memcontrol.c 151.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78 79
struct mem_cgroup *root_mem_cgroup __read_mostly;

80
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
81

82 83 84
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

85 86 87
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

88
/* Whether the swap controller is active */
A
Andrew Morton 已提交
89
#ifdef CONFIG_MEMCG_SWAP
90 91
int do_swap_account __read_mostly;
#else
92
#define do_swap_account		0
93 94
#endif

95 96 97 98 99 100
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

101 102 103
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
104
	"rss_huge",
105
	"mapped_file",
106
	"dirty",
107
	"writeback",
108 109 110 111 112 113 114 115 116 117
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

118 119 120 121 122 123 124 125
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

126 127 128
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
150 151 152 153 154
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
155

156 157 158
/*
 * cgroup_event represents events which userspace want to receive.
 */
159
struct mem_cgroup_event {
160
	/*
161
	 * memcg which the event belongs to.
162
	 */
163
	struct mem_cgroup *memcg;
164 165 166 167 168 169 170 171
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
172 173 174 175 176
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
177
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
178
			      struct eventfd_ctx *eventfd, const char *args);
179 180 181 182 183
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
184
	void (*unregister_event)(struct mem_cgroup *memcg,
185
				 struct eventfd_ctx *eventfd);
186 187 188 189 190 191 192 193 194 195
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

196 197
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198

199 200
/* Stuffs for move charges at task migration. */
/*
201
 * Types of charges to be moved.
202
 */
203 204 205
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
206

207 208
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
209
	spinlock_t	  lock; /* for from, to */
210 211
	struct mem_cgroup *from;
	struct mem_cgroup *to;
212
	unsigned long flags;
213
	unsigned long precharge;
214
	unsigned long moved_charge;
215
	unsigned long moved_swap;
216 217 218
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
219
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
220 221
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
222

223 224 225 226
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
227
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
228
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
229

230 231
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
232
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
233
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
234
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
235 236 237
	NR_CHARGE_TYPE,
};

238
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
239 240 241 242
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
243
	_KMEM,
V
Vladimir Davydov 已提交
244
	_TCP,
G
Glauber Costa 已提交
245 246
};

247 248
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
249
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
250 251
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
252

253 254 255 256 257 258 259 260 261 262 263 264 265
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

266 267 268 269 270
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

271 272 273 274 275 276
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
277 278
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
279
	return memcg->css.id;
L
Li Zefan 已提交
280 281
}

282 283 284 285 286 287
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
 */
L
Li Zefan 已提交
288 289 290 291
static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

292
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
293 294 295
	return mem_cgroup_from_css(css);
}

296
#ifndef CONFIG_SLOB
297
/*
298
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
299 300 301 302 303
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
304
 *
305 306
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
307
 */
308 309
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
310

311 312 313 314 315 316 317 318 319 320 321 322 323
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

324 325 326 327 328 329
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
330
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
331 332
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
333
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
334 335 336
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
337
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
338

339 340 341 342 343 344
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
345
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
346
EXPORT_SYMBOL(memcg_kmem_enabled_key);
347

348
#endif /* !CONFIG_SLOB */
349

350
static struct mem_cgroup_per_zone *
351
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
352
{
353 354 355
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

356
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
357 358
}

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

376
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
377 378 379 380 381
		memcg = root_mem_cgroup;

	return &memcg->css;
}

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

410
static struct mem_cgroup_per_zone *
411
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
412
{
413 414
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
415

416
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
417 418
}

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

434 435
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
436
					 unsigned long new_usage_in_excess)
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

466 467
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
468 469 470 471 472 473 474
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

475 476
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
477
{
478 479 480
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
481
	__mem_cgroup_remove_exceeded(mz, mctz);
482
	spin_unlock_irqrestore(&mctz->lock, flags);
483 484
}

485 486 487
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
488
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
489 490 491 492 493 494 495
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
496 497 498

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
499
	unsigned long excess;
500 501 502
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

503
	mctz = soft_limit_tree_from_page(page);
504 505 506 507 508
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
509
		mz = mem_cgroup_page_zoneinfo(memcg, page);
510
		excess = soft_limit_excess(memcg);
511 512 513 514 515
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
516 517 518
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
519 520
			/* if on-tree, remove it */
			if (mz->on_tree)
521
				__mem_cgroup_remove_exceeded(mz, mctz);
522 523 524 525
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
526
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
527
			spin_unlock_irqrestore(&mctz->lock, flags);
528 529 530 531 532 533 534
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
535 536
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
537

538 539 540 541
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
542
			mem_cgroup_remove_exceeded(mz, mctz);
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
565
	__mem_cgroup_remove_exceeded(mz, mctz);
566
	if (!soft_limit_excess(mz->memcg) ||
567
	    !css_tryget_online(&mz->memcg->css))
568 569 570 571 572 573 574 575 576 577
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

578
	spin_lock_irq(&mctz->lock);
579
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
580
	spin_unlock_irq(&mctz->lock);
581 582 583
	return mz;
}

584
/*
585 586
 * Return page count for single (non recursive) @memcg.
 *
587 588 589 590 591
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
592
 * a periodic synchronization of counter in memcg's counter.
593 594 595 596 597 598 599 600 601
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
602
 * common workload, threshold and synchronization as vmstat[] should be
603 604
 * implemented.
 */
605 606
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
607
{
608
	long val = 0;
609 610
	int cpu;

611
	/* Per-cpu values can be negative, use a signed accumulator */
612
	for_each_possible_cpu(cpu)
613
		val += per_cpu(memcg->stat->count[idx], cpu);
614 615 616 617 618 619
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
620 621 622
	return val;
}

623
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
624 625 626 627 628
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

629
	for_each_possible_cpu(cpu)
630
		val += per_cpu(memcg->stat->events[idx], cpu);
631 632 633
	return val;
}

634
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
635
					 struct page *page,
636
					 bool compound, int nr_pages)
637
{
638 639 640 641
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
642
	if (PageAnon(page))
643
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
644
				nr_pages);
645
	else
646
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
647
				nr_pages);
648

649 650
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
651 652
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);
653
	}
654

655 656
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
657
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
658
	else {
659
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
660 661
		nr_pages = -nr_pages; /* for event */
	}
662

663
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
664 665
}

666 667 668
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
669
{
670
	unsigned long nr = 0;
671 672
	int zid;

673
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
674

675 676 677 678 679 680 681 682 683 684 685 686
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
687
}
688

689
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
690
			unsigned int lru_mask)
691
{
692
	unsigned long nr = 0;
693
	int nid;
694

695
	for_each_node_state(nid, N_MEMORY)
696 697
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
698 699
}

700 701
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
702 703 704
{
	unsigned long val, next;

705
	val = __this_cpu_read(memcg->stat->nr_page_events);
706
	next = __this_cpu_read(memcg->stat->targets[target]);
707
	/* from time_after() in jiffies.h */
708 709 710 711 712
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
713 714 715
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
716 717 718 719 720 721 722 723
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
724
	}
725
	return false;
726 727 728 729 730 731
}

/*
 * Check events in order.
 *
 */
732
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
733 734
{
	/* threshold event is triggered in finer grain than soft limit */
735 736
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
737
		bool do_softlimit;
738
		bool do_numainfo __maybe_unused;
739

740 741
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
742 743 744 745
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
746
		mem_cgroup_threshold(memcg);
747 748
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
749
#if MAX_NUMNODES > 1
750
		if (unlikely(do_numainfo))
751
			atomic_inc(&memcg->numainfo_events);
752
#endif
753
	}
754 755
}

756
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
757
{
758 759 760 761 762 763 764 765
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

766
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
767
}
M
Michal Hocko 已提交
768
EXPORT_SYMBOL(mem_cgroup_from_task);
769

770
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
771
{
772
	struct mem_cgroup *memcg = NULL;
773

774 775
	rcu_read_lock();
	do {
776 777 778 779 780 781
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
782
			memcg = root_mem_cgroup;
783 784 785 786 787
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
788
	} while (!css_tryget_online(&memcg->css));
789
	rcu_read_unlock();
790
	return memcg;
791 792
}

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
810
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
811
				   struct mem_cgroup *prev,
812
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
813
{
M
Michal Hocko 已提交
814
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
815
	struct cgroup_subsys_state *css = NULL;
816
	struct mem_cgroup *memcg = NULL;
817
	struct mem_cgroup *pos = NULL;
818

819 820
	if (mem_cgroup_disabled())
		return NULL;
821

822 823
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
824

825
	if (prev && !reclaim)
826
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
827

828 829
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
830
			goto out;
831
		return root;
832
	}
K
KAMEZAWA Hiroyuki 已提交
833

834
	rcu_read_lock();
M
Michal Hocko 已提交
835

836 837 838 839 840 841 842 843 844
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

845
		while (1) {
846
			pos = READ_ONCE(iter->position);
847 848
			if (!pos || css_tryget(&pos->css))
				break;
849
			/*
850 851 852 853 854 855
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
856
			 */
857 858
			(void)cmpxchg(&iter->position, pos, NULL);
		}
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
876
		}
K
KAMEZAWA Hiroyuki 已提交
877

878 879 880 881 882 883
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
884

885 886
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
887

888 889
		if (css_tryget(css))
			break;
890

891
		memcg = NULL;
892
	}
893 894 895

	if (reclaim) {
		/*
896 897 898
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
899
		 */
900 901
		(void)cmpxchg(&iter->position, pos, memcg);

902 903 904 905 906 907 908
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
909
	}
910

911 912
out_unlock:
	rcu_read_unlock();
913
out:
914 915 916
	if (prev && prev != root)
		css_put(&prev->css);

917
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
918
}
K
KAMEZAWA Hiroyuki 已提交
919

920 921 922 923 924 925 926
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
927 928 929 930 931 932
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
933

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
				for (i = 0; i <= DEF_PRIORITY; i++) {
					iter = &mz->iter[i];
					cmpxchg(&iter->position,
						dead_memcg, NULL);
				}
			}
		}
	}
}

956 957 958 959 960 961
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
962
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
963
	     iter != NULL;				\
964
	     iter = mem_cgroup_iter(root, iter, NULL))
965

966
#define for_each_mem_cgroup(iter)			\
967
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
968
	     iter != NULL;				\
969
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
970

971 972 973
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
974
 * @memcg: memcg of the wanted lruvec
975 976 977 978 979 980 981 982 983
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
984
	struct lruvec *lruvec;
985

986 987 988 989
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
990

991
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
992 993 994 995 996 997 998 999 1000 1001
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1002 1003 1004
}

/**
1005
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1006
 * @page: the page
1007
 * @zone: zone of the page
1008 1009 1010 1011
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1012
 */
1013
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1014 1015
{
	struct mem_cgroup_per_zone *mz;
1016
	struct mem_cgroup *memcg;
1017
	struct lruvec *lruvec;
1018

1019 1020 1021 1022
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1023

1024
	memcg = page->mem_cgroup;
1025
	/*
1026
	 * Swapcache readahead pages are added to the LRU - and
1027
	 * possibly migrated - before they are charged.
1028
	 */
1029 1030
	if (!memcg)
		memcg = root_mem_cgroup;
1031

1032
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1043
}
1044

1045
/**
1046 1047 1048 1049
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1050
 *
1051 1052
 * This function must be called when a page is added to or removed from an
 * lru list.
1053
 */
1054 1055
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1056 1057
{
	struct mem_cgroup_per_zone *mz;
1058
	unsigned long *lru_size;
1059 1060 1061 1062

	if (mem_cgroup_disabled())
		return;

1063 1064 1065 1066
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1067
}
1068

1069
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1070
{
1071
	struct mem_cgroup *task_memcg;
1072
	struct task_struct *p;
1073
	bool ret;
1074

1075
	p = find_lock_task_mm(task);
1076
	if (p) {
1077
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1078 1079 1080 1081 1082 1083 1084
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1085
		rcu_read_lock();
1086 1087
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1088
		rcu_read_unlock();
1089
	}
1090 1091
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1092 1093 1094
	return ret;
}

1095
/**
1096
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1097
 * @memcg: the memory cgroup
1098
 *
1099
 * Returns the maximum amount of memory @mem can be charged with, in
1100
 * pages.
1101
 */
1102
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1103
{
1104 1105 1106
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1107

1108
	count = page_counter_read(&memcg->memory);
1109
	limit = READ_ONCE(memcg->memory.limit);
1110 1111 1112
	if (count < limit)
		margin = limit - count;

1113
	if (do_memsw_account()) {
1114
		count = page_counter_read(&memcg->memsw);
1115
		limit = READ_ONCE(memcg->memsw.limit);
1116 1117 1118 1119 1120
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1121 1122
}

1123
/*
Q
Qiang Huang 已提交
1124
 * A routine for checking "mem" is under move_account() or not.
1125
 *
Q
Qiang Huang 已提交
1126 1127 1128
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1129
 */
1130
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1131
{
1132 1133
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1134
	bool ret = false;
1135 1136 1137 1138 1139 1140 1141 1142 1143
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1144

1145 1146
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1147 1148
unlock:
	spin_unlock(&mc.lock);
1149 1150 1151
	return ret;
}

1152
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1153 1154
{
	if (mc.moving_task && current != mc.moving_task) {
1155
		if (mem_cgroup_under_move(memcg)) {
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1168
#define K(x) ((x) << (PAGE_SHIFT-10))
1169
/**
1170
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1171 1172 1173 1174 1175 1176 1177 1178
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1179
	/* oom_info_lock ensures that parallel ooms do not interleave */
1180
	static DEFINE_MUTEX(oom_info_lock);
1181 1182
	struct mem_cgroup *iter;
	unsigned int i;
1183

1184
	mutex_lock(&oom_info_lock);
1185 1186
	rcu_read_lock();

1187 1188 1189 1190 1191 1192 1193 1194
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1195
	pr_cont_cgroup_path(memcg->css.cgroup);
1196
	pr_cont("\n");
1197 1198 1199

	rcu_read_unlock();

1200 1201 1202 1203 1204 1205 1206 1207 1208
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1209 1210

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1211 1212
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1213 1214 1215
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1216
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1217
				continue;
1218
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1219 1220 1221 1222 1223 1224 1225 1226 1227
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1228
	mutex_unlock(&oom_info_lock);
1229 1230
}

1231 1232 1233 1234
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1235
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1236 1237
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1238 1239
	struct mem_cgroup *iter;

1240
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1241
		num++;
1242 1243 1244
	return num;
}

D
David Rientjes 已提交
1245 1246 1247
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1248
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1249
{
1250
	unsigned long limit;
1251

1252
	limit = memcg->memory.limit;
1253
	if (mem_cgroup_swappiness(memcg)) {
1254
		unsigned long memsw_limit;
1255
		unsigned long swap_limit;
1256

1257
		memsw_limit = memcg->memsw.limit;
1258 1259 1260
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1261 1262
	}
	return limit;
D
David Rientjes 已提交
1263 1264
}

1265 1266
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1267
{
1268 1269 1270 1271 1272 1273
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
		.gfp_mask = gfp_mask,
		.order = order,
	};
1274 1275 1276 1277 1278 1279
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1280 1281
	mutex_lock(&oom_lock);

1282
	/*
1283 1284 1285
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1286
	 */
1287
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1288
		mark_oom_victim(current);
1289
		goto unlock;
1290 1291
	}

1292
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1293
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1294
	for_each_mem_cgroup_tree(iter, memcg) {
1295
		struct css_task_iter it;
1296 1297
		struct task_struct *task;

1298 1299
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1300
			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1311
				css_task_iter_end(&it);
1312 1313 1314
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1315
				goto unlock;
1316 1317 1318 1319
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1332
		}
1333
		css_task_iter_end(&it);
1334 1335
	}

1336 1337
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1338 1339
		oom_kill_process(&oc, chosen, points, totalpages, memcg,
				 "Memory cgroup out of memory");
1340 1341 1342
	}
unlock:
	mutex_unlock(&oom_lock);
1343 1344
}

1345 1346
#if MAX_NUMNODES > 1

1347 1348
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1349
 * @memcg: the target memcg
1350 1351 1352 1353 1354 1355 1356
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1357
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1358 1359
		int nid, bool noswap)
{
1360
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1361 1362 1363
		return true;
	if (noswap || !total_swap_pages)
		return false;
1364
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1365 1366 1367 1368
		return true;
	return false;

}
1369 1370 1371 1372 1373 1374 1375

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1376
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1377 1378
{
	int nid;
1379 1380 1381 1382
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1383
	if (!atomic_read(&memcg->numainfo_events))
1384
		return;
1385
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1386 1387 1388
		return;

	/* make a nodemask where this memcg uses memory from */
1389
	memcg->scan_nodes = node_states[N_MEMORY];
1390

1391
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1392

1393 1394
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1395
	}
1396

1397 1398
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1413
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1414 1415 1416
{
	int node;

1417 1418
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1419

1420
	node = next_node(node, memcg->scan_nodes);
1421
	if (node == MAX_NUMNODES)
1422
		node = first_node(memcg->scan_nodes);
1423 1424 1425 1426 1427 1428 1429 1430 1431
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1432
	memcg->last_scanned_node = node;
1433 1434 1435
	return node;
}
#else
1436
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1437 1438 1439 1440 1441
{
	return 0;
}
#endif

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1457
	excess = soft_limit_excess(root_memcg);
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1486
		if (!soft_limit_excess(root_memcg))
1487
			break;
1488
	}
1489 1490
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1491 1492
}

1493 1494 1495 1496 1497 1498
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1499 1500
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1501 1502 1503 1504
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1505
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1506
{
1507
	struct mem_cgroup *iter, *failed = NULL;
1508

1509 1510
	spin_lock(&memcg_oom_lock);

1511
	for_each_mem_cgroup_tree(iter, memcg) {
1512
		if (iter->oom_lock) {
1513 1514 1515 1516 1517
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1518 1519
			mem_cgroup_iter_break(memcg, iter);
			break;
1520 1521
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1522
	}
K
KAMEZAWA Hiroyuki 已提交
1523

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1535
		}
1536 1537
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1538 1539 1540 1541

	spin_unlock(&memcg_oom_lock);

	return !failed;
1542
}
1543

1544
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1545
{
K
KAMEZAWA Hiroyuki 已提交
1546 1547
	struct mem_cgroup *iter;

1548
	spin_lock(&memcg_oom_lock);
1549
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1550
	for_each_mem_cgroup_tree(iter, memcg)
1551
		iter->oom_lock = false;
1552
	spin_unlock(&memcg_oom_lock);
1553 1554
}

1555
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1556 1557 1558
{
	struct mem_cgroup *iter;

1559
	spin_lock(&memcg_oom_lock);
1560
	for_each_mem_cgroup_tree(iter, memcg)
1561 1562
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1563 1564
}

1565
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1566 1567 1568
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1569 1570
	/*
	 * When a new child is created while the hierarchy is under oom,
1571
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1572
	 */
1573
	spin_lock(&memcg_oom_lock);
1574
	for_each_mem_cgroup_tree(iter, memcg)
1575 1576 1577
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1578 1579
}

K
KAMEZAWA Hiroyuki 已提交
1580 1581
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1582
struct oom_wait_info {
1583
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1584 1585 1586 1587 1588 1589
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1590 1591
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1592 1593 1594
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1595
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1596

1597 1598
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1599 1600 1601 1602
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1603
static void memcg_oom_recover(struct mem_cgroup *memcg)
1604
{
1605 1606 1607 1608 1609 1610 1611 1612 1613
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1614
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1615 1616
}

1617
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1618
{
T
Tejun Heo 已提交
1619
	if (!current->memcg_may_oom)
1620
		return;
K
KAMEZAWA Hiroyuki 已提交
1621
	/*
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1634
	 */
1635
	css_get(&memcg->css);
T
Tejun Heo 已提交
1636 1637 1638
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1639 1640 1641 1642
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1643
 * @handle: actually kill/wait or just clean up the OOM state
1644
 *
1645 1646
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1647
 *
1648
 * Memcg supports userspace OOM handling where failed allocations must
1649 1650 1651 1652
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1653
 * the end of the page fault to complete the OOM handling.
1654 1655
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1656
 * completed, %false otherwise.
1657
 */
1658
bool mem_cgroup_oom_synchronize(bool handle)
1659
{
T
Tejun Heo 已提交
1660
	struct mem_cgroup *memcg = current->memcg_in_oom;
1661
	struct oom_wait_info owait;
1662
	bool locked;
1663 1664 1665

	/* OOM is global, do not handle */
	if (!memcg)
1666
		return false;
1667

1668
	if (!handle || oom_killer_disabled)
1669
		goto cleanup;
1670 1671 1672 1673 1674 1675

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1676

1677
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1688 1689
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1690
	} else {
1691
		schedule();
1692 1693 1694 1695 1696
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1697 1698 1699 1700 1701 1702 1703 1704
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1705
cleanup:
T
Tejun Heo 已提交
1706
	current->memcg_in_oom = NULL;
1707
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1708
	return true;
1709 1710
}

1711 1712 1713
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1714
 *
1715 1716 1717
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1718
 *
1719
 *   memcg = mem_cgroup_begin_page_stat(page);
1720 1721
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1722
 *   mem_cgroup_end_page_stat(memcg);
1723
 */
1724
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1725 1726
{
	struct mem_cgroup *memcg;
1727
	unsigned long flags;
1728

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
1741 1742 1743 1744
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
1745
again:
1746
	memcg = page->mem_cgroup;
1747
	if (unlikely(!memcg))
1748 1749
		return NULL;

Q
Qiang Huang 已提交
1750
	if (atomic_read(&memcg->moving_account) <= 0)
1751
		return memcg;
1752

1753
	spin_lock_irqsave(&memcg->move_lock, flags);
1754
	if (memcg != page->mem_cgroup) {
1755
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1756 1757
		goto again;
	}
1758 1759 1760 1761 1762 1763 1764 1765

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1766 1767

	return memcg;
1768
}
1769
EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1770

1771 1772 1773 1774
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
1775
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1776
{
1777 1778 1779 1780 1781 1782 1783 1784
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1785

1786
	rcu_read_unlock();
1787
}
1788
EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1789

1790 1791 1792 1793
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1794
#define CHARGE_BATCH	32U
1795 1796
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1797
	unsigned int nr_pages;
1798
	struct work_struct work;
1799
	unsigned long flags;
1800
#define FLUSHING_CACHED_CHARGE	0
1801 1802
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1803
static DEFINE_MUTEX(percpu_charge_mutex);
1804

1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1815
 */
1816
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1817 1818
{
	struct memcg_stock_pcp *stock;
1819
	bool ret = false;
1820

1821
	if (nr_pages > CHARGE_BATCH)
1822
		return ret;
1823

1824
	stock = &get_cpu_var(memcg_stock);
1825
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1826
		stock->nr_pages -= nr_pages;
1827 1828
		ret = true;
	}
1829 1830 1831 1832 1833
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1834
 * Returns stocks cached in percpu and reset cached information.
1835 1836 1837 1838 1839
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1840
	if (stock->nr_pages) {
1841
		page_counter_uncharge(&old->memory, stock->nr_pages);
1842
		if (do_memsw_account())
1843
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1844
		css_put_many(&old->css, stock->nr_pages);
1845
		stock->nr_pages = 0;
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1856
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1857
	drain_stock(stock);
1858
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1859 1860 1861
}

/*
1862
 * Cache charges(val) to local per_cpu area.
1863
 * This will be consumed by consume_stock() function, later.
1864
 */
1865
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1866 1867 1868
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1869
	if (stock->cached != memcg) { /* reset if necessary */
1870
		drain_stock(stock);
1871
		stock->cached = memcg;
1872
	}
1873
	stock->nr_pages += nr_pages;
1874 1875 1876 1877
	put_cpu_var(memcg_stock);
}

/*
1878
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1879
 * of the hierarchy under it.
1880
 */
1881
static void drain_all_stock(struct mem_cgroup *root_memcg)
1882
{
1883
	int cpu, curcpu;
1884

1885 1886 1887
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1888 1889
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1890
	curcpu = get_cpu();
1891 1892
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1893
		struct mem_cgroup *memcg;
1894

1895 1896
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1897
			continue;
1898
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1899
			continue;
1900 1901 1902 1903 1904 1905
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1906
	}
1907
	put_cpu();
A
Andrew Morton 已提交
1908
	put_online_cpus();
1909
	mutex_unlock(&percpu_charge_mutex);
1910 1911
}

1912
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1913 1914 1915 1916 1917 1918
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1919
	if (action == CPU_ONLINE)
1920 1921
		return NOTIFY_OK;

1922
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1923
		return NOTIFY_OK;
1924

1925 1926 1927 1928 1929
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1950 1951 1952 1953 1954 1955 1956
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1957
	struct mem_cgroup *memcg;
1958 1959 1960 1961

	if (likely(!nr_pages))
		return;

1962 1963
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1964 1965 1966 1967
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1968 1969
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1970
{
1971
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1972
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1973
	struct mem_cgroup *mem_over_limit;
1974
	struct page_counter *counter;
1975
	unsigned long nr_reclaimed;
1976 1977
	bool may_swap = true;
	bool drained = false;
1978

1979
	if (mem_cgroup_is_root(memcg))
1980
		return 0;
1981
retry:
1982
	if (consume_stock(memcg, nr_pages))
1983
		return 0;
1984

1985
	if (!do_memsw_account() ||
1986 1987
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1988
			goto done_restock;
1989
		if (do_memsw_account())
1990 1991
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1992
	} else {
1993
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1994
		may_swap = false;
1995
	}
1996

1997 1998 1999 2000
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2001

2002 2003 2004 2005 2006 2007 2008 2009 2010
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
2011
		goto force;
2012 2013 2014 2015

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2016
	if (!gfpflags_allow_blocking(gfp_mask))
2017
		goto nomem;
2018

2019 2020
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2021 2022
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2023

2024
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2025
		goto retry;
2026

2027
	if (!drained) {
2028
		drain_all_stock(mem_over_limit);
2029 2030 2031 2032
		drained = true;
		goto retry;
	}

2033 2034
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2035 2036 2037 2038 2039 2040 2041 2042 2043
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2044
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2045 2046 2047 2048 2049 2050 2051 2052
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2053 2054 2055
	if (nr_retries--)
		goto retry;

2056
	if (gfp_mask & __GFP_NOFAIL)
2057
		goto force;
2058

2059
	if (fatal_signal_pending(current))
2060
		goto force;
2061

2062 2063
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2064 2065
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
2066
nomem:
2067
	if (!(gfp_mask & __GFP_NOFAIL))
2068
		return -ENOMEM;
2069 2070 2071 2072 2073 2074 2075
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2076
	if (do_memsw_account())
2077 2078 2079 2080
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2081 2082

done_restock:
2083
	css_get_many(&memcg->css, batch);
2084 2085
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2086

2087
	/*
2088 2089
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2090
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2091 2092 2093 2094
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2095 2096
	 */
	do {
2097
		if (page_counter_read(&memcg->memory) > memcg->high) {
2098 2099 2100 2101 2102
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2103
			current->memcg_nr_pages_over_high += batch;
2104 2105 2106
			set_notify_resume(current);
			break;
		}
2107
	} while ((memcg = parent_mem_cgroup(memcg)));
2108 2109

	return 0;
2110
}
2111

2112
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2113
{
2114 2115 2116
	if (mem_cgroup_is_root(memcg))
		return;

2117
	page_counter_uncharge(&memcg->memory, nr_pages);
2118
	if (do_memsw_account())
2119
		page_counter_uncharge(&memcg->memsw, nr_pages);
2120

2121
	css_put_many(&memcg->css, nr_pages);
2122 2123
}

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2155
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2156
			  bool lrucare)
2157
{
2158
	int isolated;
2159

2160
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2161 2162 2163 2164 2165

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2166 2167
	if (lrucare)
		lock_page_lru(page, &isolated);
2168

2169 2170
	/*
	 * Nobody should be changing or seriously looking at
2171
	 * page->mem_cgroup at this point:
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2183
	page->mem_cgroup = memcg;
2184

2185 2186
	if (lrucare)
		unlock_page_lru(page, isolated);
2187
}
2188

2189
#ifndef CONFIG_SLOB
2190
static int memcg_alloc_cache_id(void)
2191
{
2192 2193 2194
	int id, size;
	int err;

2195
	id = ida_simple_get(&memcg_cache_ida,
2196 2197 2198
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2199

2200
	if (id < memcg_nr_cache_ids)
2201 2202 2203 2204 2205 2206
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2207
	down_write(&memcg_cache_ids_sem);
2208 2209

	size = 2 * (id + 1);
2210 2211 2212 2213 2214
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2215
	err = memcg_update_all_caches(size);
2216 2217
	if (!err)
		err = memcg_update_all_list_lrus(size);
2218 2219 2220 2221 2222
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2223
	if (err) {
2224
		ida_simple_remove(&memcg_cache_ida, id);
2225 2226 2227 2228 2229 2230 2231
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2232
	ida_simple_remove(&memcg_cache_ida, id);
2233 2234
}

2235
struct memcg_kmem_cache_create_work {
2236 2237 2238 2239 2240
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2241
static void memcg_kmem_cache_create_func(struct work_struct *w)
2242
{
2243 2244
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2245 2246
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2247

2248
	memcg_create_kmem_cache(memcg, cachep);
2249

2250
	css_put(&memcg->css);
2251 2252 2253 2254 2255 2256
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2257 2258
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2259
{
2260
	struct memcg_kmem_cache_create_work *cw;
2261

2262
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2263
	if (!cw)
2264
		return;
2265 2266

	css_get(&memcg->css);
2267 2268 2269

	cw->memcg = memcg;
	cw->cachep = cachep;
2270
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2271 2272 2273 2274

	schedule_work(&cw->work);
}

2275 2276
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2277 2278 2279 2280
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2281
	 * in __memcg_schedule_kmem_cache_create will recurse.
2282 2283 2284 2285 2286 2287 2288
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2289
	current->memcg_kmem_skip_account = 1;
2290
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2291
	current->memcg_kmem_skip_account = 0;
2292
}
2293

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
V
Vladimir Davydov 已提交
2307
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2308 2309
{
	struct mem_cgroup *memcg;
2310
	struct kmem_cache *memcg_cachep;
2311
	int kmemcg_id;
2312

2313
	VM_BUG_ON(!is_root_cache(cachep));
2314

V
Vladimir Davydov 已提交
2315 2316 2317 2318 2319 2320
	if (cachep->flags & SLAB_ACCOUNT)
		gfp |= __GFP_ACCOUNT;

	if (!(gfp & __GFP_ACCOUNT))
		return cachep;

2321
	if (current->memcg_kmem_skip_account)
2322 2323
		return cachep;

2324
	memcg = get_mem_cgroup_from_mm(current->mm);
2325
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2326
	if (kmemcg_id < 0)
2327
		goto out;
2328

2329
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2330 2331
	if (likely(memcg_cachep))
		return memcg_cachep;
2332 2333 2334 2335 2336 2337 2338 2339 2340

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2341 2342 2343
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2344
	 */
2345
	memcg_schedule_kmem_cache_create(memcg, cachep);
2346
out:
2347
	css_put(&memcg->css);
2348
	return cachep;
2349 2350
}

2351 2352 2353
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2354
		css_put(&cachep->memcg_params.memcg->css);
2355 2356
}

2357 2358
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			      struct mem_cgroup *memcg)
2359
{
2360 2361
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2362 2363
	int ret;

2364
	if (!memcg_kmem_online(memcg))
2365
		return 0;
2366

2367
	ret = try_charge(memcg, gfp, nr_pages);
2368
	if (ret)
2369
		return ret;
2370 2371 2372 2373 2374

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2375 2376
	}

2377
	page->mem_cgroup = memcg;
2378

2379
	return 0;
2380 2381
}

2382
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2383
{
2384 2385
	struct mem_cgroup *memcg;
	int ret;
2386

2387 2388
	memcg = get_mem_cgroup_from_mm(current->mm);
	ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2389
	css_put(&memcg->css);
2390
	return ret;
2391 2392
}

2393
void __memcg_kmem_uncharge(struct page *page, int order)
2394
{
2395
	struct mem_cgroup *memcg = page->mem_cgroup;
2396
	unsigned int nr_pages = 1 << order;
2397 2398 2399 2400

	if (!memcg)
		return;

2401
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2402

2403 2404 2405
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2406
	page_counter_uncharge(&memcg->memory, nr_pages);
2407
	if (do_memsw_account())
2408
		page_counter_uncharge(&memcg->memsw, nr_pages);
2409

2410
	page->mem_cgroup = NULL;
2411
	css_put_many(&memcg->css, nr_pages);
2412
}
2413
#endif /* !CONFIG_SLOB */
2414

2415 2416 2417 2418
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2419
 * zone->lru_lock and migration entries setup in all page mappings.
2420
 */
2421
void mem_cgroup_split_huge_fixup(struct page *head)
2422
{
2423
	int i;
2424

2425 2426
	if (mem_cgroup_disabled())
		return;
2427

2428
	for (i = 1; i < HPAGE_PMD_NR; i++)
2429
		head[i].mem_cgroup = head->mem_cgroup;
2430

2431
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2432
		       HPAGE_PMD_NR);
2433
}
2434
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2435

A
Andrew Morton 已提交
2436
#ifdef CONFIG_MEMCG_SWAP
2437 2438
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2439
{
2440 2441
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2442
}
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2455
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2456 2457 2458
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2459
				struct mem_cgroup *from, struct mem_cgroup *to)
2460 2461 2462
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2463 2464
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2465 2466 2467

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2468
		mem_cgroup_swap_statistics(to, true);
2469 2470 2471 2472 2473 2474
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2475
				struct mem_cgroup *from, struct mem_cgroup *to)
2476 2477 2478
{
	return -EINVAL;
}
2479
#endif
K
KAMEZAWA Hiroyuki 已提交
2480

2481
static DEFINE_MUTEX(memcg_limit_mutex);
2482

2483
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2484
				   unsigned long limit)
2485
{
2486 2487 2488
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2489
	int retry_count;
2490
	int ret;
2491 2492 2493 2494 2495 2496

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2497 2498
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2499

2500
	oldusage = page_counter_read(&memcg->memory);
2501

2502
	do {
2503 2504 2505 2506
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2507 2508 2509 2510

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2511
			ret = -EINVAL;
2512 2513
			break;
		}
2514 2515 2516 2517
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2518 2519 2520 2521

		if (!ret)
			break;

2522 2523
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2524
		curusage = page_counter_read(&memcg->memory);
2525
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2526
		if (curusage >= oldusage)
2527 2528 2529
			retry_count--;
		else
			oldusage = curusage;
2530 2531
	} while (retry_count);

2532 2533
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2534

2535 2536 2537
	return ret;
}

L
Li Zefan 已提交
2538
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2539
					 unsigned long limit)
2540
{
2541 2542 2543
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2544
	int retry_count;
2545
	int ret;
2546

2547
	/* see mem_cgroup_resize_res_limit */
2548 2549 2550 2551 2552 2553
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2554 2555 2556 2557
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2558 2559 2560 2561

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2562 2563 2564
			ret = -EINVAL;
			break;
		}
2565 2566 2567 2568
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2569 2570 2571 2572

		if (!ret)
			break;

2573 2574
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2575
		curusage = page_counter_read(&memcg->memsw);
2576
		/* Usage is reduced ? */
2577
		if (curusage >= oldusage)
2578
			retry_count--;
2579 2580
		else
			oldusage = curusage;
2581 2582
	} while (retry_count);

2583 2584
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2585

2586 2587 2588
	return ret;
}

2589 2590 2591 2592 2593 2594 2595 2596 2597
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2598
	unsigned long excess;
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2623
		spin_lock_irq(&mctz->lock);
2624
		__mem_cgroup_remove_exceeded(mz, mctz);
2625 2626 2627 2628 2629 2630

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2631 2632 2633
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2634
		excess = soft_limit_excess(mz->memcg);
2635 2636 2637 2638 2639 2640 2641 2642 2643
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2644
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2645
		spin_unlock_irq(&mctz->lock);
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2663 2664 2665 2666 2667 2668
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2669 2670
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2671 2672 2673 2674 2675 2676
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2677 2678
}

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2689 2690
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2691
	/* try to free all pages in this cgroup */
2692
	while (nr_retries && page_counter_read(&memcg->memory)) {
2693
		int progress;
2694

2695 2696 2697
		if (signal_pending(current))
			return -EINTR;

2698 2699
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2700
		if (!progress) {
2701
			nr_retries--;
2702
			/* maybe some writeback is necessary */
2703
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2704
		}
2705 2706

	}
2707 2708

	return 0;
2709 2710
}

2711 2712 2713
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2714
{
2715
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2716

2717 2718
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2719
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2720 2721
}

2722 2723
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2724
{
2725
	return mem_cgroup_from_css(css)->use_hierarchy;
2726 2727
}

2728 2729
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2730 2731
{
	int retval = 0;
2732
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2733
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2734

2735
	if (memcg->use_hierarchy == val)
2736
		return 0;
2737

2738
	/*
2739
	 * If parent's use_hierarchy is set, we can't make any modifications
2740 2741 2742 2743 2744 2745
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2746
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2747
				(val == 1 || val == 0)) {
2748
		if (!memcg_has_children(memcg))
2749
			memcg->use_hierarchy = val;
2750 2751 2752 2753
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2754

2755 2756 2757
	return retval;
}

2758 2759
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
2760 2761
{
	struct mem_cgroup *iter;
2762
	unsigned long val = 0;
2763 2764 2765 2766 2767 2768 2769

	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	return val;
}

2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
static unsigned long tree_events(struct mem_cgroup *memcg,
				 enum mem_cgroup_events_index idx)
{
	struct mem_cgroup *iter;
	unsigned long val = 0;

	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_events(iter, idx);

	return val;
}

2782
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2783
{
2784
	unsigned long val;
2785

2786 2787 2788 2789 2790 2791
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
2792
		if (!swap)
2793
			val = page_counter_read(&memcg->memory);
2794
		else
2795
			val = page_counter_read(&memcg->memsw);
2796
	}
2797
	return val;
2798 2799
}

2800 2801 2802 2803 2804 2805 2806
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2807

2808
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2809
			       struct cftype *cft)
B
Balbir Singh 已提交
2810
{
2811
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2812
	struct page_counter *counter;
2813

2814
	switch (MEMFILE_TYPE(cft->private)) {
2815
	case _MEM:
2816 2817
		counter = &memcg->memory;
		break;
2818
	case _MEMSWAP:
2819 2820
		counter = &memcg->memsw;
		break;
2821
	case _KMEM:
2822
		counter = &memcg->kmem;
2823
		break;
V
Vladimir Davydov 已提交
2824
	case _TCP:
2825
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2826
		break;
2827 2828 2829
	default:
		BUG();
	}
2830 2831 2832 2833

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2834
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2835
		if (counter == &memcg->memsw)
2836
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2849
}
2850

2851
#ifndef CONFIG_SLOB
2852
static int memcg_online_kmem(struct mem_cgroup *memcg)
2853 2854 2855
{
	int memcg_id;

2856
	BUG_ON(memcg->kmemcg_id >= 0);
2857
	BUG_ON(memcg->kmem_state);
2858

2859
	memcg_id = memcg_alloc_cache_id();
2860 2861
	if (memcg_id < 0)
		return memcg_id;
2862

2863
	static_branch_inc(&memcg_kmem_enabled_key);
2864
	/*
2865
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2866
	 * kmemcg_id. Setting the id after enabling static branching will
2867 2868 2869
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2870
	memcg->kmemcg_id = memcg_id;
2871
	memcg->kmem_state = KMEM_ONLINE;
2872 2873

	return 0;
2874 2875
}

2876 2877
static int memcg_propagate_kmem(struct mem_cgroup *parent,
				struct mem_cgroup *memcg)
2878
{
2879 2880
	int ret = 0;

2881
	mutex_lock(&memcg_limit_mutex);
2882
	/*
2883 2884 2885
	 * If the parent cgroup is not kmem-online now, it cannot be
	 * onlined after this point, because it has at least one child
	 * already.
2886
	 */
2887 2888
	if (memcg_kmem_online(parent) ||
	    (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nokmem))
2889
		ret = memcg_online_kmem(memcg);
2890
	mutex_unlock(&memcg_limit_mutex);
2891
	return ret;
2892
}
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940

static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2941 2942 2943 2944
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2945 2946 2947 2948 2949 2950
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2951
#else
2952 2953 2954 2955 2956
static int memcg_propagate_kmem(struct mem_cgroup *parent, struct mem_cgroup *memcg)
{
	return 0;
}
static int memcg_online_kmem(struct mem_cgroup *memcg)
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2968
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2969
				   unsigned long limit)
2970
{
2971
	int ret = 0;
2972 2973 2974 2975

	mutex_lock(&memcg_limit_mutex);
	/* Top-level cgroup doesn't propagate from root */
	if (!memcg_kmem_online(memcg)) {
2976 2977 2978 2979 2980
		if (cgroup_is_populated(memcg->css.cgroup) ||
		    (memcg->use_hierarchy && memcg_has_children(memcg)))
			ret = -EBUSY;
		if (ret)
			goto out;
2981 2982 2983 2984 2985 2986 2987 2988
		ret = memcg_online_kmem(memcg);
		if (ret)
			goto out;
	}
	ret = page_counter_limit(&memcg->kmem, limit);
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2989
}
2990

V
Vladimir Davydov 已提交
2991 2992 2993 2994 2995 2996
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2997
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2998 2999 3000
	if (ret)
		goto out;

3001
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
		 * function is the last one to run. See sock_update_memcg() for
		 * details, and note that we don't mark any socket as belonging
		 * to this memcg until that flag is up.
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
		 * We never race with the readers in sock_update_memcg(),
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3019
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3020 3021 3022 3023 3024 3025
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

3026 3027 3028 3029
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3030 3031
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3032
{
3033
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3034
	unsigned long nr_pages;
3035 3036
	int ret;

3037
	buf = strstrip(buf);
3038
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3039 3040
	if (ret)
		return ret;
3041

3042
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3043
	case RES_LIMIT:
3044 3045 3046 3047
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3048 3049 3050
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3051
			break;
3052 3053
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3054
			break;
3055 3056 3057
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
3058 3059 3060
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
3061
		}
3062
		break;
3063 3064 3065
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3066 3067
		break;
	}
3068
	return ret ?: nbytes;
B
Balbir Singh 已提交
3069 3070
}

3071 3072
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3073
{
3074
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3075
	struct page_counter *counter;
3076

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3087
	case _TCP:
3088
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3089
		break;
3090 3091 3092
	default:
		BUG();
	}
3093

3094
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3095
	case RES_MAX_USAGE:
3096
		page_counter_reset_watermark(counter);
3097 3098
		break;
	case RES_FAILCNT:
3099
		counter->failcnt = 0;
3100
		break;
3101 3102
	default:
		BUG();
3103
	}
3104

3105
	return nbytes;
3106 3107
}

3108
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3109 3110
					struct cftype *cft)
{
3111
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3112 3113
}

3114
#ifdef CONFIG_MMU
3115
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3116 3117
					struct cftype *cft, u64 val)
{
3118
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3119

3120
	if (val & ~MOVE_MASK)
3121
		return -EINVAL;
3122

3123
	/*
3124 3125 3126 3127
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3128
	 */
3129
	memcg->move_charge_at_immigrate = val;
3130 3131
	return 0;
}
3132
#else
3133
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3134 3135 3136 3137 3138
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3139

3140
#ifdef CONFIG_NUMA
3141
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3142
{
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3155
	int nid;
3156
	unsigned long nr;
3157
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3158

3159 3160 3161 3162 3163 3164 3165 3166 3167
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3168 3169
	}

3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3185 3186 3187 3188 3189 3190
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3191
static int memcg_stat_show(struct seq_file *m, void *v)
3192
{
3193
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3194
	unsigned long memory, memsw;
3195 3196
	struct mem_cgroup *mi;
	unsigned int i;
3197

3198 3199 3200 3201
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3202 3203
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3204
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3205
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3206
			continue;
3207
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3208
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3209
	}
L
Lee Schermerhorn 已提交
3210

3211 3212 3213 3214 3215 3216 3217 3218
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3219
	/* Hierarchical information */
3220 3221 3222 3223
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3224
	}
3225 3226
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3227
	if (do_memsw_account())
3228 3229
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3230

3231
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3232
		unsigned long long val = 0;
3233

3234
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3235
			continue;
3236 3237
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3238
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3256
	}
K
KAMEZAWA Hiroyuki 已提交
3257

K
KOSAKI Motohiro 已提交
3258 3259 3260 3261
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3262
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3263 3264 3265 3266 3267
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3268
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3269
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3270

3271 3272 3273 3274
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3275
			}
3276 3277 3278 3279
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3280 3281 3282
	}
#endif

3283 3284 3285
	return 0;
}

3286 3287
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3288
{
3289
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3290

3291
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3292 3293
}

3294 3295
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3296
{
3297
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3298

3299
	if (val > 100)
K
KOSAKI Motohiro 已提交
3300 3301
		return -EINVAL;

3302
	if (css->parent)
3303 3304 3305
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3306

K
KOSAKI Motohiro 已提交
3307 3308 3309
	return 0;
}

3310 3311 3312
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3313
	unsigned long usage;
3314 3315 3316 3317
	int i;

	rcu_read_lock();
	if (!swap)
3318
		t = rcu_dereference(memcg->thresholds.primary);
3319
	else
3320
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3321 3322 3323 3324

	if (!t)
		goto unlock;

3325
	usage = mem_cgroup_usage(memcg, swap);
3326 3327

	/*
3328
	 * current_threshold points to threshold just below or equal to usage.
3329 3330 3331
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3332
	i = t->current_threshold;
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3356
	t->current_threshold = i - 1;
3357 3358 3359 3360 3361 3362
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3363 3364
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3365
		if (do_memsw_account())
3366 3367 3368 3369
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3370 3371 3372 3373 3374 3375 3376
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3377 3378 3379 3380 3381 3382 3383
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3384 3385
}

3386
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3387 3388 3389
{
	struct mem_cgroup_eventfd_list *ev;

3390 3391
	spin_lock(&memcg_oom_lock);

3392
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3393
		eventfd_signal(ev->eventfd, 1);
3394 3395

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3396 3397 3398
	return 0;
}

3399
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3400
{
K
KAMEZAWA Hiroyuki 已提交
3401 3402
	struct mem_cgroup *iter;

3403
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3404
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3405 3406
}

3407
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3408
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3409
{
3410 3411
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3412 3413
	unsigned long threshold;
	unsigned long usage;
3414
	int i, size, ret;
3415

3416
	ret = page_counter_memparse(args, "-1", &threshold);
3417 3418 3419 3420
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3421

3422
	if (type == _MEM) {
3423
		thresholds = &memcg->thresholds;
3424
		usage = mem_cgroup_usage(memcg, false);
3425
	} else if (type == _MEMSWAP) {
3426
		thresholds = &memcg->memsw_thresholds;
3427
		usage = mem_cgroup_usage(memcg, true);
3428
	} else
3429 3430 3431
		BUG();

	/* Check if a threshold crossed before adding a new one */
3432
	if (thresholds->primary)
3433 3434
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3435
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3436 3437

	/* Allocate memory for new array of thresholds */
3438
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3439
			GFP_KERNEL);
3440
	if (!new) {
3441 3442 3443
		ret = -ENOMEM;
		goto unlock;
	}
3444
	new->size = size;
3445 3446

	/* Copy thresholds (if any) to new array */
3447 3448
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3449
				sizeof(struct mem_cgroup_threshold));
3450 3451
	}

3452
	/* Add new threshold */
3453 3454
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3455 3456

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3457
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3458 3459 3460
			compare_thresholds, NULL);

	/* Find current threshold */
3461
	new->current_threshold = -1;
3462
	for (i = 0; i < size; i++) {
3463
		if (new->entries[i].threshold <= usage) {
3464
			/*
3465 3466
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3467 3468
			 * it here.
			 */
3469
			++new->current_threshold;
3470 3471
		} else
			break;
3472 3473
	}

3474 3475 3476 3477 3478
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3479

3480
	/* To be sure that nobody uses thresholds */
3481 3482 3483 3484 3485 3486 3487 3488
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3489
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3490 3491
	struct eventfd_ctx *eventfd, const char *args)
{
3492
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3493 3494
}

3495
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3496 3497
	struct eventfd_ctx *eventfd, const char *args)
{
3498
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3499 3500
}

3501
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3502
	struct eventfd_ctx *eventfd, enum res_type type)
3503
{
3504 3505
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3506
	unsigned long usage;
3507
	int i, j, size;
3508 3509

	mutex_lock(&memcg->thresholds_lock);
3510 3511

	if (type == _MEM) {
3512
		thresholds = &memcg->thresholds;
3513
		usage = mem_cgroup_usage(memcg, false);
3514
	} else if (type == _MEMSWAP) {
3515
		thresholds = &memcg->memsw_thresholds;
3516
		usage = mem_cgroup_usage(memcg, true);
3517
	} else
3518 3519
		BUG();

3520 3521 3522
	if (!thresholds->primary)
		goto unlock;

3523 3524 3525 3526
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3527 3528 3529
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3530 3531 3532
			size++;
	}

3533
	new = thresholds->spare;
3534

3535 3536
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3537 3538
		kfree(new);
		new = NULL;
3539
		goto swap_buffers;
3540 3541
	}

3542
	new->size = size;
3543 3544

	/* Copy thresholds and find current threshold */
3545 3546 3547
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3548 3549
			continue;

3550
		new->entries[j] = thresholds->primary->entries[i];
3551
		if (new->entries[j].threshold <= usage) {
3552
			/*
3553
			 * new->current_threshold will not be used
3554 3555 3556
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3557
			++new->current_threshold;
3558 3559 3560 3561
		}
		j++;
	}

3562
swap_buffers:
3563 3564
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3565

3566
	rcu_assign_pointer(thresholds->primary, new);
3567

3568
	/* To be sure that nobody uses thresholds */
3569
	synchronize_rcu();
3570 3571 3572 3573 3574 3575

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3576
unlock:
3577 3578
	mutex_unlock(&memcg->thresholds_lock);
}
3579

3580
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3581 3582
	struct eventfd_ctx *eventfd)
{
3583
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3584 3585
}

3586
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3587 3588
	struct eventfd_ctx *eventfd)
{
3589
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3590 3591
}

3592
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3593
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3594 3595 3596 3597 3598 3599 3600
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3601
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3602 3603 3604 3605 3606

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3607
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3608
		eventfd_signal(eventfd, 1);
3609
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3610 3611 3612 3613

	return 0;
}

3614
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3615
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3616 3617 3618
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3619
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3620

3621
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3622 3623 3624 3625 3626 3627
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3628
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3629 3630
}

3631
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3632
{
3633
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3634

3635
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3636
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3637 3638 3639
	return 0;
}

3640
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3641 3642
	struct cftype *cft, u64 val)
{
3643
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3644 3645

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3646
	if (!css->parent || !((val == 0) || (val == 1)))
3647 3648
		return -EINVAL;

3649
	memcg->oom_kill_disable = val;
3650
	if (!val)
3651
		memcg_oom_recover(memcg);
3652

3653 3654 3655
	return 0;
}

3656 3657 3658 3659 3660 3661 3662
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3673 3674 3675 3676 3677
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3688 3689 3690
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3691 3692
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3693 3694 3695
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3696 3697 3698
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3699
 *
3700 3701 3702 3703 3704
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3705
 */
3706 3707 3708
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3709 3710 3711 3712 3713 3714 3715 3716
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3717 3718 3719
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3720 3721 3722 3723 3724

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3725
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3726 3727 3728 3729
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3741 3742 3743 3744
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3745 3746
#endif	/* CONFIG_CGROUP_WRITEBACK */

3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3760 3761 3762 3763 3764
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3765
static void memcg_event_remove(struct work_struct *work)
3766
{
3767 3768
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3769
	struct mem_cgroup *memcg = event->memcg;
3770 3771 3772

	remove_wait_queue(event->wqh, &event->wait);

3773
	event->unregister_event(memcg, event->eventfd);
3774 3775 3776 3777 3778 3779

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3780
	css_put(&memcg->css);
3781 3782 3783 3784 3785 3786 3787
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3788 3789
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3790
{
3791 3792
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3793
	struct mem_cgroup *memcg = event->memcg;
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3806
		spin_lock(&memcg->event_list_lock);
3807 3808 3809 3810 3811 3812 3813 3814
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3815
		spin_unlock(&memcg->event_list_lock);
3816 3817 3818 3819 3820
	}

	return 0;
}

3821
static void memcg_event_ptable_queue_proc(struct file *file,
3822 3823
		wait_queue_head_t *wqh, poll_table *pt)
{
3824 3825
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3826 3827 3828 3829 3830 3831

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3832 3833
 * DO NOT USE IN NEW FILES.
 *
3834 3835 3836 3837 3838
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3839 3840
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3841
{
3842
	struct cgroup_subsys_state *css = of_css(of);
3843
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3844
	struct mem_cgroup_event *event;
3845 3846 3847 3848
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3849
	const char *name;
3850 3851 3852
	char *endp;
	int ret;

3853 3854 3855
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3856 3857
	if (*endp != ' ')
		return -EINVAL;
3858
	buf = endp + 1;
3859

3860
	cfd = simple_strtoul(buf, &endp, 10);
3861 3862
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3863
	buf = endp + 1;
3864 3865 3866 3867 3868

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3869
	event->memcg = memcg;
3870
	INIT_LIST_HEAD(&event->list);
3871 3872 3873
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3899 3900 3901 3902 3903
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3904 3905
	 *
	 * DO NOT ADD NEW FILES.
3906
	 */
A
Al Viro 已提交
3907
	name = cfile.file->f_path.dentry->d_name.name;
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3919 3920
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3921 3922 3923 3924 3925
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3926
	/*
3927 3928 3929
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3930
	 */
A
Al Viro 已提交
3931
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3932
					       &memory_cgrp_subsys);
3933
	ret = -EINVAL;
3934
	if (IS_ERR(cfile_css))
3935
		goto out_put_cfile;
3936 3937
	if (cfile_css != css) {
		css_put(cfile_css);
3938
		goto out_put_cfile;
3939
	}
3940

3941
	ret = event->register_event(memcg, event->eventfd, buf);
3942 3943 3944 3945 3946
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3947 3948 3949
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3950 3951 3952 3953

	fdput(cfile);
	fdput(efile);

3954
	return nbytes;
3955 3956

out_put_css:
3957
	css_put(css);
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3970
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3971
	{
3972
		.name = "usage_in_bytes",
3973
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3974
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3975
	},
3976 3977
	{
		.name = "max_usage_in_bytes",
3978
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3979
		.write = mem_cgroup_reset,
3980
		.read_u64 = mem_cgroup_read_u64,
3981
	},
B
Balbir Singh 已提交
3982
	{
3983
		.name = "limit_in_bytes",
3984
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3985
		.write = mem_cgroup_write,
3986
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3987
	},
3988 3989 3990
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3991
		.write = mem_cgroup_write,
3992
		.read_u64 = mem_cgroup_read_u64,
3993
	},
B
Balbir Singh 已提交
3994 3995
	{
		.name = "failcnt",
3996
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3997
		.write = mem_cgroup_reset,
3998
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3999
	},
4000 4001
	{
		.name = "stat",
4002
		.seq_show = memcg_stat_show,
4003
	},
4004 4005
	{
		.name = "force_empty",
4006
		.write = mem_cgroup_force_empty_write,
4007
	},
4008 4009 4010 4011 4012
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4013
	{
4014
		.name = "cgroup.event_control",		/* XXX: for compat */
4015
		.write = memcg_write_event_control,
4016
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4017
	},
K
KOSAKI Motohiro 已提交
4018 4019 4020 4021 4022
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4023 4024 4025 4026 4027
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4028 4029
	{
		.name = "oom_control",
4030
		.seq_show = mem_cgroup_oom_control_read,
4031
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4032 4033
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4034 4035 4036
	{
		.name = "pressure_level",
	},
4037 4038 4039
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4040
		.seq_show = memcg_numa_stat_show,
4041 4042
	},
#endif
4043 4044 4045
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4046
		.write = mem_cgroup_write,
4047
		.read_u64 = mem_cgroup_read_u64,
4048 4049 4050 4051
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4052
		.read_u64 = mem_cgroup_read_u64,
4053 4054 4055 4056
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4057
		.write = mem_cgroup_reset,
4058
		.read_u64 = mem_cgroup_read_u64,
4059 4060 4061 4062
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4063
		.write = mem_cgroup_reset,
4064
		.read_u64 = mem_cgroup_read_u64,
4065
	},
4066 4067 4068
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4069 4070 4071 4072
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4073 4074
	},
#endif
V
Vladimir Davydov 已提交
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4098
	{ },	/* terminate */
4099
};
4100

4101
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4102 4103
{
	struct mem_cgroup_per_node *pn;
4104
	struct mem_cgroup_per_zone *mz;
4105
	int zone, tmp = node;
4106 4107 4108 4109 4110 4111 4112 4113
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4114 4115
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4116
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4117 4118
	if (!pn)
		return 1;
4119 4120 4121

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4122
		lruvec_init(&mz->lruvec);
4123 4124
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4125
		mz->memcg = memcg;
4126
	}
4127
	memcg->nodeinfo[node] = pn;
4128 4129 4130
	return 0;
}

4131
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4132
{
4133
	kfree(memcg->nodeinfo[node]);
4134 4135
}

4136
static void mem_cgroup_free(struct mem_cgroup *memcg)
4137
{
4138
	int node;
4139

4140
	memcg_wb_domain_exit(memcg);
4141 4142 4143
	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);
	free_percpu(memcg->stat);
4144
	kfree(memcg);
4145
}
4146

4147
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4148
{
4149
	struct mem_cgroup *memcg;
4150
	size_t size;
4151
	int node;
B
Balbir Singh 已提交
4152

4153 4154 4155 4156
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4157
	if (!memcg)
4158 4159 4160 4161 4162
		return NULL;

	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4163

B
Bob Liu 已提交
4164
	for_each_node(node)
4165
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4166
			goto fail;
4167

4168 4169
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4170

4171
	INIT_WORK(&memcg->high_work, high_work_func);
4172 4173 4174 4175
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4176
	vmpressure_init(&memcg->vmpressure);
4177 4178
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4179
	memcg->socket_pressure = jiffies;
4180
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4181 4182
	memcg->kmemcg_id = -1;
#endif
4183 4184 4185
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4186 4187 4188 4189
	return memcg;
fail:
	mem_cgroup_free(memcg);
	return NULL;
4190 4191
}

4192 4193
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4194
{
4195 4196 4197
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4198

4199 4200 4201
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4202

4203 4204 4205 4206 4207 4208 4209 4210
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4211
		page_counter_init(&memcg->memory, &parent->memory);
4212
		page_counter_init(&memcg->swap, &parent->swap);
4213 4214
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4215
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4216
	} else {
4217
		page_counter_init(&memcg->memory, NULL);
4218
		page_counter_init(&memcg->swap, NULL);
4219 4220
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4221
		page_counter_init(&memcg->tcpmem, NULL);
4222 4223 4224 4225 4226
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4227
		if (parent != root_mem_cgroup)
4228
			memory_cgrp_subsys.broken_hierarchy = true;
4229
	}
4230

4231 4232 4233 4234 4235 4236 4237 4238 4239
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

	error = memcg_propagate_kmem(parent, memcg);
	if (error)
		goto fail;
4240

4241
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4242
		static_branch_inc(&memcg_sockets_enabled_key);
4243

4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
	return NULL;
}

static int
mem_cgroup_css_online(struct cgroup_subsys_state *css)
{
	if (css->id > MEM_CGROUP_ID_MAX)
		return -ENOSPC;
4255 4256

	return 0;
B
Balbir Singh 已提交
4257 4258
}

4259
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4260
{
4261
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4262
	struct mem_cgroup_event *event, *tmp;
4263 4264 4265 4266 4267 4268

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4269 4270
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4271 4272 4273
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4274
	spin_unlock(&memcg->event_list_lock);
4275

4276
	memcg_offline_kmem(memcg);
4277
	wb_memcg_offline(memcg);
4278 4279
}

4280 4281 4282 4283 4284 4285 4286
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4287
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4288
{
4289
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4290

4291
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4292
		static_branch_dec(&memcg_sockets_enabled_key);
4293

4294
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4295
		static_branch_dec(&memcg_sockets_enabled_key);
4296

4297 4298 4299
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4300
	memcg_free_kmem(memcg);
4301
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4302 4303
}

4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4321 4322 4323
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4324 4325
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4326
	memcg->soft_limit = PAGE_COUNTER_MAX;
4327
	memcg_wb_domain_size_changed(memcg);
4328 4329
}

4330
#ifdef CONFIG_MMU
4331
/* Handlers for move charge at task migration. */
4332
static int mem_cgroup_do_precharge(unsigned long count)
4333
{
4334
	int ret;
4335

4336 4337
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4338
	if (!ret) {
4339 4340 4341
		mc.precharge += count;
		return ret;
	}
4342 4343

	/* Try charges one by one with reclaim */
4344
	while (count--) {
4345
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4346 4347
		if (ret)
			return ret;
4348
		mc.precharge++;
4349
		cond_resched();
4350
	}
4351
	return 0;
4352 4353 4354
}

/**
4355
 * get_mctgt_type - get target type of moving charge
4356 4357 4358
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4359
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4360 4361 4362 4363 4364 4365
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4366 4367 4368
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4369 4370 4371 4372 4373
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4374
	swp_entry_t	ent;
4375 4376 4377
};

enum mc_target_type {
4378
	MC_TARGET_NONE = 0,
4379
	MC_TARGET_PAGE,
4380
	MC_TARGET_SWAP,
4381 4382
};

D
Daisuke Nishimura 已提交
4383 4384
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4385
{
D
Daisuke Nishimura 已提交
4386
	struct page *page = vm_normal_page(vma, addr, ptent);
4387

D
Daisuke Nishimura 已提交
4388 4389 4390
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4391
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4392
			return NULL;
4393 4394 4395 4396
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4397 4398 4399 4400 4401 4402
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4403
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4404 4405 4406 4407 4408 4409
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4410
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4411
		return NULL;
4412 4413 4414 4415
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4416
	page = find_get_page(swap_address_space(ent), ent.val);
4417
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4418 4419 4420 4421
		entry->val = ent.val;

	return page;
}
4422 4423 4424 4425 4426 4427 4428
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4429

4430 4431 4432 4433 4434 4435 4436 4437 4438
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4439
	if (!(mc.flags & MOVE_FILE))
4440 4441 4442
		return NULL;

	mapping = vma->vm_file->f_mapping;
4443
	pgoff = linear_page_index(vma, addr);
4444 4445

	/* page is moved even if it's not RSS of this task(page-faulted). */
4446 4447
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4448 4449 4450 4451
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4452
			if (do_memsw_account())
4453 4454 4455 4456 4457 4458 4459
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4460
#endif
4461 4462 4463
	return page;
}

4464 4465 4466 4467 4468 4469 4470
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4471
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4472 4473 4474 4475 4476
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4477
				   bool compound,
4478 4479 4480 4481
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4482
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4483
	int ret;
4484
	bool anon;
4485 4486 4487

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4488
	VM_BUG_ON(compound && !PageTransHuge(page));
4489 4490

	/*
4491 4492
	 * Prevent mem_cgroup_replace_page() from looking at
	 * page->mem_cgroup of its source page while we change it.
4493
	 */
4494
	ret = -EBUSY;
4495 4496 4497 4498 4499 4500 4501
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4502 4503
	anon = PageAnon(page);

4504 4505
	spin_lock_irqsave(&from->move_lock, flags);

4506
	if (!anon && page_mapped(page)) {
4507 4508 4509 4510 4511 4512
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4549
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4550
	memcg_check_events(to, page);
4551
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4552 4553 4554 4555 4556 4557 4558 4559
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4560
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4561 4562 4563
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4564
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4565 4566 4567 4568 4569 4570
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4571
	else if (pte_none(ptent))
4572
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4573 4574

	if (!page && !ent.val)
4575
		return ret;
4576 4577
	if (page) {
		/*
4578
		 * Do only loose check w/o serialization.
4579
		 * mem_cgroup_move_account() checks the page is valid or
4580
		 * not under LRU exclusion.
4581
		 */
4582
		if (page->mem_cgroup == mc.from) {
4583 4584 4585 4586 4587 4588 4589
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4590 4591
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4592
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4593 4594 4595
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4596 4597 4598 4599
	}
	return ret;
}

4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4613
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4614
	if (!(mc.flags & MOVE_ANON))
4615
		return ret;
4616
	if (page->mem_cgroup == mc.from) {
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4633 4634 4635 4636
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4637
	struct vm_area_struct *vma = walk->vma;
4638 4639 4640
	pte_t *pte;
	spinlock_t *ptl;

4641
	if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4642 4643
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4644
		spin_unlock(ptl);
4645
		return 0;
4646
	}
4647

4648 4649
	if (pmd_trans_unstable(pmd))
		return 0;
4650 4651
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4652
		if (get_mctgt_type(vma, addr, *pte, NULL))
4653 4654 4655 4656
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4657 4658 4659
	return 0;
}

4660 4661 4662 4663
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4664 4665 4666 4667
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4668
	down_read(&mm->mmap_sem);
4669
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4670
	up_read(&mm->mmap_sem);
4671 4672 4673 4674 4675 4676 4677 4678 4679

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4680 4681 4682 4683 4684
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4685 4686
}

4687 4688
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4689
{
4690 4691 4692
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4693
	/* we must uncharge all the leftover precharges from mc.to */
4694
	if (mc.precharge) {
4695
		cancel_charge(mc.to, mc.precharge);
4696 4697 4698 4699 4700 4701 4702
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4703
		cancel_charge(mc.from, mc.moved_charge);
4704
		mc.moved_charge = 0;
4705
	}
4706 4707 4708
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4709
		if (!mem_cgroup_is_root(mc.from))
4710
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4711

4712
		/*
4713 4714
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4715
		 */
4716
		if (!mem_cgroup_is_root(mc.to))
4717 4718
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4719
		css_put_many(&mc.from->css, mc.moved_swap);
4720

L
Li Zefan 已提交
4721
		/* we've already done css_get(mc.to) */
4722 4723
		mc.moved_swap = 0;
	}
4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4737
	spin_lock(&mc.lock);
4738 4739
	mc.from = NULL;
	mc.to = NULL;
4740
	spin_unlock(&mc.lock);
4741 4742
}

4743
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4744
{
4745
	struct cgroup_subsys_state *css;
4746
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4747
	struct mem_cgroup *from;
4748
	struct task_struct *leader, *p;
4749
	struct mm_struct *mm;
4750
	unsigned long move_flags;
4751
	int ret = 0;
4752

4753 4754
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4755 4756
		return 0;

4757 4758 4759 4760 4761 4762 4763
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4764
	cgroup_taskset_for_each_leader(leader, css, tset) {
4765 4766
		WARN_ON_ONCE(p);
		p = leader;
4767
		memcg = mem_cgroup_from_css(css);
4768 4769 4770 4771
	}
	if (!p)
		return 0;

4772 4773 4774 4775 4776 4777 4778 4779 4780
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4806
	}
4807
	mmput(mm);
4808 4809 4810
	return ret;
}

4811
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4812
{
4813 4814
	if (mc.to)
		mem_cgroup_clear_mc();
4815 4816
}

4817 4818 4819
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4820
{
4821
	int ret = 0;
4822
	struct vm_area_struct *vma = walk->vma;
4823 4824
	pte_t *pte;
	spinlock_t *ptl;
4825 4826 4827
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4828

4829
	if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4830
		if (mc.precharge < HPAGE_PMD_NR) {
4831
			spin_unlock(ptl);
4832 4833 4834 4835 4836 4837
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4838
				if (!mem_cgroup_move_account(page, true,
4839
							     mc.from, mc.to)) {
4840 4841 4842 4843 4844 4845 4846
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4847
		spin_unlock(ptl);
4848
		return 0;
4849 4850
	}

4851 4852
	if (pmd_trans_unstable(pmd))
		return 0;
4853 4854 4855 4856
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4857
		swp_entry_t ent;
4858 4859 4860 4861

		if (!mc.precharge)
			break;

4862
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4863 4864
		case MC_TARGET_PAGE:
			page = target.page;
4865 4866 4867 4868 4869 4870 4871 4872
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4873 4874
			if (isolate_lru_page(page))
				goto put;
4875 4876
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4877
				mc.precharge--;
4878 4879
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4880 4881
			}
			putback_lru_page(page);
4882
put:			/* get_mctgt_type() gets the page */
4883 4884
			put_page(page);
			break;
4885 4886
		case MC_TARGET_SWAP:
			ent = target.ent;
4887
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4888
				mc.precharge--;
4889 4890 4891
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4892
			break;
4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4907
		ret = mem_cgroup_do_precharge(1);
4908 4909 4910 4911 4912 4913 4914 4915 4916
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
4917 4918 4919 4920
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
4921 4922

	lru_add_drain_all();
4923 4924 4925 4926 4927 4928 4929
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4943 4944 4945 4946 4947
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4948
	up_read(&mm->mmap_sem);
4949
	atomic_dec(&mc.from->moving_account);
4950 4951
}

4952
static void mem_cgroup_move_task(struct cgroup_taskset *tset)
B
Balbir Singh 已提交
4953
{
4954 4955
	struct cgroup_subsys_state *css;
	struct task_struct *p = cgroup_taskset_first(tset, &css);
4956
	struct mm_struct *mm = get_task_mm(p);
4957 4958

	if (mm) {
4959 4960
		if (mc.to)
			mem_cgroup_move_charge(mm);
4961 4962
		mmput(mm);
	}
4963 4964
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4965
}
4966
#else	/* !CONFIG_MMU */
4967
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4968 4969 4970
{
	return 0;
}
4971
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4972 4973
{
}
4974
static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4975 4976 4977
{
}
#endif
B
Balbir Singh 已提交
4978

4979 4980
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4981 4982
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
4983
 */
4984
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4985 4986
{
	/*
4987
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
4988 4989 4990
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
4991
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4992 4993 4994
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
4995 4996
}

4997 4998 4999
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5000 5001 5002
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5003 5004 5005 5006 5007
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5008
	unsigned long low = READ_ONCE(memcg->low);
5009 5010

	if (low == PAGE_COUNTER_MAX)
5011
		seq_puts(m, "max\n");
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5026
	err = page_counter_memparse(buf, "max", &low);
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5038
	unsigned long high = READ_ONCE(memcg->high);
5039 5040

	if (high == PAGE_COUNTER_MAX)
5041
		seq_puts(m, "max\n");
5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
5056
	err = page_counter_memparse(buf, "max", &high);
5057 5058 5059 5060 5061
	if (err)
		return err;

	memcg->high = high;

5062
	memcg_wb_domain_size_changed(memcg);
5063 5064 5065 5066 5067 5068
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5069
	unsigned long max = READ_ONCE(memcg->memory.limit);
5070 5071

	if (max == PAGE_COUNTER_MAX)
5072
		seq_puts(m, "max\n");
5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
5087
	err = page_counter_memparse(buf, "max", &max);
5088 5089 5090 5091 5092 5093 5094
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

5095
	memcg_wb_domain_size_changed(memcg);
5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

	seq_printf(m, "anon %llu\n",
		   (u64)tree_stat(memcg, MEM_CGROUP_STAT_RSS) * PAGE_SIZE);
	seq_printf(m, "file %llu\n",
		   (u64)tree_stat(memcg, MEM_CGROUP_STAT_CACHE) * PAGE_SIZE);

	seq_printf(m, "file_mapped %llu\n",
		   (u64)tree_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED) *
		   PAGE_SIZE);
	seq_printf(m, "file_dirty %llu\n",
		   (u64)tree_stat(memcg, MEM_CGROUP_STAT_DIRTY) *
		   PAGE_SIZE);
	seq_printf(m, "file_writeback %llu\n",
		   (u64)tree_stat(memcg, MEM_CGROUP_STAT_WRITEBACK) *
		   PAGE_SIZE);

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

	/* Accumulated memory events */

	seq_printf(m, "pgfault %lu\n",
		   tree_events(memcg, MEM_CGROUP_EVENTS_PGFAULT));
	seq_printf(m, "pgmajfault %lu\n",
		   tree_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT));

	return 0;
}

5162 5163 5164
static struct cftype memory_files[] = {
	{
		.name = "current",
5165
		.flags = CFTYPE_NOT_ON_ROOT,
5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5189
		.file_offset = offsetof(struct mem_cgroup, events_file),
5190 5191
		.seq_show = memory_events_show,
	},
5192 5193 5194 5195 5196
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5197 5198 5199
	{ }	/* terminate */
};

5200
struct cgroup_subsys memory_cgrp_subsys = {
5201
	.css_alloc = mem_cgroup_css_alloc,
5202
	.css_online = mem_cgroup_css_online,
5203
	.css_offline = mem_cgroup_css_offline,
5204
	.css_released = mem_cgroup_css_released,
5205
	.css_free = mem_cgroup_css_free,
5206
	.css_reset = mem_cgroup_css_reset,
5207 5208
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5209
	.attach = mem_cgroup_move_task,
5210
	.bind = mem_cgroup_bind,
5211 5212
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5213
	.early_init = 0,
B
Balbir Singh 已提交
5214
};
5215

5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5238
	if (page_counter_read(&memcg->memory) >= memcg->low)
5239 5240 5241 5242 5243 5244 5245 5246
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5247
		if (page_counter_read(&memcg->memory) >= memcg->low)
5248 5249 5250 5251 5252
			return false;
	}
	return true;
}

5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5271 5272
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5273 5274
{
	struct mem_cgroup *memcg = NULL;
5275
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5289
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5290
		if (page->mem_cgroup)
5291
			goto out;
5292

5293
		if (do_swap_account) {
5294 5295 5296 5297 5298 5299 5300 5301 5302
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5333
			      bool lrucare, bool compound)
5334
{
5335
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5350 5351 5352
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5353
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5354 5355
	memcg_check_events(memcg, page);
	local_irq_enable();
5356

5357
	if (do_memsw_account() && PageSwapCache(page)) {
5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5375 5376
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5377
{
5378
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5393 5394 5395 5396
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5397
	unsigned long nr_pages = nr_anon + nr_file;
5398 5399
	unsigned long flags;

5400
	if (!mem_cgroup_is_root(memcg)) {
5401
		page_counter_uncharge(&memcg->memory, nr_pages);
5402
		if (do_memsw_account())
5403
			page_counter_uncharge(&memcg->memsw, nr_pages);
5404 5405
		memcg_oom_recover(memcg);
	}
5406 5407 5408 5409 5410 5411

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5412
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5413 5414
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5415 5416

	if (!mem_cgroup_is_root(memcg))
5417
		css_put_many(&memcg->css, nr_pages);
5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5440
		if (!page->mem_cgroup)
5441 5442 5443 5444
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5445
		 * page->mem_cgroup at this point, we have fully
5446
		 * exclusive access to the page.
5447 5448
		 */

5449
		if (memcg != page->mem_cgroup) {
5450
			if (memcg) {
5451 5452 5453
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5454
			}
5455
			memcg = page->mem_cgroup;
5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5469
		page->mem_cgroup = NULL;
5470 5471 5472 5473 5474

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5475 5476
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5477 5478
}

5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5491
	/* Don't touch page->lru of any random page, pre-check: */
5492
	if (!page->mem_cgroup)
5493 5494
		return;

5495 5496 5497
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5498

5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5510

5511 5512
	if (!list_empty(page_list))
		uncharge_list(page_list);
5513 5514 5515
}

/**
5516
 * mem_cgroup_replace_page - migrate a charge to another page
5517 5518 5519 5520 5521 5522
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
5523
 * Either or both pages might be on the LRU already.
5524
 */
5525
void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5526
{
5527
	struct mem_cgroup *memcg;
5528 5529
	unsigned int nr_pages;
	bool compound;
5530 5531 5532 5533

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5534 5535
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5536 5537 5538 5539 5540

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5541
	if (newpage->mem_cgroup)
5542 5543
		return;

5544
	/* Swapcache readahead pages can get replaced before being charged */
5545
	memcg = oldpage->mem_cgroup;
5546
	if (!memcg)
5547 5548
		return;

5549 5550 5551 5552 5553 5554 5555 5556
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5557

5558
	commit_charge(newpage, memcg, true);
5559 5560 5561 5562 5563

	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
	local_irq_enable();
5564 5565
}

5566
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588
EXPORT_SYMBOL(memcg_sockets_enabled_key);

void sock_update_memcg(struct sock *sk)
{
	struct mem_cgroup *memcg;

	/* Socket cloning can throw us here with sk_cgrp already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5589 5590
	if (memcg == root_mem_cgroup)
		goto out;
5591
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5592 5593
		goto out;
	if (css_tryget_online(&memcg->css))
5594
		sk->sk_memcg = memcg;
5595
out:
5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
	rcu_read_unlock();
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	WARN_ON(!sk->sk_memcg);
	css_put(&sk->sk_memcg->css);
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5616
	gfp_t gfp_mask = GFP_KERNEL;
5617

5618
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5619
		struct page_counter *fail;
5620

5621 5622
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5623 5624
			return true;
		}
5625 5626
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5627
		return false;
5628
	}
5629

5630 5631 5632 5633 5634 5635 5636 5637
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5638 5639 5640 5641 5642 5643 5644 5645 5646 5647
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5648
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5649
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5650 5651
		return;
	}
5652

5653 5654
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5655 5656
}

5657 5658 5659 5660 5661 5662 5663 5664 5665
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5666 5667
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5668 5669 5670 5671
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5672

5673
/*
5674 5675 5676 5677 5678 5679
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5680 5681 5682
 */
static int __init mem_cgroup_init(void)
{
5683 5684
	int cpu, node;

5685
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5708 5709 5710
	return 0;
}
subsys_initcall(mem_cgroup_init);
5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5728
	if (!do_memsw_account())
5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5746 5747 5748 5749 5750 5751 5752
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5753
	mem_cgroup_charge_statistics(memcg, page, false, -1);
5754 5755 5756
	memcg_check_events(memcg, page);
}

5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792
/*
 * mem_cgroup_try_charge_swap - try charging a swap entry
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
 * Try to charge @entry to the memcg that @page belongs to.
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	struct page_counter *counter;
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

	if (!mem_cgroup_is_root(memcg) &&
	    !page_counter_try_charge(&memcg->swap, 1, &counter))
		return -ENOMEM;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	css_get(&memcg->css);
	return 0;
}

5793 5794 5795 5796
/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
5797
 * Drop the swap charge associated with @entry.
5798 5799 5800 5801 5802 5803
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5804
	if (!do_swap_account)
5805 5806 5807 5808
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5809
	memcg = mem_cgroup_from_id(id);
5810
	if (memcg) {
5811 5812 5813 5814 5815 5816
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
				page_counter_uncharge(&memcg->swap, 1);
			else
				page_counter_uncharge(&memcg->memsw, 1);
		}
5817 5818 5819 5820 5821 5822
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
5963 5964
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
5965 5966 5967 5968 5969 5970 5971 5972
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */