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
139 140
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
141 142 143 144 145 146 147 148 149 150 151 152
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

173 174 175 176 177
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
178
/* For threshold */
179 180
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
181
	int current_threshold;
182 183 184 185 186
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
187 188 189 190 191 192 193 194 195 196 197 198

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
199 200 201 202 203
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
204 205

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
206
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
207

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
enum {
	SCAN_BY_LIMIT,
	SCAN_BY_SYSTEM,
	NR_SCAN_CONTEXT,
	SCAN_BY_SHRINK,	/* not recorded now */
};

enum {
	SCAN,
	SCAN_ANON,
	SCAN_FILE,
	ROTATE,
	ROTATE_ANON,
	ROTATE_FILE,
	FREED,
	FREED_ANON,
	FREED_FILE,
	ELAPSED,
	NR_SCANSTATS,
};

struct scanstat {
	spinlock_t	lock;
	unsigned long	stats[NR_SCAN_CONTEXT][NR_SCANSTATS];
	unsigned long	rootstats[NR_SCAN_CONTEXT][NR_SCANSTATS];
};

const char *scanstat_string[NR_SCANSTATS] = {
	"scanned_pages",
	"scanned_anon_pages",
	"scanned_file_pages",
	"rotated_pages",
	"rotated_anon_pages",
	"rotated_file_pages",
	"freed_pages",
	"freed_anon_pages",
	"freed_file_pages",
	"elapsed_ns",
};
#define SCANSTAT_WORD_LIMIT	"_by_limit"
#define SCANSTAT_WORD_SYSTEM	"_by_system"
#define SCANSTAT_WORD_HIERARCHY	"_under_hierarchy"


B
Balbir Singh 已提交
252 253 254 255 256 257 258
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
259 260 261
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
262 263 264 265 266 267 268
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
269 270 271 272
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
273 274 275 276
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
277
	struct mem_cgroup_lru_info info;
278
	/*
279
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
280
	 * reclaimed from.
281
	 */
K
KAMEZAWA Hiroyuki 已提交
282
	int last_scanned_child;
283 284 285
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
286 287
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
288
#endif
289 290 291 292
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
293 294 295 296

	bool		oom_lock;
	atomic_t	under_oom;

297
	atomic_t	refcnt;
298

299
	int	swappiness;
300 301
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
302

303 304 305
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

306 307 308 309
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
310
	struct mem_cgroup_thresholds thresholds;
311

312
	/* thresholds for mem+swap usage. RCU-protected */
313
	struct mem_cgroup_thresholds memsw_thresholds;
314

K
KAMEZAWA Hiroyuki 已提交
315 316
	/* For oom notifier event fd */
	struct list_head oom_notify;
317 318
	/* For recording LRU-scan statistics */
	struct scanstat scanstat;
319 320 321 322 323
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
324
	/*
325
	 * percpu counter.
326
	 */
327
	struct mem_cgroup_stat_cpu *stat;
328 329 330 331 332 333
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
334 335
};

336 337 338 339 340 341
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
342
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
343
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
344 345 346
	NR_MOVE_TYPE,
};

347 348
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
349
	spinlock_t	  lock; /* for from, to */
350 351 352
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
353
	unsigned long moved_charge;
354
	unsigned long moved_swap;
355 356 357
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
358
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
359 360
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
361

D
Daisuke Nishimura 已提交
362 363 364 365 366 367
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

368 369 370 371 372 373
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

374 375 376 377 378 379 380
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

381 382 383
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
384
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
385
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
386
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
387
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
388 389 390
	NR_CHARGE_TYPE,
};

391 392 393
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
394
#define _OOM_TYPE		(2)
395 396 397
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
398 399
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
400

401 402 403 404 405 406 407
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
408 409
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
410

411 412
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
413
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
414
static void drain_all_stock_async(struct mem_cgroup *mem);
415

416 417 418 419 420 421
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

422 423 424 425 426
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

427
static struct mem_cgroup_per_zone *
428
page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
429
{
430 431
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
452
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
453
				struct mem_cgroup_per_zone *mz,
454 455
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
456 457 458 459 460 461 462 463
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

464 465 466
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
483 484 485 486 487 488 489 490 491 492 493 494 495
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

496 497 498 499 500 501
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
502
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
503 504 505 506 507 508
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
509
	unsigned long long excess;
510 511
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
512 513
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
514 515 516
	mctz = soft_limit_tree_from_page(page);

	/*
517 518
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
519
	 */
520 521
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
522
		excess = res_counter_soft_limit_excess(&mem->res);
523 524 525 526
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
527
		if (excess || mz->on_tree) {
528 529 530 531 532
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
533 534
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
535
			 */
536
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
537 538
			spin_unlock(&mctz->lock);
		}
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

557 558 559 560
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
561
	struct mem_cgroup_per_zone *mz;
562 563

retry:
564
	mz = NULL;
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
613 614
static long mem_cgroup_read_stat(struct mem_cgroup *mem,
				 enum mem_cgroup_stat_index idx)
615
{
616
	long val = 0;
617 618
	int cpu;

619 620
	get_online_cpus();
	for_each_online_cpu(cpu)
621
		val += per_cpu(mem->stat->count[idx], cpu);
622 623 624 625 626 627
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
628 629 630
	return val;
}

631 632 633 634
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
635
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
636 637
}

638 639 640 641 642 643 644 645 646 647
void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
}

void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
}

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
		val += per_cpu(mem->stat->events[idx], cpu);
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.events[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	return val;
}

664
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
665
					 bool file, int nr_pages)
666
{
667 668
	preempt_disable();

669 670
	if (file)
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
671
	else
672
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
673

674 675
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
676
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
677
	else {
678
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
679 680
		nr_pages = -nr_pages; /* for event */
	}
681

682
	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
683

684
	preempt_enable();
685 686
}

687 688 689
unsigned long
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
			unsigned int lru_mask)
690 691
{
	struct mem_cgroup_per_zone *mz;
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	enum lru_list l;
	unsigned long ret = 0;

	mz = mem_cgroup_zoneinfo(mem, nid, zid);

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
			int nid, unsigned int lru_mask)
{
708 709 710
	u64 total = 0;
	int zid;

711 712 713
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
		total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);

714 715
	return total;
}
716 717 718

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
			unsigned int lru_mask)
719
{
720
	int nid;
721 722
	u64 total = 0;

723 724
	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
725
	return total;
726 727
}

728 729 730 731 732 733 734 735 736 737 738
static bool __memcg_event_check(struct mem_cgroup *mem, int target)
{
	unsigned long val, next;

	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = this_cpu_read(mem->stat->targets[target]);
	/* from time_after() in jiffies.h */
	return ((long)next - (long)val < 0);
}

static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
739
{
740
	unsigned long val, next;
741

742
	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
743

744 745 746 747 748 749 750
	switch (target) {
	case MEM_CGROUP_TARGET_THRESH:
		next = val + THRESHOLDS_EVENTS_TARGET;
		break;
	case MEM_CGROUP_TARGET_SOFTLIMIT:
		next = val + SOFTLIMIT_EVENTS_TARGET;
		break;
751 752 753
	case MEM_CGROUP_TARGET_NUMAINFO:
		next = val + NUMAINFO_EVENTS_TARGET;
		break;
754 755 756 757 758
	default:
		return;
	}

	this_cpu_write(mem->stat->targets[target], next);
759 760 761 762 763 764 765 766 767
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
768
	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
769
		mem_cgroup_threshold(mem);
770 771
		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
		if (unlikely(__memcg_event_check(mem,
772
			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
773
			mem_cgroup_update_tree(mem, page);
774
			__mem_cgroup_target_update(mem,
775 776 777 778 779 780 781 782
						   MEM_CGROUP_TARGET_SOFTLIMIT);
		}
#if MAX_NUMNODES > 1
		if (unlikely(__memcg_event_check(mem,
			MEM_CGROUP_TARGET_NUMAINFO))) {
			atomic_inc(&mem->numainfo_events);
			__mem_cgroup_target_update(mem,
				MEM_CGROUP_TARGET_NUMAINFO);
783
		}
784
#endif
785 786 787
	}
}

788
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
789 790 791 792 793 794
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

795
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
796
{
797 798 799 800 801 802 803 804
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

805 806 807 808
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

809
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
810 811
{
	struct mem_cgroup *mem = NULL;
812 813 814

	if (!mm)
		return NULL;
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
830 831
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
832
{
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
855 856 857 858 859 860 861 862 863
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
864 865
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
866
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
867

K
KAMEZAWA Hiroyuki 已提交
868
	css_put(&iter->css);
869 870
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
871
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
872

873 874 875
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
876 877
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
878
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
879 880 881

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
882
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
883
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
884
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
885
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
886
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
887
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
888

K
KAMEZAWA Hiroyuki 已提交
889
	return iter;
K
KAMEZAWA Hiroyuki 已提交
890
}
K
KAMEZAWA Hiroyuki 已提交
891 892 893 894 895 896 897 898 899 900 901 902 903
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

904 905 906
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
907

908 909 910 911 912
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
	struct mem_cgroup *mem;

	if (!mm)
		return;

	rcu_read_lock();
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!mem))
		goto out;

	switch (idx) {
	case PGMAJFAULT:
		mem_cgroup_pgmajfault(mem, 1);
		break;
	case PGFAULT:
		mem_cgroup_pgfault(mem, 1);
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

K
KAMEZAWA Hiroyuki 已提交
940 941 942 943 944 945 946 947 948 949 950 951 952
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
953

K
KAMEZAWA Hiroyuki 已提交
954 955 956 957
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
958

959
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
960 961 962
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
963
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
964
		return;
965
	VM_BUG_ON(!pc->mem_cgroup);
966 967 968 969
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
970
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
971 972
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
973 974 975
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
976
	list_del_init(&pc->lru);
977 978
}

K
KAMEZAWA Hiroyuki 已提交
979
void mem_cgroup_del_lru(struct page *page)
980
{
K
KAMEZAWA Hiroyuki 已提交
981 982
	mem_cgroup_del_lru_list(page, page_lru(page));
}
983

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
1006
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1007 1008 1009
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
1010 1011 1012 1013
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
1014

1015
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1016
		return;
1017

K
KAMEZAWA Hiroyuki 已提交
1018
	pc = lookup_page_cgroup(page);
1019
	/* unused or root page is not rotated. */
1020 1021 1022 1023 1024
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
1025
		return;
1026
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
1027
	list_move(&pc->lru, &mz->lists[lru]);
1028 1029
}

K
KAMEZAWA Hiroyuki 已提交
1030
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1031
{
K
KAMEZAWA Hiroyuki 已提交
1032 1033
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
1034

1035
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1036 1037
		return;
	pc = lookup_page_cgroup(page);
1038
	VM_BUG_ON(PageCgroupAcctLRU(pc));
K
KAMEZAWA Hiroyuki 已提交
1039
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
1040
		return;
1041 1042
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1043
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1044 1045
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1046 1047 1048
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
1049 1050
	list_add(&pc->lru, &mz->lists[lru]);
}
1051

K
KAMEZAWA Hiroyuki 已提交
1052
/*
1053 1054 1055 1056
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
1057
 */
1058
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1059
{
1060 1061 1062 1063
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

1075 1076 1077 1078 1079 1080 1081 1082
	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
1083 1084
}

1085
static void mem_cgroup_lru_add_after_commit(struct page *page)
1086 1087 1088 1089 1090
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1091 1092 1093
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
1094 1095
	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
1096
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1097 1098 1099 1100 1101
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
1102 1103 1104
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
1105
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1106 1107 1108
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
1109 1110
}

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
/*
 * Checks whether given mem is same or in the root_mem's
 * hierarchy subtree
 */
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_mem,
		struct mem_cgroup *mem)
{
	if (root_mem != mem) {
		return (root_mem->use_hierarchy &&
			css_is_ancestor(&mem->css, &root_mem->css));
	}

	return true;
}

1126 1127 1128
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
1129
	struct mem_cgroup *curr = NULL;
1130
	struct task_struct *p;
1131

1132 1133 1134 1135 1136
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1137 1138
	if (!curr)
		return 0;
1139 1140 1141 1142 1143 1144
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
1145
	ret = mem_cgroup_same_or_subtree(mem, curr);
1146
	css_put(&curr->css);
1147 1148 1149
	return ret;
}

1150
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1151 1152 1153
{
	unsigned long active;
	unsigned long inactive;
1154 1155
	unsigned long gb;
	unsigned long inactive_ratio;
1156

1157 1158
	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1159

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
1187 1188 1189 1190 1191
		return 1;

	return 0;
}

1192 1193 1194 1195 1196
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

1197 1198
	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1199 1200 1201 1202

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1203 1204 1205
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1206
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1223 1224
	if (!PageCgroupUsed(pc))
		return NULL;
1225 1226
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1227
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1228 1229 1230
	return &mz->reclaim_stat;
}

1231 1232 1233 1234 1235
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1236
					int active, int file)
1237 1238 1239 1240 1241 1242
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1243
	struct page_cgroup *pc, *tmp;
1244
	int nid = zone_to_nid(z);
1245 1246
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1247
	int lru = LRU_FILE * file + active;
1248
	int ret;
1249

1250
	BUG_ON(!mem_cont);
1251
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1252
	src = &mz->lists[lru];
1253

1254 1255
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1256
		if (scan >= nr_to_scan)
1257
			break;
K
KAMEZAWA Hiroyuki 已提交
1258

1259 1260
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1261

1262
		page = lookup_cgroup_page(pc);
1263

H
Hugh Dickins 已提交
1264
		if (unlikely(!PageLRU(page)))
1265 1266
			continue;

H
Hugh Dickins 已提交
1267
		scan++;
1268 1269 1270
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1271
			list_move(&page->lru, dst);
1272
			mem_cgroup_del_lru(page);
1273
			nr_taken += hpage_nr_pages(page);
1274 1275 1276 1277 1278 1279 1280
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1281 1282 1283 1284
		}
	}

	*scanned = scan;
1285 1286 1287 1288

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1289 1290 1291
	return nr_taken;
}

1292 1293 1294
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1295
/**
1296 1297
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1298
 *
1299
 * Returns the maximum amount of memory @mem can be charged with, in
1300
 * pages.
1301
 */
1302
static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1303
{
1304 1305 1306 1307 1308
	unsigned long long margin;

	margin = res_counter_margin(&mem->res);
	if (do_swap_account)
		margin = min(margin, res_counter_margin(&mem->memsw));
1309
	return margin >> PAGE_SHIFT;
1310 1311
}

1312
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1313 1314 1315 1316 1317 1318 1319
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1320
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1321 1322
}

1323 1324 1325
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1326 1327 1328 1329

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1330
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1331 1332 1333
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1344 1345 1346
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1347
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1348 1349 1350
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1369 1370 1371

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1372 1373
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1374
	bool ret = false;
1375 1376 1377 1378 1379 1380 1381 1382 1383
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1384 1385 1386

	ret = mem_cgroup_same_or_subtree(mem, from)
		|| mem_cgroup_same_or_subtree(mem, to);
1387 1388
unlock:
	spin_unlock(&mc.lock);
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1408
/**
1409
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1428
	if (!memcg || !p)
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1475 1476 1477 1478 1479 1480 1481
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1482 1483 1484 1485
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1486 1487 1488
	return num;
}

D
David Rientjes 已提交
1489 1490 1491 1492 1493 1494 1495 1496
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1497 1498 1499
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1500 1501 1502 1503 1504 1505 1506 1507
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1508
/*
K
KAMEZAWA Hiroyuki 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
	}

	return ret;
}

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
		int nid, bool noswap)
{
1558
	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
1559 1560 1561
		return true;
	if (noswap || !total_swap_pages)
		return false;
1562
	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
1563 1564 1565 1566
		return true;
	return false;

}
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
{
	int nid;
1578 1579 1580 1581 1582 1583 1584
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
	if (!atomic_read(&mem->numainfo_events))
		return;
	if (atomic_inc_return(&mem->numainfo_updating) > 1)
1585 1586 1587 1588 1589 1590 1591
		return;

	/* make a nodemask where this memcg uses memory from */
	mem->scan_nodes = node_states[N_HIGH_MEMORY];

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1592 1593
		if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
			node_clear(nid, mem->scan_nodes);
1594
	}
1595 1596 1597

	atomic_set(&mem->numainfo_events, 0);
	atomic_set(&mem->numainfo_updating, 0);
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	int node;

	mem_cgroup_may_update_nodemask(mem);
	node = mem->last_scanned_node;

	node = next_node(node, mem->scan_nodes);
	if (node == MAX_NUMNODES)
		node = first_node(mem->scan_nodes);
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

	mem->last_scanned_node = node;
	return node;
}

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(mem->scan_nodes)) {
		for (nid = first_node(mem->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, mem->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
		if (node_isset(nid, mem->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
			return true;
	}
	return false;
}

1670 1671 1672 1673 1674
#else
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	return 0;
}
1675 1676 1677 1678 1679

bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
}
1680 1681
#endif

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
static void __mem_cgroup_record_scanstat(unsigned long *stats,
			   struct memcg_scanrecord *rec)
{

	stats[SCAN] += rec->nr_scanned[0] + rec->nr_scanned[1];
	stats[SCAN_ANON] += rec->nr_scanned[0];
	stats[SCAN_FILE] += rec->nr_scanned[1];

	stats[ROTATE] += rec->nr_rotated[0] + rec->nr_rotated[1];
	stats[ROTATE_ANON] += rec->nr_rotated[0];
	stats[ROTATE_FILE] += rec->nr_rotated[1];

	stats[FREED] += rec->nr_freed[0] + rec->nr_freed[1];
	stats[FREED_ANON] += rec->nr_freed[0];
	stats[FREED_FILE] += rec->nr_freed[1];

	stats[ELAPSED] += rec->elapsed;
}

static void mem_cgroup_record_scanstat(struct memcg_scanrecord *rec)
{
	struct mem_cgroup *mem;
	int context = rec->context;

	if (context >= NR_SCAN_CONTEXT)
		return;

	mem = rec->mem;
	spin_lock(&mem->scanstat.lock);
	__mem_cgroup_record_scanstat(mem->scanstat.stats[context], rec);
	spin_unlock(&mem->scanstat.lock);

	mem = rec->root;
	spin_lock(&mem->scanstat.lock);
	__mem_cgroup_record_scanstat(mem->scanstat.rootstats[context], rec);
	spin_unlock(&mem->scanstat.lock);
}

K
KAMEZAWA Hiroyuki 已提交
1720 1721 1722 1723
/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1724 1725
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1726 1727 1728
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1729 1730
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1731 1732
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1733
						struct zone *zone,
1734
						gfp_t gfp_mask,
1735 1736
						unsigned long reclaim_options,
						unsigned long *total_scanned)
1737
{
K
KAMEZAWA Hiroyuki 已提交
1738 1739 1740
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1741 1742
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1743
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1744
	struct memcg_scanrecord rec;
1745
	unsigned long excess;
1746
	unsigned long scanned;
1747 1748

	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1749

1750
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1751
	if (!check_soft && !shrink && root_mem->memsw_is_minimum)
1752 1753
		noswap = true;

1754 1755 1756 1757 1758 1759 1760 1761 1762
	if (shrink)
		rec.context = SCAN_BY_SHRINK;
	else if (check_soft)
		rec.context = SCAN_BY_SYSTEM;
	else
		rec.context = SCAN_BY_LIMIT;

	rec.root = root_mem;

1763
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1764
		victim = mem_cgroup_select_victim(root_mem);
1765
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1766
			loop++;
1767 1768 1769 1770 1771 1772 1773
			/*
			 * We are not draining per cpu cached charges during
			 * soft limit reclaim  because global reclaim doesn't
			 * care about charges. It tries to free some memory and
			 * charges will not give any.
			 */
			if (!check_soft && loop >= 1)
1774
				drain_all_stock_async(root_mem);
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
L
Lucas De Marchi 已提交
1786
				 * We want to do more targeted reclaim.
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1798
		if (!mem_cgroup_reclaimable(victim, noswap)) {
K
KAMEZAWA Hiroyuki 已提交
1799 1800
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1801 1802
			continue;
		}
1803 1804 1805 1806 1807 1808 1809 1810
		rec.mem = victim;
		rec.nr_scanned[0] = 0;
		rec.nr_scanned[1] = 0;
		rec.nr_rotated[0] = 0;
		rec.nr_rotated[1] = 0;
		rec.nr_freed[0] = 0;
		rec.nr_freed[1] = 0;
		rec.elapsed = 0;
K
KAMEZAWA Hiroyuki 已提交
1811
		/* we use swappiness of local cgroup */
1812
		if (check_soft) {
1813
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1814 1815
				noswap, zone, &rec, &scanned);
			*total_scanned += scanned;
1816
		} else
1817
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1818 1819
						noswap, &rec);
		mem_cgroup_record_scanstat(&rec);
K
KAMEZAWA Hiroyuki 已提交
1820
		css_put(&victim->css);
1821 1822 1823 1824 1825 1826 1827
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1828
		total += ret;
1829
		if (check_soft) {
1830
			if (!res_counter_soft_limit_excess(&root_mem->res))
1831
				return total;
1832
		} else if (mem_cgroup_margin(root_mem))
1833
			return total;
1834
	}
K
KAMEZAWA Hiroyuki 已提交
1835
	return total;
1836 1837
}

K
KAMEZAWA Hiroyuki 已提交
1838 1839 1840
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1841
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1842 1843 1844
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
1845 1846 1847
	int lock_count = -1;
	struct mem_cgroup *iter, *failed = NULL;
	bool cond = true;
1848

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
		bool locked = iter->oom_lock;

		iter->oom_lock = true;
		if (lock_count == -1)
			lock_count = iter->oom_lock;
		else if (lock_count != locked) {
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			lock_count = 0;
			failed = iter;
			cond = false;
		}
K
KAMEZAWA Hiroyuki 已提交
1864
	}
K
KAMEZAWA Hiroyuki 已提交
1865

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
	if (!failed)
		goto done;

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
	cond = true;
	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
		if (iter == failed) {
			cond = false;
			continue;
		}
		iter->oom_lock = false;
	}
done:
	return lock_count;
1883
}
1884

1885
/*
1886
 * Has to be called with memcg_oom_lock
1887
 */
K
KAMEZAWA Hiroyuki 已提交
1888
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1889
{
K
KAMEZAWA Hiroyuki 已提交
1890 1891
	struct mem_cgroup *iter;

1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
	for_each_mem_cgroup_tree(iter, mem)
		iter->oom_lock = false;
	return 0;
}

static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
{
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		atomic_inc(&iter->under_oom);
}

static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1909 1910 1911 1912 1913
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1914
	for_each_mem_cgroup_tree(iter, mem)
1915
		atomic_add_unless(&iter->under_oom, -1, 0);
1916 1917
}

1918
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1919 1920
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1921 1922 1923 1924 1925 1926 1927 1928
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1929 1930
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg,
			  *oom_wait_mem;
K
KAMEZAWA Hiroyuki 已提交
1931 1932 1933
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1934
	oom_wait_mem = oom_wait_info->mem;
K
KAMEZAWA Hiroyuki 已提交
1935 1936 1937 1938 1939

	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1940 1941
	if (!mem_cgroup_same_or_subtree(oom_wait_mem, wake_mem)
			&& !mem_cgroup_same_or_subtree(wake_mem, oom_wait_mem))
K
KAMEZAWA Hiroyuki 已提交
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1952 1953
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1954
	if (mem && atomic_read(&mem->under_oom))
1955 1956 1957
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1958 1959 1960 1961
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1962
{
K
KAMEZAWA Hiroyuki 已提交
1963
	struct oom_wait_info owait;
1964
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1965

K
KAMEZAWA Hiroyuki 已提交
1966 1967 1968 1969 1970
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1971
	need_to_kill = true;
1972 1973
	mem_cgroup_mark_under_oom(mem);

K
KAMEZAWA Hiroyuki 已提交
1974
	/* At first, try to OOM lock hierarchy under mem.*/
1975
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1976 1977 1978 1979 1980 1981
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1982 1983 1984 1985
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1986
		mem_cgroup_oom_notify(mem);
1987
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1988

1989 1990
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1991
		mem_cgroup_out_of_memory(mem, mask);
1992
	} else {
K
KAMEZAWA Hiroyuki 已提交
1993
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1994
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1995
	}
1996
	spin_lock(&memcg_oom_lock);
1997 1998
	if (locked)
		mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1999
	memcg_wakeup_oom(mem);
2000
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2001

2002 2003
	mem_cgroup_unmark_under_oom(mem);

K
KAMEZAWA Hiroyuki 已提交
2004 2005 2006 2007 2008
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
2009 2010
}

2011 2012 2013
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
2033
 */
2034

2035 2036
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2037 2038
{
	struct mem_cgroup *mem;
2039 2040
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
2041
	unsigned long uninitialized_var(flags);
2042 2043 2044 2045

	if (unlikely(!pc))
		return;

2046
	rcu_read_lock();
2047
	mem = pc->mem_cgroup;
2048 2049 2050
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
2051
	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
2052
		/* take a lock against to access pc->mem_cgroup */
2053
		move_lock_page_cgroup(pc, &flags);
2054 2055 2056 2057 2058
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
2059 2060

	switch (idx) {
2061
	case MEMCG_NR_FILE_MAPPED:
2062 2063 2064
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
2065
			ClearPageCgroupFileMapped(pc);
2066
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2067 2068 2069
		break;
	default:
		BUG();
2070
	}
2071

2072 2073
	this_cpu_add(mem->stat->count[idx], val);

2074 2075
out:
	if (unlikely(need_unlock))
2076
		move_unlock_page_cgroup(pc, &flags);
2077 2078
	rcu_read_unlock();
	return;
2079
}
2080
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2081

2082 2083 2084 2085
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2086
#define CHARGE_BATCH	32U
2087 2088
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2089
	unsigned int nr_pages;
2090
	struct work_struct work;
2091 2092
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
2093 2094 2095 2096
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);

/*
2097
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2108 2109
	if (mem == stock->cached && stock->nr_pages)
		stock->nr_pages--;
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2123 2124 2125 2126
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2127
		if (do_swap_account)
2128 2129
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2142
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2143 2144 2145 2146
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2147
 * This will be consumed by consume_stock() function, later.
2148
 */
2149
static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2150 2151 2152 2153 2154 2155 2156
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
2157
	stock->nr_pages += nr_pages;
2158 2159 2160 2161
	put_cpu_var(memcg_stock);
}

/*
2162 2163 2164
 * Drains all per-CPU charge caches for given root_mem resp. subtree
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2165
 */
2166
static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
2167
{
2168
	int cpu, curcpu;
2169

2170 2171
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2172 2173 2174 2175 2176 2177 2178
	/*
	 * Get a hint for avoiding draining charges on the current cpu,
	 * which must be exhausted by our charging.  It is not required that
	 * this be a precise check, so we use raw_smp_processor_id() instead of
	 * getcpu()/putcpu().
	 */
	curcpu = raw_smp_processor_id();
2179 2180
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2181 2182 2183
		struct mem_cgroup *mem;

		mem = stock->cached;
2184
		if (!mem || !stock->nr_pages)
2185
			continue;
2186 2187
		if (!mem_cgroup_same_or_subtree(root_mem, mem))
			continue;
2188 2189 2190 2191 2192 2193
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2194
	}
2195 2196 2197 2198 2199 2200

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2201 2202
		if (mem_cgroup_same_or_subtree(root_mem, stock->cached) &&
				test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2203 2204 2205
			flush_work(&stock->work);
	}
out:
2206
 	put_online_cpus();
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(struct mem_cgroup *root_mem)
{
	drain_all_stock(root_mem, false);
2218 2219 2220
}

/* This is a synchronous drain interface. */
2221
static void drain_all_stock_sync(struct mem_cgroup *root_mem)
2222 2223
{
	/* called when force_empty is called */
2224
	drain_all_stock(root_mem, true);
2225 2226
}

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2237
		long x = per_cpu(mem->stat->count[i], cpu);
2238 2239 2240 2241

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
2242 2243 2244 2245 2246 2247
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long x = per_cpu(mem->stat->events[i], cpu);

		per_cpu(mem->stat->events[i], cpu) = 0;
		mem->nocpu_base.events[i] += x;
	}
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2259 2260 2261 2262
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2263 2264 2265 2266 2267
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2268
	struct mem_cgroup *iter;
2269

2270 2271 2272 2273 2274 2275
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2276
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2277
		return NOTIFY_OK;
2278 2279 2280 2281

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

2282 2283 2284 2285 2286
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2297 2298
static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				unsigned int nr_pages, bool oom_check)
2299
{
2300
	unsigned long csize = nr_pages * PAGE_SIZE;
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

2315
		res_counter_uncharge(&mem->res, csize);
2316 2317 2318 2319
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2320
	/*
2321 2322
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2323 2324 2325 2326
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2327
	if (nr_pages == CHARGE_BATCH)
2328 2329 2330 2331 2332 2333
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2334
					      gfp_mask, flags, NULL);
2335
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2336
		return CHARGE_RETRY;
2337
	/*
2338 2339 2340 2341 2342 2343 2344
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2345
	 */
2346
	if (nr_pages == 1 && ret)
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2366 2367 2368
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2369
 */
2370
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2371
				   gfp_t gfp_mask,
2372 2373 2374
				   unsigned int nr_pages,
				   struct mem_cgroup **memcg,
				   bool oom)
2375
{
2376
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2377 2378 2379
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
2380

K
KAMEZAWA Hiroyuki 已提交
2381 2382 2383 2384 2385 2386 2387 2388
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2389

2390
	/*
2391 2392
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2393 2394 2395
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
2396 2397 2398 2399
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
2400
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
2401 2402 2403
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
2404
		if (nr_pages == 1 && consume_stock(mem))
K
KAMEZAWA Hiroyuki 已提交
2405
			goto done;
2406 2407
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
2408
		struct task_struct *p;
2409

K
KAMEZAWA Hiroyuki 已提交
2410 2411 2412
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2413 2414 2415 2416 2417 2418 2419 2420
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2421 2422
		 */
		mem = mem_cgroup_from_task(p);
2423
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2424 2425 2426
			rcu_read_unlock();
			goto done;
		}
2427
		if (nr_pages == 1 && consume_stock(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2446

2447 2448
	do {
		bool oom_check;
2449

2450
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2451 2452
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
2453
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2454
		}
2455

2456 2457 2458 2459
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2460
		}
2461

2462
		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2463 2464 2465 2466
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2467
			batch = nr_pages;
K
KAMEZAWA Hiroyuki 已提交
2468 2469 2470
			css_put(&mem->css);
			mem = NULL;
			goto again;
2471
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
2472
			css_put(&mem->css);
2473 2474
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2475 2476
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2477
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2478
			}
2479 2480 2481 2482
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2483
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2484
			goto bypass;
2485
		}
2486 2487
	} while (ret != CHARGE_OK);

2488 2489
	if (batch > nr_pages)
		refill_stock(mem, batch - nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2490
	css_put(&mem->css);
2491
done:
K
KAMEZAWA Hiroyuki 已提交
2492
	*memcg = mem;
2493 2494
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2495
	*memcg = NULL;
2496
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2497 2498 2499
bypass:
	*memcg = NULL;
	return 0;
2500
}
2501

2502 2503 2504 2505 2506
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2507
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2508
				       unsigned int nr_pages)
2509 2510
{
	if (!mem_cgroup_is_root(mem)) {
2511 2512 2513
		unsigned long bytes = nr_pages * PAGE_SIZE;

		res_counter_uncharge(&mem->res, bytes);
2514
		if (do_swap_account)
2515
			res_counter_uncharge(&mem->memsw, bytes);
2516
	}
2517 2518
}

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2538
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2539
{
2540
	struct mem_cgroup *mem = NULL;
2541
	struct page_cgroup *pc;
2542
	unsigned short id;
2543 2544
	swp_entry_t ent;

2545 2546 2547
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2548
	lock_page_cgroup(pc);
2549
	if (PageCgroupUsed(pc)) {
2550
		mem = pc->mem_cgroup;
2551 2552
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2553
	} else if (PageSwapCache(page)) {
2554
		ent.val = page_private(page);
2555 2556 2557 2558 2559 2560
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2561
	}
2562
	unlock_page_cgroup(pc);
2563 2564 2565
	return mem;
}

2566
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2567
				       struct page *page,
2568
				       unsigned int nr_pages,
2569
				       struct page_cgroup *pc,
2570
				       enum charge_type ctype)
2571
{
2572 2573 2574
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2575
		__mem_cgroup_cancel_charge(mem, nr_pages);
2576 2577 2578 2579 2580 2581
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2582
	pc->mem_cgroup = mem;
2583 2584 2585 2586 2587 2588 2589
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2590
	smp_wmb();
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2604

2605
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2606
	unlock_page_cgroup(pc);
2607 2608 2609 2610 2611
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2612
	memcg_check_events(mem, page);
2613
}
2614

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2629 2630
	if (mem_cgroup_disabled())
		return;
2631
	/*
2632
	 * We have no races with charge/uncharge but will have races with
2633 2634 2635 2636 2637 2638
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2649
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2650 2651
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2652 2653 2654 2655 2656
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2657
/**
2658
 * mem_cgroup_move_account - move account of the page
2659
 * @page: the page
2660
 * @nr_pages: number of regular pages (>1 for huge pages)
2661 2662 2663
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2664
 * @uncharge: whether we should call uncharge and css_put against @from.
2665 2666
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2667
 * - page is not on LRU (isolate_page() is useful.)
2668
 * - compound_lock is held when nr_pages > 1
2669
 *
2670
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2671
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2672 2673
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2674
 */
2675 2676 2677 2678 2679 2680
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2681
{
2682 2683
	unsigned long flags;
	int ret;
2684

2685
	VM_BUG_ON(from == to);
2686
	VM_BUG_ON(PageLRU(page));
2687 2688 2689 2690 2691 2692 2693
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2694
	if (nr_pages > 1 && !PageTransHuge(page))
2695 2696 2697 2698 2699 2700 2701 2702 2703
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2704

2705
	if (PageCgroupFileMapped(pc)) {
2706 2707 2708 2709 2710
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2711
	}
2712
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2713 2714
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2715
		__mem_cgroup_cancel_charge(from, nr_pages);
2716

2717
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2718
	pc->mem_cgroup = to;
2719
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2720 2721 2722
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2723
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2724
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2725
	 * status here.
2726
	 */
2727 2728 2729
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2730
	unlock_page_cgroup(pc);
2731 2732 2733
	/*
	 * check events
	 */
2734 2735
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2736
out:
2737 2738 2739 2740 2741 2742 2743
	return ret;
}

/*
 * move charges to its parent.
 */

2744 2745
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2746 2747 2748 2749 2750 2751
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2752
	unsigned int nr_pages;
2753
	unsigned long uninitialized_var(flags);
2754 2755 2756 2757 2758 2759
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2760 2761 2762 2763 2764
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2765

2766
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2767

2768
	parent = mem_cgroup_from_cont(pcg);
2769
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2770
	if (ret || !parent)
2771
		goto put_back;
2772

2773
	if (nr_pages > 1)
2774 2775
		flags = compound_lock_irqsave(page);

2776
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2777
	if (ret)
2778
		__mem_cgroup_cancel_charge(parent, nr_pages);
2779

2780
	if (nr_pages > 1)
2781
		compound_unlock_irqrestore(page, flags);
2782
put_back:
K
KAMEZAWA Hiroyuki 已提交
2783
	putback_lru_page(page);
2784
put:
2785
	put_page(page);
2786
out:
2787 2788 2789
	return ret;
}

2790 2791 2792 2793 2794 2795 2796
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2797
				gfp_t gfp_mask, enum charge_type ctype)
2798
{
2799
	struct mem_cgroup *mem = NULL;
2800
	unsigned int nr_pages = 1;
2801
	struct page_cgroup *pc;
2802
	bool oom = true;
2803
	int ret;
A
Andrea Arcangeli 已提交
2804

A
Andrea Arcangeli 已提交
2805
	if (PageTransHuge(page)) {
2806
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2807
		VM_BUG_ON(!PageTransHuge(page));
2808 2809 2810 2811 2812
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2813
	}
2814 2815

	pc = lookup_page_cgroup(page);
2816
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2817

2818
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2819
	if (ret || !mem)
2820 2821
		return ret;

2822
	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2823 2824 2825
	return 0;
}

2826 2827
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2828
{
2829
	if (mem_cgroup_disabled())
2830
		return 0;
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2842
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2843
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2844 2845
}

D
Daisuke Nishimura 已提交
2846 2847 2848 2849
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
static void
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2866 2867
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2868
{
2869
	struct mem_cgroup *mem = NULL;
2870 2871
	int ret;

2872
	if (mem_cgroup_disabled())
2873
		return 0;
2874 2875
	if (PageCompound(page))
		return 0;
2876 2877 2878 2879 2880 2881 2882 2883
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2884 2885
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2886 2887 2888 2889
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2890 2891 2892 2893 2894 2895
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2896 2897
			return 0;
		}
2898
		unlock_page_cgroup(pc);
2899 2900
	}

2901
	if (unlikely(!mm))
2902
		mm = &init_mm;
2903

2904 2905 2906 2907
	if (page_is_file_cache(page)) {
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
		if (ret || !mem)
			return ret;
2908

2909 2910 2911 2912 2913 2914 2915 2916 2917
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
		__mem_cgroup_commit_charge_lrucare(page, mem,
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2918 2919 2920 2921 2922 2923 2924 2925
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2926
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2927 2928

	return ret;
2929 2930
}

2931 2932 2933
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2934
 * struct page_cgroup is acquired. This refcnt will be consumed by
2935 2936
 * "commit()" or removed by "cancel()"
 */
2937 2938 2939 2940 2941
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2942
	int ret;
2943

2944 2945
	*ptr = NULL;

2946
	if (mem_cgroup_disabled())
2947 2948 2949 2950 2951 2952
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2953 2954 2955
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2956 2957
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2958
		goto charge_cur_mm;
2959
	mem = try_get_mem_cgroup_from_page(page);
2960 2961
	if (!mem)
		goto charge_cur_mm;
2962
	*ptr = mem;
2963
	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2964 2965
	css_put(&mem->css);
	return ret;
2966 2967 2968
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2969
	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2970 2971
}

D
Daisuke Nishimura 已提交
2972 2973 2974
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2975
{
2976
	if (mem_cgroup_disabled())
2977 2978 2979
		return;
	if (!ptr)
		return;
2980
	cgroup_exclude_rmdir(&ptr->css);
2981 2982

	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2983 2984 2985
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2986 2987 2988
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2989
	 */
2990
	if (do_swap_account && PageSwapCache(page)) {
2991
		swp_entry_t ent = {.val = page_private(page)};
2992
		unsigned short id;
2993
		struct mem_cgroup *memcg;
2994 2995 2996 2997

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2998
		if (memcg) {
2999 3000 3001 3002
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
3003
			if (!mem_cgroup_is_root(memcg))
3004
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3005
			mem_cgroup_swap_statistics(memcg, false);
3006 3007
			mem_cgroup_put(memcg);
		}
3008
		rcu_read_unlock();
3009
	}
3010 3011 3012 3013 3014 3015
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
3016 3017
}

D
Daisuke Nishimura 已提交
3018 3019 3020 3021 3022 3023
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

3024 3025
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
3026
	if (mem_cgroup_disabled())
3027 3028 3029
		return;
	if (!mem)
		return;
3030
	__mem_cgroup_cancel_charge(mem, 1);
3031 3032
}

3033 3034 3035
static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3036 3037 3038
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3039

3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
3052 3053
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3054
	 * In those cases, all pages freed continuously can be expected to be in
3055 3056 3057 3058 3059 3060 3061 3062
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3063
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3064 3065
		goto direct_uncharge;

3066 3067 3068 3069 3070 3071 3072 3073
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3074
	batch->nr_pages++;
3075
	if (uncharge_memsw)
3076
		batch->memsw_nr_pages++;
3077 3078
	return;
direct_uncharge:
3079
	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
3080
	if (uncharge_memsw)
3081
		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
3082 3083
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
3084 3085
	return;
}
3086

3087
/*
3088
 * uncharge if !page_mapped(page)
3089
 */
3090
static struct mem_cgroup *
3091
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3092
{
3093
	struct mem_cgroup *mem = NULL;
3094 3095
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3096

3097
	if (mem_cgroup_disabled())
3098
		return NULL;
3099

K
KAMEZAWA Hiroyuki 已提交
3100
	if (PageSwapCache(page))
3101
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
3102

A
Andrea Arcangeli 已提交
3103
	if (PageTransHuge(page)) {
3104
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3105 3106
		VM_BUG_ON(!PageTransHuge(page));
	}
3107
	/*
3108
	 * Check if our page_cgroup is valid
3109
	 */
3110 3111
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
3112
		return NULL;
3113

3114
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3115

3116 3117
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
3118 3119 3120 3121 3122
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
3123
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3124 3125
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3137
	}
K
KAMEZAWA Hiroyuki 已提交
3138

3139
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3140

3141
	ClearPageCgroupUsed(pc);
3142 3143 3144 3145 3146 3147
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3148

3149
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3150 3151 3152 3153
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
3154
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
3155 3156 3157 3158 3159
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
3160
		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3161

3162
	return mem;
K
KAMEZAWA Hiroyuki 已提交
3163 3164 3165

unlock_out:
	unlock_page_cgroup(pc);
3166
	return NULL;
3167 3168
}

3169 3170
void mem_cgroup_uncharge_page(struct page *page)
{
3171 3172 3173 3174 3175
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
3176 3177 3178 3179 3180 3181
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3182
	VM_BUG_ON(page->mapping);
3183 3184 3185
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3200 3201
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3222 3223 3224 3225 3226 3227
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3228
	memcg_oom_recover(batch->memcg);
3229 3230 3231 3232
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3233
#ifdef CONFIG_SWAP
3234
/*
3235
 * called after __delete_from_swap_cache() and drop "page" account.
3236 3237
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3238 3239
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3240 3241
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3242 3243 3244 3245 3246 3247
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3248

K
KAMEZAWA Hiroyuki 已提交
3249 3250 3251 3252 3253
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3254
		swap_cgroup_record(ent, css_id(&memcg->css));
3255
}
3256
#endif
3257 3258 3259 3260 3261 3262 3263

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3264
{
3265
	struct mem_cgroup *memcg;
3266
	unsigned short id;
3267 3268 3269 3270

	if (!do_swap_account)
		return;

3271 3272 3273
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3274
	if (memcg) {
3275 3276 3277 3278
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3279
		if (!mem_cgroup_is_root(memcg))
3280
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3281
		mem_cgroup_swap_statistics(memcg, false);
3282 3283
		mem_cgroup_put(memcg);
	}
3284
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3285
}
3286 3287 3288 3289 3290 3291

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3292
 * @need_fixup: whether we should fixup res_counters and refcounts.
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3303
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3304 3305 3306 3307 3308 3309 3310 3311
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3312
		mem_cgroup_swap_statistics(to, true);
3313
		/*
3314 3315 3316 3317 3318 3319
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3320 3321
		 */
		mem_cgroup_get(to);
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3333 3334 3335 3336 3337 3338
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3339
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3340 3341 3342
{
	return -EINVAL;
}
3343
#endif
K
KAMEZAWA Hiroyuki 已提交
3344

3345
/*
3346 3347
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3348
 */
3349
int mem_cgroup_prepare_migration(struct page *page,
3350
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3351
{
3352
	struct mem_cgroup *mem = NULL;
3353
	struct page_cgroup *pc;
3354
	enum charge_type ctype;
3355
	int ret = 0;
3356

3357 3358
	*ptr = NULL;

A
Andrea Arcangeli 已提交
3359
	VM_BUG_ON(PageTransHuge(page));
3360
	if (mem_cgroup_disabled())
3361 3362
		return 0;

3363 3364 3365
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3366 3367
		mem = pc->mem_cgroup;
		css_get(&mem->css);
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3399
	}
3400
	unlock_page_cgroup(pc);
3401 3402 3403 3404 3405 3406
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
3407

A
Andrea Arcangeli 已提交
3408
	*ptr = mem;
3409
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3422
	}
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3436
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3437
	return ret;
3438
}
3439

3440
/* remove redundant charge if migration failed*/
3441
void mem_cgroup_end_migration(struct mem_cgroup *mem,
3442
	struct page *oldpage, struct page *newpage, bool migration_ok)
3443
{
3444
	struct page *used, *unused;
3445 3446 3447 3448
	struct page_cgroup *pc;

	if (!mem)
		return;
3449
	/* blocks rmdir() */
3450
	cgroup_exclude_rmdir(&mem->css);
3451
	if (!migration_ok) {
3452 3453
		used = oldpage;
		unused = newpage;
3454
	} else {
3455
		used = newpage;
3456 3457
		unused = oldpage;
	}
3458
	/*
3459 3460 3461
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3462
	 */
3463 3464 3465 3466
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3467

3468 3469
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3470
	/*
3471 3472 3473 3474 3475 3476
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3477
	 */
3478 3479
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3480
	/*
3481 3482
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3483 3484 3485 3486
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
3487
}
3488

3489
/*
3490 3491 3492 3493 3494 3495
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
3496
 */
3497
int mem_cgroup_shmem_charge_fallback(struct page *page,
3498 3499
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
3500
{
3501
	struct mem_cgroup *mem;
3502
	int ret;
3503

3504
	if (mem_cgroup_disabled())
3505
		return 0;
3506

3507 3508 3509
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3510

3511
	return ret;
3512 3513
}

3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3560 3561
static DEFINE_MUTEX(set_limit_mutex);

3562
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3563
				unsigned long long val)
3564
{
3565
	int retry_count;
3566
	u64 memswlimit, memlimit;
3567
	int ret = 0;
3568 3569
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3570
	int enlarge;
3571 3572 3573 3574 3575 3576 3577 3578 3579

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3580

3581
	enlarge = 0;
3582
	while (retry_count) {
3583 3584 3585 3586
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3597 3598
			break;
		}
3599 3600 3601 3602 3603

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3604
		ret = res_counter_set_limit(&memcg->res, val);
3605 3606 3607 3608 3609 3610
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3611 3612 3613 3614 3615
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3616
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3617 3618
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3619 3620 3621 3622 3623 3624
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3625
	}
3626 3627
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3628

3629 3630 3631
	return ret;
}

L
Li Zefan 已提交
3632 3633
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3634
{
3635
	int retry_count;
3636
	u64 memlimit, memswlimit, oldusage, curusage;
3637 3638
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3639
	int enlarge = 0;
3640

3641 3642 3643
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3661 3662 3663
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3664
		ret = res_counter_set_limit(&memcg->memsw, val);
3665 3666 3667 3668 3669 3670
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3671 3672 3673 3674 3675
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3676
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3677
						MEM_CGROUP_RECLAIM_NOSWAP |
3678 3679
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3680
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3681
		/* Usage is reduced ? */
3682
		if (curusage >= oldusage)
3683
			retry_count--;
3684 3685
		else
			oldusage = curusage;
3686
	}
3687 3688
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3689 3690 3691
	return ret;
}

3692
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3693 3694
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3695 3696 3697 3698 3699 3700
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3701
	unsigned long long excess;
3702
	unsigned long nr_scanned;
3703 3704 3705 3706

	if (order > 0)
		return 0;

3707
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3721
		nr_scanned = 0;
3722 3723
		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
3724 3725
						MEM_CGROUP_RECLAIM_SOFT,
						&nr_scanned);
3726
		nr_reclaimed += reclaimed;
3727
		*total_scanned += nr_scanned;
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3750
				if (next_mz == mz)
3751
					css_put(&next_mz->mem->css);
3752
				else /* next_mz == NULL or other memcg */
3753 3754 3755 3756
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3757
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3758 3759 3760 3761 3762 3763 3764 3765
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3766 3767
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3786 3787 3788 3789
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3790
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3791
				int node, int zid, enum lru_list lru)
3792
{
K
KAMEZAWA Hiroyuki 已提交
3793 3794
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3795
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3796
	unsigned long flags, loop;
3797
	struct list_head *list;
3798
	int ret = 0;
3799

K
KAMEZAWA Hiroyuki 已提交
3800 3801
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3802
	list = &mz->lists[lru];
3803

3804 3805 3806 3807 3808
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3809 3810
		struct page *page;

3811
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3812
		spin_lock_irqsave(&zone->lru_lock, flags);
3813
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3814
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3815
			break;
3816 3817 3818 3819
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3820
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3821
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3822 3823
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3824
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3825

3826
		page = lookup_cgroup_page(pc);
3827 3828

		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3829
		if (ret == -ENOMEM)
3830
			break;
3831 3832 3833 3834 3835 3836 3837

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3838
	}
K
KAMEZAWA Hiroyuki 已提交
3839

3840 3841 3842
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3843 3844 3845 3846 3847 3848
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3849
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3850
{
3851 3852 3853
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3854
	struct cgroup *cgrp = mem->css.cgroup;
3855

3856
	css_get(&mem->css);
3857 3858

	shrink = 0;
3859 3860 3861
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3862
move_account:
3863
	do {
3864
		ret = -EBUSY;
3865 3866 3867 3868
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3869
			goto out;
3870 3871
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3872
		drain_all_stock_sync(mem);
3873
		ret = 0;
3874
		mem_cgroup_start_move(mem);
3875
		for_each_node_state(node, N_HIGH_MEMORY) {
3876
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3877
				enum lru_list l;
3878 3879
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3880
							node, zid, l);
3881 3882 3883
					if (ret)
						break;
				}
3884
			}
3885 3886 3887
			if (ret)
				break;
		}
3888
		mem_cgroup_end_move(mem);
3889
		memcg_oom_recover(mem);
3890 3891 3892
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3893
		cond_resched();
3894 3895
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3896 3897 3898
out:
	css_put(&mem->css);
	return ret;
3899 3900

try_to_free:
3901 3902
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3903 3904 3905
		ret = -EBUSY;
		goto out;
	}
3906 3907
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3908 3909 3910
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
3911
		struct memcg_scanrecord rec;
3912
		int progress;
3913 3914 3915 3916 3917

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3918 3919 3920
		rec.context = SCAN_BY_SHRINK;
		rec.mem = mem;
		rec.root = mem;
K
KOSAKI Motohiro 已提交
3921
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3922
						false, &rec);
3923
		if (!progress) {
3924
			nr_retries--;
3925
			/* maybe some writeback is necessary */
3926
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3927
		}
3928 3929

	}
K
KAMEZAWA Hiroyuki 已提交
3930
	lru_add_drain();
3931
	/* try move_account...there may be some *locked* pages. */
3932
	goto move_account;
3933 3934
}

3935 3936 3937 3938 3939 3940
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3959
	 * If parent's use_hierarchy is set, we can't make any modifications
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3979

3980 3981
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
					       enum mem_cgroup_stat_index idx)
3982
{
K
KAMEZAWA Hiroyuki 已提交
3983
	struct mem_cgroup *iter;
3984
	long val = 0;
3985

3986
	/* Per-cpu values can be negative, use a signed accumulator */
K
KAMEZAWA Hiroyuki 已提交
3987 3988 3989 3990 3991 3992
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3993 3994
}

3995 3996
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3997
	u64 val;
3998 3999 4000 4001 4002 4003 4004 4005

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

4006 4007
	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
4008

K
KAMEZAWA Hiroyuki 已提交
4009
	if (swap)
4010
		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4011 4012 4013 4014

	return val << PAGE_SHIFT;
}

4015
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
4016
{
4017
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4018
	u64 val;
4019 4020 4021 4022 4023 4024
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
4025 4026 4027
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
4028
			val = res_counter_read_u64(&mem->res, name);
4029 4030
		break;
	case _MEMSWAP:
4031 4032 4033
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
4034
			val = res_counter_read_u64(&mem->memsw, name);
4035 4036 4037 4038 4039 4040
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
4041
}
4042 4043 4044 4045
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4046 4047
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
4048
{
4049
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4050
	int type, name;
4051 4052 4053
	unsigned long long val;
	int ret;

4054 4055 4056
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
4057
	case RES_LIMIT:
4058 4059 4060 4061
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4062 4063
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
4064 4065 4066
		if (ret)
			break;
		if (type == _MEM)
4067
			ret = mem_cgroup_resize_limit(memcg, val);
4068 4069
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4070
		break;
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4085 4086 4087 4088 4089
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
4090 4091
}

4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

4120
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4121 4122
{
	struct mem_cgroup *mem;
4123
	int type, name;
4124 4125

	mem = mem_cgroup_from_cont(cont);
4126 4127 4128
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
4129
	case RES_MAX_USAGE:
4130 4131 4132 4133
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
4134 4135
		break;
	case RES_FAILCNT:
4136 4137 4138 4139
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
4140 4141
		break;
	}
4142

4143
	return 0;
4144 4145
}

4146 4147 4148 4149 4150 4151
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4152
#ifdef CONFIG_MMU
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
4171 4172 4173 4174 4175 4176 4177
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4178

K
KAMEZAWA Hiroyuki 已提交
4179 4180 4181 4182 4183

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4184
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4185 4186
	MCS_PGPGIN,
	MCS_PGPGOUT,
4187
	MCS_SWAP,
4188 4189
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4200 4201
};

K
KAMEZAWA Hiroyuki 已提交
4202 4203 4204 4205 4206 4207
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4208
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4209 4210
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4211
	{"swap", "total_swap"},
4212 4213
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4214 4215 4216 4217 4218 4219 4220 4221
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4222 4223
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4224 4225 4226 4227
{
	s64 val;

	/* per cpu stat */
4228
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4229
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4230
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4231
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4232
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4233
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4234
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4235
	s->stat[MCS_PGPGIN] += val;
4236
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4237
	s->stat[MCS_PGPGOUT] += val;
4238
	if (do_swap_account) {
4239
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4240 4241
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4242 4243 4244 4245
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
	s->stat[MCS_PGFAULT] += val;
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4246 4247

	/* per zone stat */
4248
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4249
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4250
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4251
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4252
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4253
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4254
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4255
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4256
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4257 4258 4259 4260 4261 4262
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
4263 4264 4265 4266
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4267 4268
}

4269 4270 4271 4272 4273 4274 4275 4276 4277
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4278
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4279 4280
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4281
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4282 4283 4284 4285
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4286
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4287 4288
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4289 4290
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4291 4292 4293 4294
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4295
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4296 4297
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4298 4299
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4300 4301 4302 4303
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4304
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4305 4306
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4307 4308
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4309 4310 4311 4312 4313 4314 4315
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4316 4317
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4318 4319
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4320
	struct mcs_total_stat mystat;
4321 4322
	int i;

K
KAMEZAWA Hiroyuki 已提交
4323 4324
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4325

4326

4327 4328 4329
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4330
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4331
	}
L
Lee Schermerhorn 已提交
4332

K
KAMEZAWA Hiroyuki 已提交
4333
	/* Hierarchical information */
4334 4335 4336 4337 4338 4339 4340
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4341

K
KAMEZAWA Hiroyuki 已提交
4342 4343
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4344 4345 4346
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4347
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4348
	}
K
KAMEZAWA Hiroyuki 已提交
4349

K
KOSAKI Motohiro 已提交
4350
#ifdef CONFIG_DEBUG_VM
4351
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4379 4380 4381
	return 0;
}

K
KOSAKI Motohiro 已提交
4382 4383 4384 4385
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4386
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4387 4388 4389 4390 4391 4392 4393
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4394

K
KOSAKI Motohiro 已提交
4395 4396 4397 4398 4399 4400 4401
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4402 4403 4404

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4405 4406
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4407 4408
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4409
		return -EINVAL;
4410
	}
K
KOSAKI Motohiro 已提交
4411 4412 4413

	memcg->swappiness = val;

4414 4415
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4416 4417 4418
	return 0;
}

4419 4420 4421 4422 4423 4424 4425 4426
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4427
		t = rcu_dereference(memcg->thresholds.primary);
4428
	else
4429
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4441
	i = t->current_threshold;
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4465
	t->current_threshold = i - 1;
4466 4467 4468 4469 4470 4471
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4472 4473 4474 4475 4476 4477 4478
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
4489
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
4500 4501 4502 4503
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4504 4505 4506 4507
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4508 4509
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4510 4511
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4512 4513
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4514
	int i, size, ret;
4515 4516 4517 4518 4519 4520

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4521

4522
	if (type == _MEM)
4523
		thresholds = &memcg->thresholds;
4524
	else if (type == _MEMSWAP)
4525
		thresholds = &memcg->memsw_thresholds;
4526 4527 4528 4529 4530 4531
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4532
	if (thresholds->primary)
4533 4534
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4535
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4536 4537

	/* Allocate memory for new array of thresholds */
4538
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4539
			GFP_KERNEL);
4540
	if (!new) {
4541 4542 4543
		ret = -ENOMEM;
		goto unlock;
	}
4544
	new->size = size;
4545 4546

	/* Copy thresholds (if any) to new array */
4547 4548
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4549
				sizeof(struct mem_cgroup_threshold));
4550 4551
	}

4552
	/* Add new threshold */
4553 4554
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4555 4556

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4557
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4558 4559 4560
			compare_thresholds, NULL);

	/* Find current threshold */
4561
	new->current_threshold = -1;
4562
	for (i = 0; i < size; i++) {
4563
		if (new->entries[i].threshold < usage) {
4564
			/*
4565 4566
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4567 4568
			 * it here.
			 */
4569
			++new->current_threshold;
4570 4571 4572
		}
	}

4573 4574 4575 4576 4577
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4578

4579
	/* To be sure that nobody uses thresholds */
4580 4581 4582 4583 4584 4585 4586 4587
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4588
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4589
	struct cftype *cft, struct eventfd_ctx *eventfd)
4590 4591
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4592 4593
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4594 4595
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4596
	int i, j, size;
4597 4598 4599

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4600
		thresholds = &memcg->thresholds;
4601
	else if (type == _MEMSWAP)
4602
		thresholds = &memcg->memsw_thresholds;
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4618 4619 4620
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4621 4622 4623
			size++;
	}

4624
	new = thresholds->spare;
4625

4626 4627
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4628 4629
		kfree(new);
		new = NULL;
4630
		goto swap_buffers;
4631 4632
	}

4633
	new->size = size;
4634 4635

	/* Copy thresholds and find current threshold */
4636 4637 4638
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4639 4640
			continue;

4641 4642
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4643
			/*
4644
			 * new->current_threshold will not be used
4645 4646 4647
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4648
			++new->current_threshold;
4649 4650 4651 4652
		}
		j++;
	}

4653
swap_buffers:
4654 4655 4656
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4657

4658
	/* To be sure that nobody uses thresholds */
4659 4660 4661 4662
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4663

K
KAMEZAWA Hiroyuki 已提交
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4676
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4677 4678 4679 4680 4681

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4682
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4683
		eventfd_signal(eventfd, 1);
4684
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4685 4686 4687 4688

	return 0;
}

4689
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4690 4691 4692 4693 4694 4695 4696 4697
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4698
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4699 4700 4701 4702 4703 4704 4705 4706

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4707
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4708 4709
}

4710 4711 4712 4713 4714 4715 4716
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

4717
	if (atomic_read(&mem->under_oom))
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4744 4745
	if (!val)
		memcg_oom_recover(mem);
4746 4747 4748 4749
	cgroup_unlock();
	return 0;
}

4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
static int mem_cgroup_vmscan_stat_read(struct cgroup *cgrp,
				struct cftype *cft,
				struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	char string[64];
	int i;

	for (i = 0; i < NR_SCANSTATS; i++) {
		strcpy(string, scanstat_string[i]);
		strcat(string, SCANSTAT_WORD_LIMIT);
		cb->fill(cb, string,  mem->scanstat.stats[SCAN_BY_LIMIT][i]);
	}

	for (i = 0; i < NR_SCANSTATS; i++) {
		strcpy(string, scanstat_string[i]);
		strcat(string, SCANSTAT_WORD_SYSTEM);
		cb->fill(cb, string,  mem->scanstat.stats[SCAN_BY_SYSTEM][i]);
	}

	for (i = 0; i < NR_SCANSTATS; i++) {
		strcpy(string, scanstat_string[i]);
		strcat(string, SCANSTAT_WORD_LIMIT);
		strcat(string, SCANSTAT_WORD_HIERARCHY);
		cb->fill(cb, string,  mem->scanstat.rootstats[SCAN_BY_LIMIT][i]);
	}
	for (i = 0; i < NR_SCANSTATS; i++) {
		strcpy(string, scanstat_string[i]);
		strcat(string, SCANSTAT_WORD_SYSTEM);
		strcat(string, SCANSTAT_WORD_HIERARCHY);
		cb->fill(cb, string,  mem->scanstat.rootstats[SCAN_BY_SYSTEM][i]);
	}
	return 0;
}

static int mem_cgroup_reset_vmscan_stat(struct cgroup *cgrp,
				unsigned int event)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	spin_lock(&mem->scanstat.lock);
	memset(&mem->scanstat.stats, 0, sizeof(mem->scanstat.stats));
	memset(&mem->scanstat.rootstats, 0, sizeof(mem->scanstat.rootstats));
	spin_unlock(&mem->scanstat.lock);
	return 0;
}


B
Balbir Singh 已提交
4814 4815
static struct cftype mem_cgroup_files[] = {
	{
4816
		.name = "usage_in_bytes",
4817
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4818
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4819 4820
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4821
	},
4822 4823
	{
		.name = "max_usage_in_bytes",
4824
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4825
		.trigger = mem_cgroup_reset,
4826 4827
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4828
	{
4829
		.name = "limit_in_bytes",
4830
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4831
		.write_string = mem_cgroup_write,
4832
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4833
	},
4834 4835 4836 4837 4838 4839
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4840 4841
	{
		.name = "failcnt",
4842
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4843
		.trigger = mem_cgroup_reset,
4844
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4845
	},
4846 4847
	{
		.name = "stat",
4848
		.read_map = mem_control_stat_show,
4849
	},
4850 4851 4852 4853
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4854 4855 4856 4857 4858
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4859 4860 4861 4862 4863
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4864 4865 4866 4867 4868
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4869 4870
	{
		.name = "oom_control",
4871 4872
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4873 4874 4875 4876
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4877 4878 4879 4880
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4881
		.mode = S_IRUGO,
4882 4883
	},
#endif
4884 4885 4886 4887 4888
	{
		.name = "vmscan_stat",
		.read_map = mem_cgroup_vmscan_stat_read,
		.trigger = mem_cgroup_reset_vmscan_stat,
	},
B
Balbir Singh 已提交
4889 4890
};

4891 4892 4893 4894 4895 4896
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4897 4898
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4934 4935 4936
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4937
	struct mem_cgroup_per_zone *mz;
4938
	enum lru_list l;
4939
	int zone, tmp = node;
4940 4941 4942 4943 4944 4945 4946 4947
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4948 4949
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4950
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4951 4952
	if (!pn)
		return 1;
4953

4954
	mem->info.nodeinfo[node] = pn;
4955 4956
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4957 4958
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4959
		mz->usage_in_excess = 0;
4960 4961
		mz->on_tree = false;
		mz->mem = mem;
4962
	}
4963 4964 4965
	return 0;
}

4966 4967 4968 4969 4970
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4971 4972 4973
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4974
	int size = sizeof(struct mem_cgroup);
4975

4976
	/* Can be very big if MAX_NUMNODES is very big */
4977
	if (size < PAGE_SIZE)
4978
		mem = kzalloc(size, GFP_KERNEL);
4979
	else
4980
		mem = vzalloc(size);
4981

4982 4983 4984
	if (!mem)
		return NULL;

4985
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4986 4987
	if (!mem->stat)
		goto out_free;
4988
	spin_lock_init(&mem->pcp_counter_lock);
4989
	return mem;
4990 4991 4992 4993 4994 4995 4996

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4997 4998
}

4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

5010
static void __mem_cgroup_free(struct mem_cgroup *mem)
5011
{
K
KAMEZAWA Hiroyuki 已提交
5012 5013
	int node;

5014
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
5015 5016
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
5017 5018 5019
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

5020 5021
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
5022 5023 5024 5025 5026
		kfree(mem);
	else
		vfree(mem);
}

5027 5028 5029 5030 5031
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

5032
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
5033
{
5034
	if (atomic_sub_and_test(count, &mem->refcnt)) {
5035
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
5036
		__mem_cgroup_free(mem);
5037 5038 5039
		if (parent)
			mem_cgroup_put(parent);
	}
5040 5041
}

5042 5043 5044 5045 5046
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

5047 5048 5049 5050 5051 5052 5053 5054 5055
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
5056

5057 5058 5059
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
5060
	if (!mem_cgroup_disabled() && really_do_swap_account)
5061 5062 5063 5064 5065 5066 5067 5068
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
5094
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
5095 5096
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
5097
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
5098
	long error = -ENOMEM;
5099
	int node;
B
Balbir Singh 已提交
5100

5101 5102
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
5103
		return ERR_PTR(error);
5104

5105 5106 5107
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
5108

5109
	/* root ? */
5110
	if (cont->parent == NULL) {
5111
		int cpu;
5112
		enable_swap_cgroup();
5113
		parent = NULL;
5114
		root_mem_cgroup = mem;
5115 5116
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
5117 5118 5119 5120 5121
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
5122
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5123
	} else {
5124
		parent = mem_cgroup_from_cont(cont->parent);
5125
		mem->use_hierarchy = parent->use_hierarchy;
5126
		mem->oom_kill_disable = parent->oom_kill_disable;
5127
	}
5128

5129 5130 5131
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
5132 5133 5134 5135 5136 5137 5138
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5139 5140 5141 5142
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
5143
	mem->last_scanned_child = 0;
5144
	mem->last_scanned_node = MAX_NUMNODES;
K
KAMEZAWA Hiroyuki 已提交
5145
	INIT_LIST_HEAD(&mem->oom_notify);
5146

K
KOSAKI Motohiro 已提交
5147
	if (parent)
5148
		mem->swappiness = mem_cgroup_swappiness(parent);
5149
	atomic_set(&mem->refcnt, 1);
5150
	mem->move_charge_at_immigrate = 0;
5151
	mutex_init(&mem->thresholds_lock);
5152
	spin_lock_init(&mem->scanstat.lock);
B
Balbir Singh 已提交
5153
	return &mem->css;
5154
free_out:
5155
	__mem_cgroup_free(mem);
5156
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
5157
	return ERR_PTR(error);
B
Balbir Singh 已提交
5158 5159
}

5160
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5161 5162 5163
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
5164 5165

	return mem_cgroup_force_empty(mem, false);
5166 5167
}

B
Balbir Singh 已提交
5168 5169 5170
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5171 5172 5173
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
5174 5175 5176 5177 5178
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5179 5180 5181 5182 5183 5184 5185 5186
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
5187 5188
}

5189
#ifdef CONFIG_MMU
5190
/* Handlers for move charge at task migration. */
5191 5192
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5193
{
5194 5195
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5196 5197
	struct mem_cgroup *mem = mc.to;

5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5233
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5234 5235 5236 5237 5238
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5239 5240 5241 5242 5243 5244 5245 5246
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5247
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5248 5249 5250 5251 5252 5253
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5254 5255 5256
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5257 5258 5259 5260 5261
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5262
	swp_entry_t	ent;
5263 5264 5265 5266 5267
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5268
	MC_TARGET_SWAP,
5269 5270
};

D
Daisuke Nishimura 已提交
5271 5272
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5273
{
D
Daisuke Nishimura 已提交
5274
	struct page *page = vm_normal_page(vma, addr, ptent);
5275

D
Daisuke Nishimura 已提交
5276 5277 5278 5279 5280 5281
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5282 5283
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5302 5303
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5304
		return NULL;
5305
	}
D
Daisuke Nishimura 已提交
5306 5307 5308 5309 5310 5311
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5357 5358
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5359 5360 5361

	if (!page && !ent.val)
		return 0;
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5377 5378
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5379 5380 5381 5382
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5395 5396
	split_huge_page_pmd(walk->mm, pmd);

5397 5398 5399 5400 5401 5402 5403
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5404 5405 5406
	return 0;
}

5407 5408 5409 5410 5411
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5412
	down_read(&mm->mmap_sem);
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5424
	up_read(&mm->mmap_sem);
5425 5426 5427 5428 5429 5430 5431 5432 5433

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5434 5435 5436 5437 5438
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5439 5440
}

5441 5442
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5443
{
5444 5445 5446
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5447
	/* we must uncharge all the leftover precharges from mc.to */
5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5459
	}
5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5494
	spin_lock(&mc.lock);
5495 5496
	mc.from = NULL;
	mc.to = NULL;
5497
	spin_unlock(&mc.lock);
5498
	mem_cgroup_end_move(from);
5499 5500
}

5501 5502
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5503
				struct task_struct *p)
5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5518 5519 5520 5521
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5522
			VM_BUG_ON(mc.moved_charge);
5523
			VM_BUG_ON(mc.moved_swap);
5524
			mem_cgroup_start_move(from);
5525
			spin_lock(&mc.lock);
5526 5527
			mc.from = from;
			mc.to = mem;
5528
			spin_unlock(&mc.lock);
5529
			/* We set mc.moving_task later */
5530 5531 5532 5533

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5534 5535
		}
		mmput(mm);
5536 5537 5538 5539 5540 5541
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5542
				struct task_struct *p)
5543
{
5544
	mem_cgroup_clear_mc();
5545 5546
}

5547 5548 5549
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5550
{
5551 5552 5553 5554 5555
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5556
	split_huge_page_pmd(walk->mm, pmd);
5557 5558 5559 5560 5561 5562 5563 5564
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5565
		swp_entry_t ent;
5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5577 5578
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5579
				mc.precharge--;
5580 5581
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5582 5583 5584 5585 5586
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5587 5588
		case MC_TARGET_SWAP:
			ent = target.ent;
5589 5590
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5591
				mc.precharge--;
5592 5593 5594
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5595
			break;
5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5610
		ret = mem_cgroup_do_precharge(1);
5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5654
	up_read(&mm->mmap_sem);
5655 5656
}

B
Balbir Singh 已提交
5657 5658 5659
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5660
				struct task_struct *p)
B
Balbir Singh 已提交
5661
{
5662
	struct mm_struct *mm = get_task_mm(p);
5663 5664

	if (mm) {
5665 5666 5667
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5668 5669
		mmput(mm);
	}
5670 5671
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5672
}
5673 5674 5675
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5676
				struct task_struct *p)
5677 5678 5679 5680 5681
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5682
				struct task_struct *p)
5683 5684 5685 5686 5687
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5688
				struct task_struct *p)
5689 5690 5691
{
}
#endif
B
Balbir Singh 已提交
5692

B
Balbir Singh 已提交
5693 5694 5695 5696
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5697
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5698 5699
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5700 5701
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5702
	.attach = mem_cgroup_move_task,
5703
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5704
	.use_id = 1,
B
Balbir Singh 已提交
5705
};
5706 5707

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5708 5709 5710
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5711
	if (!strcmp(s, "1"))
5712
		really_do_swap_account = 1;
5713
	else if (!strcmp(s, "0"))
5714 5715 5716
		really_do_swap_account = 0;
	return 1;
}
5717
__setup("swapaccount=", enable_swap_account);
5718 5719

#endif