memcontrol.c 143.0 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

A
Andrew Morton 已提交
64
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68

/* for remember boot option*/
A
Andrew Morton 已提交
69
#ifdef CONFIG_MEMCG_SWAP_ENABLED
70 71 72 73 74
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75
#else
76
#define do_swap_account		0
77 78 79
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
91 92 93
	MEM_CGROUP_STAT_NSTATS,
};

94 95 96 97 98 99 100
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

101 102 103
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
104 105
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
106 107
	MEM_CGROUP_EVENTS_NSTATS,
};
108 109 110 111 112 113 114 115

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

116 117 118 119 120 121 122 123 124
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
125
	MEM_CGROUP_TARGET_NUMAINFO,
126 127
	MEM_CGROUP_NTARGETS,
};
128 129 130
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
131

132
struct mem_cgroup_stat_cpu {
133
	long count[MEM_CGROUP_STAT_NSTATS];
134
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
135
	unsigned long nr_page_events;
136
	unsigned long targets[MEM_CGROUP_NTARGETS];
137 138
};

139 140 141 142 143 144 145
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

146 147 148 149
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
150
	struct lruvec		lruvec;
151
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
152

153 154
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

155 156 157 158
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
159
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
160
						/* use container_of	   */
161 162 163 164 165 166 167 168 169 170
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

191 192 193 194 195
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
196
/* For threshold */
197
struct mem_cgroup_threshold_ary {
198
	/* An array index points to threshold just below or equal to usage. */
199
	int current_threshold;
200 201 202 203 204
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
205 206 207 208 209 210 211 212 213 214 215 216

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
217 218 219 220 221
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
222

223 224
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
225

B
Balbir Singh 已提交
226 227 228 229 230 231 232
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
233 234 235
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
236 237 238 239 240 241 242
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
261 262
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
263 264 265 266
		 */
		struct work_struct work_freeing;
	};

267 268 269 270
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
271
	struct mem_cgroup_lru_info info;
272 273 274
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
275 276
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
277
#endif
278 279 280 281
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
282 283 284 285

	bool		oom_lock;
	atomic_t	under_oom;

286
	atomic_t	refcnt;
287

288
	int	swappiness;
289 290
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
291

292 293 294
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

295 296 297 298
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
299
	struct mem_cgroup_thresholds thresholds;
300

301
	/* thresholds for mem+swap usage. RCU-protected */
302
	struct mem_cgroup_thresholds memsw_thresholds;
303

K
KAMEZAWA Hiroyuki 已提交
304 305
	/* For oom notifier event fd */
	struct list_head oom_notify;
306

307 308 309 310 311
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
312 313 314 315
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
316 317
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
318
	/*
319
	 * percpu counter.
320
	 */
321
	struct mem_cgroup_stat_cpu __percpu *stat;
322 323 324 325 326 327
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
328 329 330 331

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
332 333
};

334 335 336 337 338 339
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
340
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
341
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
342 343 344
	NR_MOVE_TYPE,
};

345 346
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
347
	spinlock_t	  lock; /* for from, to */
348 349 350
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
351
	unsigned long moved_charge;
352
	unsigned long moved_swap;
353 354 355
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
356
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
357 358
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
359

D
Daisuke Nishimura 已提交
360 361 362 363 364 365
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

366 367 368 369 370 371
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

372 373 374 375
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
376 377
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
378

379 380
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
381
	MEM_CGROUP_CHARGE_TYPE_ANON,
382
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
K
KAMEZAWA Hiroyuki 已提交
383
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
384
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
385 386 387
	NR_CHARGE_TYPE,
};

388
/* for encoding cft->private value on file */
389 390 391
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
392 393
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
394
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
395 396
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
397

398 399 400 401 402 403 404 405
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

406 407
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
408 409

/* Writing them here to avoid exposing memcg's inner layout */
A
Andrew Morton 已提交
410
#ifdef CONFIG_MEMCG_KMEM
G
Glauber Costa 已提交
411
#include <net/sock.h>
G
Glauber Costa 已提交
412
#include <net/ip.h>
G
Glauber Costa 已提交
413 414 415 416

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
417
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
418
		struct mem_cgroup *memcg;
419
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
420 421 422

		BUG_ON(!sk->sk_prot->proto_cgroup);

423 424 425 426 427 428 429 430 431 432 433 434 435 436
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
437 438
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
439 440
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
441
			mem_cgroup_get(memcg);
442
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
443 444 445 446 447 448 449 450
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
451
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
452 453 454 455 456 457
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
458

459
#ifdef CONFIG_INET
G
Glauber Costa 已提交
460 461 462 463 464 465 466 467
struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
468
#endif /* CONFIG_INET */
A
Andrew Morton 已提交
469
#endif /* CONFIG_MEMCG_KMEM */
G
Glauber Costa 已提交
470

A
Andrew Morton 已提交
471
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
472 473 474 475 476 477 478 479 480 481 482 483
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

484
static void drain_all_stock_async(struct mem_cgroup *memcg);
485

486
static struct mem_cgroup_per_zone *
487
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
488
{
489
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
490 491
}

492
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
493
{
494
	return &memcg->css;
495 496
}

497
static struct mem_cgroup_per_zone *
498
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
499
{
500 501
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
502

503
	return mem_cgroup_zoneinfo(memcg, nid, zid);
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
522
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
523
				struct mem_cgroup_per_zone *mz,
524 525
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
526 527 528 529 530 531 532 533
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

534 535 536
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
553 554 555
}

static void
556
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
557 558 559 560 561 562 563 564 565
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

566
static void
567
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
568 569 570 571
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
572
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
573 574 575 576
	spin_unlock(&mctz->lock);
}


577
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
578
{
579
	unsigned long long excess;
580 581
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
582 583
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
584 585 586
	mctz = soft_limit_tree_from_page(page);

	/*
587 588
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
589
	 */
590 591 592
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
593 594 595 596
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
597
		if (excess || mz->on_tree) {
598 599 600
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
601
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
602
			/*
603 604
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
605
			 */
606
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
607 608
			spin_unlock(&mctz->lock);
		}
609 610 611
	}
}

612
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
613 614 615 616 617
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
618
	for_each_node(node) {
619
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
620
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
621
			mctz = soft_limit_tree_node_zone(node, zone);
622
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
623 624 625 626
		}
	}
}

627 628 629 630
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
631
	struct mem_cgroup_per_zone *mz;
632 633

retry:
634
	mz = NULL;
635 636 637 638 639 640 641 642 643 644
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
645 646 647
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
683
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
684
				 enum mem_cgroup_stat_index idx)
685
{
686
	long val = 0;
687 688
	int cpu;

689 690
	get_online_cpus();
	for_each_online_cpu(cpu)
691
		val += per_cpu(memcg->stat->count[idx], cpu);
692
#ifdef CONFIG_HOTPLUG_CPU
693 694 695
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
696 697
#endif
	put_online_cpus();
698 699 700
	return val;
}

701
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
702 703 704
					 bool charge)
{
	int val = (charge) ? 1 : -1;
705
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
706 707
}

708
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
709 710 711 712 713 714
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
715
		val += per_cpu(memcg->stat->events[idx], cpu);
716
#ifdef CONFIG_HOTPLUG_CPU
717 718 719
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
720 721 722 723
#endif
	return val;
}

724
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
725
					 bool anon, int nr_pages)
726
{
727 728
	preempt_disable();

729 730 731 732 733 734
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
735
				nr_pages);
736
	else
737
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
738
				nr_pages);
739

740 741
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
742
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
743
	else {
744
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
745 746
		nr_pages = -nr_pages; /* for event */
	}
747

748
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
749

750
	preempt_enable();
751 752
}

753
unsigned long
754
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
755 756 757 758 759 760 761 762
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
763
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
764
			unsigned int lru_mask)
765 766
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
767
	enum lru_list lru;
768 769
	unsigned long ret = 0;

770
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
771

H
Hugh Dickins 已提交
772 773 774
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
775 776 777 778 779
	}
	return ret;
}

static unsigned long
780
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
781 782
			int nid, unsigned int lru_mask)
{
783 784 785
	u64 total = 0;
	int zid;

786
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
787 788
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
789

790 791
	return total;
}
792

793
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
794
			unsigned int lru_mask)
795
{
796
	int nid;
797 798
	u64 total = 0;

799
	for_each_node_state(nid, N_HIGH_MEMORY)
800
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
801
	return total;
802 803
}

804 805
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
806 807 808
{
	unsigned long val, next;

809
	val = __this_cpu_read(memcg->stat->nr_page_events);
810
	next = __this_cpu_read(memcg->stat->targets[target]);
811
	/* from time_after() in jiffies.h */
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
828
	}
829
	return false;
830 831 832 833 834 835
}

/*
 * Check events in order.
 *
 */
836
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
837
{
838
	preempt_disable();
839
	/* threshold event is triggered in finer grain than soft limit */
840 841
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
842 843
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
844 845 846 847 848 849 850 851 852

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

853
		mem_cgroup_threshold(memcg);
854
		if (unlikely(do_softlimit))
855
			mem_cgroup_update_tree(memcg, page);
856
#if MAX_NUMNODES > 1
857
		if (unlikely(do_numainfo))
858
			atomic_inc(&memcg->numainfo_events);
859
#endif
860 861
	} else
		preempt_enable();
862 863
}

G
Glauber Costa 已提交
864
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
865 866 867 868 869 870
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

871
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
872
{
873 874 875 876 877 878 879 880
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

881 882 883 884
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

885
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
886
{
887
	struct mem_cgroup *memcg = NULL;
888 889 890

	if (!mm)
		return NULL;
891 892 893 894 895 896 897
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
898 899
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
900
			break;
901
	} while (!css_tryget(&memcg->css));
902
	rcu_read_unlock();
903
	return memcg;
904 905
}

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
926
{
927 928
	struct mem_cgroup *memcg = NULL;
	int id = 0;
929

930 931 932
	if (mem_cgroup_disabled())
		return NULL;

933 934
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
935

936 937
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
938

939 940
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
941

942 943 944 945 946
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
947

948
	while (!memcg) {
949
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
950
		struct cgroup_subsys_state *css;
951

952 953 954 955 956 957 958 959 960 961 962
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
963

964 965 966 967 968 969 970 971
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
972 973
		rcu_read_unlock();

974 975 976 977 978 979 980
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
981 982 983 984 985

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
986
}
K
KAMEZAWA Hiroyuki 已提交
987

988 989 990 991 992 993 994
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
995 996 997 998 999 1000
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1001

1002 1003 1004 1005 1006 1007
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1008
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1009
	     iter != NULL;				\
1010
	     iter = mem_cgroup_iter(root, iter, NULL))
1011

1012
#define for_each_mem_cgroup(iter)			\
1013
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1014
	     iter != NULL;				\
1015
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1016

1017
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1018
{
1019
	return (memcg == root_mem_cgroup);
1020 1021
}

1022 1023
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
1024
	struct mem_cgroup *memcg;
1025 1026 1027 1028 1029

	if (!mm)
		return;

	rcu_read_lock();
1030 1031
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1032 1033 1034 1035
		goto out;

	switch (idx) {
	case PGFAULT:
1036 1037 1038 1039
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1040 1041 1042 1043 1044 1045 1046 1047 1048
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

1049 1050 1051
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1052
 * @memcg: memcg of the wanted lruvec
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1083

1084
/**
1085
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1086
 * @page: the page
1087
 * @zone: zone of the page
1088
 */
1089
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1090 1091
{
	struct mem_cgroup_per_zone *mz;
1092 1093
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1094

1095
	if (mem_cgroup_disabled())
1096 1097
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1098
	pc = lookup_page_cgroup(page);
1099
	memcg = pc->mem_cgroup;
1100 1101

	/*
1102
	 * Surreptitiously switch any uncharged offlist page to root:
1103 1104 1105 1106 1107 1108 1109
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1110
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1111 1112
		pc->mem_cgroup = memcg = root_mem_cgroup;

1113 1114
	mz = page_cgroup_zoneinfo(memcg, page);
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1115
}
1116

1117
/**
1118 1119 1120 1121
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1122
 *
1123 1124
 * This function must be called when a page is added to or removed from an
 * lru list.
1125
 */
1126 1127
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1128 1129
{
	struct mem_cgroup_per_zone *mz;
1130
	unsigned long *lru_size;
1131 1132 1133 1134

	if (mem_cgroup_disabled())
		return;

1135 1136 1137 1138
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1139
}
1140

1141
/*
1142
 * Checks whether given mem is same or in the root_mem_cgroup's
1143 1144
 * hierarchy subtree
 */
1145 1146
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1147
{
1148 1149
	if (root_memcg == memcg)
		return true;
1150
	if (!root_memcg->use_hierarchy || !memcg)
1151
		return false;
1152 1153 1154 1155 1156 1157 1158 1159
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1160
	rcu_read_lock();
1161
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1162 1163
	rcu_read_unlock();
	return ret;
1164 1165
}

1166
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1167 1168
{
	int ret;
1169
	struct mem_cgroup *curr = NULL;
1170
	struct task_struct *p;
1171

1172
	p = find_lock_task_mm(task);
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1188 1189
	if (!curr)
		return 0;
1190
	/*
1191
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1192
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1193 1194
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1195
	 */
1196
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1197
	css_put(&curr->css);
1198 1199 1200
	return ret;
}

1201
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1202
{
1203
	unsigned long inactive_ratio;
1204
	unsigned long inactive;
1205
	unsigned long active;
1206
	unsigned long gb;
1207

1208 1209
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1210

1211 1212 1213 1214 1215 1216
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1217
	return inactive * inactive_ratio < active;
1218 1219
}

1220
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1221 1222 1223 1224
{
	unsigned long active;
	unsigned long inactive;

1225 1226
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1227 1228 1229 1230

	return (active > inactive);
}

1231 1232 1233
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1234
/**
1235
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1236
 * @memcg: the memory cgroup
1237
 *
1238
 * Returns the maximum amount of memory @mem can be charged with, in
1239
 * pages.
1240
 */
1241
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1242
{
1243 1244
	unsigned long long margin;

1245
	margin = res_counter_margin(&memcg->res);
1246
	if (do_swap_account)
1247
		margin = min(margin, res_counter_margin(&memcg->memsw));
1248
	return margin >> PAGE_SHIFT;
1249 1250
}

1251
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1252 1253 1254 1255 1256 1257 1258
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1259
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1260 1261
}

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1276 1277 1278 1279

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1280
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1281
{
1282
	atomic_inc(&memcg_moving);
1283
	atomic_inc(&memcg->moving_account);
1284 1285 1286
	synchronize_rcu();
}

1287
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1288
{
1289 1290 1291 1292
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1293 1294
	if (memcg) {
		atomic_dec(&memcg_moving);
1295
		atomic_dec(&memcg->moving_account);
1296
	}
1297
}
1298

1299 1300 1301
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1302 1303
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1304 1305 1306 1307 1308 1309 1310
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1311
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1312 1313
{
	VM_BUG_ON(!rcu_read_lock_held());
1314
	return atomic_read(&memcg->moving_account) > 0;
1315
}
1316

1317
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1318
{
1319 1320
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1321
	bool ret = false;
1322 1323 1324 1325 1326 1327 1328 1329 1330
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1331

1332 1333
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1334 1335
unlock:
	spin_unlock(&mc.lock);
1336 1337 1338
	return ret;
}

1339
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1340 1341
{
	if (mc.moving_task && current != mc.moving_task) {
1342
		if (mem_cgroup_under_move(memcg)) {
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1355 1356 1357 1358
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1359
 * see mem_cgroup_stolen(), too.
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1373
/**
1374
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1393
	if (!memcg || !p)
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1439 1440 1441 1442
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1443
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1444 1445
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1446 1447
	struct mem_cgroup *iter;

1448
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1449
		num++;
1450 1451 1452
	return num;
}

D
David Rientjes 已提交
1453 1454 1455 1456 1457 1458 1459 1460
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1461 1462 1463
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1464 1465 1466 1467 1468 1469 1470 1471
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1508 1509
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1510
 * @memcg: the target memcg
1511 1512 1513 1514 1515 1516 1517
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1518
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1519 1520
		int nid, bool noswap)
{
1521
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1522 1523 1524
		return true;
	if (noswap || !total_swap_pages)
		return false;
1525
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1526 1527 1528 1529
		return true;
	return false;

}
1530 1531 1532 1533 1534 1535 1536 1537
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1538
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1539 1540
{
	int nid;
1541 1542 1543 1544
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1545
	if (!atomic_read(&memcg->numainfo_events))
1546
		return;
1547
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1548 1549 1550
		return;

	/* make a nodemask where this memcg uses memory from */
1551
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1552 1553 1554

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1555 1556
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1557
	}
1558

1559 1560
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1575
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1576 1577 1578
{
	int node;

1579 1580
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1581

1582
	node = next_node(node, memcg->scan_nodes);
1583
	if (node == MAX_NUMNODES)
1584
		node = first_node(memcg->scan_nodes);
1585 1586 1587 1588 1589 1590 1591 1592 1593
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1594
	memcg->last_scanned_node = node;
1595 1596 1597
	return node;
}

1598 1599 1600 1601 1602 1603
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1604
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1605 1606 1607 1608 1609 1610 1611
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1612 1613
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1614
		     nid < MAX_NUMNODES;
1615
		     nid = next_node(nid, memcg->scan_nodes)) {
1616

1617
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1618 1619 1620 1621 1622 1623 1624
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1625
		if (node_isset(nid, memcg->scan_nodes))
1626
			continue;
1627
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1628 1629 1630 1631 1632
			return true;
	}
	return false;
}

1633
#else
1634
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1635 1636 1637
{
	return 0;
}
1638

1639
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1640
{
1641
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1642
}
1643 1644
#endif

1645 1646 1647 1648
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1649
{
1650
	struct mem_cgroup *victim = NULL;
1651
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1652
	int loop = 0;
1653
	unsigned long excess;
1654
	unsigned long nr_scanned;
1655 1656 1657 1658
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1659

1660
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1661

1662
	while (1) {
1663
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1664
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1665
			loop++;
1666 1667 1668 1669 1670 1671
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1672
				if (!total)
1673 1674
					break;
				/*
L
Lucas De Marchi 已提交
1675
				 * We want to do more targeted reclaim.
1676 1677 1678 1679 1680
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1681
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1682 1683
					break;
			}
1684
			continue;
1685
		}
1686
		if (!mem_cgroup_reclaimable(victim, false))
1687
			continue;
1688 1689 1690 1691
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1692
			break;
1693
	}
1694
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1695
	return total;
1696 1697
}

K
KAMEZAWA Hiroyuki 已提交
1698 1699 1700
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1701
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1702
 */
1703
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1704
{
1705
	struct mem_cgroup *iter, *failed = NULL;
1706

1707
	for_each_mem_cgroup_tree(iter, memcg) {
1708
		if (iter->oom_lock) {
1709 1710 1711 1712 1713
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1714 1715
			mem_cgroup_iter_break(memcg, iter);
			break;
1716 1717
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1718
	}
K
KAMEZAWA Hiroyuki 已提交
1719

1720
	if (!failed)
1721
		return true;
1722 1723 1724 1725 1726

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1727
	for_each_mem_cgroup_tree(iter, memcg) {
1728
		if (iter == failed) {
1729 1730
			mem_cgroup_iter_break(memcg, iter);
			break;
1731 1732 1733
		}
		iter->oom_lock = false;
	}
1734
	return false;
1735
}
1736

1737
/*
1738
 * Has to be called with memcg_oom_lock
1739
 */
1740
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1741
{
K
KAMEZAWA Hiroyuki 已提交
1742 1743
	struct mem_cgroup *iter;

1744
	for_each_mem_cgroup_tree(iter, memcg)
1745 1746 1747 1748
		iter->oom_lock = false;
	return 0;
}

1749
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1750 1751 1752
{
	struct mem_cgroup *iter;

1753
	for_each_mem_cgroup_tree(iter, memcg)
1754 1755 1756
		atomic_inc(&iter->under_oom);
}

1757
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1758 1759 1760
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1761 1762 1763 1764 1765
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1766
	for_each_mem_cgroup_tree(iter, memcg)
1767
		atomic_add_unless(&iter->under_oom, -1, 0);
1768 1769
}

1770
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1771 1772
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1773
struct oom_wait_info {
1774
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1775 1776 1777 1778 1779 1780
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1781 1782
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1783 1784 1785
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1786
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1787 1788

	/*
1789
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1790 1791
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1792 1793
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1794 1795 1796 1797
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1798
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1799
{
1800 1801
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1802 1803
}

1804
static void memcg_oom_recover(struct mem_cgroup *memcg)
1805
{
1806 1807
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1808 1809
}

K
KAMEZAWA Hiroyuki 已提交
1810 1811 1812
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1813 1814
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
1815
{
K
KAMEZAWA Hiroyuki 已提交
1816
	struct oom_wait_info owait;
1817
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1818

1819
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1820 1821 1822 1823
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1824
	need_to_kill = true;
1825
	mem_cgroup_mark_under_oom(memcg);
1826

1827
	/* At first, try to OOM lock hierarchy under memcg.*/
1828
	spin_lock(&memcg_oom_lock);
1829
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1830 1831 1832 1833 1834
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1835
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1836
	if (!locked || memcg->oom_kill_disable)
1837 1838
		need_to_kill = false;
	if (locked)
1839
		mem_cgroup_oom_notify(memcg);
1840
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1841

1842 1843
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1844
		mem_cgroup_out_of_memory(memcg, mask, order);
1845
	} else {
K
KAMEZAWA Hiroyuki 已提交
1846
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1847
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1848
	}
1849
	spin_lock(&memcg_oom_lock);
1850
	if (locked)
1851 1852
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1853
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1854

1855
	mem_cgroup_unmark_under_oom(memcg);
1856

K
KAMEZAWA Hiroyuki 已提交
1857 1858 1859
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1860
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1861
	return true;
1862 1863
}

1864 1865 1866
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
1884 1885
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
1886
 */
1887

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
1901
	 * need to take move_lock_mem_cgroup(). Because we already hold
1902
	 * rcu_read_lock(), any calls to move_account will be delayed until
1903
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1904
	 */
1905
	if (!mem_cgroup_stolen(memcg))
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
1923
	 * should take move_lock_mem_cgroup().
1924 1925 1926 1927
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

1928 1929
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1930
{
1931
	struct mem_cgroup *memcg;
1932
	struct page_cgroup *pc = lookup_page_cgroup(page);
1933
	unsigned long uninitialized_var(flags);
1934

1935
	if (mem_cgroup_disabled())
1936
		return;
1937

1938 1939
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1940
		return;
1941 1942

	switch (idx) {
1943 1944
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1945 1946 1947
		break;
	default:
		BUG();
1948
	}
1949

1950
	this_cpu_add(memcg->stat->count[idx], val);
1951
}
1952

1953 1954 1955 1956
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1957
#define CHARGE_BATCH	32U
1958 1959
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1960
	unsigned int nr_pages;
1961
	struct work_struct work;
1962
	unsigned long flags;
1963
#define FLUSHING_CACHED_CHARGE	0
1964 1965
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1966
static DEFINE_MUTEX(percpu_charge_mutex);
1967 1968

/*
1969
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1970 1971 1972 1973
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
1974
static bool consume_stock(struct mem_cgroup *memcg)
1975 1976 1977 1978 1979
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
1980
	if (memcg == stock->cached && stock->nr_pages)
1981
		stock->nr_pages--;
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1995 1996 1997 1998
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
1999
		if (do_swap_account)
2000 2001
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2014
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2015 2016 2017 2018
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2019
 * This will be consumed by consume_stock() function, later.
2020
 */
2021
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2022 2023 2024
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2025
	if (stock->cached != memcg) { /* reset if necessary */
2026
		drain_stock(stock);
2027
		stock->cached = memcg;
2028
	}
2029
	stock->nr_pages += nr_pages;
2030 2031 2032 2033
	put_cpu_var(memcg_stock);
}

/*
2034
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2035 2036
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2037
 */
2038
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2039
{
2040
	int cpu, curcpu;
2041

2042 2043
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2044
	curcpu = get_cpu();
2045 2046
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2047
		struct mem_cgroup *memcg;
2048

2049 2050
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2051
			continue;
2052
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2053
			continue;
2054 2055 2056 2057 2058 2059
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2060
	}
2061
	put_cpu();
2062 2063 2064 2065 2066 2067

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2068
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2069 2070 2071
			flush_work(&stock->work);
	}
out:
2072
 	put_online_cpus();
2073 2074 2075 2076 2077 2078 2079 2080
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2081
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2082
{
2083 2084 2085 2086 2087
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2088
	drain_all_stock(root_memcg, false);
2089
	mutex_unlock(&percpu_charge_mutex);
2090 2091 2092
}

/* This is a synchronous drain interface. */
2093
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2094 2095
{
	/* called when force_empty is called */
2096
	mutex_lock(&percpu_charge_mutex);
2097
	drain_all_stock(root_memcg, true);
2098
	mutex_unlock(&percpu_charge_mutex);
2099 2100
}

2101 2102 2103 2104
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2105
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2106 2107 2108
{
	int i;

2109
	spin_lock(&memcg->pcp_counter_lock);
2110
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2111
		long x = per_cpu(memcg->stat->count[i], cpu);
2112

2113 2114
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2115
	}
2116
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2117
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2118

2119 2120
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2121
	}
2122
	spin_unlock(&memcg->pcp_counter_lock);
2123 2124 2125
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2126 2127 2128 2129 2130
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2131
	struct mem_cgroup *iter;
2132

2133
	if (action == CPU_ONLINE)
2134 2135
		return NOTIFY_OK;

2136
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2137
		return NOTIFY_OK;
2138

2139
	for_each_mem_cgroup(iter)
2140 2141
		mem_cgroup_drain_pcp_counter(iter, cpu);

2142 2143 2144 2145 2146
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2157
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2158
				unsigned int nr_pages, bool oom_check)
2159
{
2160
	unsigned long csize = nr_pages * PAGE_SIZE;
2161 2162 2163 2164 2165
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2166
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2167 2168 2169 2170

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2171
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2172 2173 2174
		if (likely(!ret))
			return CHARGE_OK;

2175
		res_counter_uncharge(&memcg->res, csize);
2176 2177 2178 2179
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2180
	/*
2181 2182
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2183 2184 2185 2186
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2187
	if (nr_pages == CHARGE_BATCH)
2188 2189 2190 2191 2192
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2193
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2194
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2195
		return CHARGE_RETRY;
2196
	/*
2197 2198 2199 2200 2201 2202 2203
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2204
	 */
2205
	if (nr_pages == 1 && ret)
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2219
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2220 2221 2222 2223 2224
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2225
/*
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2245
 */
2246
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2247
				   gfp_t gfp_mask,
2248
				   unsigned int nr_pages,
2249
				   struct mem_cgroup **ptr,
2250
				   bool oom)
2251
{
2252
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2253
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2254
	struct mem_cgroup *memcg = NULL;
2255
	int ret;
2256

K
KAMEZAWA Hiroyuki 已提交
2257 2258 2259 2260 2261 2262 2263 2264
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2265

2266
	/*
2267 2268
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2269 2270 2271
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2272
	if (!*ptr && !mm)
2273
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2274
again:
2275 2276 2277 2278
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2279
			goto done;
2280
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2281
			goto done;
2282
		css_get(&memcg->css);
2283
	} else {
K
KAMEZAWA Hiroyuki 已提交
2284
		struct task_struct *p;
2285

K
KAMEZAWA Hiroyuki 已提交
2286 2287 2288
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2289
		 * Because we don't have task_lock(), "p" can exit.
2290
		 * In that case, "memcg" can point to root or p can be NULL with
2291 2292 2293 2294 2295 2296
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2297
		 */
2298
		memcg = mem_cgroup_from_task(p);
2299 2300 2301
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2302 2303 2304
			rcu_read_unlock();
			goto done;
		}
2305
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2318
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2319 2320 2321 2322 2323
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2324

2325 2326
	do {
		bool oom_check;
2327

2328
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2329
		if (fatal_signal_pending(current)) {
2330
			css_put(&memcg->css);
2331
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2332
		}
2333

2334 2335 2336 2337
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2338
		}
2339

2340
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2341 2342 2343 2344
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2345
			batch = nr_pages;
2346 2347
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2348
			goto again;
2349
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2350
			css_put(&memcg->css);
2351 2352
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2353
			if (!oom) {
2354
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2355
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2356
			}
2357 2358 2359 2360
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2361
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2362
			goto bypass;
2363
		}
2364 2365
	} while (ret != CHARGE_OK);

2366
	if (batch > nr_pages)
2367 2368
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2369
done:
2370
	*ptr = memcg;
2371 2372
	return 0;
nomem:
2373
	*ptr = NULL;
2374
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2375
bypass:
2376 2377
	*ptr = root_mem_cgroup;
	return -EINTR;
2378
}
2379

2380 2381 2382 2383 2384
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2385
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2386
				       unsigned int nr_pages)
2387
{
2388
	if (!mem_cgroup_is_root(memcg)) {
2389 2390
		unsigned long bytes = nr_pages * PAGE_SIZE;

2391
		res_counter_uncharge(&memcg->res, bytes);
2392
		if (do_swap_account)
2393
			res_counter_uncharge(&memcg->memsw, bytes);
2394
	}
2395 2396
}

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2434
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2435
{
2436
	struct mem_cgroup *memcg = NULL;
2437
	struct page_cgroup *pc;
2438
	unsigned short id;
2439 2440
	swp_entry_t ent;

2441 2442 2443
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2444
	lock_page_cgroup(pc);
2445
	if (PageCgroupUsed(pc)) {
2446 2447 2448
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2449
	} else if (PageSwapCache(page)) {
2450
		ent.val = page_private(page);
2451
		id = lookup_swap_cgroup_id(ent);
2452
		rcu_read_lock();
2453 2454 2455
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2456
		rcu_read_unlock();
2457
	}
2458
	unlock_page_cgroup(pc);
2459
	return memcg;
2460 2461
}

2462
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2463
				       struct page *page,
2464
				       unsigned int nr_pages,
2465 2466
				       enum charge_type ctype,
				       bool lrucare)
2467
{
2468
	struct page_cgroup *pc = lookup_page_cgroup(page);
2469
	struct zone *uninitialized_var(zone);
2470
	struct lruvec *lruvec;
2471
	bool was_on_lru = false;
2472
	bool anon;
2473

2474 2475 2476
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2477
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2478 2479 2480 2481 2482 2483
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2484 2485 2486 2487 2488 2489 2490 2491 2492

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2493
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2494
			ClearPageLRU(page);
2495
			del_page_from_lru_list(page, lruvec, page_lru(page));
2496 2497 2498 2499
			was_on_lru = true;
		}
	}

2500
	pc->mem_cgroup = memcg;
2501 2502 2503 2504 2505 2506 2507
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2508
	smp_wmb();
2509
	SetPageCgroupUsed(pc);
2510

2511 2512
	if (lrucare) {
		if (was_on_lru) {
2513
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2514 2515
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2516
			add_page_to_lru_list(page, lruvec, page_lru(page));
2517 2518 2519 2520
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2521
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2522 2523 2524 2525 2526
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2527
	unlock_page_cgroup(pc);
2528

2529 2530 2531 2532 2533
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2534
	memcg_check_events(memcg, page);
2535
}
2536

2537 2538
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2539
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2540 2541
/*
 * Because tail pages are not marked as "used", set it. We're under
2542 2543 2544
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2545
 */
2546
void mem_cgroup_split_huge_fixup(struct page *head)
2547 2548
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2549 2550
	struct page_cgroup *pc;
	int i;
2551

2552 2553
	if (mem_cgroup_disabled())
		return;
2554 2555 2556 2557 2558 2559
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2560
}
2561
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2562

2563
/**
2564
 * mem_cgroup_move_account - move account of the page
2565
 * @page: the page
2566
 * @nr_pages: number of regular pages (>1 for huge pages)
2567 2568 2569 2570 2571
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2572
 * - page is not on LRU (isolate_page() is useful.)
2573
 * - compound_lock is held when nr_pages > 1
2574
 *
2575 2576
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2577
 */
2578 2579 2580 2581
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
2582
				   struct mem_cgroup *to)
2583
{
2584 2585
	unsigned long flags;
	int ret;
2586
	bool anon = PageAnon(page);
2587

2588
	VM_BUG_ON(from == to);
2589
	VM_BUG_ON(PageLRU(page));
2590 2591 2592 2593 2594 2595 2596
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2597
	if (nr_pages > 1 && !PageTransHuge(page))
2598 2599 2600 2601 2602 2603 2604 2605
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2606
	move_lock_mem_cgroup(from, &flags);
2607

2608
	if (!anon && page_mapped(page)) {
2609 2610 2611 2612 2613
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2614
	}
2615
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2616

2617
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2618
	pc->mem_cgroup = to;
2619
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2620 2621 2622
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2623
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2624
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2625
	 * status here.
2626
	 */
2627
	move_unlock_mem_cgroup(from, &flags);
2628 2629
	ret = 0;
unlock:
2630
	unlock_page_cgroup(pc);
2631 2632 2633
	/*
	 * check events
	 */
2634 2635
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2636
out:
2637 2638 2639 2640 2641 2642 2643
	return ret;
}

/*
 * move charges to its parent.
 */

2644 2645
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2646
				  struct mem_cgroup *child)
2647 2648
{
	struct mem_cgroup *parent;
2649
	unsigned int nr_pages;
2650
	unsigned long uninitialized_var(flags);
2651 2652 2653
	int ret;

	/* Is ROOT ? */
2654
	if (mem_cgroup_is_root(child))
2655 2656
		return -EINVAL;

2657 2658 2659 2660 2661
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2662

2663
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2664

2665 2666 2667 2668 2669 2670
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
2671

2672
	if (nr_pages > 1)
2673 2674
		flags = compound_lock_irqsave(page);

2675
	ret = mem_cgroup_move_account(page, nr_pages,
2676
				pc, child, parent);
2677 2678
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
2679

2680
	if (nr_pages > 1)
2681
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
2682
	putback_lru_page(page);
2683
put:
2684
	put_page(page);
2685
out:
2686 2687 2688
	return ret;
}

2689 2690 2691 2692 2693 2694 2695
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2696
				gfp_t gfp_mask, enum charge_type ctype)
2697
{
2698
	struct mem_cgroup *memcg = NULL;
2699
	unsigned int nr_pages = 1;
2700
	bool oom = true;
2701
	int ret;
A
Andrea Arcangeli 已提交
2702

A
Andrea Arcangeli 已提交
2703
	if (PageTransHuge(page)) {
2704
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2705
		VM_BUG_ON(!PageTransHuge(page));
2706 2707 2708 2709 2710
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2711
	}
2712

2713
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2714
	if (ret == -ENOMEM)
2715
		return ret;
2716
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2717 2718 2719
	return 0;
}

2720 2721
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2722
{
2723
	if (mem_cgroup_disabled())
2724
		return 0;
2725 2726 2727
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2728
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2729
					MEM_CGROUP_CHARGE_TYPE_ANON);
2730 2731
}

D
Daisuke Nishimura 已提交
2732 2733 2734 2735
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2736 2737
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2738
{
2739
	struct mem_cgroup *memcg = NULL;
2740
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2741 2742
	int ret;

2743
	if (mem_cgroup_disabled())
2744
		return 0;
2745 2746
	if (PageCompound(page))
		return 0;
2747

2748
	if (unlikely(!mm))
2749
		mm = &init_mm;
2750 2751
	if (!page_is_file_cache(page))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2752

2753
	if (!PageSwapCache(page))
2754
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2755
	else { /* page is swapcache/shmem */
2756
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2757
		if (!ret)
2758 2759
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
2760
	return ret;
2761 2762
}

2763 2764 2765
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2766
 * struct page_cgroup is acquired. This refcnt will be consumed by
2767 2768
 * "commit()" or removed by "cancel()"
 */
2769 2770
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
2771
				 gfp_t mask, struct mem_cgroup **memcgp)
2772
{
2773
	struct mem_cgroup *memcg;
2774
	int ret;
2775

2776
	*memcgp = NULL;
2777

2778
	if (mem_cgroup_disabled())
2779 2780 2781 2782 2783 2784
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2785 2786 2787
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2788 2789
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2790
		goto charge_cur_mm;
2791 2792
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2793
		goto charge_cur_mm;
2794 2795
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2796
	css_put(&memcg->css);
2797 2798
	if (ret == -EINTR)
		ret = 0;
2799
	return ret;
2800 2801 2802
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2803 2804 2805 2806
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2807 2808
}

D
Daisuke Nishimura 已提交
2809
static void
2810
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2811
					enum charge_type ctype)
2812
{
2813
	if (mem_cgroup_disabled())
2814
		return;
2815
	if (!memcg)
2816
		return;
2817
	cgroup_exclude_rmdir(&memcg->css);
2818

2819
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2820 2821 2822
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2823 2824 2825
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2826
	 */
2827
	if (do_swap_account && PageSwapCache(page)) {
2828
		swp_entry_t ent = {.val = page_private(page)};
2829
		mem_cgroup_uncharge_swap(ent);
2830
	}
2831 2832 2833 2834 2835
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2836
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2837 2838
}

2839 2840
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2841
{
2842
	__mem_cgroup_commit_charge_swapin(page, memcg,
2843
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
2844 2845
}

2846
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2847
{
2848
	if (mem_cgroup_disabled())
2849
		return;
2850
	if (!memcg)
2851
		return;
2852
	__mem_cgroup_cancel_charge(memcg, 1);
2853 2854
}

2855
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2856 2857
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2858 2859 2860
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2861

2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2873
		batch->memcg = memcg;
2874 2875
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2876
	 * In those cases, all pages freed continuously can be expected to be in
2877 2878 2879 2880 2881 2882 2883 2884
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2885
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2886 2887
		goto direct_uncharge;

2888 2889 2890 2891 2892
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2893
	if (batch->memcg != memcg)
2894 2895
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2896
	batch->nr_pages++;
2897
	if (uncharge_memsw)
2898
		batch->memsw_nr_pages++;
2899 2900
	return;
direct_uncharge:
2901
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2902
	if (uncharge_memsw)
2903 2904 2905
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2906
}
2907

2908
/*
2909
 * uncharge if !page_mapped(page)
2910
 */
2911
static struct mem_cgroup *
2912
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2913
{
2914
	struct mem_cgroup *memcg = NULL;
2915 2916
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2917
	bool anon;
2918

2919
	if (mem_cgroup_disabled())
2920
		return NULL;
2921

K
KAMEZAWA Hiroyuki 已提交
2922
	if (PageSwapCache(page))
2923
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2924

A
Andrea Arcangeli 已提交
2925
	if (PageTransHuge(page)) {
2926
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2927 2928
		VM_BUG_ON(!PageTransHuge(page));
	}
2929
	/*
2930
	 * Check if our page_cgroup is valid
2931
	 */
2932
	pc = lookup_page_cgroup(page);
2933
	if (unlikely(!PageCgroupUsed(pc)))
2934
		return NULL;
2935

2936
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2937

2938
	memcg = pc->mem_cgroup;
2939

K
KAMEZAWA Hiroyuki 已提交
2940 2941 2942
	if (!PageCgroupUsed(pc))
		goto unlock_out;

2943 2944
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
2945
	switch (ctype) {
2946
	case MEM_CGROUP_CHARGE_TYPE_ANON:
2947 2948 2949 2950 2951
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
2952 2953
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
2954
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2955 2956
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2968
	}
K
KAMEZAWA Hiroyuki 已提交
2969

2970
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2971

2972
	ClearPageCgroupUsed(pc);
2973 2974 2975 2976 2977 2978
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2979

2980
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2981
	/*
2982
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
2983 2984
	 * will never be freed.
	 */
2985
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
2986
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2987 2988
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
2989
	}
2990 2991
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2992

2993
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
2994 2995 2996

unlock_out:
	unlock_page_cgroup(pc);
2997
	return NULL;
2998 2999
}

3000 3001
void mem_cgroup_uncharge_page(struct page *page)
{
3002 3003 3004
	/* early check. */
	if (page_mapped(page))
		return;
3005
	VM_BUG_ON(page->mapping && !PageAnon(page));
3006
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON);
3007 3008 3009 3010 3011
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3012
	VM_BUG_ON(page->mapping);
3013 3014 3015
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3030 3031
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3052 3053 3054 3055 3056 3057
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3058
	memcg_oom_recover(batch->memcg);
3059 3060 3061 3062
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3063
#ifdef CONFIG_SWAP
3064
/*
3065
 * called after __delete_from_swap_cache() and drop "page" account.
3066 3067
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3068 3069
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3070 3071
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3072 3073 3074 3075 3076 3077
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3078

K
KAMEZAWA Hiroyuki 已提交
3079 3080 3081 3082 3083
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3084
		swap_cgroup_record(ent, css_id(&memcg->css));
3085
}
3086
#endif
3087

A
Andrew Morton 已提交
3088
#ifdef CONFIG_MEMCG_SWAP
3089 3090 3091 3092 3093
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3094
{
3095
	struct mem_cgroup *memcg;
3096
	unsigned short id;
3097 3098 3099 3100

	if (!do_swap_account)
		return;

3101 3102 3103
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3104
	if (memcg) {
3105 3106 3107 3108
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3109
		if (!mem_cgroup_is_root(memcg))
3110
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3111
		mem_cgroup_swap_statistics(memcg, false);
3112 3113
		mem_cgroup_put(memcg);
	}
3114
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3115
}
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3132
				struct mem_cgroup *from, struct mem_cgroup *to)
3133 3134 3135 3136 3137 3138 3139 3140
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3141
		mem_cgroup_swap_statistics(to, true);
3142
		/*
3143 3144 3145 3146 3147 3148
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3149 3150 3151 3152 3153 3154 3155 3156
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3157
				struct mem_cgroup *from, struct mem_cgroup *to)
3158 3159 3160
{
	return -EINVAL;
}
3161
#endif
K
KAMEZAWA Hiroyuki 已提交
3162

3163
/*
3164 3165
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3166
 */
3167
int mem_cgroup_prepare_migration(struct page *page,
3168
	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3169
{
3170
	struct mem_cgroup *memcg = NULL;
3171
	struct page_cgroup *pc;
3172
	enum charge_type ctype;
3173
	int ret = 0;
3174

3175
	*memcgp = NULL;
3176

A
Andrea Arcangeli 已提交
3177
	VM_BUG_ON(PageTransHuge(page));
3178
	if (mem_cgroup_disabled())
3179 3180
		return 0;

3181 3182 3183
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3184 3185
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3217
	}
3218
	unlock_page_cgroup(pc);
3219 3220 3221 3222
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3223
	if (!memcg)
3224
		return 0;
3225

3226 3227
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3228
	css_put(&memcg->css);/* drop extra refcnt */
3229
	if (ret) {
3230 3231 3232 3233 3234 3235 3236 3237 3238
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
3239
		/* we'll need to revisit this error code (we have -EINTR) */
3240
		return -ENOMEM;
3241
	}
3242 3243 3244 3245 3246 3247 3248
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
3249
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3250 3251 3252 3253
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3254
	__mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3255
	return ret;
3256
}
3257

3258
/* remove redundant charge if migration failed*/
3259
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3260
	struct page *oldpage, struct page *newpage, bool migration_ok)
3261
{
3262
	struct page *used, *unused;
3263
	struct page_cgroup *pc;
3264
	bool anon;
3265

3266
	if (!memcg)
3267
		return;
3268
	/* blocks rmdir() */
3269
	cgroup_exclude_rmdir(&memcg->css);
3270
	if (!migration_ok) {
3271 3272
		used = oldpage;
		unused = newpage;
3273
	} else {
3274
		used = newpage;
3275 3276
		unused = oldpage;
	}
3277
	/*
3278 3279 3280
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3281
	 */
3282 3283 3284 3285
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3286 3287
	anon = PageAnon(used);
	__mem_cgroup_uncharge_common(unused,
3288
		anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3289
		     : MEM_CGROUP_CHARGE_TYPE_CACHE);
3290

3291
	/*
3292 3293 3294 3295 3296 3297
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3298
	 */
3299
	if (anon)
3300
		mem_cgroup_uncharge_page(used);
3301
	/*
3302 3303
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3304 3305 3306
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3307
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3308
}
3309

3310 3311 3312 3313 3314 3315 3316 3317
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
3318
	struct mem_cgroup *memcg = NULL;
3319 3320 3321 3322 3323 3324 3325 3326 3327
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
3328 3329 3330 3331 3332
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
3333 3334
	unlock_page_cgroup(pc);

3335 3336 3337 3338 3339 3340 3341
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;

3342 3343 3344 3345 3346 3347 3348 3349
	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3350
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3351 3352
}

3353 3354 3355 3356 3357 3358
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3359 3360 3361 3362 3363
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3383
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3384 3385 3386 3387 3388
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3389 3390
static DEFINE_MUTEX(set_limit_mutex);

3391
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3392
				unsigned long long val)
3393
{
3394
	int retry_count;
3395
	u64 memswlimit, memlimit;
3396
	int ret = 0;
3397 3398
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3399
	int enlarge;
3400 3401 3402 3403 3404 3405 3406 3407 3408

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3409

3410
	enlarge = 0;
3411
	while (retry_count) {
3412 3413 3414 3415
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3416 3417 3418
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3419
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3420 3421 3422 3423 3424 3425
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3426 3427
			break;
		}
3428 3429 3430 3431 3432

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3433
		ret = res_counter_set_limit(&memcg->res, val);
3434 3435 3436 3437 3438 3439
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3440 3441 3442 3443 3444
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3445 3446
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3447 3448 3449 3450 3451 3452
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3453
	}
3454 3455
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3456

3457 3458 3459
	return ret;
}

L
Li Zefan 已提交
3460 3461
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3462
{
3463
	int retry_count;
3464
	u64 memlimit, memswlimit, oldusage, curusage;
3465 3466
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3467
	int enlarge = 0;
3468

3469 3470 3471
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3472 3473 3474 3475 3476 3477 3478 3479
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3480
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3481 3482 3483 3484 3485 3486 3487 3488
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3489 3490 3491
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3492
		ret = res_counter_set_limit(&memcg->memsw, val);
3493 3494 3495 3496 3497 3498
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3499 3500 3501 3502 3503
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3504 3505 3506
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3507
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3508
		/* Usage is reduced ? */
3509
		if (curusage >= oldusage)
3510
			retry_count--;
3511 3512
		else
			oldusage = curusage;
3513
	}
3514 3515
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3516 3517 3518
	return ret;
}

3519
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3520 3521
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3522 3523 3524 3525 3526 3527
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3528
	unsigned long long excess;
3529
	unsigned long nr_scanned;
3530 3531 3532 3533

	if (order > 0)
		return 0;

3534
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3548
		nr_scanned = 0;
3549
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3550
						    gfp_mask, &nr_scanned);
3551
		nr_reclaimed += reclaimed;
3552
		*total_scanned += nr_scanned;
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3575
				if (next_mz == mz)
3576
					css_put(&next_mz->memcg->css);
3577
				else /* next_mz == NULL or other memcg */
3578 3579 3580
					break;
			} while (1);
		}
3581 3582
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3583 3584 3585 3586 3587 3588 3589 3590
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3591
		/* If excess == 0, no tree ops */
3592
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3593
		spin_unlock(&mctz->lock);
3594
		css_put(&mz->memcg->css);
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3607
		css_put(&next_mz->memcg->css);
3608 3609 3610
	return nr_reclaimed;
}

3611
/*
3612 3613 3614 3615
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
 * reclaim the pages page themselves - it just removes the page_cgroups.
 * Returns true if some page_cgroups were not freed, indicating that the caller
 * must retry this operation.
3616
 */
3617
static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3618
				int node, int zid, enum lru_list lru)
3619
{
K
KAMEZAWA Hiroyuki 已提交
3620 3621
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3622
	struct list_head *list;
3623 3624
	struct page *busy;
	struct zone *zone;
3625

K
KAMEZAWA Hiroyuki 已提交
3626
	zone = &NODE_DATA(node)->node_zones[zid];
3627
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3628
	list = &mz->lruvec.lists[lru];
3629

3630
	loop = mz->lru_size[lru];
3631 3632 3633 3634
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3635
		struct page_cgroup *pc;
3636 3637
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
3638
		spin_lock_irqsave(&zone->lru_lock, flags);
3639
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3640
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3641
			break;
3642
		}
3643 3644 3645
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3646
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3647
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3648 3649
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3650
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3651

3652
		pc = lookup_page_cgroup(page);
3653

3654
		if (mem_cgroup_move_parent(page, pc, memcg)) {
3655
			/* found lock contention or "pc" is obsolete. */
3656
			busy = page;
3657 3658 3659
			cond_resched();
		} else
			busy = NULL;
3660
	}
3661
	return !list_empty(list);
3662 3663 3664 3665 3666 3667
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3668
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3669
{
3670 3671 3672
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3673
	struct cgroup *cgrp = memcg->css.cgroup;
3674

3675
	css_get(&memcg->css);
3676 3677

	shrink = 0;
3678 3679 3680
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3681
move_account:
3682
	do {
3683
		ret = -EBUSY;
3684 3685
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
3686 3687
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3688
		drain_all_stock_sync(memcg);
3689
		ret = 0;
3690
		mem_cgroup_start_move(memcg);
3691
		for_each_node_state(node, N_HIGH_MEMORY) {
3692
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3693 3694
				enum lru_list lru;
				for_each_lru(lru) {
3695
					ret = mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3696
							node, zid, lru);
3697 3698 3699
					if (ret)
						break;
				}
3700
			}
3701 3702 3703
			if (ret)
				break;
		}
3704 3705
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3706
		cond_resched();
3707
	/* "ret" should also be checked to ensure all lists are empty. */
3708
	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3709
out:
3710
	css_put(&memcg->css);
3711
	return ret;
3712 3713

try_to_free:
3714 3715
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3716 3717 3718
		ret = -EBUSY;
		goto out;
	}
3719 3720
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3721 3722
	/* try to free all pages in this cgroup */
	shrink = 1;
3723
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3724
		int progress;
3725 3726 3727 3728 3729

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3730
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3731
						false);
3732
		if (!progress) {
3733
			nr_retries--;
3734
			/* maybe some writeback is necessary */
3735
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3736
		}
3737 3738

	}
K
KAMEZAWA Hiroyuki 已提交
3739
	lru_add_drain();
3740
	/* try move_account...there may be some *locked* pages. */
3741
	goto move_account;
3742 3743
}

3744
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3745 3746 3747 3748 3749
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3750 3751 3752 3753 3754 3755 3756 3757 3758
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3759
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3760
	struct cgroup *parent = cont->parent;
3761
	struct mem_cgroup *parent_memcg = NULL;
3762 3763

	if (parent)
3764
		parent_memcg = mem_cgroup_from_cont(parent);
3765 3766

	cgroup_lock();
3767 3768 3769 3770

	if (memcg->use_hierarchy == val)
		goto out;

3771
	/*
3772
	 * If parent's use_hierarchy is set, we can't make any modifications
3773 3774 3775 3776 3777 3778
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3779
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3780 3781
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3782
			memcg->use_hierarchy = val;
3783 3784 3785 3786
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3787 3788

out:
3789 3790 3791 3792 3793
	cgroup_unlock();

	return retval;
}

3794

3795
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3796
					       enum mem_cgroup_stat_index idx)
3797
{
K
KAMEZAWA Hiroyuki 已提交
3798
	struct mem_cgroup *iter;
3799
	long val = 0;
3800

3801
	/* Per-cpu values can be negative, use a signed accumulator */
3802
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3803 3804 3805 3806 3807
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3808 3809
}

3810
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3811
{
K
KAMEZAWA Hiroyuki 已提交
3812
	u64 val;
3813

3814
	if (!mem_cgroup_is_root(memcg)) {
3815
		if (!swap)
3816
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3817
		else
3818
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3819 3820
	}

3821 3822
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3823

K
KAMEZAWA Hiroyuki 已提交
3824
	if (swap)
3825
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3826 3827 3828 3829

	return val << PAGE_SHIFT;
}

3830 3831 3832
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
3833
{
3834
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3835
	char str[64];
3836
	u64 val;
3837
	int type, name, len;
3838 3839 3840

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3841 3842 3843 3844

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3845 3846
	switch (type) {
	case _MEM:
3847
		if (name == RES_USAGE)
3848
			val = mem_cgroup_usage(memcg, false);
3849
		else
3850
			val = res_counter_read_u64(&memcg->res, name);
3851 3852
		break;
	case _MEMSWAP:
3853
		if (name == RES_USAGE)
3854
			val = mem_cgroup_usage(memcg, true);
3855
		else
3856
			val = res_counter_read_u64(&memcg->memsw, name);
3857 3858 3859 3860
		break;
	default:
		BUG();
	}
3861 3862 3863

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
3864
}
3865 3866 3867 3868
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3869 3870
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3871
{
3872
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3873
	int type, name;
3874 3875 3876
	unsigned long long val;
	int ret;

3877 3878
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3879 3880 3881 3882

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3883
	switch (name) {
3884
	case RES_LIMIT:
3885 3886 3887 3888
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3889 3890
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3891 3892 3893
		if (ret)
			break;
		if (type == _MEM)
3894
			ret = mem_cgroup_resize_limit(memcg, val);
3895 3896
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3897
		break;
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3912 3913 3914 3915 3916
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3917 3918
}

3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

3946
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3947
{
3948
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3949
	int type, name;
3950

3951 3952
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
3953 3954 3955 3956

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3957
	switch (name) {
3958
	case RES_MAX_USAGE:
3959
		if (type == _MEM)
3960
			res_counter_reset_max(&memcg->res);
3961
		else
3962
			res_counter_reset_max(&memcg->memsw);
3963 3964
		break;
	case RES_FAILCNT:
3965
		if (type == _MEM)
3966
			res_counter_reset_failcnt(&memcg->res);
3967
		else
3968
			res_counter_reset_failcnt(&memcg->memsw);
3969 3970
		break;
	}
3971

3972
	return 0;
3973 3974
}

3975 3976 3977 3978 3979 3980
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3981
#ifdef CONFIG_MMU
3982 3983 3984
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
3985
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3986 3987 3988 3989 3990 3991 3992 3993 3994

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
3995
	memcg->move_charge_at_immigrate = val;
3996 3997 3998 3999
	cgroup_unlock();

	return 0;
}
4000 4001 4002 4003 4004 4005 4006
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4007

4008
#ifdef CONFIG_NUMA
4009
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4010
				      struct seq_file *m)
4011 4012 4013 4014
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
4015
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4016

4017
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4018 4019
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4020
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4021 4022 4023 4024
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4025
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4026 4027
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4028
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4029
				LRU_ALL_FILE);
4030 4031 4032 4033
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4034
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4035 4036
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4037
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4038
				LRU_ALL_ANON);
4039 4040 4041 4042
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4043
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4044 4045
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4046
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4047
				BIT(LRU_UNEVICTABLE));
4048 4049 4050 4051 4052 4053 4054
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4068
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4069
				 struct seq_file *m)
4070
{
4071
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4072 4073
	struct mem_cgroup *mi;
	unsigned int i;
4074

4075
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4076
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4077
			continue;
4078 4079
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4080
	}
L
Lee Schermerhorn 已提交
4081

4082 4083 4084 4085 4086 4087 4088 4089
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4090
	/* Hierarchical information */
4091 4092
	{
		unsigned long long limit, memsw_limit;
4093
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4094
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4095
		if (do_swap_account)
4096 4097
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
4098
	}
K
KOSAKI Motohiro 已提交
4099

4100 4101 4102
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4103
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4104
			continue;
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4125
	}
K
KAMEZAWA Hiroyuki 已提交
4126

K
KOSAKI Motohiro 已提交
4127 4128 4129 4130
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4131
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4132 4133 4134 4135 4136
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4137
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4138
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4139

4140 4141 4142 4143
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4144
			}
4145 4146 4147 4148
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4149 4150 4151
	}
#endif

4152 4153 4154
	return 0;
}

K
KOSAKI Motohiro 已提交
4155 4156 4157 4158
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4159
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4160 4161 4162 4163 4164 4165 4166
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4167

K
KOSAKI Motohiro 已提交
4168 4169 4170 4171 4172 4173 4174
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4175 4176 4177

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4178 4179
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4180 4181
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4182
		return -EINVAL;
4183
	}
K
KOSAKI Motohiro 已提交
4184 4185 4186

	memcg->swappiness = val;

4187 4188
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4189 4190 4191
	return 0;
}

4192 4193 4194 4195 4196 4197 4198 4199
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4200
		t = rcu_dereference(memcg->thresholds.primary);
4201
	else
4202
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4203 4204 4205 4206 4207 4208 4209

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
4210
	 * current_threshold points to threshold just below or equal to usage.
4211 4212 4213
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4214
	i = t->current_threshold;
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4238
	t->current_threshold = i - 1;
4239 4240 4241 4242 4243 4244
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4245 4246 4247 4248 4249 4250 4251
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4262
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4263 4264 4265
{
	struct mem_cgroup_eventfd_list *ev;

4266
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4267 4268 4269 4270
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4271
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4272
{
K
KAMEZAWA Hiroyuki 已提交
4273 4274
	struct mem_cgroup *iter;

4275
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4276
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4277 4278 4279 4280
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4281 4282
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4283 4284
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4285 4286
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4287
	int i, size, ret;
4288 4289 4290 4291 4292 4293

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4294

4295
	if (type == _MEM)
4296
		thresholds = &memcg->thresholds;
4297
	else if (type == _MEMSWAP)
4298
		thresholds = &memcg->memsw_thresholds;
4299 4300 4301 4302 4303 4304
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4305
	if (thresholds->primary)
4306 4307
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4308
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4309 4310

	/* Allocate memory for new array of thresholds */
4311
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4312
			GFP_KERNEL);
4313
	if (!new) {
4314 4315 4316
		ret = -ENOMEM;
		goto unlock;
	}
4317
	new->size = size;
4318 4319

	/* Copy thresholds (if any) to new array */
4320 4321
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4322
				sizeof(struct mem_cgroup_threshold));
4323 4324
	}

4325
	/* Add new threshold */
4326 4327
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4328 4329

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4330
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4331 4332 4333
			compare_thresholds, NULL);

	/* Find current threshold */
4334
	new->current_threshold = -1;
4335
	for (i = 0; i < size; i++) {
4336
		if (new->entries[i].threshold <= usage) {
4337
			/*
4338 4339
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4340 4341
			 * it here.
			 */
4342
			++new->current_threshold;
4343 4344
		} else
			break;
4345 4346
	}

4347 4348 4349 4350 4351
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4352

4353
	/* To be sure that nobody uses thresholds */
4354 4355 4356 4357 4358 4359 4360 4361
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4362
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4363
	struct cftype *cft, struct eventfd_ctx *eventfd)
4364 4365
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4366 4367
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4368 4369
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4370
	int i, j, size;
4371 4372 4373

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4374
		thresholds = &memcg->thresholds;
4375
	else if (type == _MEMSWAP)
4376
		thresholds = &memcg->memsw_thresholds;
4377 4378 4379
	else
		BUG();

4380 4381 4382
	if (!thresholds->primary)
		goto unlock;

4383 4384 4385 4386 4387 4388
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4389 4390 4391
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4392 4393 4394
			size++;
	}

4395
	new = thresholds->spare;
4396

4397 4398
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4399 4400
		kfree(new);
		new = NULL;
4401
		goto swap_buffers;
4402 4403
	}

4404
	new->size = size;
4405 4406

	/* Copy thresholds and find current threshold */
4407 4408 4409
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4410 4411
			continue;

4412
		new->entries[j] = thresholds->primary->entries[i];
4413
		if (new->entries[j].threshold <= usage) {
4414
			/*
4415
			 * new->current_threshold will not be used
4416 4417 4418
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4419
			++new->current_threshold;
4420 4421 4422 4423
		}
		j++;
	}

4424
swap_buffers:
4425 4426
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4427 4428 4429 4430 4431 4432
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4433
	rcu_assign_pointer(thresholds->primary, new);
4434

4435
	/* To be sure that nobody uses thresholds */
4436
	synchronize_rcu();
4437
unlock:
4438 4439
	mutex_unlock(&memcg->thresholds_lock);
}
4440

K
KAMEZAWA Hiroyuki 已提交
4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4453
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4454 4455 4456 4457 4458

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4459
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4460
		eventfd_signal(eventfd, 1);
4461
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4462 4463 4464 4465

	return 0;
}

4466
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4467 4468
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4469
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4470 4471 4472 4473 4474
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4475
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4476

4477
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4478 4479 4480 4481 4482 4483
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4484
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4485 4486
}

4487 4488 4489
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4490
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4491

4492
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4493

4494
	if (atomic_read(&memcg->under_oom))
4495 4496 4497 4498 4499 4500 4501 4502 4503
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4504
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4516
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4517 4518 4519
		cgroup_unlock();
		return -EINVAL;
	}
4520
	memcg->oom_kill_disable = val;
4521
	if (!val)
4522
		memcg_oom_recover(memcg);
4523 4524 4525 4526
	cgroup_unlock();
	return 0;
}

A
Andrew Morton 已提交
4527
#ifdef CONFIG_MEMCG_KMEM
4528
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4529
{
4530
	return mem_cgroup_sockets_init(memcg, ss);
4531 4532
};

4533
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4534
{
4535
	mem_cgroup_sockets_destroy(memcg);
G
Glauber Costa 已提交
4536
}
4537
#else
4538
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4539 4540 4541
{
	return 0;
}
G
Glauber Costa 已提交
4542

4543
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4544 4545
{
}
4546 4547
#endif

B
Balbir Singh 已提交
4548 4549
static struct cftype mem_cgroup_files[] = {
	{
4550
		.name = "usage_in_bytes",
4551
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4552
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4553 4554
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4555
	},
4556 4557
	{
		.name = "max_usage_in_bytes",
4558
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4559
		.trigger = mem_cgroup_reset,
4560
		.read = mem_cgroup_read,
4561
	},
B
Balbir Singh 已提交
4562
	{
4563
		.name = "limit_in_bytes",
4564
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4565
		.write_string = mem_cgroup_write,
4566
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4567
	},
4568 4569 4570 4571
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
4572
		.read = mem_cgroup_read,
4573
	},
B
Balbir Singh 已提交
4574 4575
	{
		.name = "failcnt",
4576
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4577
		.trigger = mem_cgroup_reset,
4578
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4579
	},
4580 4581
	{
		.name = "stat",
4582
		.read_seq_string = memcg_stat_show,
4583
	},
4584 4585 4586 4587
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4588 4589 4590 4591 4592
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4593 4594 4595 4596 4597
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4598 4599 4600 4601 4602
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4603 4604
	{
		.name = "oom_control",
4605 4606
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4607 4608 4609 4610
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4611 4612 4613
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4614
		.read_seq_string = memcg_numa_stat_show,
4615 4616
	},
#endif
A
Andrew Morton 已提交
4617
#ifdef CONFIG_MEMCG_SWAP
4618 4619 4620
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4621
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4622 4623
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4624 4625 4626 4627 4628
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
4629
		.read = mem_cgroup_read,
4630 4631 4632 4633 4634
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
4635
		.read = mem_cgroup_read,
4636 4637 4638 4639 4640
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
4641
		.read = mem_cgroup_read,
4642 4643
	},
#endif
4644
	{ },	/* terminate */
4645
};
4646

4647
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4648 4649
{
	struct mem_cgroup_per_node *pn;
4650
	struct mem_cgroup_per_zone *mz;
4651
	int zone, tmp = node;
4652 4653 4654 4655 4656 4657 4658 4659
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4660 4661
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4662
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4663 4664
	if (!pn)
		return 1;
4665 4666 4667

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4668
		lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4669
		mz->usage_in_excess = 0;
4670
		mz->on_tree = false;
4671
		mz->memcg = memcg;
4672
	}
4673
	memcg->info.nodeinfo[node] = pn;
4674 4675 4676
	return 0;
}

4677
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4678
{
4679
	kfree(memcg->info.nodeinfo[node]);
4680 4681
}

4682 4683
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4684
	struct mem_cgroup *memcg;
4685
	int size = sizeof(struct mem_cgroup);
4686

4687
	/* Can be very big if MAX_NUMNODES is very big */
4688
	if (size < PAGE_SIZE)
4689
		memcg = kzalloc(size, GFP_KERNEL);
4690
	else
4691
		memcg = vzalloc(size);
4692

4693
	if (!memcg)
4694 4695
		return NULL;

4696 4697
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4698
		goto out_free;
4699 4700
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4701 4702 4703

out_free:
	if (size < PAGE_SIZE)
4704
		kfree(memcg);
4705
	else
4706
		vfree(memcg);
4707
	return NULL;
4708 4709
}

4710
/*
4711
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4712 4713 4714
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
4715
static void free_work(struct work_struct *work)
4716 4717
{
	struct mem_cgroup *memcg;
4718
	int size = sizeof(struct mem_cgroup);
4719 4720

	memcg = container_of(work, struct mem_cgroup, work_freeing);
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
	disarm_sock_keys(memcg);
4733 4734 4735 4736
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
4737
}
4738 4739

static void free_rcu(struct rcu_head *rcu_head)
4740 4741 4742 4743
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4744
	INIT_WORK(&memcg->work_freeing, free_work);
4745 4746 4747
	schedule_work(&memcg->work_freeing);
}

4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4759
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4760
{
K
KAMEZAWA Hiroyuki 已提交
4761 4762
	int node;

4763 4764
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4765

B
Bob Liu 已提交
4766
	for_each_node(node)
4767
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4768

4769
	free_percpu(memcg->stat);
4770
	call_rcu(&memcg->rcu_freeing, free_rcu);
4771 4772
}

4773
static void mem_cgroup_get(struct mem_cgroup *memcg)
4774
{
4775
	atomic_inc(&memcg->refcnt);
4776 4777
}

4778
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4779
{
4780 4781 4782
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4783 4784 4785
		if (parent)
			mem_cgroup_put(parent);
	}
4786 4787
}

4788
static void mem_cgroup_put(struct mem_cgroup *memcg)
4789
{
4790
	__mem_cgroup_put(memcg, 1);
4791 4792
}

4793 4794 4795
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4796
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4797
{
4798
	if (!memcg->res.parent)
4799
		return NULL;
4800
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4801
}
G
Glauber Costa 已提交
4802
EXPORT_SYMBOL(parent_mem_cgroup);
4803

A
Andrew Morton 已提交
4804
#ifdef CONFIG_MEMCG_SWAP
4805 4806
static void __init enable_swap_cgroup(void)
{
4807
	if (!mem_cgroup_disabled() && really_do_swap_account)
4808 4809 4810 4811 4812 4813 4814 4815
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4816 4817 4818 4819 4820 4821
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4822
	for_each_node(node) {
4823 4824 4825 4826 4827
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4828
			goto err_cleanup;
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4839 4840

err_cleanup:
B
Bob Liu 已提交
4841
	for_each_node(node) {
4842 4843 4844 4845 4846 4847 4848
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4849 4850
}

L
Li Zefan 已提交
4851
static struct cgroup_subsys_state * __ref
4852
mem_cgroup_create(struct cgroup *cont)
B
Balbir Singh 已提交
4853
{
4854
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4855
	long error = -ENOMEM;
4856
	int node;
B
Balbir Singh 已提交
4857

4858 4859
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4860
		return ERR_PTR(error);
4861

B
Bob Liu 已提交
4862
	for_each_node(node)
4863
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4864
			goto free_out;
4865

4866
	/* root ? */
4867
	if (cont->parent == NULL) {
4868
		int cpu;
4869
		enable_swap_cgroup();
4870
		parent = NULL;
4871 4872
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4873
		root_mem_cgroup = memcg;
4874 4875 4876 4877 4878
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4879
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4880
	} else {
4881
		parent = mem_cgroup_from_cont(cont->parent);
4882 4883
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4884
	}
4885

4886
	if (parent && parent->use_hierarchy) {
4887 4888
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4889 4890 4891 4892 4893 4894 4895
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4896
	} else {
4897 4898
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
4899
	}
4900 4901
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
4902

K
KOSAKI Motohiro 已提交
4903
	if (parent)
4904 4905 4906 4907
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
4908
	spin_lock_init(&memcg->move_lock);
4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
4920
	return &memcg->css;
4921
free_out:
4922
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
4923
	return ERR_PTR(error);
B
Balbir Singh 已提交
4924 4925
}

4926
static int mem_cgroup_pre_destroy(struct cgroup *cont)
4927
{
4928
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4929

4930
	return mem_cgroup_force_empty(memcg, false);
4931 4932
}

4933
static void mem_cgroup_destroy(struct cgroup *cont)
B
Balbir Singh 已提交
4934
{
4935
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4936

4937
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
4938

4939
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
4940 4941
}

4942
#ifdef CONFIG_MMU
4943
/* Handlers for move charge at task migration. */
4944 4945
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4946
{
4947 4948
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4949
	struct mem_cgroup *memcg = mc.to;
4950

4951
	if (mem_cgroup_is_root(memcg)) {
4952 4953 4954 4955 4956 4957 4958 4959
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
4960
		 * "memcg" cannot be under rmdir() because we've already checked
4961 4962 4963 4964
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
4965
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
4966
			goto one_by_one;
4967
		if (do_swap_account && res_counter_charge(&memcg->memsw,
4968
						PAGE_SIZE * count, &dummy)) {
4969
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
4986 4987
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
4988
		if (ret)
4989
			/* mem_cgroup_clear_mc() will do uncharge later */
4990
			return ret;
4991 4992
		mc.precharge++;
	}
4993 4994 4995 4996
	return ret;
}

/**
4997
 * get_mctgt_type - get target type of moving charge
4998 4999 5000
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5001
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5002 5003 5004 5005 5006 5007
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5008 5009 5010
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5011 5012 5013 5014 5015
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5016
	swp_entry_t	ent;
5017 5018 5019
};

enum mc_target_type {
5020
	MC_TARGET_NONE = 0,
5021
	MC_TARGET_PAGE,
5022
	MC_TARGET_SWAP,
5023 5024
};

D
Daisuke Nishimura 已提交
5025 5026
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5027
{
D
Daisuke Nishimura 已提交
5028
	struct page *page = vm_normal_page(vma, addr, ptent);
5029

D
Daisuke Nishimura 已提交
5030 5031 5032 5033
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5034
		if (!move_anon())
D
Daisuke Nishimura 已提交
5035
			return NULL;
5036 5037
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5038 5039 5040 5041 5042 5043 5044
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5045
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5046 5047 5048 5049 5050 5051 5052 5053
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5054 5055 5056 5057 5058
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
5059 5060 5061 5062 5063
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5064 5065 5066 5067 5068 5069 5070
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5071

5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5091 5092 5093 5094 5095 5096
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5097
		if (do_swap_account)
5098 5099
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5100
	}
5101
#endif
5102 5103 5104
	return page;
}

5105
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5106 5107 5108 5109
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5110
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5111 5112 5113 5114 5115 5116
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5117 5118
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5119 5120

	if (!page && !ent.val)
5121
		return ret;
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5137 5138
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5139
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5140 5141 5142
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5143 5144 5145 5146
	}
	return ret;
}

5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5182 5183 5184 5185 5186 5187 5188 5189
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5190 5191 5192 5193
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5194
		return 0;
5195
	}
5196

5197 5198
	if (pmd_trans_unstable(pmd))
		return 0;
5199 5200
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5201
		if (get_mctgt_type(vma, addr, *pte, NULL))
5202 5203 5204 5205
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5206 5207 5208
	return 0;
}

5209 5210 5211 5212 5213
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5214
	down_read(&mm->mmap_sem);
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5226
	up_read(&mm->mmap_sem);
5227 5228 5229 5230 5231 5232 5233 5234 5235

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5236 5237 5238 5239 5240
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5241 5242
}

5243 5244
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5245
{
5246 5247 5248
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5249
	/* we must uncharge all the leftover precharges from mc.to */
5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5261
	}
5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5296
	spin_lock(&mc.lock);
5297 5298
	mc.from = NULL;
	mc.to = NULL;
5299
	spin_unlock(&mc.lock);
5300
	mem_cgroup_end_move(from);
5301 5302
}

5303 5304
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5305
{
5306
	struct task_struct *p = cgroup_taskset_first(tset);
5307
	int ret = 0;
5308
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5309

5310
	if (memcg->move_charge_at_immigrate) {
5311 5312 5313
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5314
		VM_BUG_ON(from == memcg);
5315 5316 5317 5318 5319

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5320 5321 5322 5323
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5324
			VM_BUG_ON(mc.moved_charge);
5325
			VM_BUG_ON(mc.moved_swap);
5326
			mem_cgroup_start_move(from);
5327
			spin_lock(&mc.lock);
5328
			mc.from = from;
5329
			mc.to = memcg;
5330
			spin_unlock(&mc.lock);
5331
			/* We set mc.moving_task later */
5332 5333 5334 5335

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5336 5337
		}
		mmput(mm);
5338 5339 5340 5341
	}
	return ret;
}

5342 5343
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5344
{
5345
	mem_cgroup_clear_mc();
5346 5347
}

5348 5349 5350
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5351
{
5352 5353 5354 5355
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5356 5357 5358 5359
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5360

5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5372
		if (mc.precharge < HPAGE_PMD_NR) {
5373 5374 5375 5376 5377 5378 5379 5380 5381
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5382
							pc, mc.from, mc.to)) {
5383 5384 5385 5386 5387 5388 5389 5390
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5391
		return 0;
5392 5393
	}

5394 5395
	if (pmd_trans_unstable(pmd))
		return 0;
5396 5397 5398 5399
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5400
		swp_entry_t ent;
5401 5402 5403 5404

		if (!mc.precharge)
			break;

5405
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5406 5407 5408 5409 5410
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5411
			if (!mem_cgroup_move_account(page, 1, pc,
5412
						     mc.from, mc.to)) {
5413
				mc.precharge--;
5414 5415
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5416 5417
			}
			putback_lru_page(page);
5418
put:			/* get_mctgt_type() gets the page */
5419 5420
			put_page(page);
			break;
5421 5422
		case MC_TARGET_SWAP:
			ent = target.ent;
5423
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5424
				mc.precharge--;
5425 5426 5427
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5428
			break;
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5443
		ret = mem_cgroup_do_precharge(1);
5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5487
	up_read(&mm->mmap_sem);
5488 5489
}

5490 5491
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5492
{
5493
	struct task_struct *p = cgroup_taskset_first(tset);
5494
	struct mm_struct *mm = get_task_mm(p);
5495 5496

	if (mm) {
5497 5498
		if (mc.to)
			mem_cgroup_move_charge(mm);
5499 5500
		mmput(mm);
	}
5501 5502
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5503
}
5504
#else	/* !CONFIG_MMU */
5505 5506
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5507 5508 5509
{
	return 0;
}
5510 5511
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5512 5513
{
}
5514 5515
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5516 5517 5518
{
}
#endif
B
Balbir Singh 已提交
5519

B
Balbir Singh 已提交
5520 5521 5522 5523
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5524
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5525
	.destroy = mem_cgroup_destroy,
5526 5527
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5528
	.attach = mem_cgroup_move_task,
5529
	.base_cftypes = mem_cgroup_files,
5530
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5531
	.use_id = 1,
5532
	.__DEPRECATED_clear_css_refs = true,
B
Balbir Singh 已提交
5533
};
5534

A
Andrew Morton 已提交
5535
#ifdef CONFIG_MEMCG_SWAP
5536 5537 5538
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5539
	if (!strcmp(s, "1"))
5540
		really_do_swap_account = 1;
5541
	else if (!strcmp(s, "0"))
5542 5543 5544
		really_do_swap_account = 0;
	return 1;
}
5545
__setup("swapaccount=", enable_swap_account);
5546 5547

#endif