memcontrol.c 186.2 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82
static int really_do_swap_account __initdata = 1;
#else
83
static int really_do_swap_account __initdata;
84 85
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
147 148 149 150
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
151
	struct mem_cgroup *last_visited;
152
	int last_dead_count;
M
Michal Hocko 已提交
153

154 155 156 157
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

158 159 160 161
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
162
	struct lruvec		lruvec;
163
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
164

165 166
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

167 168 169 170
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
171
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
172
						/* use container_of	   */
173 174 175 176 177 178
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

199 200 201 202 203
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
204
/* For threshold */
205
struct mem_cgroup_threshold_ary {
206
	/* An array index points to threshold just below or equal to usage. */
207
	int current_threshold;
208 209 210 211 212
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
213 214 215 216 217 218 219 220 221 222 223 224

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
225 226 227 228 229
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
230

231 232 233
/*
 * cgroup_event represents events which userspace want to receive.
 */
234
struct mem_cgroup_event {
235
	/*
236
	 * memcg which the event belongs to.
237
	 */
238
	struct mem_cgroup *memcg;
239 240 241 242 243 244 245 246
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
247 248 249 250 251
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
252
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
253
			      struct eventfd_ctx *eventfd, const char *args);
254 255 256 257 258
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
259
	void (*unregister_event)(struct mem_cgroup *memcg,
260
				 struct eventfd_ctx *eventfd);
261 262 263 264 265 266 267 268 269 270
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

271 272
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273

B
Balbir Singh 已提交
274 275 276 277 278 279 280
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 282 283
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
284 285 286 287 288 289 290
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
291

292 293 294
	/* vmpressure notifications */
	struct vmpressure vmpressure;

295 296 297 298
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
299

300 301 302 303
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
304 305 306 307
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
308
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309 310 311

	bool		oom_lock;
	atomic_t	under_oom;
312
	atomic_t	oom_wakeups;
313

314
	int	swappiness;
315 316
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
317

318 319 320
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

321 322 323 324
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
325
	struct mem_cgroup_thresholds thresholds;
326

327
	/* thresholds for mem+swap usage. RCU-protected */
328
	struct mem_cgroup_thresholds memsw_thresholds;
329

K
KAMEZAWA Hiroyuki 已提交
330 331
	/* For oom notifier event fd */
	struct list_head oom_notify;
332

333 334 335 336
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
337
	unsigned long move_charge_at_immigrate;
338 339 340 341
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
342 343
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
344
	/*
345
	 * percpu counter.
346
	 */
347
	struct mem_cgroup_stat_cpu __percpu *stat;
348 349 350 351 352 353
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
354

M
Michal Hocko 已提交
355
	atomic_t	dead_count;
M
Michal Hocko 已提交
356
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
358
#endif
359
#if defined(CONFIG_MEMCG_KMEM)
360 361
	/* analogous to slab_common's slab_caches list, but per-memcg;
	 * protected by memcg_slab_mutex */
362 363 364 365
	struct list_head memcg_slab_caches;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
366 367 368 369 370 371 372

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
373

374 375 376 377
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

378 379
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
380 381
};

382 383
/* internal only representation about the status of kmem accounting. */
enum {
384
	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
385
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
386 387 388 389 390 391 392
};

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
393 394 395 396 397 398 399 400

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
401 402 403 404 405
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
406 407 408 409 410 411 412 413 414
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
415 416
#endif

417 418
/* Stuffs for move charges at task migration. */
/*
419 420
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
421 422
 */
enum move_type {
423
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
424
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
425 426 427
	NR_MOVE_TYPE,
};

428 429
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
430
	spinlock_t	  lock; /* for from, to */
431 432
	struct mem_cgroup *from;
	struct mem_cgroup *to;
433
	unsigned long immigrate_flags;
434
	unsigned long precharge;
435
	unsigned long moved_charge;
436
	unsigned long moved_swap;
437 438 439
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
440
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
441 442
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
443

D
Daisuke Nishimura 已提交
444 445
static bool move_anon(void)
{
446
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
447 448
}

449 450
static bool move_file(void)
{
451
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
452 453
}

454 455 456 457
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
458
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
459
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
460

461 462
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
463
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
464
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
465
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
466 467 468
	NR_CHARGE_TYPE,
};

469
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
470 471 472 473
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
474
	_KMEM,
G
Glauber Costa 已提交
475 476
};

477 478
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
479
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
480 481
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
482

483 484 485 486 487 488 489 490
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

491 492 493 494 495 496 497
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

498 499
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
500
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
501 502
}

503 504 505 506 507 508 509 510 511 512 513 514 515
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

516 517 518 519 520
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

521 522 523 524 525 526
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
	/*
	 * The ID of the root cgroup is 0, but memcg treat 0 as an
	 * invalid ID, so we return (cgroup_id + 1).
	 */
	return memcg->css.cgroup->id + 1;
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

540
	css = css_from_id(id - 1, &memory_cgrp_subsys);
L
Li Zefan 已提交
541 542 543
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
544
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
545
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
546 547 548

void sock_update_memcg(struct sock *sk)
{
549
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
550
		struct mem_cgroup *memcg;
551
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
552 553 554

		BUG_ON(!sk->sk_prot->proto_cgroup);

555 556 557 558 559 560 561 562 563 564
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
565
			css_get(&sk->sk_cgrp->memcg->css);
566 567 568
			return;
		}

G
Glauber Costa 已提交
569 570
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
571
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
572 573
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
574
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
575 576 577 578 579 580 581 582
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
583
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
584 585 586
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
587
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
588 589
	}
}
G
Glauber Costa 已提交
590 591 592 593 594 595

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

596
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
597 598
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
599

600 601
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
602
	if (!memcg_proto_activated(&memcg->tcp_mem))
603 604 605 606 607 608 609 610 611
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

612
#ifdef CONFIG_MEMCG_KMEM
613 614
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
615 616 617 618 619
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
620 621 622 623 624 625
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
626 627
int memcg_limited_groups_array_size;

628 629 630 631 632 633
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
634
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
635 636
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
637
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
638 639 640
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
641
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
642

643 644 645 646 647 648
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
649
struct static_key memcg_kmem_enabled_key;
650
EXPORT_SYMBOL(memcg_kmem_enabled_key);
651 652 653

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
654
	if (memcg_kmem_is_active(memcg)) {
655
		static_key_slow_dec(&memcg_kmem_enabled_key);
656 657
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
658 659 660 661 662
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
663 664 665 666 667 668 669 670 671 672 673 674 675
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

676
static void drain_all_stock_async(struct mem_cgroup *memcg);
677

678
static struct mem_cgroup_per_zone *
679
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
680
{
681
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
682
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
683 684
}

685
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
686
{
687
	return &memcg->css;
688 689
}

690
static struct mem_cgroup_per_zone *
691
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
692
{
693 694
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
695

696
	return mem_cgroup_zoneinfo(memcg, nid, zid);
697 698
}

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

static void
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
	unsigned long long excess;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
	mctz = soft_limit_tree_from_page(page);

	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
			spin_unlock(&mctz->lock);
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node(node) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
876
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
877
				 enum mem_cgroup_stat_index idx)
878
{
879
	long val = 0;
880 881
	int cpu;

882 883
	get_online_cpus();
	for_each_online_cpu(cpu)
884
		val += per_cpu(memcg->stat->count[idx], cpu);
885
#ifdef CONFIG_HOTPLUG_CPU
886 887 888
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
889 890
#endif
	put_online_cpus();
891 892 893
	return val;
}

894
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
895 896 897
					 bool charge)
{
	int val = (charge) ? 1 : -1;
898
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
899 900
}

901
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
902 903 904 905 906
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

907
	get_online_cpus();
908
	for_each_online_cpu(cpu)
909
		val += per_cpu(memcg->stat->events[idx], cpu);
910
#ifdef CONFIG_HOTPLUG_CPU
911 912 913
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
914
#endif
915
	put_online_cpus();
916 917 918
	return val;
}

919
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
920
					 struct page *page,
921
					 bool anon, int nr_pages)
922
{
923 924 925 926 927 928
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
929
				nr_pages);
930
	else
931
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
932
				nr_pages);
933

934 935 936 937
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

938 939
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
940
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
941
	else {
942
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
943 944
		nr_pages = -nr_pages; /* for event */
	}
945

946
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
947 948
}

949
unsigned long
950
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
951 952 953 954 955 956 957 958
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
959
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
960
			unsigned int lru_mask)
961 962
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
963
	enum lru_list lru;
964 965
	unsigned long ret = 0;

966
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
967

H
Hugh Dickins 已提交
968 969 970
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
971 972 973 974 975
	}
	return ret;
}

static unsigned long
976
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
977 978
			int nid, unsigned int lru_mask)
{
979 980 981
	u64 total = 0;
	int zid;

982
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
983 984
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
985

986 987
	return total;
}
988

989
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
990
			unsigned int lru_mask)
991
{
992
	int nid;
993 994
	u64 total = 0;

995
	for_each_node_state(nid, N_MEMORY)
996
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
997
	return total;
998 999
}

1000 1001
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
1002 1003 1004
{
	unsigned long val, next;

1005
	val = __this_cpu_read(memcg->stat->nr_page_events);
1006
	next = __this_cpu_read(memcg->stat->targets[target]);
1007
	/* from time_after() in jiffies.h */
1008 1009 1010 1011 1012
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
1013 1014 1015
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
1016 1017 1018 1019 1020 1021 1022 1023
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1024
	}
1025
	return false;
1026 1027 1028 1029 1030 1031
}

/*
 * Check events in order.
 *
 */
1032
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1033
{
1034
	preempt_disable();
1035
	/* threshold event is triggered in finer grain than soft limit */
1036 1037
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1038
		bool do_softlimit;
1039
		bool do_numainfo __maybe_unused;
1040

1041 1042
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1043 1044 1045 1046 1047 1048
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1049
		mem_cgroup_threshold(memcg);
1050 1051
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1052
#if MAX_NUMNODES > 1
1053
		if (unlikely(do_numainfo))
1054
			atomic_inc(&memcg->numainfo_events);
1055
#endif
1056 1057
	} else
		preempt_enable();
1058 1059
}

1060
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1061
{
1062 1063 1064 1065 1066 1067 1068 1069
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1070
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1071 1072
}

1073
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1074
{
1075
	struct mem_cgroup *memcg = NULL;
1076

1077 1078
	rcu_read_lock();
	do {
1079 1080 1081 1082 1083 1084
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1085
			memcg = root_mem_cgroup;
1086 1087 1088 1089 1090
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1091
	} while (!css_tryget(&memcg->css));
1092
	rcu_read_unlock();
1093
	return memcg;
1094 1095
}

1096 1097 1098 1099 1100 1101 1102
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1103
		struct mem_cgroup *last_visited)
1104
{
1105
	struct cgroup_subsys_state *prev_css, *next_css;
1106

1107
	prev_css = last_visited ? &last_visited->css : NULL;
1108
skip_node:
1109
	next_css = css_next_descendant_pre(prev_css, &root->css);
1110 1111 1112 1113 1114 1115 1116

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
1117 1118 1119 1120 1121 1122 1123 1124
	 *
	 * We do not take a reference on the root of the tree walk
	 * because we might race with the root removal when it would
	 * be the only node in the iterated hierarchy and mem_cgroup_iter
	 * would end up in an endless loop because it expects that at
	 * least one valid node will be returned. Root cannot disappear
	 * because caller of the iterator should hold it already so
	 * skipping css reference should be safe.
1125
	 */
1126
	if (next_css) {
1127 1128
		if ((next_css == &root->css) ||
		    ((next_css->flags & CSS_ONLINE) && css_tryget(next_css)))
1129
			return mem_cgroup_from_css(next_css);
1130 1131 1132

		prev_css = next_css;
		goto skip_node;
1133 1134 1135 1136 1137
	}

	return NULL;
}

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
1166 1167 1168 1169 1170 1171 1172 1173 1174

		/*
		 * We cannot take a reference to root because we might race
		 * with root removal and returning NULL would end up in
		 * an endless loop on the iterator user level when root
		 * would be returned all the time.
		 */
		if (position && position != root &&
				!css_tryget(&position->css))
1175 1176 1177 1178 1179 1180 1181 1182
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
1183
				   struct mem_cgroup *root,
1184 1185
				   int sequence)
{
1186 1187
	/* root reference counting symmetric to mem_cgroup_iter_load */
	if (last_visited && last_visited != root)
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1217
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1218
				   struct mem_cgroup *prev,
1219
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1220
{
1221
	struct mem_cgroup *memcg = NULL;
1222
	struct mem_cgroup *last_visited = NULL;
1223

1224 1225
	if (mem_cgroup_disabled())
		return NULL;
1226

1227 1228
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1229

1230
	if (prev && !reclaim)
1231
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1232

1233 1234
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1235
			goto out_css_put;
1236
		return root;
1237
	}
K
KAMEZAWA Hiroyuki 已提交
1238

1239
	rcu_read_lock();
1240
	while (!memcg) {
1241
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1242
		int uninitialized_var(seq);
1243

1244 1245 1246 1247 1248 1249 1250
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1251
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1252
				iter->last_visited = NULL;
1253 1254
				goto out_unlock;
			}
M
Michal Hocko 已提交
1255

1256
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1257
		}
K
KAMEZAWA Hiroyuki 已提交
1258

1259
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1260

1261
		if (reclaim) {
1262 1263
			mem_cgroup_iter_update(iter, last_visited, memcg, root,
					seq);
1264

M
Michal Hocko 已提交
1265
			if (!memcg)
1266 1267 1268 1269
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1270

1271
		if (prev && !memcg)
1272
			goto out_unlock;
1273
	}
1274 1275
out_unlock:
	rcu_read_unlock();
1276 1277 1278 1279
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1280
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1281
}
K
KAMEZAWA Hiroyuki 已提交
1282

1283 1284 1285 1286 1287 1288 1289
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1290 1291 1292 1293 1294 1295
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1296

1297 1298 1299 1300 1301 1302
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1303
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1304
	     iter != NULL;				\
1305
	     iter = mem_cgroup_iter(root, iter, NULL))
1306

1307
#define for_each_mem_cgroup(iter)			\
1308
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1309
	     iter != NULL;				\
1310
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1311

1312
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1313
{
1314
	struct mem_cgroup *memcg;
1315 1316

	rcu_read_lock();
1317 1318
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1319 1320 1321 1322
		goto out;

	switch (idx) {
	case PGFAULT:
1323 1324 1325 1326
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1327 1328 1329 1330 1331 1332 1333
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1334
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1335

1336 1337 1338
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1339
 * @memcg: memcg of the wanted lruvec
1340 1341 1342 1343 1344 1345 1346 1347 1348
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1349
	struct lruvec *lruvec;
1350

1351 1352 1353 1354
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1355 1356

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1367 1368
}

K
KAMEZAWA Hiroyuki 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1382

1383
/**
1384
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1385
 * @page: the page
1386
 * @zone: zone of the page
1387
 */
1388
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1389 1390
{
	struct mem_cgroup_per_zone *mz;
1391 1392
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1393
	struct lruvec *lruvec;
1394

1395 1396 1397 1398
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1399

K
KAMEZAWA Hiroyuki 已提交
1400
	pc = lookup_page_cgroup(page);
1401
	memcg = pc->mem_cgroup;
1402 1403

	/*
1404
	 * Surreptitiously switch any uncharged offlist page to root:
1405 1406 1407 1408 1409 1410 1411
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1412
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1413 1414
		pc->mem_cgroup = memcg = root_mem_cgroup;

1415
	mz = page_cgroup_zoneinfo(memcg, page);
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1426
}
1427

1428
/**
1429 1430 1431 1432
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1433
 *
1434 1435
 * This function must be called when a page is added to or removed from an
 * lru list.
1436
 */
1437 1438
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1439 1440
{
	struct mem_cgroup_per_zone *mz;
1441
	unsigned long *lru_size;
1442 1443 1444 1445

	if (mem_cgroup_disabled())
		return;

1446 1447 1448 1449
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1450
}
1451

1452
/*
1453
 * Checks whether given mem is same or in the root_mem_cgroup's
1454 1455
 * hierarchy subtree
 */
1456 1457
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1458
{
1459 1460
	if (root_memcg == memcg)
		return true;
1461
	if (!root_memcg->use_hierarchy || !memcg)
1462
		return false;
1463
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1464 1465 1466 1467 1468 1469 1470
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1471
	rcu_read_lock();
1472
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1473 1474
	rcu_read_unlock();
	return ret;
1475 1476
}

1477 1478
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1479
{
1480
	struct mem_cgroup *curr = NULL;
1481
	struct task_struct *p;
1482
	bool ret;
1483

1484
	p = find_lock_task_mm(task);
1485
	if (p) {
1486
		curr = get_mem_cgroup_from_mm(p->mm);
1487 1488 1489 1490 1491 1492 1493
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1494
		rcu_read_lock();
1495 1496 1497
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1498
		rcu_read_unlock();
1499
	}
1500
	/*
1501
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1502
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1503 1504
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1505
	 */
1506
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1507
	css_put(&curr->css);
1508 1509 1510
	return ret;
}

1511
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1512
{
1513
	unsigned long inactive_ratio;
1514
	unsigned long inactive;
1515
	unsigned long active;
1516
	unsigned long gb;
1517

1518 1519
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1520

1521 1522 1523 1524 1525 1526
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1527
	return inactive * inactive_ratio < active;
1528 1529
}

1530 1531 1532
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1533
/**
1534
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1535
 * @memcg: the memory cgroup
1536
 *
1537
 * Returns the maximum amount of memory @mem can be charged with, in
1538
 * pages.
1539
 */
1540
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1541
{
1542 1543
	unsigned long long margin;

1544
	margin = res_counter_margin(&memcg->res);
1545
	if (do_swap_account)
1546
		margin = min(margin, res_counter_margin(&memcg->memsw));
1547
	return margin >> PAGE_SHIFT;
1548 1549
}

1550
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1551 1552
{
	/* root ? */
1553
	if (mem_cgroup_disabled() || !css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1554 1555
		return vm_swappiness;

1556
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1557 1558
}

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1573 1574 1575 1576

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1577
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1578
{
1579
	atomic_inc(&memcg_moving);
1580
	atomic_inc(&memcg->moving_account);
1581 1582 1583
	synchronize_rcu();
}

1584
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1585
{
1586 1587 1588 1589
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1590 1591
	if (memcg) {
		atomic_dec(&memcg_moving);
1592
		atomic_dec(&memcg->moving_account);
1593
	}
1594
}
1595

1596
/*
Q
Qiang Huang 已提交
1597
 * A routine for checking "mem" is under move_account() or not.
1598
 *
Q
Qiang Huang 已提交
1599 1600 1601
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1602
 */
1603
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1604
{
1605 1606
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1607
	bool ret = false;
1608 1609 1610 1611 1612 1613 1614 1615 1616
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1617

1618 1619
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1620 1621
unlock:
	spin_unlock(&mc.lock);
1622 1623 1624
	return ret;
}

1625
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1626 1627
{
	if (mc.moving_task && current != mc.moving_task) {
1628
		if (mem_cgroup_under_move(memcg)) {
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1658
#define K(x) ((x) << (PAGE_SHIFT-10))
1659
/**
1660
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1661 1662 1663 1664 1665 1666 1667 1668
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1669
	/* oom_info_lock ensures that parallel ooms do not interleave */
1670
	static DEFINE_MUTEX(oom_info_lock);
1671 1672
	struct mem_cgroup *iter;
	unsigned int i;
1673

1674
	if (!p)
1675 1676
		return;

1677
	mutex_lock(&oom_info_lock);
1678 1679
	rcu_read_lock();

T
Tejun Heo 已提交
1680 1681 1682 1683 1684
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	pr_info(" killed as a result of limit of ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_info("\n");
1685 1686 1687

	rcu_read_unlock();

1688
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1689 1690 1691
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1692
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1693 1694 1695
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1696
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1697 1698 1699
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1700 1701

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1702 1703
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1719
	mutex_unlock(&oom_info_lock);
1720 1721
}

1722 1723 1724 1725
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1726
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1727 1728
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1729 1730
	struct mem_cgroup *iter;

1731
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1732
		num++;
1733 1734 1735
	return num;
}

D
David Rientjes 已提交
1736 1737 1738
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1739
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1740 1741 1742
{
	u64 limit;

1743 1744
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1745
	/*
1746
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1747
	 */
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1762 1763
}

1764 1765
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1766 1767 1768 1769 1770 1771 1772
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1773
	/*
1774 1775 1776
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1777
	 */
1778
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1779 1780 1781 1782 1783
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1784 1785
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1786
		struct css_task_iter it;
1787 1788
		struct task_struct *task;

1789 1790
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1803
				css_task_iter_end(&it);
1804 1805 1806 1807 1808 1809 1810 1811
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1824
		}
1825
		css_task_iter_end(&it);
1826 1827 1828 1829 1830 1831 1832 1833 1834
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1871 1872
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1873
 * @memcg: the target memcg
1874 1875 1876 1877 1878 1879 1880
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1881
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1882 1883
		int nid, bool noswap)
{
1884
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1885 1886 1887
		return true;
	if (noswap || !total_swap_pages)
		return false;
1888
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1889 1890 1891 1892
		return true;
	return false;

}
1893
#if MAX_NUMNODES > 1
1894 1895 1896 1897 1898 1899 1900

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1901
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1902 1903
{
	int nid;
1904 1905 1906 1907
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1908
	if (!atomic_read(&memcg->numainfo_events))
1909
		return;
1910
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1911 1912 1913
		return;

	/* make a nodemask where this memcg uses memory from */
1914
	memcg->scan_nodes = node_states[N_MEMORY];
1915

1916
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1917

1918 1919
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1920
	}
1921

1922 1923
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1938
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1939 1940 1941
{
	int node;

1942 1943
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1944

1945
	node = next_node(node, memcg->scan_nodes);
1946
	if (node == MAX_NUMNODES)
1947
		node = first_node(memcg->scan_nodes);
1948 1949 1950 1951 1952 1953 1954 1955 1956
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1957
	memcg->last_scanned_node = node;
1958 1959 1960
	return node;
}

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

1996
#else
1997
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1998 1999 2000
{
	return 0;
}
2001

2002 2003 2004 2005
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
2006 2007
#endif

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
			break;
2056
	}
2057 2058
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
2059 2060
}

2061 2062 2063 2064 2065 2066
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

2067 2068
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
2069 2070 2071 2072
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
2073
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2074
{
2075
	struct mem_cgroup *iter, *failed = NULL;
2076

2077 2078
	spin_lock(&memcg_oom_lock);

2079
	for_each_mem_cgroup_tree(iter, memcg) {
2080
		if (iter->oom_lock) {
2081 2082 2083 2084 2085
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2086 2087
			mem_cgroup_iter_break(memcg, iter);
			break;
2088 2089
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2090
	}
K
KAMEZAWA Hiroyuki 已提交
2091

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
2103
		}
2104 2105
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2106 2107 2108 2109

	spin_unlock(&memcg_oom_lock);

	return !failed;
2110
}
2111

2112
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2113
{
K
KAMEZAWA Hiroyuki 已提交
2114 2115
	struct mem_cgroup *iter;

2116
	spin_lock(&memcg_oom_lock);
2117
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2118
	for_each_mem_cgroup_tree(iter, memcg)
2119
		iter->oom_lock = false;
2120
	spin_unlock(&memcg_oom_lock);
2121 2122
}

2123
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2124 2125 2126
{
	struct mem_cgroup *iter;

2127
	for_each_mem_cgroup_tree(iter, memcg)
2128 2129 2130
		atomic_inc(&iter->under_oom);
}

2131
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2132 2133 2134
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2135 2136 2137 2138 2139
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2140
	for_each_mem_cgroup_tree(iter, memcg)
2141
		atomic_add_unless(&iter->under_oom, -1, 0);
2142 2143
}

K
KAMEZAWA Hiroyuki 已提交
2144 2145
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2146
struct oom_wait_info {
2147
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2148 2149 2150 2151 2152 2153
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2154 2155
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2156 2157 2158
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2159
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2160 2161

	/*
2162
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2163 2164
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2165 2166
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2167 2168 2169 2170
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2171
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2172
{
2173
	atomic_inc(&memcg->oom_wakeups);
2174 2175
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2176 2177
}

2178
static void memcg_oom_recover(struct mem_cgroup *memcg)
2179
{
2180 2181
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2182 2183
}

2184
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2185
{
2186 2187
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2188
	/*
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2201
	 */
2202 2203 2204 2205
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2206 2207 2208 2209
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2210
 * @handle: actually kill/wait or just clean up the OOM state
2211
 *
2212 2213
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2214
 *
2215
 * Memcg supports userspace OOM handling where failed allocations must
2216 2217 2218 2219
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2220
 * the end of the page fault to complete the OOM handling.
2221 2222
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2223
 * completed, %false otherwise.
2224
 */
2225
bool mem_cgroup_oom_synchronize(bool handle)
2226
{
2227
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2228
	struct oom_wait_info owait;
2229
	bool locked;
2230 2231 2232

	/* OOM is global, do not handle */
	if (!memcg)
2233
		return false;
2234

2235 2236
	if (!handle)
		goto cleanup;
2237 2238 2239 2240 2241 2242

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2243

2244
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2258
		schedule();
2259 2260 2261 2262 2263
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2264 2265 2266 2267 2268 2269 2270 2271
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2272 2273
cleanup:
	current->memcg_oom.memcg = NULL;
2274
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2275
	return true;
2276 2277
}

2278
/*
2279
 * Used to update mapped file or writeback or other statistics.
2280 2281 2282
 *
 * Notes: Race condition
 *
2283
 * We usually use lock_page_cgroup() for accessing page_cgroup member but
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2297 2298
 * small, we check memcg->moving_account and detect there are possibility
 * of race or not. If there is, we take a lock.
2299
 */
2300

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2314
	 * need to take move_lock_mem_cgroup(). Because we already hold
2315
	 * rcu_read_lock(), any calls to move_account will be delayed until
Q
Qiang Huang 已提交
2316
	 * rcu_read_unlock().
2317
	 */
Q
Qiang Huang 已提交
2318 2319
	VM_BUG_ON(!rcu_read_lock_held());
	if (atomic_read(&memcg->moving_account) <= 0)
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2337
	 * should take move_lock_mem_cgroup().
2338 2339 2340 2341
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2342
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2343
				 enum mem_cgroup_stat_index idx, int val)
2344
{
2345
	struct mem_cgroup *memcg;
2346
	struct page_cgroup *pc = lookup_page_cgroup(page);
2347
	unsigned long uninitialized_var(flags);
2348

2349
	if (mem_cgroup_disabled())
2350
		return;
2351

2352
	VM_BUG_ON(!rcu_read_lock_held());
2353 2354
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2355
		return;
2356

2357
	this_cpu_add(memcg->stat->count[idx], val);
2358
}
2359

2360 2361 2362 2363
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2364
#define CHARGE_BATCH	32U
2365 2366
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2367
	unsigned int nr_pages;
2368
	struct work_struct work;
2369
	unsigned long flags;
2370
#define FLUSHING_CACHED_CHARGE	0
2371 2372
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2373
static DEFINE_MUTEX(percpu_charge_mutex);
2374

2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2385
 */
2386
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2387 2388 2389 2390
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2391 2392 2393
	if (nr_pages > CHARGE_BATCH)
		return false;

2394
	stock = &get_cpu_var(memcg_stock);
2395 2396
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2410 2411 2412 2413
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2414
		if (do_swap_account)
2415 2416
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2427
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2428
	drain_stock(stock);
2429
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2430 2431
}

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2443 2444
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2445
 * This will be consumed by consume_stock() function, later.
2446
 */
2447
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2448 2449 2450
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2451
	if (stock->cached != memcg) { /* reset if necessary */
2452
		drain_stock(stock);
2453
		stock->cached = memcg;
2454
	}
2455
	stock->nr_pages += nr_pages;
2456 2457 2458 2459
	put_cpu_var(memcg_stock);
}

/*
2460
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2461 2462
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2463
 */
2464
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2465
{
2466
	int cpu, curcpu;
2467

2468 2469
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2470
	curcpu = get_cpu();
2471 2472
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2473
		struct mem_cgroup *memcg;
2474

2475 2476
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2477
			continue;
2478
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2479
			continue;
2480 2481 2482 2483 2484 2485
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2486
	}
2487
	put_cpu();
2488 2489 2490 2491 2492 2493

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2494
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2495 2496 2497
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2498
	put_online_cpus();
2499 2500 2501 2502 2503 2504 2505 2506
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2507
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2508
{
2509 2510 2511 2512 2513
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2514
	drain_all_stock(root_memcg, false);
2515
	mutex_unlock(&percpu_charge_mutex);
2516 2517 2518
}

/* This is a synchronous drain interface. */
2519
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2520 2521
{
	/* called when force_empty is called */
2522
	mutex_lock(&percpu_charge_mutex);
2523
	drain_all_stock(root_memcg, true);
2524
	mutex_unlock(&percpu_charge_mutex);
2525 2526
}

2527 2528 2529 2530
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2531
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2532 2533 2534
{
	int i;

2535
	spin_lock(&memcg->pcp_counter_lock);
2536
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2537
		long x = per_cpu(memcg->stat->count[i], cpu);
2538

2539 2540
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2541
	}
2542
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2543
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2544

2545 2546
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2547
	}
2548
	spin_unlock(&memcg->pcp_counter_lock);
2549 2550
}

2551
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2552 2553 2554 2555 2556
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2557
	struct mem_cgroup *iter;
2558

2559
	if (action == CPU_ONLINE)
2560 2561
		return NOTIFY_OK;

2562
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2563
		return NOTIFY_OK;
2564

2565
	for_each_mem_cgroup(iter)
2566 2567
		mem_cgroup_drain_pcp_counter(iter, cpu);

2568 2569 2570 2571 2572
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2573

2574
/* See mem_cgroup_try_charge() for details */
2575 2576 2577 2578 2579 2580 2581
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
};

2582
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2583
				unsigned int nr_pages, unsigned int min_pages,
2584
				bool invoke_oom)
2585
{
2586
	unsigned long csize = nr_pages * PAGE_SIZE;
2587 2588 2589 2590 2591
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2592
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2593 2594 2595 2596

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2597
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2598 2599 2600
		if (likely(!ret))
			return CHARGE_OK;

2601
		res_counter_uncharge(&memcg->res, csize);
2602 2603 2604 2605
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2606 2607 2608 2609
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2610
	if (nr_pages > min_pages)
2611 2612 2613 2614 2615
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2616 2617 2618
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2619
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2620
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2621
		return CHARGE_RETRY;
2622
	/*
2623 2624 2625 2626 2627 2628 2629
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2630
	 */
2631
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2632 2633 2634 2635 2636 2637 2638 2639 2640
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

2641 2642
	if (invoke_oom)
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2643

2644
	return CHARGE_NOMEM;
2645 2646
}

2647 2648 2649 2650 2651
/**
 * mem_cgroup_try_charge - try charging a memcg
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 * @oom: trigger OOM if reclaim fails
2652
 *
2653 2654
 * Returns 0 if @memcg was charged successfully, -EINTR if the charge
 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
2655
 */
2656 2657 2658 2659
static int mem_cgroup_try_charge(struct mem_cgroup *memcg,
				 gfp_t gfp_mask,
				 unsigned int nr_pages,
				 bool oom)
2660
{
2661
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2662 2663
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	int ret;
2664

2665 2666
	if (mem_cgroup_is_root(memcg))
		goto done;
K
KAMEZAWA Hiroyuki 已提交
2667
	/*
2668 2669 2670 2671
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
K
KAMEZAWA Hiroyuki 已提交
2672
	 */
2673
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2674 2675
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
K
KAMEZAWA Hiroyuki 已提交
2676
		goto bypass;
2677

2678
	if (unlikely(task_in_memcg_oom(current)))
2679
		goto nomem;
2680

2681 2682
	if (gfp_mask & __GFP_NOFAIL)
		oom = false;
K
KAMEZAWA Hiroyuki 已提交
2683
again:
2684 2685
	if (consume_stock(memcg, nr_pages))
		goto done;
2686

2687
	do {
2688
		bool invoke_oom = oom && !nr_oom_retries;
2689

2690
		/* If killed, bypass charge */
2691
		if (fatal_signal_pending(current))
2692
			goto bypass;
2693

2694 2695
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
					   nr_pages, invoke_oom);
2696 2697 2698 2699
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2700
			batch = nr_pages;
K
KAMEZAWA Hiroyuki 已提交
2701
			goto again;
2702 2703 2704
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
2705
			if (!oom || invoke_oom)
K
KAMEZAWA Hiroyuki 已提交
2706
				goto nomem;
2707 2708
			nr_oom_retries--;
			break;
2709
		}
2710 2711
	} while (ret != CHARGE_OK);

2712
	if (batch > nr_pages)
2713
		refill_stock(memcg, batch - nr_pages);
2714
done:
2715 2716
	return 0;
nomem:
2717
	if (!(gfp_mask & __GFP_NOFAIL))
2718
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2719
bypass:
2720
	return -EINTR;
2721
}
2722

2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
/**
 * mem_cgroup_try_charge_mm - try charging a mm
 * @mm: mm_struct to charge
 * @nr_pages: number of pages to charge
 * @oom: trigger OOM if reclaim fails
 *
 * Returns the charged mem_cgroup associated with the given mm_struct or
 * NULL the charge failed.
 */
static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm,
				 gfp_t gfp_mask,
				 unsigned int nr_pages,
				 bool oom)

{
	struct mem_cgroup *memcg;
	int ret;

	memcg = get_mem_cgroup_from_mm(mm);
	ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom);
	css_put(&memcg->css);
	if (ret == -EINTR)
		memcg = root_mem_cgroup;
	else if (ret)
		memcg = NULL;

	return memcg;
}

2752 2753 2754 2755 2756
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2757
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2758
				       unsigned int nr_pages)
2759
{
2760
	if (!mem_cgroup_is_root(memcg)) {
2761 2762
		unsigned long bytes = nr_pages * PAGE_SIZE;

2763
		res_counter_uncharge(&memcg->res, bytes);
2764
		if (do_swap_account)
2765
			res_counter_uncharge(&memcg->memsw, bytes);
2766
	}
2767 2768
}

2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2787 2788
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2789 2790 2791
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2792 2793 2794 2795 2796 2797
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2798
	return mem_cgroup_from_id(id);
2799 2800
}

2801
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2802
{
2803
	struct mem_cgroup *memcg = NULL;
2804
	struct page_cgroup *pc;
2805
	unsigned short id;
2806 2807
	swp_entry_t ent;

2808
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2809 2810

	pc = lookup_page_cgroup(page);
2811
	lock_page_cgroup(pc);
2812
	if (PageCgroupUsed(pc)) {
2813 2814 2815
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2816
	} else if (PageSwapCache(page)) {
2817
		ent.val = page_private(page);
2818
		id = lookup_swap_cgroup_id(ent);
2819
		rcu_read_lock();
2820 2821 2822
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2823
		rcu_read_unlock();
2824
	}
2825
	unlock_page_cgroup(pc);
2826
	return memcg;
2827 2828
}

2829
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2830
				       struct page *page,
2831
				       unsigned int nr_pages,
2832 2833
				       enum charge_type ctype,
				       bool lrucare)
2834
{
2835
	struct page_cgroup *pc = lookup_page_cgroup(page);
2836
	struct zone *uninitialized_var(zone);
2837
	struct lruvec *lruvec;
2838
	bool was_on_lru = false;
2839
	bool anon;
2840

2841
	lock_page_cgroup(pc);
2842
	VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2843 2844 2845 2846
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2847 2848 2849 2850 2851 2852 2853 2854 2855

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2856
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2857
			ClearPageLRU(page);
2858
			del_page_from_lru_list(page, lruvec, page_lru(page));
2859 2860 2861 2862
			was_on_lru = true;
		}
	}

2863
	pc->mem_cgroup = memcg;
2864 2865 2866 2867 2868 2869
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2870
	 */
K
KAMEZAWA Hiroyuki 已提交
2871
	smp_wmb();
2872
	SetPageCgroupUsed(pc);
2873

2874 2875
	if (lrucare) {
		if (was_on_lru) {
2876
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2877
			VM_BUG_ON_PAGE(PageLRU(page), page);
2878
			SetPageLRU(page);
2879
			add_page_to_lru_list(page, lruvec, page_lru(page));
2880 2881 2882 2883
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2884
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2885 2886 2887 2888
		anon = true;
	else
		anon = false;

2889
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2890
	unlock_page_cgroup(pc);
2891

2892
	/*
2893 2894 2895
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
2896
	 */
2897
	memcg_check_events(memcg, page);
2898
}
2899

2900 2901
static DEFINE_MUTEX(set_limit_mutex);

2902
#ifdef CONFIG_MEMCG_KMEM
2903 2904 2905 2906 2907 2908
/*
 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
 */
static DEFINE_MUTEX(memcg_slab_mutex);

2909 2910
static DEFINE_MUTEX(activate_kmem_mutex);

2911 2912 2913
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2914
		memcg_kmem_is_active(memcg);
2915 2916
}

G
Glauber Costa 已提交
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
2927
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
2928 2929
}

2930
#ifdef CONFIG_SLABINFO
2931
static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2932
{
2933
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2934 2935 2936 2937 2938 2939 2940
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

2941
	mutex_lock(&memcg_slab_mutex);
2942 2943
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
2944
	mutex_unlock(&memcg_slab_mutex);
2945 2946 2947 2948 2949

	return 0;
}
#endif

2950
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2951 2952 2953 2954 2955 2956 2957 2958
{
	struct res_counter *fail_res;
	int ret = 0;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

2959 2960
	ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT,
				    oom_gfp_allowed(gfp));
2961 2962
	if (ret == -EINTR)  {
		/*
2963
		 * mem_cgroup_try_charge() chosed to bypass to root due to
2964 2965 2966 2967 2968 2969 2970 2971 2972
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
2973
		 * mem_cgroup_try_charge() above. Tasks that were already
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

2988
static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2989 2990 2991 2992
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2993 2994 2995 2996 2997

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

2998 2999 3000 3001 3002 3003 3004 3005
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
3006
	if (memcg_kmem_test_and_clear_dead(memcg))
3007
		css_put(&memcg->css);
3008 3009
}

3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

3050
	VM_BUG_ON(!is_root_cache(s));
3051 3052 3053

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
3054
		struct memcg_cache_params *new_params;
3055 3056 3057
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3058
		size += offsetof(struct memcg_cache_params, memcg_caches);
3059

3060 3061
		new_params = kzalloc(size, GFP_KERNEL);
		if (!new_params)
3062 3063
			return -ENOMEM;

3064
		new_params->is_root_cache = true;
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
3078
			new_params->memcg_caches[i] =
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
3091 3092 3093
		rcu_assign_pointer(s->memcg_params, new_params);
		if (cur_params)
			kfree_rcu(cur_params, rcu_head);
3094 3095 3096 3097
	}
	return 0;
}

3098 3099
int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
			     struct kmem_cache *root_cache)
3100
{
3101
	size_t size;
3102 3103 3104 3105

	if (!memcg_kmem_enabled())
		return 0;

3106 3107
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3108
		size += memcg_limited_groups_array_size * sizeof(void *);
3109 3110
	} else
		size = sizeof(struct memcg_cache_params);
3111

3112 3113 3114 3115
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3116
	if (memcg) {
3117
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3118
		s->memcg_params->root_cache = root_cache;
3119
		css_get(&memcg->css);
3120 3121 3122
	} else
		s->memcg_params->is_root_cache = true;

3123 3124 3125
	return 0;
}

3126 3127
void memcg_free_cache_params(struct kmem_cache *s)
{
3128 3129 3130 3131
	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		css_put(&s->memcg_params->memcg->css);
3132 3133 3134
	kfree(s->memcg_params);
}

3135 3136
static void memcg_register_cache(struct mem_cgroup *memcg,
				 struct kmem_cache *root_cache)
3137
{
3138 3139
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by
						     memcg_slab_mutex */
3140
	struct kmem_cache *cachep;
3141 3142
	int id;

3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
	lockdep_assert_held(&memcg_slab_mutex);

	id = memcg_cache_id(memcg);

	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
	if (cache_from_memcg_idx(root_cache, id))
3153 3154
		return;

3155
	cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
3156
	cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
3157
	/*
3158 3159 3160
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
3161
	 */
3162 3163
	if (!cachep)
		return;
3164

3165
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3166

3167
	/*
3168 3169 3170
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
3171
	 */
3172 3173
	smp_wmb();

3174 3175
	BUG_ON(root_cache->memcg_params->memcg_caches[id]);
	root_cache->memcg_params->memcg_caches[id] = cachep;
3176
}
3177

3178
static void memcg_unregister_cache(struct kmem_cache *cachep)
3179
{
3180
	struct kmem_cache *root_cache;
3181 3182 3183
	struct mem_cgroup *memcg;
	int id;

3184
	lockdep_assert_held(&memcg_slab_mutex);
3185

3186
	BUG_ON(is_root_cache(cachep));
3187

3188 3189
	root_cache = cachep->memcg_params->root_cache;
	memcg = cachep->memcg_params->memcg;
3190
	id = memcg_cache_id(memcg);
3191

3192 3193
	BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
	root_cache->memcg_params->memcg_caches[id] = NULL;
3194

3195 3196 3197
	list_del(&cachep->memcg_params->list);

	kmem_cache_destroy(cachep);
3198 3199
}

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

3231
int __memcg_cleanup_cache_params(struct kmem_cache *s)
3232 3233
{
	struct kmem_cache *c;
3234
	int i, failed = 0;
3235

3236
	mutex_lock(&memcg_slab_mutex);
3237 3238
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
3239 3240 3241
		if (!c)
			continue;

3242
		memcg_unregister_cache(c);
3243 3244 3245

		if (cache_from_memcg_idx(s, i))
			failed++;
3246
	}
3247
	mutex_unlock(&memcg_slab_mutex);
3248
	return failed;
3249 3250
}

3251
static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3252 3253
{
	struct kmem_cache *cachep;
3254
	struct memcg_cache_params *params, *tmp;
G
Glauber Costa 已提交
3255 3256 3257 3258

	if (!memcg_kmem_is_active(memcg))
		return;

3259 3260
	mutex_lock(&memcg_slab_mutex);
	list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
G
Glauber Costa 已提交
3261
		cachep = memcg_params_to_cache(params);
3262 3263
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3264
			memcg_unregister_cache(cachep);
G
Glauber Costa 已提交
3265
	}
3266
	mutex_unlock(&memcg_slab_mutex);
G
Glauber Costa 已提交
3267 3268
}

3269
struct memcg_register_cache_work {
3270 3271 3272 3273 3274
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

3275
static void memcg_register_cache_func(struct work_struct *w)
3276
{
3277 3278
	struct memcg_register_cache_work *cw =
		container_of(w, struct memcg_register_cache_work, work);
3279 3280
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
3281

3282
	mutex_lock(&memcg_slab_mutex);
3283
	memcg_register_cache(memcg, cachep);
3284 3285
	mutex_unlock(&memcg_slab_mutex);

3286
	css_put(&memcg->css);
3287 3288 3289 3290 3291 3292
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3293 3294
static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
					    struct kmem_cache *cachep)
3295
{
3296
	struct memcg_register_cache_work *cw;
3297

3298
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
3299 3300
	if (cw == NULL) {
		css_put(&memcg->css);
3301 3302 3303 3304 3305 3306
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

3307
	INIT_WORK(&cw->work, memcg_register_cache_func);
3308 3309 3310
	schedule_work(&cw->work);
}

3311 3312
static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
					  struct kmem_cache *cachep)
3313 3314 3315 3316
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
3317
	 * in __memcg_schedule_register_cache will recurse.
3318 3319 3320 3321 3322 3323 3324 3325
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
3326
	__memcg_schedule_register_cache(memcg, cachep);
3327 3328
	memcg_resume_kmem_account();
}
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346

int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
{
	int res;

	res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
				PAGE_SIZE << order);
	if (!res)
		atomic_add(1 << order, &cachep->memcg_params->nr_pages);
	return res;
}

void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
{
	memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
	atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
}

3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
3364
	struct kmem_cache *memcg_cachep;
3365 3366 3367 3368

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3369 3370 3371
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3372 3373 3374 3375
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3376
		goto out;
3377

3378 3379 3380
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
	if (likely(memcg_cachep)) {
		cachep = memcg_cachep;
3381
		goto out;
3382 3383
	}

3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
3397 3398 3399
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
3400
	 */
3401
	memcg_schedule_register_cache(memcg, cachep);
3402 3403 3404 3405
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3406 3407
}

3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3429 3430 3431 3432

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
V
Vladimir Davydov 已提交
3433 3434 3435 3436 3437 3438
	 * check here, since direct calls to the page allocator that are
	 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
	 * outside memcg core. We are mostly concerned with cache allocations,
	 * and by having this test at memcg_kmem_get_cache, we are already able
	 * to relay the allocation to the root cache and bypass the memcg cache
	 * altogether.
3439 3440 3441 3442 3443 3444
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3445 3446 3447
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3458
	memcg = get_mem_cgroup_from_mm(current->mm);
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

3521
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3522 3523
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3524
#else
3525
static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3526 3527
{
}
3528 3529
#endif /* CONFIG_MEMCG_KMEM */

3530 3531
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3532
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3533 3534
/*
 * Because tail pages are not marked as "used", set it. We're under
3535 3536 3537
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3538
 */
3539
void mem_cgroup_split_huge_fixup(struct page *head)
3540 3541
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3542
	struct page_cgroup *pc;
3543
	struct mem_cgroup *memcg;
3544
	int i;
3545

3546 3547
	if (mem_cgroup_disabled())
		return;
3548 3549

	memcg = head_pc->mem_cgroup;
3550 3551
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3552
		pc->mem_cgroup = memcg;
3553 3554 3555
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3556 3557
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3558
}
3559
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3560

3561
/**
3562
 * mem_cgroup_move_account - move account of the page
3563
 * @page: the page
3564
 * @nr_pages: number of regular pages (>1 for huge pages)
3565 3566 3567 3568 3569
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3570
 * - page is not on LRU (isolate_page() is useful.)
3571
 * - compound_lock is held when nr_pages > 1
3572
 *
3573 3574
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3575
 */
3576 3577 3578 3579
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3580
				   struct mem_cgroup *to)
3581
{
3582 3583
	unsigned long flags;
	int ret;
3584
	bool anon = PageAnon(page);
3585

3586
	VM_BUG_ON(from == to);
3587
	VM_BUG_ON_PAGE(PageLRU(page), page);
3588 3589 3590 3591 3592 3593 3594
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3595
	if (nr_pages > 1 && !PageTransHuge(page))
3596 3597 3598 3599 3600 3601 3602 3603
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3604
	move_lock_mem_cgroup(from, &flags);
3605

3606 3607 3608 3609 3610 3611
	if (!anon && page_mapped(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
3612

3613 3614 3615 3616 3617 3618
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
3619

3620
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3621

3622
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3623
	pc->mem_cgroup = to;
3624
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3625
	move_unlock_mem_cgroup(from, &flags);
3626 3627
	ret = 0;
unlock:
3628
	unlock_page_cgroup(pc);
3629 3630 3631
	/*
	 * check events
	 */
3632 3633
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3634
out:
3635 3636 3637
	return ret;
}

3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3658
 */
3659 3660
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3661
				  struct mem_cgroup *child)
3662 3663
{
	struct mem_cgroup *parent;
3664
	unsigned int nr_pages;
3665
	unsigned long uninitialized_var(flags);
3666 3667
	int ret;

3668
	VM_BUG_ON(mem_cgroup_is_root(child));
3669

3670 3671 3672 3673 3674
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3675

3676
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3677

3678 3679 3680 3681 3682 3683
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3684

3685
	if (nr_pages > 1) {
3686
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3687
		flags = compound_lock_irqsave(page);
3688
	}
3689

3690
	ret = mem_cgroup_move_account(page, nr_pages,
3691
				pc, child, parent);
3692 3693
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3694

3695
	if (nr_pages > 1)
3696
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3697
	putback_lru_page(page);
3698
put:
3699
	put_page(page);
3700
out:
3701 3702 3703
	return ret;
}

3704
int mem_cgroup_charge_anon(struct page *page,
3705
			      struct mm_struct *mm, gfp_t gfp_mask)
3706
{
3707
	unsigned int nr_pages = 1;
3708
	struct mem_cgroup *memcg;
3709
	bool oom = true;
A
Andrea Arcangeli 已提交
3710

3711 3712 3713 3714 3715 3716 3717
	if (mem_cgroup_disabled())
		return 0;

	VM_BUG_ON_PAGE(page_mapped(page), page);
	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
	VM_BUG_ON(!mm);

A
Andrea Arcangeli 已提交
3718
	if (PageTransHuge(page)) {
3719
		nr_pages <<= compound_order(page);
3720
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3721 3722 3723 3724 3725
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3726
	}
3727

3728 3729 3730
	memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom);
	if (!memcg)
		return -ENOMEM;
3731 3732
	__mem_cgroup_commit_charge(memcg, page, nr_pages,
				   MEM_CGROUP_CHARGE_TYPE_ANON, false);
3733 3734 3735
	return 0;
}

3736 3737 3738
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3739
 * struct page_cgroup is acquired. This refcnt will be consumed by
3740 3741
 * "commit()" or removed by "cancel()"
 */
3742 3743 3744 3745
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3746
{
3747
	struct mem_cgroup *memcg = NULL;
3748
	struct page_cgroup *pc;
3749
	int ret;
3750

3751 3752 3753 3754 3755 3756 3757 3758 3759
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
3760 3761 3762
		goto out;
	if (do_swap_account)
		memcg = try_get_mem_cgroup_from_page(page);
3763
	if (!memcg)
3764 3765
		memcg = get_mem_cgroup_from_mm(mm);
	ret = mem_cgroup_try_charge(memcg, mask, 1, true);
3766
	css_put(&memcg->css);
3767
	if (ret == -EINTR)
3768 3769 3770 3771 3772 3773
		memcg = root_mem_cgroup;
	else if (ret)
		return ret;
out:
	*memcgp = memcg;
	return 0;
3774 3775
}

3776 3777 3778
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
3779 3780
	if (mem_cgroup_disabled()) {
		*memcgp = NULL;
3781
		return 0;
3782
	}
3783 3784 3785 3786 3787 3788 3789
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
3790
		struct mem_cgroup *memcg;
3791

3792 3793 3794 3795 3796
		memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
		if (!memcg)
			return -ENOMEM;
		*memcgp = memcg;
		return 0;
3797
	}
3798 3799 3800
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3801 3802 3803 3804 3805 3806 3807 3808 3809
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3810
static void
3811
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3812
					enum charge_type ctype)
3813
{
3814
	if (mem_cgroup_disabled())
3815
		return;
3816
	if (!memcg)
3817
		return;
3818

3819
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3820 3821 3822
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3823 3824 3825
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3826
	 */
3827
	if (do_swap_account && PageSwapCache(page)) {
3828
		swp_entry_t ent = {.val = page_private(page)};
3829
		mem_cgroup_uncharge_swap(ent);
3830
	}
3831 3832
}

3833 3834
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3835
{
3836
	__mem_cgroup_commit_charge_swapin(page, memcg,
3837
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3838 3839
}

3840
int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
3841
				gfp_t gfp_mask)
3842
{
3843
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3844
	struct mem_cgroup *memcg;
3845 3846
	int ret;

3847
	if (mem_cgroup_disabled())
3848 3849 3850 3851
		return 0;
	if (PageCompound(page))
		return 0;

3852
	if (PageSwapCache(page)) { /* shmem */
3853 3854
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3855 3856 3857 3858
		if (ret)
			return ret;
		__mem_cgroup_commit_charge_swapin(page, memcg, type);
		return 0;
3859
	}
3860

3861 3862 3863
	memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
	if (!memcg)
		return -ENOMEM;
3864 3865
	__mem_cgroup_commit_charge(memcg, page, 1, type, false);
	return 0;
3866 3867
}

3868
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3869 3870
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3871 3872 3873
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3874

3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3886
		batch->memcg = memcg;
3887 3888
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3889
	 * In those cases, all pages freed continuously can be expected to be in
3890 3891 3892 3893 3894 3895 3896 3897
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3898
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3899 3900
		goto direct_uncharge;

3901 3902 3903 3904 3905
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3906
	if (batch->memcg != memcg)
3907 3908
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3909
	batch->nr_pages++;
3910
	if (uncharge_memsw)
3911
		batch->memsw_nr_pages++;
3912 3913
	return;
direct_uncharge:
3914
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3915
	if (uncharge_memsw)
3916 3917 3918
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3919
}
3920

3921
/*
3922
 * uncharge if !page_mapped(page)
3923
 */
3924
static struct mem_cgroup *
3925 3926
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3927
{
3928
	struct mem_cgroup *memcg = NULL;
3929 3930
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3931
	bool anon;
3932

3933
	if (mem_cgroup_disabled())
3934
		return NULL;
3935

A
Andrea Arcangeli 已提交
3936
	if (PageTransHuge(page)) {
3937
		nr_pages <<= compound_order(page);
3938
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
A
Andrea Arcangeli 已提交
3939
	}
3940
	/*
3941
	 * Check if our page_cgroup is valid
3942
	 */
3943
	pc = lookup_page_cgroup(page);
3944
	if (unlikely(!PageCgroupUsed(pc)))
3945
		return NULL;
3946

3947
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3948

3949
	memcg = pc->mem_cgroup;
3950

K
KAMEZAWA Hiroyuki 已提交
3951 3952 3953
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3954 3955
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3956
	switch (ctype) {
3957
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3958 3959 3960 3961 3962
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3963 3964
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
3965
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3966
		/* See mem_cgroup_prepare_migration() */
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3988
	}
K
KAMEZAWA Hiroyuki 已提交
3989

3990
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3991

3992
	ClearPageCgroupUsed(pc);
3993 3994 3995 3996 3997 3998
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3999

4000
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4001
	/*
4002
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4003
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4004
	 */
4005
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4006
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4007
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4008
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4009
	}
4010 4011 4012 4013 4014 4015
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4016
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4017

4018
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4019 4020 4021

unlock_out:
	unlock_page_cgroup(pc);
4022
	return NULL;
4023 4024
}

4025 4026
void mem_cgroup_uncharge_page(struct page *page)
{
4027 4028 4029
	/* early check. */
	if (page_mapped(page))
		return;
4030
	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4043 4044
	if (PageSwapCache(page))
		return;
4045
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4046 4047 4048 4049
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
4050 4051
	VM_BUG_ON_PAGE(page_mapped(page), page);
	VM_BUG_ON_PAGE(page->mapping, page);
4052
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4053 4054
}

4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4069 4070
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4091 4092 4093 4094 4095 4096
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4097
	memcg_oom_recover(batch->memcg);
4098 4099 4100 4101
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4102
#ifdef CONFIG_SWAP
4103
/*
4104
 * called after __delete_from_swap_cache() and drop "page" account.
4105 4106
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4107 4108
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4109 4110
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4111 4112 4113 4114 4115
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4116
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4117

K
KAMEZAWA Hiroyuki 已提交
4118 4119
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4120
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4121 4122
	 */
	if (do_swap_account && swapout && memcg)
L
Li Zefan 已提交
4123
		swap_cgroup_record(ent, mem_cgroup_id(memcg));
4124
}
4125
#endif
4126

A
Andrew Morton 已提交
4127
#ifdef CONFIG_MEMCG_SWAP
4128 4129 4130 4131 4132
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4133
{
4134
	struct mem_cgroup *memcg;
4135
	unsigned short id;
4136 4137 4138 4139

	if (!do_swap_account)
		return;

4140 4141 4142
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4143
	if (memcg) {
4144 4145 4146 4147
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4148
		if (!mem_cgroup_is_root(memcg))
4149
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4150
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4151
		css_put(&memcg->css);
4152
	}
4153
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4154
}
4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4171
				struct mem_cgroup *from, struct mem_cgroup *to)
4172 4173 4174
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
4175 4176
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
4177 4178 4179

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4180
		mem_cgroup_swap_statistics(to, true);
4181
		/*
4182 4183 4184
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4185 4186 4187 4188 4189 4190
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4191
		 */
L
Li Zefan 已提交
4192
		css_get(&to->css);
4193 4194 4195 4196 4197 4198
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4199
				struct mem_cgroup *from, struct mem_cgroup *to)
4200 4201 4202
{
	return -EINVAL;
}
4203
#endif
K
KAMEZAWA Hiroyuki 已提交
4204

4205
/*
4206 4207
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4208
 */
4209 4210
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4211
{
4212
	struct mem_cgroup *memcg = NULL;
4213
	unsigned int nr_pages = 1;
4214
	struct page_cgroup *pc;
4215
	enum charge_type ctype;
4216

4217
	*memcgp = NULL;
4218

4219
	if (mem_cgroup_disabled())
4220
		return;
4221

4222 4223 4224
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4225 4226 4227
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4228 4229
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4261
	}
4262
	unlock_page_cgroup(pc);
4263 4264 4265 4266
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4267
	if (!memcg)
4268
		return;
4269

4270
	*memcgp = memcg;
4271 4272 4273 4274 4275 4276 4277
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4278
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4279
	else
4280
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4281 4282 4283 4284 4285
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4286
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4287
}
4288

4289
/* remove redundant charge if migration failed*/
4290
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4291
	struct page *oldpage, struct page *newpage, bool migration_ok)
4292
{
4293
	struct page *used, *unused;
4294
	struct page_cgroup *pc;
4295
	bool anon;
4296

4297
	if (!memcg)
4298
		return;
4299

4300
	if (!migration_ok) {
4301 4302
		used = oldpage;
		unused = newpage;
4303
	} else {
4304
		used = newpage;
4305 4306
		unused = oldpage;
	}
4307
	anon = PageAnon(used);
4308 4309 4310 4311
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4312
	css_put(&memcg->css);
4313
	/*
4314 4315 4316
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4317
	 */
4318 4319 4320 4321 4322
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4323
	/*
4324 4325 4326 4327 4328 4329
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4330
	 */
4331
	if (anon)
4332
		mem_cgroup_uncharge_page(used);
4333
}
4334

4335 4336 4337 4338 4339 4340 4341 4342
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4343
	struct mem_cgroup *memcg = NULL;
4344 4345 4346 4347 4348 4349 4350 4351 4352
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4353 4354
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4355
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4356 4357
		ClearPageCgroupUsed(pc);
	}
4358 4359
	unlock_page_cgroup(pc);

4360 4361 4362 4363 4364 4365
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4366 4367 4368 4369 4370
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4371
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4372 4373
}

4374 4375 4376 4377 4378 4379
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4380 4381 4382 4383 4384
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4404 4405
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4406 4407 4408 4409
	}
}
#endif

4410
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4411
				unsigned long long val)
4412
{
4413
	int retry_count;
4414
	u64 memswlimit, memlimit;
4415
	int ret = 0;
4416 4417
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4418
	int enlarge;
4419 4420 4421 4422 4423 4424 4425 4426 4427

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4428

4429
	enlarge = 0;
4430
	while (retry_count) {
4431 4432 4433 4434
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4435 4436 4437
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4438
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4439 4440 4441 4442 4443 4444
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4445 4446
			break;
		}
4447 4448 4449 4450 4451

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4452
		ret = res_counter_set_limit(&memcg->res, val);
4453 4454 4455 4456 4457 4458
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4459 4460 4461 4462 4463
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4464 4465
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4466 4467
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4468
		if (curusage >= oldusage)
4469 4470 4471
			retry_count--;
		else
			oldusage = curusage;
4472
	}
4473 4474
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4475

4476 4477 4478
	return ret;
}

L
Li Zefan 已提交
4479 4480
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4481
{
4482
	int retry_count;
4483
	u64 memlimit, memswlimit, oldusage, curusage;
4484 4485
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4486
	int enlarge = 0;
4487

4488
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4489
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4490
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4491 4492 4493 4494 4495 4496 4497 4498
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4499
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4500 4501 4502 4503 4504 4505 4506 4507
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4508 4509 4510
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4511
		ret = res_counter_set_limit(&memcg->memsw, val);
4512 4513 4514 4515 4516 4517
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4518 4519 4520 4521 4522
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4523 4524 4525
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4526
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4527
		/* Usage is reduced ? */
4528
		if (curusage >= oldusage)
4529
			retry_count--;
4530 4531
		else
			oldusage = curusage;
4532
	}
4533 4534
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4535 4536 4537
	return ret;
}

4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
	unsigned long long excess;
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
		spin_unlock(&mctz->lock);
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

4630 4631 4632 4633 4634 4635 4636
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4637
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4638 4639
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4640
 */
4641
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4642
				int node, int zid, enum lru_list lru)
4643
{
4644
	struct lruvec *lruvec;
4645
	unsigned long flags;
4646
	struct list_head *list;
4647 4648
	struct page *busy;
	struct zone *zone;
4649

K
KAMEZAWA Hiroyuki 已提交
4650
	zone = &NODE_DATA(node)->node_zones[zid];
4651 4652
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4653

4654
	busy = NULL;
4655
	do {
4656
		struct page_cgroup *pc;
4657 4658
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4659
		spin_lock_irqsave(&zone->lru_lock, flags);
4660
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4661
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4662
			break;
4663
		}
4664 4665 4666
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4667
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4668
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4669 4670
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4671
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4672

4673
		pc = lookup_page_cgroup(page);
4674

4675
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4676
			/* found lock contention or "pc" is obsolete. */
4677
			busy = page;
4678 4679
		} else
			busy = NULL;
4680
		cond_resched();
4681
	} while (!list_empty(list));
4682 4683 4684
}

/*
4685 4686
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4687
 * This enables deleting this mem_cgroup.
4688 4689
 *
 * Caller is responsible for holding css reference on the memcg.
4690
 */
4691
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4692
{
4693
	int node, zid;
4694
	u64 usage;
4695

4696
	do {
4697 4698
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4699 4700
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4701
		for_each_node_state(node, N_MEMORY) {
4702
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4703 4704
				enum lru_list lru;
				for_each_lru(lru) {
4705
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4706
							node, zid, lru);
4707
				}
4708
			}
4709
		}
4710 4711
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4712
		cond_resched();
4713

4714
		/*
4715 4716 4717 4718 4719
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4720 4721 4722 4723 4724 4725
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4726 4727 4728
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4729 4730
}

4731 4732
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742
	lockdep_assert_held(&memcg_create_mutex);
	/*
	 * The lock does not prevent addition or deletion to the list
	 * of children, but it prevents a new child from being
	 * initialized based on this parent in css_online(), so it's
	 * enough to decide whether hierarchically inherited
	 * attributes can still be changed or not.
	 */
	return memcg->use_hierarchy &&
		!list_empty(&memcg->css.cgroup->children);
4743 4744
}

4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4755

4756
	/* returns EBUSY if there is a task or if we come here twice. */
4757
	if (cgroup_has_tasks(cgrp) || !list_empty(&cgrp->children))
4758 4759
		return -EBUSY;

4760 4761
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4762
	/* try to free all pages in this cgroup */
4763
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4764
		int progress;
4765

4766 4767 4768
		if (signal_pending(current))
			return -EINTR;

4769
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4770
						false);
4771
		if (!progress) {
4772
			nr_retries--;
4773
			/* maybe some writeback is necessary */
4774
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4775
		}
4776 4777

	}
K
KAMEZAWA Hiroyuki 已提交
4778
	lru_add_drain();
4779 4780 4781
	mem_cgroup_reparent_charges(memcg);

	return 0;
4782 4783
}

4784 4785
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
4786
{
4787
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4788

4789 4790
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4791
	return mem_cgroup_force_empty(memcg);
4792 4793
}

4794 4795
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
4796
{
4797
	return mem_cgroup_from_css(css)->use_hierarchy;
4798 4799
}

4800 4801
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
4802 4803
{
	int retval = 0;
4804
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4805
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4806

4807
	mutex_lock(&memcg_create_mutex);
4808 4809 4810 4811

	if (memcg->use_hierarchy == val)
		goto out;

4812
	/*
4813
	 * If parent's use_hierarchy is set, we can't make any modifications
4814 4815 4816 4817 4818 4819
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4820
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4821
				(val == 1 || val == 0)) {
4822
		if (list_empty(&memcg->css.cgroup->children))
4823
			memcg->use_hierarchy = val;
4824 4825 4826 4827
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4828 4829

out:
4830
	mutex_unlock(&memcg_create_mutex);
4831 4832 4833 4834

	return retval;
}

4835

4836
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4837
					       enum mem_cgroup_stat_index idx)
4838
{
K
KAMEZAWA Hiroyuki 已提交
4839
	struct mem_cgroup *iter;
4840
	long val = 0;
4841

4842
	/* Per-cpu values can be negative, use a signed accumulator */
4843
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4844 4845 4846 4847 4848
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4849 4850
}

4851
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4852
{
K
KAMEZAWA Hiroyuki 已提交
4853
	u64 val;
4854

4855
	if (!mem_cgroup_is_root(memcg)) {
4856
		if (!swap)
4857
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4858
		else
4859
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4860 4861
	}

4862 4863 4864 4865
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
4866 4867
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4868

K
KAMEZAWA Hiroyuki 已提交
4869
	if (swap)
4870
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4871 4872 4873 4874

	return val << PAGE_SHIFT;
}

4875 4876
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
B
Balbir Singh 已提交
4877
{
4878
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4879
	u64 val;
4880
	int name;
G
Glauber Costa 已提交
4881
	enum res_type type;
4882 4883 4884

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4885

4886 4887
	switch (type) {
	case _MEM:
4888
		if (name == RES_USAGE)
4889
			val = mem_cgroup_usage(memcg, false);
4890
		else
4891
			val = res_counter_read_u64(&memcg->res, name);
4892 4893
		break;
	case _MEMSWAP:
4894
		if (name == RES_USAGE)
4895
			val = mem_cgroup_usage(memcg, true);
4896
		else
4897
			val = res_counter_read_u64(&memcg->memsw, name);
4898
		break;
4899 4900 4901
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4902 4903 4904
	default:
		BUG();
	}
4905

4906
	return val;
B
Balbir Singh 已提交
4907
}
4908 4909

#ifdef CONFIG_MEMCG_KMEM
4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
/* should be called with activate_kmem_mutex held */
static int __memcg_activate_kmem(struct mem_cgroup *memcg,
				 unsigned long long limit)
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

	/*
	 * We are going to allocate memory for data shared by all memory
	 * cgroups so let's stop accounting here.
	 */
	memcg_stop_kmem_account();

4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
4938
	mutex_lock(&memcg_create_mutex);
4939
	if (cgroup_has_tasks(memcg->css.cgroup) || memcg_has_children(memcg))
4940 4941 4942 4943
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
4944

4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955
	memcg_id = ida_simple_get(&kmem_limited_groups,
				  0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
	 * Make sure we have enough space for this cgroup in each root cache's
	 * memcg_params.
	 */
4956
	mutex_lock(&memcg_slab_mutex);
4957
	err = memcg_update_all_caches(memcg_id + 1);
4958
	mutex_unlock(&memcg_slab_mutex);
4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
	if (err)
		goto out_rmid;

	memcg->kmemcg_id = memcg_id;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);

	/*
	 * We couldn't have accounted to this cgroup, because it hasn't got the
	 * active bit set yet, so this should succeed.
	 */
	err = res_counter_set_limit(&memcg->kmem, limit);
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
	 * Setting the active bit after enabling static branching will
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
	memcg_kmem_set_active(memcg);
4979
out:
4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007
	memcg_resume_kmem_account();
	return err;

out_rmid:
	ida_simple_remove(&kmem_limited_groups, memcg_id);
	goto out;
}

static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long long limit)
{
	int ret;

	mutex_lock(&activate_kmem_mutex);
	ret = __memcg_activate_kmem(memcg, limit);
	mutex_unlock(&activate_kmem_mutex);
	return ret;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	int ret;

	if (!memcg_kmem_is_active(memcg))
		ret = memcg_activate_kmem(memcg, val);
	else
		ret = res_counter_set_limit(&memcg->kmem, val);
5008 5009 5010
	return ret;
}

5011
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5012
{
5013
	int ret = 0;
5014
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5015

5016 5017
	if (!parent)
		return 0;
5018

5019
	mutex_lock(&activate_kmem_mutex);
5020
	/*
5021 5022
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
5023
	 */
5024 5025 5026
	if (memcg_kmem_is_active(parent))
		ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
	mutex_unlock(&activate_kmem_mutex);
5027
	return ret;
5028
}
5029 5030 5031 5032 5033 5034
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	return -EINVAL;
}
5035
#endif /* CONFIG_MEMCG_KMEM */
5036

5037 5038 5039 5040
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5041
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5042
			    char *buffer)
B
Balbir Singh 已提交
5043
{
5044
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5045 5046
	enum res_type type;
	int name;
5047 5048 5049
	unsigned long long val;
	int ret;

5050 5051
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5052

5053
	switch (name) {
5054
	case RES_LIMIT:
5055 5056 5057 5058
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5059 5060
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5061 5062 5063
		if (ret)
			break;
		if (type == _MEM)
5064
			ret = mem_cgroup_resize_limit(memcg, val);
5065
		else if (type == _MEMSWAP)
5066
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5067
		else if (type == _KMEM)
5068
			ret = memcg_update_kmem_limit(memcg, val);
5069 5070
		else
			return -EINVAL;
5071
		break;
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5086 5087 5088 5089 5090
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5091 5092
}

5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5103 5104
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5117
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5118
{
5119
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5120 5121
	int name;
	enum res_type type;
5122

5123 5124
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5125

5126
	switch (name) {
5127
	case RES_MAX_USAGE:
5128
		if (type == _MEM)
5129
			res_counter_reset_max(&memcg->res);
5130
		else if (type == _MEMSWAP)
5131
			res_counter_reset_max(&memcg->memsw);
5132 5133 5134 5135
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5136 5137
		break;
	case RES_FAILCNT:
5138
		if (type == _MEM)
5139
			res_counter_reset_failcnt(&memcg->res);
5140
		else if (type == _MEMSWAP)
5141
			res_counter_reset_failcnt(&memcg->memsw);
5142 5143 5144 5145
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5146 5147
		break;
	}
5148

5149
	return 0;
5150 5151
}

5152
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5153 5154
					struct cftype *cft)
{
5155
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5156 5157
}

5158
#ifdef CONFIG_MMU
5159
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5160 5161
					struct cftype *cft, u64 val)
{
5162
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5163 5164 5165

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5166

5167
	/*
5168 5169 5170 5171
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5172
	 */
5173
	memcg->move_charge_at_immigrate = val;
5174 5175
	return 0;
}
5176
#else
5177
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5178 5179 5180 5181 5182
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5183

5184
#ifdef CONFIG_NUMA
5185
static int memcg_numa_stat_show(struct seq_file *m, void *v)
5186
{
5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
5199
	int nid;
5200
	unsigned long nr;
5201
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5202

5203 5204 5205 5206 5207 5208 5209 5210 5211
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5212 5213
	}

5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5229 5230 5231 5232 5233 5234
	}

	return 0;
}
#endif /* CONFIG_NUMA */

5235 5236 5237 5238 5239
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5240
static int memcg_stat_show(struct seq_file *m, void *v)
5241
{
5242
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5243 5244
	struct mem_cgroup *mi;
	unsigned int i;
5245

5246
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5247
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5248
			continue;
5249 5250
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5251
	}
L
Lee Schermerhorn 已提交
5252

5253 5254 5255 5256 5257 5258 5259 5260
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5261
	/* Hierarchical information */
5262 5263
	{
		unsigned long long limit, memsw_limit;
5264
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5265
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5266
		if (do_swap_account)
5267 5268
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5269
	}
K
KOSAKI Motohiro 已提交
5270

5271 5272 5273
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5274
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5275
			continue;
5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5296
	}
K
KAMEZAWA Hiroyuki 已提交
5297

K
KOSAKI Motohiro 已提交
5298 5299 5300 5301
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5302
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5303 5304 5305 5306 5307
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5308
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5309
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5310

5311 5312 5313 5314
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5315
			}
5316 5317 5318 5319
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5320 5321 5322
	}
#endif

5323 5324 5325
	return 0;
}

5326 5327
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5328
{
5329
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5330

5331
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5332 5333
}

5334 5335
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5336
{
5337
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5338

5339
	if (val > 100)
K
KOSAKI Motohiro 已提交
5340 5341
		return -EINVAL;

5342 5343 5344 5345
	if (css_parent(css))
		memcg->swappiness = val;
	else
		vm_swappiness = val;
5346

K
KOSAKI Motohiro 已提交
5347 5348 5349
	return 0;
}

5350 5351 5352 5353 5354 5355 5356 5357
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5358
		t = rcu_dereference(memcg->thresholds.primary);
5359
	else
5360
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5361 5362 5363 5364 5365 5366 5367

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5368
	 * current_threshold points to threshold just below or equal to usage.
5369 5370 5371
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5372
	i = t->current_threshold;
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5396
	t->current_threshold = i - 1;
5397 5398 5399 5400 5401 5402
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5403 5404 5405 5406 5407 5408 5409
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5410 5411 5412 5413 5414 5415 5416
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5417 5418 5419 5420 5421 5422 5423
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5424 5425
}

5426
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5427 5428 5429
{
	struct mem_cgroup_eventfd_list *ev;

5430
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5431 5432 5433 5434
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5435
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5436
{
K
KAMEZAWA Hiroyuki 已提交
5437 5438
	struct mem_cgroup *iter;

5439
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5440
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5441 5442
}

5443
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5444
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5445
{
5446 5447
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5448
	u64 threshold, usage;
5449
	int i, size, ret;
5450 5451 5452 5453 5454 5455

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5456

5457
	if (type == _MEM)
5458
		thresholds = &memcg->thresholds;
5459
	else if (type == _MEMSWAP)
5460
		thresholds = &memcg->memsw_thresholds;
5461 5462 5463 5464 5465 5466
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5467
	if (thresholds->primary)
5468 5469
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5470
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5471 5472

	/* Allocate memory for new array of thresholds */
5473
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5474
			GFP_KERNEL);
5475
	if (!new) {
5476 5477 5478
		ret = -ENOMEM;
		goto unlock;
	}
5479
	new->size = size;
5480 5481

	/* Copy thresholds (if any) to new array */
5482 5483
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5484
				sizeof(struct mem_cgroup_threshold));
5485 5486
	}

5487
	/* Add new threshold */
5488 5489
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5490 5491

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5492
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5493 5494 5495
			compare_thresholds, NULL);

	/* Find current threshold */
5496
	new->current_threshold = -1;
5497
	for (i = 0; i < size; i++) {
5498
		if (new->entries[i].threshold <= usage) {
5499
			/*
5500 5501
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5502 5503
			 * it here.
			 */
5504
			++new->current_threshold;
5505 5506
		} else
			break;
5507 5508
	}

5509 5510 5511 5512 5513
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5514

5515
	/* To be sure that nobody uses thresholds */
5516 5517 5518 5519 5520 5521 5522 5523
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5524
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5525 5526
	struct eventfd_ctx *eventfd, const char *args)
{
5527
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
5528 5529
}

5530
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5531 5532
	struct eventfd_ctx *eventfd, const char *args)
{
5533
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
5534 5535
}

5536
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5537
	struct eventfd_ctx *eventfd, enum res_type type)
5538
{
5539 5540
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5541
	u64 usage;
5542
	int i, j, size;
5543 5544 5545

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5546
		thresholds = &memcg->thresholds;
5547
	else if (type == _MEMSWAP)
5548
		thresholds = &memcg->memsw_thresholds;
5549 5550 5551
	else
		BUG();

5552 5553 5554
	if (!thresholds->primary)
		goto unlock;

5555 5556 5557 5558 5559 5560
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5561 5562 5563
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5564 5565 5566
			size++;
	}

5567
	new = thresholds->spare;
5568

5569 5570
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5571 5572
		kfree(new);
		new = NULL;
5573
		goto swap_buffers;
5574 5575
	}

5576
	new->size = size;
5577 5578

	/* Copy thresholds and find current threshold */
5579 5580 5581
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5582 5583
			continue;

5584
		new->entries[j] = thresholds->primary->entries[i];
5585
		if (new->entries[j].threshold <= usage) {
5586
			/*
5587
			 * new->current_threshold will not be used
5588 5589 5590
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5591
			++new->current_threshold;
5592 5593 5594 5595
		}
		j++;
	}

5596
swap_buffers:
5597 5598
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5599 5600 5601 5602 5603 5604
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5605
	rcu_assign_pointer(thresholds->primary, new);
5606

5607
	/* To be sure that nobody uses thresholds */
5608
	synchronize_rcu();
5609
unlock:
5610 5611
	mutex_unlock(&memcg->thresholds_lock);
}
5612

5613
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5614 5615
	struct eventfd_ctx *eventfd)
{
5616
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
5617 5618
}

5619
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5620 5621
	struct eventfd_ctx *eventfd)
{
5622
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
5623 5624
}

5625
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5626
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
5627 5628 5629 5630 5631 5632 5633
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5634
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5635 5636 5637 5638 5639

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5640
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5641
		eventfd_signal(eventfd, 1);
5642
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5643 5644 5645 5646

	return 0;
}

5647
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5648
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
5649 5650 5651
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

5652
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5653

5654
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5655 5656 5657 5658 5659 5660
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5661
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5662 5663
}

5664
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5665
{
5666
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5667

5668 5669
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5670 5671 5672
	return 0;
}

5673
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5674 5675
	struct cftype *cft, u64 val)
{
5676
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5677 5678

	/* cannot set to root cgroup and only 0 and 1 are allowed */
5679
	if (!css_parent(css) || !((val == 0) || (val == 1)))
5680 5681
		return -EINVAL;

5682
	memcg->oom_kill_disable = val;
5683
	if (!val)
5684
		memcg_oom_recover(memcg);
5685

5686 5687 5688
	return 0;
}

A
Andrew Morton 已提交
5689
#ifdef CONFIG_MEMCG_KMEM
5690
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5691
{
5692 5693
	int ret;

5694
	memcg->kmemcg_id = -1;
5695 5696 5697
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5698

5699
	return mem_cgroup_sockets_init(memcg, ss);
5700
}
5701

5702
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5703
{
5704
	mem_cgroup_sockets_destroy(memcg);
5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5731 5732 5733 5734 5735 5736 5737

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5738
		css_put(&memcg->css);
G
Glauber Costa 已提交
5739
}
5740
#else
5741
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5742 5743 5744
{
	return 0;
}
G
Glauber Costa 已提交
5745

5746 5747 5748 5749 5750
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5751 5752
{
}
5753 5754
#endif

5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

5768 5769 5770 5771 5772
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
5773
static void memcg_event_remove(struct work_struct *work)
5774
{
5775 5776
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
5777
	struct mem_cgroup *memcg = event->memcg;
5778 5779 5780

	remove_wait_queue(event->wqh, &event->wait);

5781
	event->unregister_event(memcg, event->eventfd);
5782 5783 5784 5785 5786 5787

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
5788
	css_put(&memcg->css);
5789 5790 5791 5792 5793 5794 5795
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
5796 5797
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
5798
{
5799 5800
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
5801
	struct mem_cgroup *memcg = event->memcg;
5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
5814
		spin_lock(&memcg->event_list_lock);
5815 5816 5817 5818 5819 5820 5821 5822
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
5823
		spin_unlock(&memcg->event_list_lock);
5824 5825 5826 5827 5828
	}

	return 0;
}

5829
static void memcg_event_ptable_queue_proc(struct file *file,
5830 5831
		wait_queue_head_t *wqh, poll_table *pt)
{
5832 5833
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
5834 5835 5836 5837 5838 5839

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
5840 5841
 * DO NOT USE IN NEW FILES.
 *
5842 5843 5844 5845 5846
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
5847
static int memcg_write_event_control(struct cgroup_subsys_state *css,
5848
				     struct cftype *cft, char *buffer)
5849
{
5850
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5851
	struct mem_cgroup_event *event;
5852 5853 5854 5855
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
5856
	const char *name;
5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873
	char *endp;
	int ret;

	efd = simple_strtoul(buffer, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buffer = endp + 1;

	cfd = simple_strtoul(buffer, &endp, 10);
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
	buffer = endp + 1;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5874
	event->memcg = memcg;
5875
	INIT_LIST_HEAD(&event->list);
5876 5877 5878
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

5904 5905 5906 5907 5908
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
5909 5910
	 *
	 * DO NOT ADD NEW FILES.
5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923
	 */
	name = cfile.file->f_dentry->d_name.name;

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
5924 5925
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
5926 5927 5928 5929 5930
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

5931
	/*
5932 5933 5934
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
5935
	 */
5936 5937
	cfile_css = css_tryget_from_dir(cfile.file->f_dentry->d_parent,
					&memory_cgrp_subsys);
5938
	ret = -EINVAL;
5939
	if (IS_ERR(cfile_css))
5940
		goto out_put_cfile;
5941 5942
	if (cfile_css != css) {
		css_put(cfile_css);
5943
		goto out_put_cfile;
5944
	}
5945

5946
	ret = event->register_event(memcg, event->eventfd, buffer);
5947 5948 5949 5950 5951
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

5952 5953 5954
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
5955 5956 5957 5958 5959 5960 5961

	fdput(cfile);
	fdput(efile);

	return 0;

out_put_css:
5962
	css_put(css);
5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
5975 5976
static struct cftype mem_cgroup_files[] = {
	{
5977
		.name = "usage_in_bytes",
5978
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5979
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5980
	},
5981 5982
	{
		.name = "max_usage_in_bytes",
5983
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5984
		.trigger = mem_cgroup_reset,
5985
		.read_u64 = mem_cgroup_read_u64,
5986
	},
B
Balbir Singh 已提交
5987
	{
5988
		.name = "limit_in_bytes",
5989
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5990
		.write_string = mem_cgroup_write,
5991
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5992
	},
5993 5994 5995 5996
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5997
		.read_u64 = mem_cgroup_read_u64,
5998
	},
B
Balbir Singh 已提交
5999 6000
	{
		.name = "failcnt",
6001
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6002
		.trigger = mem_cgroup_reset,
6003
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
6004
	},
6005 6006
	{
		.name = "stat",
6007
		.seq_show = memcg_stat_show,
6008
	},
6009 6010 6011 6012
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
6013 6014
	{
		.name = "use_hierarchy",
6015
		.flags = CFTYPE_INSANE,
6016 6017 6018
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
6019
	{
6020 6021
		.name = "cgroup.event_control",		/* XXX: for compat */
		.write_string = memcg_write_event_control,
6022 6023 6024
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
6025 6026 6027 6028 6029
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
6030 6031 6032 6033 6034
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
6035 6036
	{
		.name = "oom_control",
6037
		.seq_show = mem_cgroup_oom_control_read,
6038
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
6039 6040
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
6041 6042 6043
	{
		.name = "pressure_level",
	},
6044 6045 6046
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
6047
		.seq_show = memcg_numa_stat_show,
6048 6049
	},
#endif
6050 6051 6052 6053 6054
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
6055
		.read_u64 = mem_cgroup_read_u64,
6056 6057 6058 6059
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6060
		.read_u64 = mem_cgroup_read_u64,
6061 6062 6063 6064 6065
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
6066
		.read_u64 = mem_cgroup_read_u64,
6067 6068 6069 6070 6071
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
6072
		.read_u64 = mem_cgroup_read_u64,
6073
	},
6074 6075 6076
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
6077
		.seq_show = mem_cgroup_slabinfo_read,
6078 6079
	},
#endif
6080
#endif
6081
	{ },	/* terminate */
6082
};
6083

6084 6085 6086 6087 6088
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6089
		.read_u64 = mem_cgroup_read_u64,
6090 6091 6092 6093 6094
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
6095
		.read_u64 = mem_cgroup_read_u64,
6096 6097 6098 6099 6100
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
6101
		.read_u64 = mem_cgroup_read_u64,
6102 6103 6104 6105 6106
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
6107
		.read_u64 = mem_cgroup_read_u64,
6108 6109 6110 6111
	},
	{ },	/* terminate */
};
#endif
6112
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6113 6114
{
	struct mem_cgroup_per_node *pn;
6115
	struct mem_cgroup_per_zone *mz;
6116
	int zone, tmp = node;
6117 6118 6119 6120 6121 6122 6123 6124
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6125 6126
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6127
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6128 6129
	if (!pn)
		return 1;
6130 6131 6132

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6133
		lruvec_init(&mz->lruvec);
6134 6135
		mz->usage_in_excess = 0;
		mz->on_tree = false;
6136
		mz->memcg = memcg;
6137
	}
6138
	memcg->nodeinfo[node] = pn;
6139 6140 6141
	return 0;
}

6142
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6143
{
6144
	kfree(memcg->nodeinfo[node]);
6145 6146
}

6147 6148
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6149
	struct mem_cgroup *memcg;
6150
	size_t size;
6151

6152 6153
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6154

6155
	memcg = kzalloc(size, GFP_KERNEL);
6156
	if (!memcg)
6157 6158
		return NULL;

6159 6160
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6161
		goto out_free;
6162 6163
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6164 6165

out_free:
6166
	kfree(memcg);
6167
	return NULL;
6168 6169
}

6170
/*
6171 6172 6173 6174 6175 6176 6177 6178
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6179
 */
6180 6181

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6182
{
6183
	int node;
6184

6185
	mem_cgroup_remove_from_trees(memcg);
6186 6187 6188 6189 6190 6191

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6203
	disarm_static_keys(memcg);
6204
	kfree(memcg);
6205
}
6206

6207 6208 6209
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6210
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6211
{
6212
	if (!memcg->res.parent)
6213
		return NULL;
6214
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6215
}
G
Glauber Costa 已提交
6216
EXPORT_SYMBOL(parent_mem_cgroup);
6217

6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6241
static struct cgroup_subsys_state * __ref
6242
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6243
{
6244
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6245
	long error = -ENOMEM;
6246
	int node;
B
Balbir Singh 已提交
6247

6248 6249
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6250
		return ERR_PTR(error);
6251

B
Bob Liu 已提交
6252
	for_each_node(node)
6253
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6254
			goto free_out;
6255

6256
	/* root ? */
6257
	if (parent_css == NULL) {
6258
		root_mem_cgroup = memcg;
6259 6260 6261
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6262
	}
6263

6264 6265 6266 6267 6268
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6269
	vmpressure_init(&memcg->vmpressure);
6270 6271
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
6272 6273 6274 6275 6276 6277 6278 6279 6280

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6281
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6282
{
6283 6284
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6285

6286 6287 6288
	if (css->cgroup->id > MEM_CGROUP_ID_MAX)
		return -ENOSPC;

T
Tejun Heo 已提交
6289
	if (!parent)
6290 6291
		return 0;

6292
	mutex_lock(&memcg_create_mutex);
6293 6294 6295 6296 6297 6298

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6299 6300
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6301
		res_counter_init(&memcg->kmem, &parent->kmem);
6302

6303
		/*
6304 6305
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6306
		 */
6307
	} else {
6308 6309
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6310
		res_counter_init(&memcg->kmem, NULL);
6311 6312 6313 6314 6315
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6316
		if (parent != root_mem_cgroup)
6317
			memory_cgrp_subsys.broken_hierarchy = true;
6318
	}
6319
	mutex_unlock(&memcg_create_mutex);
6320

6321
	return memcg_init_kmem(memcg, &memory_cgrp_subsys);
B
Balbir Singh 已提交
6322 6323
}

M
Michal Hocko 已提交
6324 6325 6326 6327 6328 6329 6330 6331
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6332
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6333 6334 6335 6336 6337 6338

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6339
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6340 6341
}

6342
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6343
{
6344
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6345
	struct mem_cgroup_event *event, *tmp;
6346
	struct cgroup_subsys_state *iter;
6347 6348 6349 6350 6351 6352

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
6353 6354
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6355 6356 6357
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
6358
	spin_unlock(&memcg->event_list_lock);
6359

6360 6361
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6362
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6363 6364 6365 6366 6367 6368 6369 6370

	/*
	 * This requires that offlining is serialized.  Right now that is
	 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
	 */
	css_for_each_descendant_post(iter, css)
		mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));

6371
	memcg_unregister_all_caches(memcg);
6372
	vmpressure_cleanup(&memcg->vmpressure);
6373 6374
}

6375
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6376
{
6377
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413
	/*
	 * XXX: css_offline() would be where we should reparent all
	 * memory to prepare the cgroup for destruction.  However,
	 * memcg does not do css_tryget() and res_counter charging
	 * under the same RCU lock region, which means that charging
	 * could race with offlining.  Offlining only happens to
	 * cgroups with no tasks in them but charges can show up
	 * without any tasks from the swapin path when the target
	 * memcg is looked up from the swapout record and not from the
	 * current task as it usually is.  A race like this can leak
	 * charges and put pages with stale cgroup pointers into
	 * circulation:
	 *
	 * #0                        #1
	 *                           lookup_swap_cgroup_id()
	 *                           rcu_read_lock()
	 *                           mem_cgroup_lookup()
	 *                           css_tryget()
	 *                           rcu_read_unlock()
	 * disable css_tryget()
	 * call_rcu()
	 *   offline_css()
	 *     reparent_charges()
	 *                           res_counter_charge()
	 *                           css_put()
	 *                             css_free()
	 *                           pc->mem_cgroup = dead memcg
	 *                           add page to lru
	 *
	 * The bulk of the charges are still moved in offline_css() to
	 * avoid pinning a lot of pages in case a long-term reference
	 * like a swapout record is deferring the css_free() to long
	 * after offlining.  But this makes sure we catch any charges
	 * made after offlining:
	 */
	mem_cgroup_reparent_charges(memcg);
6414

6415
	memcg_destroy_kmem(memcg);
6416
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6417 6418
}

6419
#ifdef CONFIG_MMU
6420
/* Handlers for move charge at task migration. */
6421 6422
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6423
{
6424 6425
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6426
	struct mem_cgroup *memcg = mc.to;
6427

6428
	if (mem_cgroup_is_root(memcg)) {
6429 6430 6431 6432 6433 6434 6435 6436
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6437
		 * "memcg" cannot be under rmdir() because we've already checked
6438 6439 6440 6441
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6442
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6443
			goto one_by_one;
6444
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6445
						PAGE_SIZE * count, &dummy)) {
6446
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6463
		ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false);
6464
		if (ret)
6465
			/* mem_cgroup_clear_mc() will do uncharge later */
6466
			return ret;
6467 6468
		mc.precharge++;
	}
6469 6470 6471 6472
	return ret;
}

/**
6473
 * get_mctgt_type - get target type of moving charge
6474 6475 6476
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6477
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6478 6479 6480 6481 6482 6483
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6484 6485 6486
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6487 6488 6489 6490 6491
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6492
	swp_entry_t	ent;
6493 6494 6495
};

enum mc_target_type {
6496
	MC_TARGET_NONE = 0,
6497
	MC_TARGET_PAGE,
6498
	MC_TARGET_SWAP,
6499 6500
};

D
Daisuke Nishimura 已提交
6501 6502
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6503
{
D
Daisuke Nishimura 已提交
6504
	struct page *page = vm_normal_page(vma, addr, ptent);
6505

D
Daisuke Nishimura 已提交
6506 6507 6508 6509
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6510
		if (!move_anon())
D
Daisuke Nishimura 已提交
6511
			return NULL;
6512 6513
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6514 6515 6516 6517 6518 6519 6520
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6521
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6522 6523 6524 6525 6526 6527 6528 6529
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6530 6531 6532 6533
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6534
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6535 6536 6537 6538 6539
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6540 6541 6542 6543 6544 6545 6546
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6547

6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6567 6568
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
6581
#endif
6582 6583 6584
	return page;
}

6585
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6586 6587 6588 6589
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6590
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6591 6592 6593 6594 6595 6596
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6597 6598
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6599 6600

	if (!page && !ent.val)
6601
		return ret;
6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6617 6618
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
6619
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6620 6621 6622
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6623 6624 6625 6626
	}
	return ret;
}

6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
6641
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6662 6663 6664 6665 6666 6667 6668 6669
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6670
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6671 6672
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
6673
		spin_unlock(ptl);
6674
		return 0;
6675
	}
6676

6677 6678
	if (pmd_trans_unstable(pmd))
		return 0;
6679 6680
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6681
		if (get_mctgt_type(vma, addr, *pte, NULL))
6682 6683 6684 6685
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6686 6687 6688
	return 0;
}

6689 6690 6691 6692 6693
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6694
	down_read(&mm->mmap_sem);
6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6706
	up_read(&mm->mmap_sem);
6707 6708 6709 6710 6711 6712 6713 6714 6715

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6716 6717 6718 6719 6720
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6721 6722
}

6723 6724
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6725
{
6726 6727
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6728
	int i;
6729

6730
	/* we must uncharge all the leftover precharges from mc.to */
6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6742
	}
6743 6744 6745 6746 6747 6748
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6749 6750 6751

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6752 6753 6754 6755 6756 6757 6758 6759 6760

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6761
		/* we've already done css_get(mc.to) */
6762 6763
		mc.moved_swap = 0;
	}
6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6779
	spin_lock(&mc.lock);
6780 6781
	mc.from = NULL;
	mc.to = NULL;
6782
	spin_unlock(&mc.lock);
6783
	mem_cgroup_end_move(from);
6784 6785
}

6786
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6787
				 struct cgroup_taskset *tset)
6788
{
6789
	struct task_struct *p = cgroup_taskset_first(tset);
6790
	int ret = 0;
6791
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6792
	unsigned long move_charge_at_immigrate;
6793

6794 6795 6796 6797 6798 6799 6800
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6801 6802 6803
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6804
		VM_BUG_ON(from == memcg);
6805 6806 6807 6808 6809

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6810 6811 6812 6813
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6814
			VM_BUG_ON(mc.moved_charge);
6815
			VM_BUG_ON(mc.moved_swap);
6816
			mem_cgroup_start_move(from);
6817
			spin_lock(&mc.lock);
6818
			mc.from = from;
6819
			mc.to = memcg;
6820
			mc.immigrate_flags = move_charge_at_immigrate;
6821
			spin_unlock(&mc.lock);
6822
			/* We set mc.moving_task later */
6823 6824 6825 6826

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6827 6828
		}
		mmput(mm);
6829 6830 6831 6832
	}
	return ret;
}

6833
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6834
				     struct cgroup_taskset *tset)
6835
{
6836
	mem_cgroup_clear_mc();
6837 6838
}

6839 6840 6841
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6842
{
6843 6844 6845 6846
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6847 6848 6849 6850
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6851

6852 6853 6854 6855 6856 6857 6858 6859 6860 6861
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
6862
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6863
		if (mc.precharge < HPAGE_PMD_NR) {
6864
			spin_unlock(ptl);
6865 6866 6867 6868 6869 6870 6871 6872
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6873
							pc, mc.from, mc.to)) {
6874 6875 6876 6877 6878 6879 6880
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
6881
		spin_unlock(ptl);
6882
		return 0;
6883 6884
	}

6885 6886
	if (pmd_trans_unstable(pmd))
		return 0;
6887 6888 6889 6890
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6891
		swp_entry_t ent;
6892 6893 6894 6895

		if (!mc.precharge)
			break;

6896
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6897 6898 6899 6900 6901
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6902
			if (!mem_cgroup_move_account(page, 1, pc,
6903
						     mc.from, mc.to)) {
6904
				mc.precharge--;
6905 6906
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6907 6908
			}
			putback_lru_page(page);
6909
put:			/* get_mctgt_type() gets the page */
6910 6911
			put_page(page);
			break;
6912 6913
		case MC_TARGET_SWAP:
			ent = target.ent;
6914
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6915
				mc.precharge--;
6916 6917 6918
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6919
			break;
6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6934
		ret = mem_cgroup_do_precharge(1);
6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6978
	up_read(&mm->mmap_sem);
6979 6980
}

6981
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6982
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6983
{
6984
	struct task_struct *p = cgroup_taskset_first(tset);
6985
	struct mm_struct *mm = get_task_mm(p);
6986 6987

	if (mm) {
6988 6989
		if (mc.to)
			mem_cgroup_move_charge(mm);
6990 6991
		mmput(mm);
	}
6992 6993
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6994
}
6995
#else	/* !CONFIG_MMU */
6996
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6997
				 struct cgroup_taskset *tset)
6998 6999 7000
{
	return 0;
}
7001
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7002
				     struct cgroup_taskset *tset)
7003 7004
{
}
7005
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7006
				 struct cgroup_taskset *tset)
7007 7008 7009
{
}
#endif
B
Balbir Singh 已提交
7010

7011 7012 7013 7014
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
7015
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7016 7017 7018 7019 7020 7021
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
7022 7023
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
7024 7025
}

7026
struct cgroup_subsys memory_cgrp_subsys = {
7027
	.css_alloc = mem_cgroup_css_alloc,
7028
	.css_online = mem_cgroup_css_online,
7029 7030
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
7031 7032
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
7033
	.attach = mem_cgroup_move_task,
7034
	.bind = mem_cgroup_bind,
7035
	.base_cftypes = mem_cgroup_files,
7036
	.early_init = 0,
B
Balbir Singh 已提交
7037
};
7038

A
Andrew Morton 已提交
7039
#ifdef CONFIG_MEMCG_SWAP
7040 7041
static int __init enable_swap_account(char *s)
{
7042
	if (!strcmp(s, "1"))
7043
		really_do_swap_account = 1;
7044
	else if (!strcmp(s, "0"))
7045 7046 7047
		really_do_swap_account = 0;
	return 1;
}
7048
__setup("swapaccount=", enable_swap_account);
7049

7050 7051
static void __init memsw_file_init(void)
{
7052
	WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files));
7053 7054 7055 7056 7057 7058 7059 7060
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
7061
}
7062

7063
#else
7064
static void __init enable_swap_cgroup(void)
7065 7066
{
}
7067
#endif
7068 7069

/*
7070 7071 7072 7073 7074 7075
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
7076 7077 7078 7079
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7080
	enable_swap_cgroup();
7081
	mem_cgroup_soft_limit_tree_init();
7082
	memcg_stock_init();
7083 7084 7085
	return 0;
}
subsys_initcall(mem_cgroup_init);