memcontrol.c 119.0 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include "internal.h"
B
Balbir Singh 已提交
51

52 53
#include <asm/uaccess.h>

54 55
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
56
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
57

58
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
59
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
60 61 62 63 64 65
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

66 67 68 69 70 71 72 73 74
/*
 * Per memcg event counter is incremented at every pagein/pageout. This counter
 * is used for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 *
 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 */
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
75

76 77 78 79 80 81 82 83
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
84
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
85
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
86 87
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
88
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89
	MEM_CGROUP_EVENTS,	/* incremented at every  pagein/pageout */
90 91 92 93 94 95 96 97

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
};

98 99 100 101
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
102 103 104
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
105 106
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
107 108

	struct zone_reclaim_stat reclaim_stat;
109 110 111 112
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
113 114
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
115 116 117 118 119 120 121 122 123 124 125 126
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

147 148 149 150 151
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
152
/* For threshold */
153 154
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
155
	int current_threshold;
156 157 158 159 160
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
K
KAMEZAWA Hiroyuki 已提交
161 162 163 164 165
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
166 167

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
168
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
169

B
Balbir Singh 已提交
170 171 172 173 174 175 176
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
177 178 179
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
180 181 182 183 184 185 186
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
187 188 189 190
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
191 192 193 194
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
195
	struct mem_cgroup_lru_info info;
196

K
KOSAKI Motohiro 已提交
197 198 199 200 201
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

202
	int	prev_priority;	/* for recording reclaim priority */
203 204

	/*
205
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
206
	 * reclaimed from.
207
	 */
K
KAMEZAWA Hiroyuki 已提交
208
	int last_scanned_child;
209 210 211 212
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
213
	atomic_t	oom_lock;
214
	atomic_t	refcnt;
215

K
KOSAKI Motohiro 已提交
216
	unsigned int	swappiness;
217 218
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
219

220 221 222
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

223 224 225 226 227 228
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
	struct mem_cgroup_threshold_ary *thresholds;

229 230 231 232 233 234 235
	/*
	 * Preallocated buffer to be used in mem_cgroup_unregister_event()
	 * to make it "never fail".
	 * It must be able to store at least thresholds->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *__thresholds;

236 237 238
	/* thresholds for mem+swap usage. RCU-protected */
	struct mem_cgroup_threshold_ary *memsw_thresholds;

239 240 241
	/* the same as __thresholds, but for memsw_thresholds */
	struct mem_cgroup_threshold_ary *__memsw_thresholds;

K
KAMEZAWA Hiroyuki 已提交
242 243 244
	/* For oom notifier event fd */
	struct list_head oom_notify;

245 246 247 248 249
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
250
	/*
251
	 * percpu counter.
252
	 */
253
	struct mem_cgroup_stat_cpu *stat;
B
Balbir Singh 已提交
254 255
};

256 257 258 259 260 261
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
262
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
263
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
264 265 266
	NR_MOVE_TYPE,
};

267 268 269 270 271
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
272
	unsigned long moved_charge;
273
	unsigned long moved_swap;
274 275 276 277 278
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
279

D
Daisuke Nishimura 已提交
280 281 282 283 284 285
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

286 287 288 289 290 291
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

292 293 294 295 296 297 298
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

299 300 301
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
302
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
303
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
304
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
305
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
306 307 308
	NR_CHARGE_TYPE,
};

309 310 311 312
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
313 314
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
315

316 317 318
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
319
#define _OOM_TYPE		(2)
320 321 322
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
323 324
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
325

326 327 328 329 330 331 332
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
333 334
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
335

336 337
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
338
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
339
static void drain_all_stock_async(void);
340

341 342 343 344 345 346
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

347 348 349 350 351
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
381
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
382
				struct mem_cgroup_per_zone *mz,
383 384
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
385 386 387 388 389 390 391 392
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

393 394 395
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
412 413 414 415 416 417 418 419 420 421 422 423 424
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

425 426 427 428 429 430
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
431
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
432 433 434 435 436 437
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
438
	unsigned long long excess;
439 440
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
441 442
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
443 444 445
	mctz = soft_limit_tree_from_page(page);

	/*
446 447
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
448
	 */
449 450
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
451
		excess = res_counter_soft_limit_excess(&mem->res);
452 453 454 455
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
456
		if (excess || mz->on_tree) {
457 458 459 460 461
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
462 463
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
464
			 */
465
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
466 467
			spin_unlock(&mctz->lock);
		}
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

486 487 488 489 490 491 492 493 494
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
495
	struct mem_cgroup_per_zone *mz;
496 497

retry:
498
	mz = NULL;
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

	for_each_possible_cpu(cpu)
		val += per_cpu(mem->stat->count[idx], cpu);
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

548 549 550 551
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
552
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
553 554
}

555 556 557
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
558
{
559
	int val = (charge) ? 1 : -1;
560

561 562
	preempt_disable();

563
	if (PageCgroupCache(pc))
564
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
565
	else
566
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
567 568

	if (charge)
569
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
570
	else
571
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
572
	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
573

574
	preempt_enable();
575 576
}

K
KAMEZAWA Hiroyuki 已提交
577
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
578
					enum lru_list idx)
579 580 581 582 583 584 585 586 587 588 589
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
590 591
}

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
	s64 val;

	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);

	return !(val & ((1 << event_mask_shift) - 1));
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
		mem_cgroup_threshold(mem);
		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
			mem_cgroup_update_tree(mem, page);
	}
}

615
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
616 617 618 619 620 621
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

622
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
623
{
624 625 626 627 628 629 630 631
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

632 633 634 635
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

636 637 638
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
639 640 641

	if (!mm)
		return NULL;
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

692 693 694 695 696
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
710

K
KAMEZAWA Hiroyuki 已提交
711 712 713 714
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
715

716
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
717 718 719
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
720
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
721
		return;
722
	VM_BUG_ON(!pc->mem_cgroup);
723 724 725 726
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
727
	mz = page_cgroup_zoneinfo(pc);
728
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
729 730 731
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
732 733
	list_del_init(&pc->lru);
	return;
734 735
}

K
KAMEZAWA Hiroyuki 已提交
736
void mem_cgroup_del_lru(struct page *page)
737
{
K
KAMEZAWA Hiroyuki 已提交
738 739
	mem_cgroup_del_lru_list(page, page_lru(page));
}
740

K
KAMEZAWA Hiroyuki 已提交
741 742 743 744
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
745

746
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
747
		return;
748

K
KAMEZAWA Hiroyuki 已提交
749
	pc = lookup_page_cgroup(page);
750 751 752 753
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
754
	smp_rmb();
755 756
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
757 758 759
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
760 761
}

K
KAMEZAWA Hiroyuki 已提交
762
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
763
{
K
KAMEZAWA Hiroyuki 已提交
764 765
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
766

767
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
768 769
		return;
	pc = lookup_page_cgroup(page);
770
	VM_BUG_ON(PageCgroupAcctLRU(pc));
771 772 773 774
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
775 776
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
777
		return;
778

K
KAMEZAWA Hiroyuki 已提交
779
	mz = page_cgroup_zoneinfo(pc);
780
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
781 782 783
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
784 785
	list_add(&pc->lru, &mz->lists[lru]);
}
786

K
KAMEZAWA Hiroyuki 已提交
787
/*
788 789 790 791 792
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
793
 */
794
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
795
{
796 797 798 799 800 801 802 803 804 805 806 807
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
808 809
}

810 811 812 813 814 815 816 817
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
818
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
819 820 821 822 823
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
824 825 826
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
827
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
828 829 830
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
831 832
}

833 834 835
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
836
	struct mem_cgroup *curr = NULL;
837 838

	task_lock(task);
839 840 841
	rcu_read_lock();
	curr = try_get_mem_cgroup_from_mm(task->mm);
	rcu_read_unlock();
842
	task_unlock(task);
843 844
	if (!curr)
		return 0;
845 846 847 848 849 850 851
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
852 853 854 855
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
856 857 858
	return ret;
}

859 860 861 862 863
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
K
KOSAKI Motohiro 已提交
864 865 866 867 868 869 870
	int prev_priority;

	spin_lock(&mem->reclaim_param_lock);
	prev_priority = mem->prev_priority;
	spin_unlock(&mem->reclaim_param_lock);

	return prev_priority;
871 872 873 874
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
875
	spin_lock(&mem->reclaim_param_lock);
876 877
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
878
	spin_unlock(&mem->reclaim_param_lock);
879 880 881 882
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
883
	spin_lock(&mem->reclaim_param_lock);
884
	mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
885
	spin_unlock(&mem->reclaim_param_lock);
886 887
}

888
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
889 890 891
{
	unsigned long active;
	unsigned long inactive;
892 893
	unsigned long gb;
	unsigned long inactive_ratio;
894

K
KAMEZAWA Hiroyuki 已提交
895 896
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
897

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
925 926 927 928 929
		return 1;

	return 0;
}

930 931 932 933 934 935 936 937 938 939 940
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

941 942 943 944 945 946 947 948 949 950 951
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
972 973 974 975 976 977 978 979
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
980 981 982 983 984 985 986
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

987 988 989 990 991
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
992
					int active, int file)
993 994 995 996 997 998
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
999
	struct page_cgroup *pc, *tmp;
1000 1001 1002
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1003
	int lru = LRU_FILE * file + active;
1004
	int ret;
1005

1006
	BUG_ON(!mem_cont);
1007
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1008
	src = &mz->lists[lru];
1009

1010 1011
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1012
		if (scan >= nr_to_scan)
1013
			break;
K
KAMEZAWA Hiroyuki 已提交
1014 1015

		page = pc->page;
1016 1017
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
1018
		if (unlikely(!PageLRU(page)))
1019 1020
			continue;

H
Hugh Dickins 已提交
1021
		scan++;
1022 1023 1024
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1025
			list_move(&page->lru, dst);
1026
			mem_cgroup_del_lru(page);
1027
			nr_taken++;
1028 1029 1030 1031 1032 1033 1034
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1035 1036 1037 1038 1039 1040 1041
		}
	}

	*scanned = scan;
	return nr_taken;
}

1042 1043 1044
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1073 1074 1075 1076 1077 1078
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
1079 1080

/**
1081
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1100
	if (!memcg || !p)
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

1158
/*
K
KAMEZAWA Hiroyuki 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1201 1202
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1203 1204 1205
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1206 1207
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1208 1209
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1210
						struct zone *zone,
1211 1212
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1213
{
K
KAMEZAWA Hiroyuki 已提交
1214 1215 1216
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1217 1218
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1219 1220
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1221

1222 1223 1224 1225
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1226
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1227
		victim = mem_cgroup_select_victim(root_mem);
1228
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1229
			loop++;
1230 1231
			if (loop >= 1)
				drain_all_stock_async();
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1255
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1256 1257
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1258 1259
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1260
		/* we use swappiness of local cgroup */
1261 1262 1263 1264 1265 1266 1267
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
				noswap, get_swappiness(victim), zone,
				zone->zone_pgdat->node_id);
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1268
		css_put(&victim->css);
1269 1270 1271 1272 1273 1274 1275
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1276
		total += ret;
1277 1278 1279 1280
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1281
			return 1 + total;
1282
	}
K
KAMEZAWA Hiroyuki 已提交
1283
	return total;
1284 1285
}

K
KAMEZAWA Hiroyuki 已提交
1286
static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1287
{
K
KAMEZAWA Hiroyuki 已提交
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	int *val = (int *)data;
	int x;
	/*
	 * Logically, we can stop scanning immediately when we find
	 * a memcg is already locked. But condidering unlock ops and
	 * creation/removal of memcg, scan-all is simple operation.
	 */
	x = atomic_inc_return(&mem->oom_lock);
	*val = max(x, *val);
	return 0;
}
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
	int lock_count = 0;
1306

K
KAMEZAWA Hiroyuki 已提交
1307 1308 1309 1310 1311
	mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);

	if (lock_count == 1)
		return true;
	return false;
1312
}
1313

K
KAMEZAWA Hiroyuki 已提交
1314
static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1315
{
K
KAMEZAWA Hiroyuki 已提交
1316 1317 1318 1319 1320 1321
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
	atomic_add_unless(&mem->oom_lock, -1, 0);
1322 1323 1324
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1325 1326 1327 1328 1329 1330 1331 1332
static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL,	mem_cgroup_oom_unlock_cb);
}

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1369 1370 1371 1372 1373 1374
static void memcg_oom_recover(struct mem_cgroup *mem)
{
	if (mem->oom_kill_disable && atomic_read(&mem->oom_lock))
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1375 1376 1377 1378
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1379
{
K
KAMEZAWA Hiroyuki 已提交
1380
	struct oom_wait_info owait;
1381
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1382

K
KAMEZAWA Hiroyuki 已提交
1383 1384 1385 1386 1387
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1388
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1389 1390 1391 1392 1393 1394 1395 1396
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1397 1398 1399 1400
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1401
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1402 1403
	mutex_unlock(&memcg_oom_mutex);

1404 1405
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1406
		mem_cgroup_out_of_memory(mem, mask);
1407
	} else {
K
KAMEZAWA Hiroyuki 已提交
1408
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1409
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1410 1411 1412
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1413
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1414 1415 1416 1417 1418 1419 1420
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1421 1422
}

1423 1424 1425 1426
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
 */
1427
void mem_cgroup_update_file_mapped(struct page *page, int val)
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (unlikely(!pc))
		return;

	lock_page_cgroup(pc);
	mem = pc->mem_cgroup;
1438
	if (!mem || !PageCgroupUsed(pc))
1439 1440 1441
		goto done;

	/*
1442
	 * Preemption is already disabled. We can use __this_cpu_xxx
1443
	 */
1444 1445 1446 1447 1448 1449 1450
	if (val > 0) {
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		SetPageCgroupFileMapped(pc);
	} else {
		__this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		ClearPageCgroupFileMapped(pc);
	}
1451 1452 1453 1454

done:
	unlock_page_cgroup(pc);
}
1455

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1517
 * This will be consumed by consume_stock() function, later.
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

	if (action != CPU_DEAD)
		return NOTIFY_OK;
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1583 1584 1585
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1586
 */
1587
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1588
			gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1589
{
1590
	struct mem_cgroup *mem, *mem_over_limit;
1591
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1592
	struct res_counter *fail_res;
1593
	int csize = CHARGE_SIZE;
1594

K
KAMEZAWA Hiroyuki 已提交
1595 1596 1597 1598 1599 1600 1601 1602
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
1603

1604
	/*
1605 1606
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1607 1608 1609
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
1610 1611 1612
	mem = *memcg;
	if (likely(!mem)) {
		mem = try_get_mem_cgroup_from_mm(mm);
1613
		*memcg = mem;
1614
	} else {
1615
		css_get(&mem->css);
1616
	}
1617 1618 1619
	if (unlikely(!mem))
		return 0;

1620
	VM_BUG_ON(css_is_removed(&mem->css));
1621 1622
	if (mem_cgroup_is_root(mem))
		goto done;
1623

1624
	while (1) {
1625
		int ret = 0;
1626
		unsigned long flags = 0;
1627

1628
		if (consume_stock(mem))
1629
			goto done;
1630 1631

		ret = res_counter_charge(&mem->res, csize, &fail_res);
1632 1633 1634
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
1635
			ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1636 1637 1638
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
1639
			res_counter_uncharge(&mem->res, csize);
1640
			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1641 1642 1643 1644 1645 1646 1647
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

1648 1649 1650 1651 1652
		/* reduce request size and retry */
		if (csize > PAGE_SIZE) {
			csize = PAGE_SIZE;
			continue;
		}
1653
		if (!(gfp_mask & __GFP_WAIT))
1654
			goto nomem;
1655

1656 1657
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
						gfp_mask, flags);
1658 1659
		if (ret)
			continue;
1660 1661

		/*
1662 1663 1664 1665 1666
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
1667
		 *
1668
		 */
1669 1670
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
1671

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
		/* try to avoid oom while someone is moving charge */
		if (mc.moving_task && current != mc.moving_task) {
			struct mem_cgroup *from, *to;
			bool do_continue = false;
			/*
			 * There is a small race that "from" or "to" can be
			 * freed by rmdir, so we use css_tryget().
			 */
			from = mc.from;
			to = mc.to;
			if (from && css_tryget(&from->css)) {
				if (mem_over_limit->use_hierarchy)
					do_continue = css_is_ancestor(
							&from->css,
							&mem_over_limit->css);
				else
					do_continue = (from == mem_over_limit);
				css_put(&from->css);
			}
			if (!do_continue && to && css_tryget(&to->css)) {
				if (mem_over_limit->use_hierarchy)
					do_continue = css_is_ancestor(
							&to->css,
							&mem_over_limit->css);
				else
					do_continue = (to == mem_over_limit);
				css_put(&to->css);
			}
			if (do_continue) {
				DEFINE_WAIT(wait);
				prepare_to_wait(&mc.waitq, &wait,
							TASK_INTERRUPTIBLE);
				/* moving charge context might have finished. */
				if (mc.moving_task)
					schedule();
				finish_wait(&mc.waitq, &wait);
				continue;
			}
		}

1712
		if (!nr_retries--) {
K
KAMEZAWA Hiroyuki 已提交
1713 1714 1715 1716 1717
			if (!oom)
				goto nomem;
			if (mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) {
				nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
				continue;
1718
			}
K
KAMEZAWA Hiroyuki 已提交
1719 1720 1721
			/* When we reach here, current task is dying .*/
			css_put(&mem->css);
			goto bypass;
1722
		}
1723
	}
1724 1725
	if (csize > PAGE_SIZE)
		refill_stock(mem, csize - PAGE_SIZE);
1726
done:
1727 1728 1729 1730
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
1731 1732 1733
bypass:
	*memcg = NULL;
	return 0;
1734
}
1735

1736 1737 1738 1739 1740
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
1741 1742
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
1743 1744
{
	if (!mem_cgroup_is_root(mem)) {
1745
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1746
		if (do_swap_account)
1747 1748 1749 1750
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_put(&mem->css, (int)count);
1751
	}
1752 1753 1754 1755 1756 1757
	/* we don't need css_put for root */
}

static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
{
	__mem_cgroup_cancel_charge(mem, 1);
1758 1759
}

1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

1779
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1780
{
1781
	struct mem_cgroup *mem = NULL;
1782
	struct page_cgroup *pc;
1783
	unsigned short id;
1784 1785
	swp_entry_t ent;

1786 1787 1788
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
1789
	lock_page_cgroup(pc);
1790
	if (PageCgroupUsed(pc)) {
1791
		mem = pc->mem_cgroup;
1792 1793
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
1794
	} else if (PageSwapCache(page)) {
1795
		ent.val = page_private(page);
1796 1797 1798 1799 1800 1801
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
1802
	}
1803
	unlock_page_cgroup(pc);
1804 1805 1806
	return mem;
}

1807
/*
1808
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1819 1820 1821 1822

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
1823
		mem_cgroup_cancel_charge(mem);
1824
		return;
1825
	}
1826

1827
	pc->mem_cgroup = mem;
1828 1829 1830 1831 1832 1833 1834
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
1835
	smp_wmb();
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
1849

K
KAMEZAWA Hiroyuki 已提交
1850
	mem_cgroup_charge_statistics(mem, pc, true);
1851 1852

	unlock_page_cgroup(pc);
1853 1854 1855 1856 1857
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
1858
	memcg_check_events(mem, pc->page);
1859
}
1860

1861
/**
1862
 * __mem_cgroup_move_account - move account of the page
1863 1864 1865
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
1866
 * @uncharge: whether we should call uncharge and css_put against @from.
1867 1868
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
1869
 * - page is not on LRU (isolate_page() is useful.)
1870
 * - the pc is locked, used, and ->mem_cgroup points to @from.
1871
 *
1872 1873 1874 1875
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
1876 1877
 */

1878
static void __mem_cgroup_move_account(struct page_cgroup *pc,
1879
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1880 1881
{
	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1882
	VM_BUG_ON(PageLRU(pc->page));
1883 1884 1885
	VM_BUG_ON(!PageCgroupLocked(pc));
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
1886

1887
	if (PageCgroupFileMapped(pc)) {
1888 1889 1890 1891 1892
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
1893
	}
1894 1895 1896 1897
	mem_cgroup_charge_statistics(from, pc, false);
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
		mem_cgroup_cancel_charge(from);
1898

1899
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
1900 1901
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
1902 1903 1904
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
1905 1906 1907
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
1908
	 */
1909 1910 1911 1912 1913 1914 1915
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
1916
		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1917 1918 1919 1920
{
	int ret = -EINVAL;
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1921
		__mem_cgroup_move_account(pc, from, to, uncharge);
1922 1923 1924
		ret = 0;
	}
	unlock_page_cgroup(pc);
1925 1926 1927 1928 1929
	/*
	 * check events
	 */
	memcg_check_events(to, pc->page);
	memcg_check_events(from, pc->page);
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1941
	struct page *page = pc->page;
1942 1943 1944 1945 1946 1947 1948 1949 1950
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

1951 1952 1953 1954 1955
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
K
KAMEZAWA Hiroyuki 已提交
1956

1957
	parent = mem_cgroup_from_cont(pcg);
1958
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1959
	if (ret || !parent)
1960
		goto put_back;
1961

1962 1963 1964
	ret = mem_cgroup_move_account(pc, child, parent, true);
	if (ret)
		mem_cgroup_cancel_charge(parent);
1965
put_back:
K
KAMEZAWA Hiroyuki 已提交
1966
	putback_lru_page(page);
1967
put:
1968
	put_page(page);
1969
out:
1970 1971 1972
	return ret;
}

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
1994
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1995
	if (ret || !mem)
1996 1997 1998
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
1999 2000 2001
	return 0;
}

2002 2003
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2004
{
2005
	if (mem_cgroup_disabled())
2006
		return 0;
2007 2008
	if (PageCompound(page))
		return 0;
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2020
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2021
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
2022 2023
}

D
Daisuke Nishimura 已提交
2024 2025 2026 2027
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2028 2029
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2030
{
2031 2032 2033
	struct mem_cgroup *mem = NULL;
	int ret;

2034
	if (mem_cgroup_disabled())
2035
		return 0;
2036 2037
	if (PageCompound(page))
		return 0;
2038 2039 2040 2041 2042 2043 2044 2045
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2046 2047
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2048 2049 2050 2051
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2052 2053 2054 2055 2056 2057 2058

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2059 2060
			return 0;
		}
2061
		unlock_page_cgroup(pc);
2062 2063
	}

2064
	if (unlikely(!mm && !mem))
2065
		mm = &init_mm;
2066

2067 2068
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
2069
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
2070

D
Daisuke Nishimura 已提交
2071 2072 2073 2074 2075 2076 2077 2078 2079
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
2080 2081

	return ret;
2082 2083
}

2084 2085 2086
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2087
 * struct page_cgroup is acquired. This refcnt will be consumed by
2088 2089
 * "commit()" or removed by "cancel()"
 */
2090 2091 2092 2093 2094
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2095
	int ret;
2096

2097
	if (mem_cgroup_disabled())
2098 2099 2100 2101 2102 2103
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2104 2105 2106
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2107 2108
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2109
		goto charge_cur_mm;
2110
	mem = try_get_mem_cgroup_from_page(page);
2111 2112
	if (!mem)
		goto charge_cur_mm;
2113
	*ptr = mem;
2114
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2115 2116 2117
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
2118 2119 2120
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2121
	return __mem_cgroup_try_charge(mm, mask, ptr, true);
2122 2123
}

D
Daisuke Nishimura 已提交
2124 2125 2126
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2127 2128 2129
{
	struct page_cgroup *pc;

2130
	if (mem_cgroup_disabled())
2131 2132 2133
		return;
	if (!ptr)
		return;
2134
	cgroup_exclude_rmdir(&ptr->css);
2135
	pc = lookup_page_cgroup(page);
2136
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
2137
	__mem_cgroup_commit_charge(ptr, pc, ctype);
2138
	mem_cgroup_lru_add_after_commit_swapcache(page);
2139 2140 2141
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2142 2143 2144
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2145
	 */
2146
	if (do_swap_account && PageSwapCache(page)) {
2147
		swp_entry_t ent = {.val = page_private(page)};
2148
		unsigned short id;
2149
		struct mem_cgroup *memcg;
2150 2151 2152 2153

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2154
		if (memcg) {
2155 2156 2157 2158
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2159
			if (!mem_cgroup_is_root(memcg))
2160
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2161
			mem_cgroup_swap_statistics(memcg, false);
2162 2163
			mem_cgroup_put(memcg);
		}
2164
		rcu_read_unlock();
2165
	}
2166 2167 2168 2169 2170 2171
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2172 2173
}

D
Daisuke Nishimura 已提交
2174 2175 2176 2177 2178 2179
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2180 2181
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2182
	if (mem_cgroup_disabled())
2183 2184 2185
		return;
	if (!mem)
		return;
2186
	mem_cgroup_cancel_charge(mem);
2187 2188
}

2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
static void
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (uncharge_memsw)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2233 2234
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2235 2236
	return;
}
2237

2238
/*
2239
 * uncharge if !page_mapped(page)
2240
 */
2241
static struct mem_cgroup *
2242
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2243
{
H
Hugh Dickins 已提交
2244
	struct page_cgroup *pc;
2245
	struct mem_cgroup *mem = NULL;
2246
	struct mem_cgroup_per_zone *mz;
2247

2248
	if (mem_cgroup_disabled())
2249
		return NULL;
2250

K
KAMEZAWA Hiroyuki 已提交
2251
	if (PageSwapCache(page))
2252
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2253

2254
	/*
2255
	 * Check if our page_cgroup is valid
2256
	 */
2257 2258
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2259
		return NULL;
2260

2261
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2262

2263 2264
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2265 2266 2267 2268 2269
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2270
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2271 2272
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2284
	}
K
KAMEZAWA Hiroyuki 已提交
2285

2286 2287
	if (!mem_cgroup_is_root(mem))
		__do_uncharge(mem, ctype);
2288 2289
	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		mem_cgroup_swap_statistics(mem, true);
K
KAMEZAWA Hiroyuki 已提交
2290
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
2291

2292
	ClearPageCgroupUsed(pc);
2293 2294 2295 2296 2297 2298
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2299

2300
	mz = page_cgroup_zoneinfo(pc);
2301
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
2302

2303
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2304 2305 2306
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
2307

2308
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2309 2310 2311

unlock_out:
	unlock_page_cgroup(pc);
2312
	return NULL;
2313 2314
}

2315 2316
void mem_cgroup_uncharge_page(struct page *page)
{
2317 2318 2319 2320 2321
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2322 2323 2324 2325 2326 2327
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2328
	VM_BUG_ON(page->mapping);
2329 2330 2331
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2372
	memcg_oom_recover(batch->memcg);
2373 2374 2375 2376
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2377
#ifdef CONFIG_SWAP
2378
/*
2379
 * called after __delete_from_swap_cache() and drop "page" account.
2380 2381
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2382 2383
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2384 2385
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2386 2387 2388 2389 2390 2391
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2392 2393

	/* record memcg information */
K
KAMEZAWA Hiroyuki 已提交
2394
	if (do_swap_account && swapout && memcg) {
2395
		swap_cgroup_record(ent, css_id(&memcg->css));
2396 2397
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
2398
	if (swapout && memcg)
K
KAMEZAWA Hiroyuki 已提交
2399
		css_put(&memcg->css);
2400
}
2401
#endif
2402 2403 2404 2405 2406 2407 2408

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2409
{
2410
	struct mem_cgroup *memcg;
2411
	unsigned short id;
2412 2413 2414 2415

	if (!do_swap_account)
		return;

2416 2417 2418
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2419
	if (memcg) {
2420 2421 2422 2423
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2424
		if (!mem_cgroup_is_root(memcg))
2425
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2426
		mem_cgroup_swap_statistics(memcg, false);
2427 2428
		mem_cgroup_put(memcg);
	}
2429
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2430
}
2431 2432 2433 2434 2435 2436

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2437
 * @need_fixup: whether we should fixup res_counters and refcounts.
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2448
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2449 2450 2451 2452 2453 2454 2455 2456
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2457
		mem_cgroup_swap_statistics(to, true);
2458
		/*
2459 2460 2461 2462 2463 2464
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2465 2466
		 */
		mem_cgroup_get(to);
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
			css_put(&to->css);
		}
2479 2480 2481 2482 2483 2484
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2485
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2486 2487 2488
{
	return -EINVAL;
}
2489
#endif
K
KAMEZAWA Hiroyuki 已提交
2490

2491
/*
2492 2493
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2494
 */
2495 2496
int mem_cgroup_prepare_migration(struct page *page,
	struct page *newpage, struct mem_cgroup **ptr)
2497 2498
{
	struct page_cgroup *pc;
2499
	struct mem_cgroup *mem = NULL;
2500
	enum charge_type ctype;
2501
	int ret = 0;
2502

2503
	if (mem_cgroup_disabled())
2504 2505
		return 0;

2506 2507 2508
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2509 2510
		mem = pc->mem_cgroup;
		css_get(&mem->css);
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
2542
	}
2543
	unlock_page_cgroup(pc);
2544 2545 2546 2547 2548 2549
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
2550

A
Andrea Arcangeli 已提交
2551
	*ptr = mem;
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
2565
	}
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
	__mem_cgroup_commit_charge(mem, pc, ctype);
2580
	return ret;
2581
}
2582

2583
/* remove redundant charge if migration failed*/
2584
void mem_cgroup_end_migration(struct mem_cgroup *mem,
2585
	struct page *oldpage, struct page *newpage)
2586
{
2587
	struct page *used, *unused;
2588 2589 2590 2591
	struct page_cgroup *pc;

	if (!mem)
		return;
2592
	/* blocks rmdir() */
2593
	cgroup_exclude_rmdir(&mem->css);
2594 2595
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
2596 2597
		used = oldpage;
		unused = newpage;
2598
	} else {
2599
		used = newpage;
2600 2601
		unused = oldpage;
	}
2602
	/*
2603 2604 2605
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
2606
	 */
2607 2608 2609 2610
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
2611

2612 2613 2614 2615 2616
	if (unused != oldpage)
		pc = lookup_page_cgroup(unused);
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

	pc = lookup_page_cgroup(used);
2617
	/*
2618 2619 2620 2621 2622 2623
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
2624
	 */
2625 2626
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
2627
	/*
2628 2629
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
2630 2631 2632 2633
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2634
}
2635

2636
/*
2637 2638 2639 2640 2641 2642
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2643
 */
2644
int mem_cgroup_shmem_charge_fallback(struct page *page,
2645 2646
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2647
{
2648
	struct mem_cgroup *mem = NULL;
2649
	int ret;
2650

2651
	if (mem_cgroup_disabled())
2652
		return 0;
2653

2654 2655 2656
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2657

2658
	return ret;
2659 2660
}

2661 2662
static DEFINE_MUTEX(set_limit_mutex);

2663
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2664
				unsigned long long val)
2665
{
2666
	int retry_count;
2667
	u64 memswlimit, memlimit;
2668
	int ret = 0;
2669 2670
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
2671
	int enlarge;
2672 2673 2674 2675 2676 2677 2678 2679 2680

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2681

2682
	enlarge = 0;
2683
	while (retry_count) {
2684 2685 2686 2687
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2698 2699
			break;
		}
2700 2701 2702 2703 2704

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

2705
		ret = res_counter_set_limit(&memcg->res, val);
2706 2707 2708 2709 2710 2711
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2712 2713 2714 2715 2716
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2717
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2718
						MEM_CGROUP_RECLAIM_SHRINK);
2719 2720 2721 2722 2723 2724
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2725
	}
2726 2727
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2728

2729 2730 2731
	return ret;
}

L
Li Zefan 已提交
2732 2733
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
2734
{
2735
	int retry_count;
2736
	u64 memlimit, memswlimit, oldusage, curusage;
2737 2738
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
2739
	int enlarge = 0;
2740

2741 2742 2743
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
2761 2762 2763
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
2764
		ret = res_counter_set_limit(&memcg->memsw, val);
2765 2766 2767 2768 2769 2770
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2771 2772 2773 2774 2775
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2776
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2777 2778
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
2779
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2780
		/* Usage is reduced ? */
2781
		if (curusage >= oldusage)
2782
			retry_count--;
2783 2784
		else
			oldusage = curusage;
2785
	}
2786 2787
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2788 2789 2790
	return ret;
}

2791 2792 2793 2794 2795 2796 2797 2798 2799
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
						gfp_t gfp_mask, int nid,
						int zid)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2800
	unsigned long long excess;
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(nid, zid);
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2853
		excess = res_counter_soft_limit_excess(&mz->mem->res);
2854 2855 2856 2857 2858 2859 2860 2861
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
2862 2863
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

2882 2883 2884 2885
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
2886
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
2887
				int node, int zid, enum lru_list lru)
2888
{
K
KAMEZAWA Hiroyuki 已提交
2889 2890
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
2891
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
2892
	unsigned long flags, loop;
2893
	struct list_head *list;
2894
	int ret = 0;
2895

K
KAMEZAWA Hiroyuki 已提交
2896 2897
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
2898
	list = &mz->lists[lru];
2899

2900 2901 2902 2903 2904 2905
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
2906
		spin_lock_irqsave(&zone->lru_lock, flags);
2907
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
2908
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2909
			break;
2910 2911 2912 2913
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
2914
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
2915
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2916 2917
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
2918
		spin_unlock_irqrestore(&zone->lru_lock, flags);
2919

K
KAMEZAWA Hiroyuki 已提交
2920
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2921
		if (ret == -ENOMEM)
2922
			break;
2923 2924 2925 2926 2927 2928 2929

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
2930
	}
K
KAMEZAWA Hiroyuki 已提交
2931

2932 2933 2934
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
2935 2936 2937 2938 2939 2940
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
2941
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2942
{
2943 2944 2945
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2946
	struct cgroup *cgrp = mem->css.cgroup;
2947

2948
	css_get(&mem->css);
2949 2950

	shrink = 0;
2951 2952 2953
	/* should free all ? */
	if (free_all)
		goto try_to_free;
2954
move_account:
2955
	do {
2956
		ret = -EBUSY;
2957 2958 2959 2960
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
2961
			goto out;
2962 2963
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
2964
		drain_all_stock_sync();
2965
		ret = 0;
2966
		for_each_node_state(node, N_HIGH_MEMORY) {
2967
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2968
				enum lru_list l;
2969 2970
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
2971
							node, zid, l);
2972 2973 2974
					if (ret)
						break;
				}
2975
			}
2976 2977 2978
			if (ret)
				break;
		}
2979
		memcg_oom_recover(mem);
2980 2981 2982
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
2983
		cond_resched();
2984 2985
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
2986 2987 2988
out:
	css_put(&mem->css);
	return ret;
2989 2990

try_to_free:
2991 2992
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2993 2994 2995
		ret = -EBUSY;
		goto out;
	}
2996 2997
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2998 2999 3000 3001
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3002 3003 3004 3005 3006

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3007 3008
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3009
		if (!progress) {
3010
			nr_retries--;
3011
			/* maybe some writeback is necessary */
3012
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3013
		}
3014 3015

	}
K
KAMEZAWA Hiroyuki 已提交
3016
	lru_add_drain();
3017
	/* try move_account...there may be some *locked* pages. */
3018
	goto move_account;
3019 3020
}

3021 3022 3023 3024 3025 3026
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3045
	 * If parent's use_hierarchy is set, we can't make any modifications
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3065 3066 3067 3068 3069 3070 3071 3072 3073
struct mem_cgroup_idx_data {
	s64 val;
	enum mem_cgroup_stat_index idx;
};

static int
mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_idx_data *d = data;
3074
	d->val += mem_cgroup_read_stat(mem, d->idx);
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
	return 0;
}

static void
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx, s64 *val)
{
	struct mem_cgroup_idx_data d;
	d.idx = idx;
	d.val = 0;
	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
	*val = d.val;
}

3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
	u64 idx_val, val;

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
	val = idx_val;
	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
	val += idx_val;

	if (swap) {
		mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
		val += idx_val;
	}

	return val << PAGE_SHIFT;
}

3114
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3115
{
3116
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3117
	u64 val;
3118 3119 3120 3121 3122 3123
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3124 3125 3126
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3127
			val = res_counter_read_u64(&mem->res, name);
3128 3129
		break;
	case _MEMSWAP:
3130 3131 3132
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3133
			val = res_counter_read_u64(&mem->memsw, name);
3134 3135 3136 3137 3138 3139
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3140
}
3141 3142 3143 3144
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3145 3146
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3147
{
3148
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3149
	int type, name;
3150 3151 3152
	unsigned long long val;
	int ret;

3153 3154 3155
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3156
	case RES_LIMIT:
3157 3158 3159 3160
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3161 3162
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3163 3164 3165
		if (ret)
			break;
		if (type == _MEM)
3166
			ret = mem_cgroup_resize_limit(memcg, val);
3167 3168
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3169
		break;
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3184 3185 3186 3187 3188
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3189 3190
}

3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3219
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3220 3221
{
	struct mem_cgroup *mem;
3222
	int type, name;
3223 3224

	mem = mem_cgroup_from_cont(cont);
3225 3226 3227
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3228
	case RES_MAX_USAGE:
3229 3230 3231 3232
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3233 3234
		break;
	case RES_FAILCNT:
3235 3236 3237 3238
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3239 3240
		break;
	}
3241

3242
	return 0;
3243 3244
}

3245 3246 3247 3248 3249 3250
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3251
#ifdef CONFIG_MMU
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3270 3271 3272 3273 3274 3275 3276
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3277

K
KAMEZAWA Hiroyuki 已提交
3278 3279 3280 3281 3282

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3283
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3284 3285
	MCS_PGPGIN,
	MCS_PGPGOUT,
3286
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3297 3298
};

K
KAMEZAWA Hiroyuki 已提交
3299 3300 3301 3302 3303 3304
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3305
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3306 3307
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3308
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
3323
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3324
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3325
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3326
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3327
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3328
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3329
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3330
	s->stat[MCS_PGPGIN] += val;
3331
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3332
	s->stat[MCS_PGPGOUT] += val;
3333
	if (do_swap_account) {
3334
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3335 3336
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

3358 3359
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3360 3361
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3362
	struct mcs_total_stat mystat;
3363 3364
	int i;

K
KAMEZAWA Hiroyuki 已提交
3365 3366
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3367

3368 3369 3370
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3371
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3372
	}
L
Lee Schermerhorn 已提交
3373

K
KAMEZAWA Hiroyuki 已提交
3374
	/* Hierarchical information */
3375 3376 3377 3378 3379 3380 3381
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3382

K
KAMEZAWA Hiroyuki 已提交
3383 3384
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3385 3386 3387
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3388
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3389
	}
K
KAMEZAWA Hiroyuki 已提交
3390

K
KOSAKI Motohiro 已提交
3391
#ifdef CONFIG_DEBUG_VM
3392
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3420 3421 3422
	return 0;
}

K
KOSAKI Motohiro 已提交
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3435

K
KOSAKI Motohiro 已提交
3436 3437 3438 3439 3440 3441 3442
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3443 3444 3445

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3446 3447
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3448 3449
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3450
		return -EINVAL;
3451
	}
K
KOSAKI Motohiro 已提交
3452 3453 3454 3455 3456

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3457 3458
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3459 3460 3461
	return 0;
}

3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
		t = rcu_dereference(memcg->thresholds);
	else
		t = rcu_dereference(memcg->memsw_thresholds);

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3484
	i = t->current_threshold;
3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3508
	t->current_threshold = i - 1;
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
	__mem_cgroup_threshold(memcg, false);
	if (do_swap_account)
		__mem_cgroup_threshold(memcg, true);
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
	int size;
	int i, ret;

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
		thresholds = memcg->thresholds;
	else if (type == _MEMSWAP)
		thresholds = memcg->memsw_thresholds;
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
	if (thresholds)
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	if (thresholds)
		size = thresholds->size + 1;
	else
		size = 1;

	/* Allocate memory for new array of thresholds */
	thresholds_new = kmalloc(sizeof(*thresholds_new) +
			size * sizeof(struct mem_cgroup_threshold),
			GFP_KERNEL);
	if (!thresholds_new) {
		ret = -ENOMEM;
		goto unlock;
	}
	thresholds_new->size = size;

	/* Copy thresholds (if any) to new array */
	if (thresholds)
		memcpy(thresholds_new->entries, thresholds->entries,
				thresholds->size *
				sizeof(struct mem_cgroup_threshold));
	/* Add new threshold */
	thresholds_new->entries[size - 1].eventfd = eventfd;
	thresholds_new->entries[size - 1].threshold = threshold;

	/* Sort thresholds. Registering of new threshold isn't time-critical */
	sort(thresholds_new->entries, size,
			sizeof(struct mem_cgroup_threshold),
			compare_thresholds, NULL);

	/* Find current threshold */
3600
	thresholds_new->current_threshold = -1;
3601 3602 3603 3604 3605 3606 3607
	for (i = 0; i < size; i++) {
		if (thresholds_new->entries[i].threshold < usage) {
			/*
			 * thresholds_new->current_threshold will not be used
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3608
			++thresholds_new->current_threshold;
3609 3610 3611 3612 3613 3614 3615 3616
		}
	}

	if (type == _MEM)
		rcu_assign_pointer(memcg->thresholds, thresholds_new);
	else
		rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);

3617
	/* To be sure that nobody uses thresholds */
3618 3619
	synchronize_rcu();

3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
	/*
	 * Free old preallocated buffer and use thresholds as new
	 * preallocated buffer.
	 */
	if (type == _MEM) {
		kfree(memcg->__thresholds);
		memcg->__thresholds = thresholds;
	} else {
		kfree(memcg->__memsw_thresholds);
		memcg->__memsw_thresholds = thresholds;
	}
3631 3632 3633 3634 3635 3636
unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3637
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3638
	struct cftype *cft, struct eventfd_ctx *eventfd)
3639 3640 3641 3642 3643 3644
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
	int size = 0;
3645
	int i, j;
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
		thresholds = memcg->thresholds;
	else if (type == _MEMSWAP)
		thresholds = memcg->memsw_thresholds;
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
	for (i = 0; i < thresholds->size; i++) {
		if (thresholds->entries[i].eventfd != eventfd)
			size++;
	}

3672 3673 3674 3675 3676 3677
	/* Use preallocated buffer for new array of thresholds */
	if (type == _MEM)
		thresholds_new = memcg->__thresholds;
	else
		thresholds_new = memcg->__memsw_thresholds;

3678 3679
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3680
		kfree(thresholds_new);
3681
		thresholds_new = NULL;
3682
		goto swap_buffers;
3683 3684 3685 3686 3687
	}

	thresholds_new->size = size;

	/* Copy thresholds and find current threshold */
3688
	thresholds_new->current_threshold = -1;
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
	for (i = 0, j = 0; i < thresholds->size; i++) {
		if (thresholds->entries[i].eventfd == eventfd)
			continue;

		thresholds_new->entries[j] = thresholds->entries[i];
		if (thresholds_new->entries[j].threshold < usage) {
			/*
			 * thresholds_new->current_threshold will not be used
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3700
			++thresholds_new->current_threshold;
3701 3702 3703 3704
		}
		j++;
	}

3705 3706 3707 3708
swap_buffers:
	/* Swap thresholds array and preallocated buffer */
	if (type == _MEM) {
		memcg->__thresholds = thresholds;
3709
		rcu_assign_pointer(memcg->thresholds, thresholds_new);
3710 3711
	} else {
		memcg->__memsw_thresholds = thresholds;
3712
		rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);
3713
	}
3714

3715
	/* To be sure that nobody uses thresholds */
3716 3717 3718 3719
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
3720

K
KAMEZAWA Hiroyuki 已提交
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

3746
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

/*
 */
static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
	cgroup_unlock();
	return 0;
}

B
Balbir Singh 已提交
3807 3808
static struct cftype mem_cgroup_files[] = {
	{
3809
		.name = "usage_in_bytes",
3810
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3811
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
3812 3813
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
3814
	},
3815 3816
	{
		.name = "max_usage_in_bytes",
3817
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3818
		.trigger = mem_cgroup_reset,
3819 3820
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3821
	{
3822
		.name = "limit_in_bytes",
3823
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3824
		.write_string = mem_cgroup_write,
3825
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3826
	},
3827 3828 3829 3830 3831 3832
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3833 3834
	{
		.name = "failcnt",
3835
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3836
		.trigger = mem_cgroup_reset,
3837
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3838
	},
3839 3840
	{
		.name = "stat",
3841
		.read_map = mem_control_stat_show,
3842
	},
3843 3844 3845 3846
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
3847 3848 3849 3850 3851
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
3852 3853 3854 3855 3856
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3857 3858 3859 3860 3861
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3862 3863
	{
		.name = "oom_control",
3864 3865
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3866 3867 3868 3869
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
B
Balbir Singh 已提交
3870 3871
};

3872 3873 3874 3875 3876 3877
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
3878 3879
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

3915 3916 3917
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
3918
	struct mem_cgroup_per_zone *mz;
3919
	enum lru_list l;
3920
	int zone, tmp = node;
3921 3922 3923 3924 3925 3926 3927 3928
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
3929 3930 3931
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3932 3933
	if (!pn)
		return 1;
3934

3935 3936
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
3937 3938 3939

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
3940 3941
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
3942
		mz->usage_in_excess = 0;
3943 3944
		mz->on_tree = false;
		mz->mem = mem;
3945
	}
3946 3947 3948
	return 0;
}

3949 3950 3951 3952 3953
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

3954 3955 3956
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
3957
	int size = sizeof(struct mem_cgroup);
3958

3959
	/* Can be very big if MAX_NUMNODES is very big */
3960 3961
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
3962
	else
3963
		mem = vmalloc(size);
3964

3965 3966 3967 3968
	if (!mem)
		return NULL;

	memset(mem, 0, size);
3969 3970 3971 3972 3973 3974 3975 3976
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!mem->stat) {
		if (size < PAGE_SIZE)
			kfree(mem);
		else
			vfree(mem);
		mem = NULL;
	}
3977 3978 3979
	return mem;
}

3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

3991
static void __mem_cgroup_free(struct mem_cgroup *mem)
3992
{
K
KAMEZAWA Hiroyuki 已提交
3993 3994
	int node;

3995
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
3996 3997
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
3998 3999 4000
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4001 4002
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4003 4004 4005 4006 4007
		kfree(mem);
	else
		vfree(mem);
}

4008 4009 4010 4011 4012
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4013
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4014
{
4015
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4016
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4017
		__mem_cgroup_free(mem);
4018 4019 4020
		if (parent)
			mem_cgroup_put(parent);
	}
4021 4022
}

4023 4024 4025 4026 4027
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4028 4029 4030 4031 4032 4033 4034 4035 4036
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4037

4038 4039 4040
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4041
	if (!mem_cgroup_disabled() && really_do_swap_account)
4042 4043 4044 4045 4046 4047 4048 4049
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4075
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4076 4077
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4078
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4079
	long error = -ENOMEM;
4080
	int node;
B
Balbir Singh 已提交
4081

4082 4083
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4084
		return ERR_PTR(error);
4085

4086 4087 4088
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4089

4090
	/* root ? */
4091
	if (cont->parent == NULL) {
4092
		int cpu;
4093
		enable_swap_cgroup();
4094
		parent = NULL;
4095
		root_mem_cgroup = mem;
4096 4097
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4098 4099 4100 4101 4102 4103
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
		hotcpu_notifier(memcg_stock_cpu_callback, 0);
4104
	} else {
4105
		parent = mem_cgroup_from_cont(cont->parent);
4106
		mem->use_hierarchy = parent->use_hierarchy;
4107
		mem->oom_kill_disable = parent->oom_kill_disable;
4108
	}
4109

4110 4111 4112
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4113 4114 4115 4116 4117 4118 4119
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4120 4121 4122 4123
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4124
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
4125
	spin_lock_init(&mem->reclaim_param_lock);
K
KAMEZAWA Hiroyuki 已提交
4126
	INIT_LIST_HEAD(&mem->oom_notify);
4127

K
KOSAKI Motohiro 已提交
4128 4129
	if (parent)
		mem->swappiness = get_swappiness(parent);
4130
	atomic_set(&mem->refcnt, 1);
4131
	mem->move_charge_at_immigrate = 0;
4132
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4133
	return &mem->css;
4134
free_out:
4135
	__mem_cgroup_free(mem);
4136
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4137
	return ERR_PTR(error);
B
Balbir Singh 已提交
4138 4139
}

4140
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4141 4142 4143
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4144 4145

	return mem_cgroup_force_empty(mem, false);
4146 4147
}

B
Balbir Singh 已提交
4148 4149 4150
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4151 4152 4153
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4154 4155 4156 4157 4158
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4159 4160 4161 4162 4163 4164 4165 4166
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4167 4168
}

4169
#ifdef CONFIG_MMU
4170
/* Handlers for move charge at task migration. */
4171 4172
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4173
{
4174 4175
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4176 4177
	struct mem_cgroup *mem = mc.to;

4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_get(&mem->css, (int)count);
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
4216
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4217 4218 4219 4220 4221
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4222 4223 4224 4225 4226 4227 4228 4229
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4230
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4231 4232 4233 4234 4235 4236
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4237 4238 4239
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4240 4241 4242 4243 4244
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4245
	swp_entry_t	ent;
4246 4247 4248 4249 4250
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4251
	MC_TARGET_SWAP,
4252 4253
};

D
Daisuke Nishimura 已提交
4254 4255
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4256
{
D
Daisuke Nishimura 已提交
4257
	struct page *page = vm_normal_page(vma, addr, ptent);
4258

D
Daisuke Nishimura 已提交
4259 4260 4261 4262 4263 4264
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
4265 4266
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
4285 4286
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
4287
		return NULL;
4288
	}
D
Daisuke Nishimura 已提交
4289 4290 4291 4292 4293 4294
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4340 4341
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4342 4343 4344

	if (!page && !ent.val)
		return 0;
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4360 4361
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
4362 4363 4364 4365
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4385 4386 4387
	return 0;
}

4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
	up_read(&mm->mmap_sem);

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4415
	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4416 4417 4418 4419 4420
}

static void mem_cgroup_clear_mc(void)
{
	/* we must uncharge all the leftover precharges from mc.to */
4421 4422 4423
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
4424
		memcg_oom_recover(mc.to);
4425 4426 4427 4428 4429 4430 4431 4432
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4433
		memcg_oom_recover(mc.from);
4434
	}
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		WARN_ON_ONCE(mc.moved_swap > INT_MAX);
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
			VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
			__css_put(&mc.to->css, mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */

		mc.moved_swap = 0;
	}
4458 4459
	mc.from = NULL;
	mc.to = NULL;
4460 4461
	mc.moving_task = NULL;
	wake_up_all(&mc.waitq);
4462 4463
}

4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4482 4483 4484 4485
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4486
			VM_BUG_ON(mc.moved_charge);
4487
			VM_BUG_ON(mc.moved_swap);
4488
			VM_BUG_ON(mc.moving_task);
4489 4490 4491
			mc.from = from;
			mc.to = mem;
			mc.precharge = 0;
4492
			mc.moved_charge = 0;
4493
			mc.moved_swap = 0;
4494
			mc.moving_task = current;
4495 4496 4497 4498 4499

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
		}
4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
		mmput(mm);
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4510
	mem_cgroup_clear_mc();
4511 4512
}

4513 4514 4515
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4516
{
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4530
		swp_entry_t ent;
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4542 4543
			if (!mem_cgroup_move_account(pc,
						mc.from, mc.to, false)) {
4544
				mc.precharge--;
4545 4546
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4547 4548 4549 4550 4551
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4552 4553
		case MC_TARGET_SWAP:
			ent = target.ent;
4554 4555
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4556
				mc.precharge--;
4557 4558 4559
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4560
			break;
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4575
		ret = mem_cgroup_do_precharge(1);
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
	up_read(&mm->mmap_sem);
4608 4609
}

B
Balbir Singh 已提交
4610 4611 4612
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
4613 4614
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
4615
{
4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
	struct mm_struct *mm;

	if (!mc.to)
		/* no need to move charge */
		return;

	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4628
}
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
B
Balbir Singh 已提交
4651

B
Balbir Singh 已提交
4652 4653 4654 4655
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
4656
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
4657 4658
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
4659 4660
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
4661
	.attach = mem_cgroup_move_task,
4662
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
4663
	.use_id = 1,
B
Balbir Singh 已提交
4664
};
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif