memcontrol.c 148.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

75
/* Whether the swap controller is active */
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP
77 78
int do_swap_account __read_mostly;
#else
79
#define do_swap_account		0
80 81
#endif

82 83 84
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
85
	"rss_huge",
86
	"mapped_file",
87
	"writeback",
88 89 90 91 92 93 94 95 96 97
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

98 99 100 101 102 103 104 105
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

106 107 108 109 110 111 112 113
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
114
	MEM_CGROUP_TARGET_SOFTLIMIT,
115
	MEM_CGROUP_TARGET_NUMAINFO,
116 117
	MEM_CGROUP_NTARGETS,
};
118 119 120
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
121

122
struct mem_cgroup_stat_cpu {
123
	long count[MEM_CGROUP_STAT_NSTATS];
124
	unsigned long events[MEMCG_NR_EVENTS];
125
	unsigned long nr_page_events;
126
	unsigned long targets[MEM_CGROUP_NTARGETS];
127 128
};

129 130
struct reclaim_iter {
	struct mem_cgroup *position;
131 132 133 134
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

135 136 137 138
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
139
	struct lruvec		lruvec;
140
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
141

142
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
143

144
	struct rb_node		tree_node;	/* RB tree node */
145
	unsigned long		usage_in_excess;/* Set to the value by which */
146 147
						/* the soft limit is exceeded*/
	bool			on_tree;
148
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
149
						/* use container_of	   */
150 151 152 153 154 155
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

176 177
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
178
	unsigned long threshold;
179 180
};

K
KAMEZAWA Hiroyuki 已提交
181
/* For threshold */
182
struct mem_cgroup_threshold_ary {
183
	/* An array index points to threshold just below or equal to usage. */
184
	int current_threshold;
185 186 187 188 189
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
190 191 192 193 194 195 196 197 198 199 200 201

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
202 203 204 205 206
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
207

208 209 210
/*
 * cgroup_event represents events which userspace want to receive.
 */
211
struct mem_cgroup_event {
212
	/*
213
	 * memcg which the event belongs to.
214
	 */
215
	struct mem_cgroup *memcg;
216 217 218 219 220 221 222 223
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
224 225 226 227 228
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
229
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
230
			      struct eventfd_ctx *eventfd, const char *args);
231 232 233 234 235
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
236
	void (*unregister_event)(struct mem_cgroup *memcg,
237
				 struct eventfd_ctx *eventfd);
238 239 240 241 242 243 244 245 246 247
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

248 249
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
250

B
Balbir Singh 已提交
251 252 253 254 255 256 257
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
258 259 260
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
261 262 263
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
264 265 266 267 268 269

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

270 271 272 273
	/* Normal memory consumption range */
	unsigned long low;
	unsigned long high;

274
	unsigned long soft_limit;
275

276 277 278
	/* vmpressure notifications */
	struct vmpressure vmpressure;

279 280 281
	/* css_online() has been completed */
	int initialized;

282 283 284 285
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
286 287 288

	bool		oom_lock;
	atomic_t	under_oom;
289
	atomic_t	oom_wakeups;
290

291
	int	swappiness;
292 293
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
294

295 296 297 298
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
299
	struct mem_cgroup_thresholds thresholds;
300

301
	/* thresholds for mem+swap usage. RCU-protected */
302
	struct mem_cgroup_thresholds memsw_thresholds;
303

K
KAMEZAWA Hiroyuki 已提交
304 305
	/* For oom notifier event fd */
	struct list_head oom_notify;
306

307 308 309 310
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
311
	unsigned long move_charge_at_immigrate;
312 313 314
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
315
	atomic_t		moving_account;
316
	/* taken only while moving_account > 0 */
317 318 319
	spinlock_t		move_lock;
	struct task_struct	*move_lock_task;
	unsigned long		move_lock_flags;
320
	/*
321
	 * percpu counter.
322
	 */
323
	struct mem_cgroup_stat_cpu __percpu *stat;
324 325 326 327 328 329
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
330

M
Michal Hocko 已提交
331
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
332
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
333
#endif
334 335 336 337
#if defined(CONFIG_MEMCG_KMEM)
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
338 339 340 341 342 343 344

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
345

346 347 348 349
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

350 351
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
352 353
};

354
#ifdef CONFIG_MEMCG_KMEM
355
bool memcg_kmem_is_active(struct mem_cgroup *memcg)
356
{
V
Vladimir Davydov 已提交
357
	return memcg->kmemcg_id >= 0;
358
}
359 360
#endif

361 362
/* Stuffs for move charges at task migration. */
/*
363
 * Types of charges to be moved.
364
 */
365 366 367
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
368

369 370
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
371
	spinlock_t	  lock; /* for from, to */
372 373
	struct mem_cgroup *from;
	struct mem_cgroup *to;
374
	unsigned long flags;
375
	unsigned long precharge;
376
	unsigned long moved_charge;
377
	unsigned long moved_swap;
378 379 380
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
381
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
382 383
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
384

385 386 387 388
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
389
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
390
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
391

392 393
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
394
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
395
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
396
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
397 398 399
	NR_CHARGE_TYPE,
};

400
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
401 402 403 404
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
405
	_KMEM,
G
Glauber Costa 已提交
406 407
};

408 409
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
410
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
411 412
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
413

414 415 416 417 418 419 420
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

421 422
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
423
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
424 425
}

426 427 428 429 430 431 432 433 434 435 436 437 438
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

439 440 441 442 443
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

444 445 446 447 448 449
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
450 451
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
452
	return memcg->css.id;
L
Li Zefan 已提交
453 454 455 456 457 458
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

459
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
460 461 462
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
463
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
464
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
465 466 467

void sock_update_memcg(struct sock *sk)
{
468
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
469
		struct mem_cgroup *memcg;
470
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
471 472 473

		BUG_ON(!sk->sk_prot->proto_cgroup);

474 475 476 477 478 479 480 481 482 483
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
484
			css_get(&sk->sk_cgrp->memcg->css);
485 486 487
			return;
		}

G
Glauber Costa 已提交
488 489
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
490
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
491
		if (!mem_cgroup_is_root(memcg) &&
492 493
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
494
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
495 496 497 498 499 500 501 502
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
503
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
504 505 506
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
507
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
508 509
	}
}
G
Glauber Costa 已提交
510 511 512 513 514 515

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

516
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
517 518
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
519

520 521
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
522
	if (!memcg_proto_activated(&memcg->tcp_mem))
523 524 525 526 527 528 529 530 531
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

532
#ifdef CONFIG_MEMCG_KMEM
533 534
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
535 536 537 538 539
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
540
 *
541 542
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
543
 */
544 545
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
546

547 548 549 550 551 552
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
553
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
554 555
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
556
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
557 558 559
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
560
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
561

562 563 564 565 566 567
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
568
struct static_key memcg_kmem_enabled_key;
569
EXPORT_SYMBOL(memcg_kmem_enabled_key);
570

571 572
static void memcg_free_cache_id(int id);

573 574
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
575
	if (memcg_kmem_is_active(memcg)) {
576
		static_key_slow_dec(&memcg_kmem_enabled_key);
577
		memcg_free_cache_id(memcg->kmemcg_id);
578
	}
579 580 581 582
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
583
	WARN_ON(page_counter_read(&memcg->kmem));
584 585 586 587 588 589 590 591 592 593 594 595 596
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

597
static struct mem_cgroup_per_zone *
598
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
599
{
600 601 602
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

603
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
604 605
}

606
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
607
{
608
	return &memcg->css;
609 610
}

611
static struct mem_cgroup_per_zone *
612
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
613
{
614 615
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
616

617
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
618 619
}

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

635 636
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
637
					 unsigned long new_usage_in_excess)
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

667 668
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
669 670 671 672 673 674 675
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

676 677
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
678
{
679 680 681
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
682
	__mem_cgroup_remove_exceeded(mz, mctz);
683
	spin_unlock_irqrestore(&mctz->lock, flags);
684 685
}

686 687 688 689 690 691 692 693 694 695 696
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
	unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
697 698 699

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
700
	unsigned long excess;
701 702 703
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

704
	mctz = soft_limit_tree_from_page(page);
705 706 707 708 709
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
710
		mz = mem_cgroup_page_zoneinfo(memcg, page);
711
		excess = soft_limit_excess(memcg);
712 713 714 715 716
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
717 718 719
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
720 721
			/* if on-tree, remove it */
			if (mz->on_tree)
722
				__mem_cgroup_remove_exceeded(mz, mctz);
723 724 725 726
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
727
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
728
			spin_unlock_irqrestore(&mctz->lock, flags);
729 730 731 732 733 734 735
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
736 737
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
738

739 740 741 742
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
743
			mem_cgroup_remove_exceeded(mz, mctz);
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
766
	__mem_cgroup_remove_exceeded(mz, mctz);
767
	if (!soft_limit_excess(mz->memcg) ||
768
	    !css_tryget_online(&mz->memcg->css))
769 770 771 772 773 774 775 776 777 778
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

779
	spin_lock_irq(&mctz->lock);
780
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
781
	spin_unlock_irq(&mctz->lock);
782 783 784
	return mz;
}

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
804
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
805
				 enum mem_cgroup_stat_index idx)
806
{
807
	long val = 0;
808 809
	int cpu;

810 811
	get_online_cpus();
	for_each_online_cpu(cpu)
812
		val += per_cpu(memcg->stat->count[idx], cpu);
813
#ifdef CONFIG_HOTPLUG_CPU
814 815 816
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
817 818
#endif
	put_online_cpus();
819 820 821
	return val;
}

822
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
823 824 825 826 827
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

828
	get_online_cpus();
829
	for_each_online_cpu(cpu)
830
		val += per_cpu(memcg->stat->events[idx], cpu);
831
#ifdef CONFIG_HOTPLUG_CPU
832 833 834
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
835
#endif
836
	put_online_cpus();
837 838 839
	return val;
}

840
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
841
					 struct page *page,
842
					 int nr_pages)
843
{
844 845 846 847
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
848
	if (PageAnon(page))
849
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
850
				nr_pages);
851
	else
852
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
853
				nr_pages);
854

855 856 857 858
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

859 860
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
861
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
862
	else {
863
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
864 865
		nr_pages = -nr_pages; /* for event */
	}
866

867
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
868 869
}

870
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
871 872 873 874 875 876 877
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

878 879 880
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
881
{
882
	unsigned long nr = 0;
883 884
	int zid;

885
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
886

887 888 889 890 891 892 893 894 895 896 897 898
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
899
}
900

901
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
902
			unsigned int lru_mask)
903
{
904
	unsigned long nr = 0;
905
	int nid;
906

907
	for_each_node_state(nid, N_MEMORY)
908 909
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
910 911
}

912 913
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
914 915 916
{
	unsigned long val, next;

917
	val = __this_cpu_read(memcg->stat->nr_page_events);
918
	next = __this_cpu_read(memcg->stat->targets[target]);
919
	/* from time_after() in jiffies.h */
920 921 922 923 924
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
925 926 927
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
928 929 930 931 932 933 934 935
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
936
	}
937
	return false;
938 939 940 941 942 943
}

/*
 * Check events in order.
 *
 */
944
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
945 946
{
	/* threshold event is triggered in finer grain than soft limit */
947 948
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
949
		bool do_softlimit;
950
		bool do_numainfo __maybe_unused;
951

952 953
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
954 955 956 957
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
958
		mem_cgroup_threshold(memcg);
959 960
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
961
#if MAX_NUMNODES > 1
962
		if (unlikely(do_numainfo))
963
			atomic_inc(&memcg->numainfo_events);
964
#endif
965
	}
966 967
}

968
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
969
{
970 971 972 973 974 975 976 977
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

978
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
979 980
}

981
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
982
{
983
	struct mem_cgroup *memcg = NULL;
984

985 986
	rcu_read_lock();
	do {
987 988 989 990 991 992
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
993
			memcg = root_mem_cgroup;
994 995 996 997 998
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
999
	} while (!css_tryget_online(&memcg->css));
1000
	rcu_read_unlock();
1001
	return memcg;
1002 1003
}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1021
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1022
				   struct mem_cgroup *prev,
1023
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1024
{
1025 1026
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1027
	struct mem_cgroup *memcg = NULL;
1028
	struct mem_cgroup *pos = NULL;
1029

1030 1031
	if (mem_cgroup_disabled())
		return NULL;
1032

1033 1034
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1035

1036
	if (prev && !reclaim)
1037
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1038

1039 1040
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1041
			goto out;
1042
		return root;
1043
	}
K
KAMEZAWA Hiroyuki 已提交
1044

1045
	rcu_read_lock();
M
Michal Hocko 已提交
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
			pos = ACCESS_ONCE(iter->position);
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1081
		}
K
KAMEZAWA Hiroyuki 已提交
1082

1083 1084 1085 1086 1087 1088
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1089

1090 1091
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1092

1093
		if (css_tryget(css)) {
1094 1095 1096 1097 1098 1099 1100
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
1101

1102
			css_put(css);
1103
		}
1104

1105
		memcg = NULL;
1106
	}
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1127
	}
1128

1129 1130
out_unlock:
	rcu_read_unlock();
1131
out:
1132 1133 1134
	if (prev && prev != root)
		css_put(&prev->css);

1135
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1136
}
K
KAMEZAWA Hiroyuki 已提交
1137

1138 1139 1140 1141 1142 1143 1144
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1145 1146 1147 1148 1149 1150
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1151

1152 1153 1154 1155 1156 1157
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1158
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1159
	     iter != NULL;				\
1160
	     iter = mem_cgroup_iter(root, iter, NULL))
1161

1162
#define for_each_mem_cgroup(iter)			\
1163
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1164
	     iter != NULL;				\
1165
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1166

1167
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1168
{
1169
	struct mem_cgroup *memcg;
1170 1171

	rcu_read_lock();
1172 1173
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1174 1175 1176 1177
		goto out;

	switch (idx) {
	case PGFAULT:
1178 1179 1180 1181
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1182 1183 1184 1185 1186 1187 1188
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1189
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1190

1191 1192 1193
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1194
 * @memcg: memcg of the wanted lruvec
1195 1196 1197 1198 1199 1200 1201 1202 1203
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1204
	struct lruvec *lruvec;
1205

1206 1207 1208 1209
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1210

1211
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1222 1223 1224
}

/**
1225
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1226
 * @page: the page
1227
 * @zone: zone of the page
1228 1229 1230 1231
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1232
 */
1233
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1234 1235
{
	struct mem_cgroup_per_zone *mz;
1236
	struct mem_cgroup *memcg;
1237
	struct lruvec *lruvec;
1238

1239 1240 1241 1242
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1243

1244
	memcg = page->mem_cgroup;
1245
	/*
1246
	 * Swapcache readahead pages are added to the LRU - and
1247
	 * possibly migrated - before they are charged.
1248
	 */
1249 1250
	if (!memcg)
		memcg = root_mem_cgroup;
1251

1252
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1263
}
1264

1265
/**
1266 1267 1268 1269
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1270
 *
1271 1272
 * This function must be called when a page is added to or removed from an
 * lru list.
1273
 */
1274 1275
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1276 1277
{
	struct mem_cgroup_per_zone *mz;
1278
	unsigned long *lru_size;
1279 1280 1281 1282

	if (mem_cgroup_disabled())
		return;

1283 1284 1285 1286
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1287
}
1288

1289
bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1290
{
1291
	if (root == memcg)
1292
		return true;
1293
	if (!root->use_hierarchy)
1294
		return false;
1295
	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1296 1297
}

1298
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1299
{
1300
	struct mem_cgroup *task_memcg;
1301
	struct task_struct *p;
1302
	bool ret;
1303

1304
	p = find_lock_task_mm(task);
1305
	if (p) {
1306
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1307 1308 1309 1310 1311 1312 1313
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1314
		rcu_read_lock();
1315 1316
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1317
		rcu_read_unlock();
1318
	}
1319 1320
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1321 1322 1323
	return ret;
}

1324
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1325
{
1326
	unsigned long inactive_ratio;
1327
	unsigned long inactive;
1328
	unsigned long active;
1329
	unsigned long gb;
1330

1331 1332
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1333

1334 1335 1336 1337 1338 1339
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1340
	return inactive * inactive_ratio < active;
1341 1342
}

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
{
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return true;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	memcg = mz->memcg;

	return !!(memcg->css.flags & CSS_ONLINE);
}

1357
#define mem_cgroup_from_counter(counter, member)	\
1358 1359
	container_of(counter, struct mem_cgroup, member)

1360
/**
1361
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1362
 * @memcg: the memory cgroup
1363
 *
1364
 * Returns the maximum amount of memory @mem can be charged with, in
1365
 * pages.
1366
 */
1367
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1368
{
1369 1370 1371
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1372

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	count = page_counter_read(&memcg->memory);
	limit = ACCESS_ONCE(memcg->memory.limit);
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
		limit = ACCESS_ONCE(memcg->memsw.limit);
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1386 1387
}

1388
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1389 1390
{
	/* root ? */
1391
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1392 1393
		return vm_swappiness;

1394
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1395 1396
}

1397
/*
Q
Qiang Huang 已提交
1398
 * A routine for checking "mem" is under move_account() or not.
1399
 *
Q
Qiang Huang 已提交
1400 1401 1402
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1403
 */
1404
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1405
{
1406 1407
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1408
	bool ret = false;
1409 1410 1411 1412 1413 1414 1415 1416 1417
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1418

1419 1420
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1421 1422
unlock:
	spin_unlock(&mc.lock);
1423 1424 1425
	return ret;
}

1426
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1427 1428
{
	if (mc.moving_task && current != mc.moving_task) {
1429
		if (mem_cgroup_under_move(memcg)) {
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1442
#define K(x) ((x) << (PAGE_SHIFT-10))
1443
/**
1444
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1445 1446 1447 1448 1449 1450 1451 1452
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1453
	/* oom_info_lock ensures that parallel ooms do not interleave */
1454
	static DEFINE_MUTEX(oom_info_lock);
1455 1456
	struct mem_cgroup *iter;
	unsigned int i;
1457

1458
	if (!p)
1459 1460
		return;

1461
	mutex_lock(&oom_info_lock);
1462 1463
	rcu_read_lock();

T
Tejun Heo 已提交
1464 1465
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1466
	pr_cont(" killed as a result of limit of ");
T
Tejun Heo 已提交
1467
	pr_cont_cgroup_path(memcg->css.cgroup);
1468
	pr_cont("\n");
1469 1470 1471

	rcu_read_unlock();

1472 1473 1474 1475 1476 1477 1478 1479 1480
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1481 1482

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1483 1484
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1500
	mutex_unlock(&oom_info_lock);
1501 1502
}

1503 1504 1505 1506
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1507
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1508 1509
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1510 1511
	struct mem_cgroup *iter;

1512
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1513
		num++;
1514 1515 1516
	return num;
}

D
David Rientjes 已提交
1517 1518 1519
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1520
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1521
{
1522
	unsigned long limit;
1523

1524
	limit = memcg->memory.limit;
1525
	if (mem_cgroup_swappiness(memcg)) {
1526
		unsigned long memsw_limit;
1527

1528 1529
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1530 1531
	}
	return limit;
D
David Rientjes 已提交
1532 1533
}

1534 1535
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1536 1537 1538 1539 1540 1541 1542
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1543
	/*
1544 1545 1546
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1547
	 */
1548
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1549
		mark_tsk_oom_victim(current);
1550 1551 1552 1553
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1554
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1555
	for_each_mem_cgroup_tree(iter, memcg) {
1556
		struct css_task_iter it;
1557 1558
		struct task_struct *task;

1559 1560
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1573
				css_task_iter_end(&it);
1574 1575 1576 1577 1578 1579 1580 1581
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1594
		}
1595
		css_task_iter_end(&it);
1596 1597 1598 1599 1600 1601 1602 1603 1604
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1605 1606
#if MAX_NUMNODES > 1

1607 1608
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1609
 * @memcg: the target memcg
1610 1611 1612 1613 1614 1615 1616
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1617
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1618 1619
		int nid, bool noswap)
{
1620
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1621 1622 1623
		return true;
	if (noswap || !total_swap_pages)
		return false;
1624
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1625 1626 1627 1628
		return true;
	return false;

}
1629 1630 1631 1632 1633 1634 1635

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1636
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1637 1638
{
	int nid;
1639 1640 1641 1642
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1643
	if (!atomic_read(&memcg->numainfo_events))
1644
		return;
1645
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1646 1647 1648
		return;

	/* make a nodemask where this memcg uses memory from */
1649
	memcg->scan_nodes = node_states[N_MEMORY];
1650

1651
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1652

1653 1654
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1655
	}
1656

1657 1658
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1673
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1674 1675 1676
{
	int node;

1677 1678
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1679

1680
	node = next_node(node, memcg->scan_nodes);
1681
	if (node == MAX_NUMNODES)
1682
		node = first_node(memcg->scan_nodes);
1683 1684 1685 1686 1687 1688 1689 1690 1691
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1692
	memcg->last_scanned_node = node;
1693 1694 1695
	return node;
}
#else
1696
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1697 1698 1699 1700 1701
{
	return 0;
}
#endif

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1717
	excess = soft_limit_excess(root_memcg);
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1746
		if (!soft_limit_excess(root_memcg))
1747
			break;
1748
	}
1749 1750
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1751 1752
}

1753 1754 1755 1756 1757 1758
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1759 1760
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1761 1762 1763 1764
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1765
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1766
{
1767
	struct mem_cgroup *iter, *failed = NULL;
1768

1769 1770
	spin_lock(&memcg_oom_lock);

1771
	for_each_mem_cgroup_tree(iter, memcg) {
1772
		if (iter->oom_lock) {
1773 1774 1775 1776 1777
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1778 1779
			mem_cgroup_iter_break(memcg, iter);
			break;
1780 1781
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1782
	}
K
KAMEZAWA Hiroyuki 已提交
1783

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1795
		}
1796 1797
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1798 1799 1800 1801

	spin_unlock(&memcg_oom_lock);

	return !failed;
1802
}
1803

1804
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1805
{
K
KAMEZAWA Hiroyuki 已提交
1806 1807
	struct mem_cgroup *iter;

1808
	spin_lock(&memcg_oom_lock);
1809
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1810
	for_each_mem_cgroup_tree(iter, memcg)
1811
		iter->oom_lock = false;
1812
	spin_unlock(&memcg_oom_lock);
1813 1814
}

1815
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1816 1817 1818
{
	struct mem_cgroup *iter;

1819
	for_each_mem_cgroup_tree(iter, memcg)
1820 1821 1822
		atomic_inc(&iter->under_oom);
}

1823
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1824 1825 1826
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1827 1828 1829 1830 1831
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1832
	for_each_mem_cgroup_tree(iter, memcg)
1833
		atomic_add_unless(&iter->under_oom, -1, 0);
1834 1835
}

K
KAMEZAWA Hiroyuki 已提交
1836 1837
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1838
struct oom_wait_info {
1839
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1840 1841 1842 1843 1844 1845
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1846 1847
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1848 1849 1850
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1851
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1852

1853 1854
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1855 1856 1857 1858
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1859
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1860
{
1861
	atomic_inc(&memcg->oom_wakeups);
1862 1863
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1864 1865
}

1866
static void memcg_oom_recover(struct mem_cgroup *memcg)
1867
{
1868 1869
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1870 1871
}

1872
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1873
{
1874 1875
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
1876
	/*
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1889
	 */
1890 1891 1892 1893
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
1894 1895 1896 1897
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1898
 * @handle: actually kill/wait or just clean up the OOM state
1899
 *
1900 1901
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1902
 *
1903
 * Memcg supports userspace OOM handling where failed allocations must
1904 1905 1906 1907
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1908
 * the end of the page fault to complete the OOM handling.
1909 1910
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1911
 * completed, %false otherwise.
1912
 */
1913
bool mem_cgroup_oom_synchronize(bool handle)
1914
{
1915
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1916
	struct oom_wait_info owait;
1917
	bool locked;
1918 1919 1920

	/* OOM is global, do not handle */
	if (!memcg)
1921
		return false;
1922

1923
	if (!handle || oom_killer_disabled)
1924
		goto cleanup;
1925 1926 1927 1928 1929 1930

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1931

1932
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
1946
		schedule();
1947 1948 1949 1950 1951
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1952 1953 1954 1955 1956 1957 1958 1959
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1960 1961
cleanup:
	current->memcg_oom.memcg = NULL;
1962
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1963
	return true;
1964 1965
}

1966 1967 1968
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1969
 *
1970 1971 1972
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1973
 *
1974
 *   memcg = mem_cgroup_begin_page_stat(page);
1975 1976
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1977
 *   mem_cgroup_end_page_stat(memcg);
1978
 */
1979
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1980 1981
{
	struct mem_cgroup *memcg;
1982
	unsigned long flags;
1983

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
1996 1997 1998 1999
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
2000
again:
2001
	memcg = page->mem_cgroup;
2002
	if (unlikely(!memcg))
2003 2004
		return NULL;

Q
Qiang Huang 已提交
2005
	if (atomic_read(&memcg->moving_account) <= 0)
2006
		return memcg;
2007

2008
	spin_lock_irqsave(&memcg->move_lock, flags);
2009
	if (memcg != page->mem_cgroup) {
2010
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2011 2012
		goto again;
	}
2013 2014 2015 2016 2017 2018 2019 2020

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2021 2022

	return memcg;
2023 2024
}

2025 2026 2027 2028
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
2029
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2030
{
2031 2032 2033 2034 2035 2036 2037 2038
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2039

2040
	rcu_read_unlock();
2041 2042
}

2043 2044 2045 2046 2047 2048 2049 2050 2051
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2052
				 enum mem_cgroup_stat_index idx, int val)
2053
{
2054
	VM_BUG_ON(!rcu_read_lock_held());
2055

2056 2057
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2058
}
2059

2060 2061 2062 2063
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2064
#define CHARGE_BATCH	32U
2065 2066
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2067
	unsigned int nr_pages;
2068
	struct work_struct work;
2069
	unsigned long flags;
2070
#define FLUSHING_CACHED_CHARGE	0
2071 2072
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2073
static DEFINE_MUTEX(percpu_charge_mutex);
2074

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2085
 */
2086
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2087 2088
{
	struct memcg_stock_pcp *stock;
2089
	bool ret = false;
2090

2091
	if (nr_pages > CHARGE_BATCH)
2092
		return ret;
2093

2094
	stock = &get_cpu_var(memcg_stock);
2095
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2096
		stock->nr_pages -= nr_pages;
2097 2098
		ret = true;
	}
2099 2100 2101 2102 2103
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2104
 * Returns stocks cached in percpu and reset cached information.
2105 2106 2107 2108 2109
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2110
	if (stock->nr_pages) {
2111
		page_counter_uncharge(&old->memory, stock->nr_pages);
2112
		if (do_swap_account)
2113
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2114
		css_put_many(&old->css, stock->nr_pages);
2115
		stock->nr_pages = 0;
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2126
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2127
	drain_stock(stock);
2128
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2129 2130 2131
}

/*
2132
 * Cache charges(val) to local per_cpu area.
2133
 * This will be consumed by consume_stock() function, later.
2134
 */
2135
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2136 2137 2138
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2139
	if (stock->cached != memcg) { /* reset if necessary */
2140
		drain_stock(stock);
2141
		stock->cached = memcg;
2142
	}
2143
	stock->nr_pages += nr_pages;
2144 2145 2146 2147
	put_cpu_var(memcg_stock);
}

/*
2148
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2149
 * of the hierarchy under it.
2150
 */
2151
static void drain_all_stock(struct mem_cgroup *root_memcg)
2152
{
2153
	int cpu, curcpu;
2154

2155 2156 2157
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2158 2159
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2160
	curcpu = get_cpu();
2161 2162
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2163
		struct mem_cgroup *memcg;
2164

2165 2166
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2167
			continue;
2168
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
2169
			continue;
2170 2171 2172 2173 2174 2175
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2176
	}
2177
	put_cpu();
A
Andrew Morton 已提交
2178
	put_online_cpus();
2179
	mutex_unlock(&percpu_charge_mutex);
2180 2181
}

2182 2183 2184 2185
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2186
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2187 2188 2189
{
	int i;

2190
	spin_lock(&memcg->pcp_counter_lock);
2191
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2192
		long x = per_cpu(memcg->stat->count[i], cpu);
2193

2194 2195
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2196
	}
2197
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2198
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2199

2200 2201
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2202
	}
2203
	spin_unlock(&memcg->pcp_counter_lock);
2204 2205
}

2206
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2207 2208 2209 2210 2211
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2212
	struct mem_cgroup *iter;
2213

2214
	if (action == CPU_ONLINE)
2215 2216
		return NOTIFY_OK;

2217
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2218
		return NOTIFY_OK;
2219

2220
	for_each_mem_cgroup(iter)
2221 2222
		mem_cgroup_drain_pcp_counter(iter, cpu);

2223 2224 2225 2226 2227
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2228 2229
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2230
{
2231
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2232
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2233
	struct mem_cgroup *mem_over_limit;
2234
	struct page_counter *counter;
2235
	unsigned long nr_reclaimed;
2236 2237
	bool may_swap = true;
	bool drained = false;
2238
	int ret = 0;
2239

2240 2241
	if (mem_cgroup_is_root(memcg))
		goto done;
2242
retry:
2243 2244
	if (consume_stock(memcg, nr_pages))
		goto done;
2245

2246
	if (!do_swap_account ||
2247 2248
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2249
			goto done_restock;
2250
		if (do_swap_account)
2251 2252
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2253
	} else {
2254
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2255
		may_swap = false;
2256
	}
2257

2258 2259 2260 2261
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2262

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2277 2278
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2279

2280 2281
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2282 2283
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2284

2285
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2286
		goto retry;
2287

2288
	if (!drained) {
2289
		drain_all_stock(mem_over_limit);
2290 2291 2292 2293
		drained = true;
		goto retry;
	}

2294 2295
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2296 2297 2298 2299 2300 2301 2302 2303 2304
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2305
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2306 2307 2308 2309 2310 2311 2312 2313
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2314 2315 2316
	if (nr_retries--)
		goto retry;

2317 2318 2319
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2320 2321 2322
	if (fatal_signal_pending(current))
		goto bypass;

2323 2324
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2325
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2326
nomem:
2327
	if (!(gfp_mask & __GFP_NOFAIL))
2328
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2329
bypass:
2330
	return -EINTR;
2331 2332

done_restock:
2333
	css_get_many(&memcg->css, batch);
2334 2335
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
	/*
	 * If the hierarchy is above the normal consumption range,
	 * make the charging task trim their excess contribution.
	 */
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
2346
done:
2347
	return ret;
2348
}
2349

2350
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2351
{
2352 2353 2354
	if (mem_cgroup_is_root(memcg))
		return;

2355
	page_counter_uncharge(&memcg->memory, nr_pages);
2356
	if (do_swap_account)
2357
		page_counter_uncharge(&memcg->memsw, nr_pages);
2358

2359
	css_put_many(&memcg->css, nr_pages);
2360 2361
}

2362 2363
/*
 * A helper function to get mem_cgroup from ID. must be called under
2364 2365 2366
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2367 2368 2369 2370 2371 2372
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2373
	return mem_cgroup_from_id(id);
2374 2375
}

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2386
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2387
{
2388
	struct mem_cgroup *memcg;
2389
	unsigned short id;
2390 2391
	swp_entry_t ent;

2392
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2393

2394
	memcg = page->mem_cgroup;
2395 2396
	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2397
			memcg = NULL;
2398
	} else if (PageSwapCache(page)) {
2399
		ent.val = page_private(page);
2400
		id = lookup_swap_cgroup_id(ent);
2401
		rcu_read_lock();
2402
		memcg = mem_cgroup_lookup(id);
2403
		if (memcg && !css_tryget_online(&memcg->css))
2404
			memcg = NULL;
2405
		rcu_read_unlock();
2406
	}
2407
	return memcg;
2408 2409
}

2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2441
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2442
			  bool lrucare)
2443
{
2444
	int isolated;
2445

2446
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2447 2448 2449 2450 2451

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2452 2453
	if (lrucare)
		lock_page_lru(page, &isolated);
2454

2455 2456
	/*
	 * Nobody should be changing or seriously looking at
2457
	 * page->mem_cgroup at this point:
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2469
	page->mem_cgroup = memcg;
2470

2471 2472
	if (lrucare)
		unlock_page_lru(page, isolated);
2473
}
2474

2475
#ifdef CONFIG_MEMCG_KMEM
2476 2477
int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
		      unsigned long nr_pages)
2478
{
2479
	struct page_counter *counter;
2480 2481
	int ret = 0;

2482 2483
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2484 2485
		return ret;

2486
	ret = try_charge(memcg, gfp, nr_pages);
2487 2488
	if (ret == -EINTR)  {
		/*
2489 2490 2491 2492 2493 2494
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2495 2496 2497
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2498 2499 2500
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2501 2502
		 * directed to the root cgroup in memcontrol.h
		 */
2503
		page_counter_charge(&memcg->memory, nr_pages);
2504
		if (do_swap_account)
2505
			page_counter_charge(&memcg->memsw, nr_pages);
2506
		css_get_many(&memcg->css, nr_pages);
2507 2508
		ret = 0;
	} else if (ret)
2509
		page_counter_uncharge(&memcg->kmem, nr_pages);
2510 2511 2512 2513

	return ret;
}

2514
void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2515
{
2516
	page_counter_uncharge(&memcg->memory, nr_pages);
2517
	if (do_swap_account)
2518
		page_counter_uncharge(&memcg->memsw, nr_pages);
2519

2520
	page_counter_uncharge(&memcg->kmem, nr_pages);
2521

2522
	css_put_many(&memcg->css, nr_pages);
2523 2524
}

2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2535
static int memcg_alloc_cache_id(void)
2536
{
2537 2538 2539
	int id, size;
	int err;

2540
	id = ida_simple_get(&memcg_cache_ida,
2541 2542 2543
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2544

2545
	if (id < memcg_nr_cache_ids)
2546 2547 2548 2549 2550 2551 2552 2553
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */

	size = 2 * (id + 1);
2554 2555 2556 2557 2558
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2559 2560
	err = memcg_update_all_caches(size);
	if (err) {
2561
		ida_simple_remove(&memcg_cache_ida, id);
2562 2563 2564 2565 2566 2567 2568
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2569
	ida_simple_remove(&memcg_cache_ida, id);
2570 2571 2572 2573 2574 2575 2576 2577 2578
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
2579
	memcg_nr_cache_ids = num;
2580 2581
}

2582
struct memcg_kmem_cache_create_work {
2583 2584 2585 2586 2587
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2588
static void memcg_kmem_cache_create_func(struct work_struct *w)
2589
{
2590 2591
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2592 2593
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2594

2595
	memcg_create_kmem_cache(memcg, cachep);
2596

2597
	css_put(&memcg->css);
2598 2599 2600 2601 2602 2603
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2604 2605
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2606
{
2607
	struct memcg_kmem_cache_create_work *cw;
2608

2609
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2610
	if (!cw)
2611
		return;
2612 2613

	css_get(&memcg->css);
2614 2615 2616

	cw->memcg = memcg;
	cw->cachep = cachep;
2617
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2618 2619 2620 2621

	schedule_work(&cw->work);
}

2622 2623
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2624 2625 2626 2627
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2628
	 * in __memcg_schedule_kmem_cache_create will recurse.
2629 2630 2631 2632 2633 2634 2635
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2636
	current->memcg_kmem_skip_account = 1;
2637
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2638
	current->memcg_kmem_skip_account = 0;
2639
}
2640

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
2654
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2655 2656
{
	struct mem_cgroup *memcg;
2657
	struct kmem_cache *memcg_cachep;
2658 2659 2660 2661

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

2662
	if (current->memcg_kmem_skip_account)
2663 2664
		return cachep;

2665
	memcg = get_mem_cgroup_from_mm(current->mm);
2666
	if (!memcg_kmem_is_active(memcg))
2667
		goto out;
2668

2669
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2670 2671
	if (likely(memcg_cachep))
		return memcg_cachep;
2672 2673 2674 2675 2676 2677 2678 2679 2680

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2681 2682 2683
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2684
	 */
2685
	memcg_schedule_kmem_cache_create(memcg, cachep);
2686
out:
2687
	css_put(&memcg->css);
2688
	return cachep;
2689 2690
}

2691 2692 2693 2694 2695 2696
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
		css_put(&cachep->memcg_params->memcg->css);
}

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2718

2719
	memcg = get_mem_cgroup_from_mm(current->mm);
2720

2721
	if (!memcg_kmem_is_active(memcg)) {
2722 2723 2724 2725
		css_put(&memcg->css);
		return true;
	}

2726
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
2741
		memcg_uncharge_kmem(memcg, 1 << order);
2742 2743
		return;
	}
2744
	page->mem_cgroup = memcg;
2745 2746 2747 2748
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
2749
	struct mem_cgroup *memcg = page->mem_cgroup;
2750 2751 2752 2753

	if (!memcg)
		return;

2754
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2755

2756
	memcg_uncharge_kmem(memcg, 1 << order);
2757
	page->mem_cgroup = NULL;
2758 2759 2760
}
#endif /* CONFIG_MEMCG_KMEM */

2761 2762 2763 2764
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2765 2766 2767
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2768
 */
2769
void mem_cgroup_split_huge_fixup(struct page *head)
2770
{
2771
	int i;
2772

2773 2774
	if (mem_cgroup_disabled())
		return;
2775

2776
	for (i = 1; i < HPAGE_PMD_NR; i++)
2777
		head[i].mem_cgroup = head->mem_cgroup;
2778

2779
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2780
		       HPAGE_PMD_NR);
2781
}
2782
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2783

2784
/**
2785
 * mem_cgroup_move_account - move account of the page
2786
 * @page: the page
2787
 * @nr_pages: number of regular pages (>1 for huge pages)
2788 2789 2790 2791
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2792
 * - page is not on LRU (isolate_page() is useful.)
2793
 * - compound_lock is held when nr_pages > 1
2794
 *
2795 2796
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2797
 */
2798 2799 2800
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
2801
				   struct mem_cgroup *to)
2802
{
2803 2804
	unsigned long flags;
	int ret;
2805

2806
	VM_BUG_ON(from == to);
2807
	VM_BUG_ON_PAGE(PageLRU(page), page);
2808 2809 2810 2811 2812 2813 2814
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2815
	if (nr_pages > 1 && !PageTransHuge(page))
2816 2817
		goto out;

2818
	/*
2819
	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
2820 2821 2822 2823 2824
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;
2825 2826

	ret = -EINVAL;
2827
	if (page->mem_cgroup != from)
2828
		goto out_unlock;
2829

2830
	spin_lock_irqsave(&from->move_lock, flags);
2831

2832
	if (!PageAnon(page) && page_mapped(page)) {
2833 2834 2835 2836 2837
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
2838

2839 2840 2841 2842 2843 2844
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
2845

2846
	/*
2847
	 * It is safe to change page->mem_cgroup here because the page
2848 2849 2850
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */
2851

2852
	/* caller should have done css_get */
2853
	page->mem_cgroup = to;
2854 2855
	spin_unlock_irqrestore(&from->move_lock, flags);

2856
	ret = 0;
2857 2858 2859

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
2860
	memcg_check_events(to, page);
2861
	mem_cgroup_charge_statistics(from, page, -nr_pages);
2862
	memcg_check_events(from, page);
2863 2864 2865
	local_irq_enable();
out_unlock:
	unlock_page(page);
2866
out:
2867 2868 2869
	return ret;
}

A
Andrew Morton 已提交
2870
#ifdef CONFIG_MEMCG_SWAP
2871 2872
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2873
{
2874 2875
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2876
}
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2889
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2890 2891 2892
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2893
				struct mem_cgroup *from, struct mem_cgroup *to)
2894 2895 2896
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2897 2898
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2899 2900 2901

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2902
		mem_cgroup_swap_statistics(to, true);
2903 2904 2905 2906 2907 2908
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2909
				struct mem_cgroup *from, struct mem_cgroup *to)
2910 2911 2912
{
	return -EINVAL;
}
2913
#endif
K
KAMEZAWA Hiroyuki 已提交
2914

2915
static DEFINE_MUTEX(memcg_limit_mutex);
2916

2917
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2918
				   unsigned long limit)
2919
{
2920 2921 2922
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2923
	int retry_count;
2924
	int ret;
2925 2926 2927 2928 2929 2930

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2931 2932
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2933

2934
	oldusage = page_counter_read(&memcg->memory);
2935

2936
	do {
2937 2938 2939 2940
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2941 2942 2943 2944

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2945
			ret = -EINVAL;
2946 2947
			break;
		}
2948 2949 2950 2951
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2952 2953 2954 2955

		if (!ret)
			break;

2956 2957
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2958
		curusage = page_counter_read(&memcg->memory);
2959
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2960
		if (curusage >= oldusage)
2961 2962 2963
			retry_count--;
		else
			oldusage = curusage;
2964 2965
	} while (retry_count);

2966 2967
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2968

2969 2970 2971
	return ret;
}

L
Li Zefan 已提交
2972
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2973
					 unsigned long limit)
2974
{
2975 2976 2977
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2978
	int retry_count;
2979
	int ret;
2980

2981
	/* see mem_cgroup_resize_res_limit */
2982 2983 2984 2985 2986 2987
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2988 2989 2990 2991
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2992 2993 2994 2995

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2996 2997 2998
			ret = -EINVAL;
			break;
		}
2999 3000 3001 3002
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
3003 3004 3005 3006

		if (!ret)
			break;

3007 3008
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

3009
		curusage = page_counter_read(&memcg->memsw);
3010
		/* Usage is reduced ? */
3011
		if (curusage >= oldusage)
3012
			retry_count--;
3013 3014
		else
			oldusage = curusage;
3015 3016
	} while (retry_count);

3017 3018
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3019

3020 3021 3022
	return ret;
}

3023 3024 3025 3026 3027 3028 3029 3030 3031
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3032
	unsigned long excess;
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3057
		spin_lock_irq(&mctz->lock);
3058
		__mem_cgroup_remove_exceeded(mz, mctz);
3059 3060 3061 3062 3063 3064

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3065 3066 3067
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3068
		excess = soft_limit_excess(mz->memcg);
3069 3070 3071 3072 3073 3074 3075 3076 3077
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3078
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3079
		spin_unlock_irq(&mctz->lock);
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3097 3098 3099 3100 3101 3102
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3103 3104
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3105 3106
	bool ret;

3107
	/*
3108 3109 3110 3111
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3112
	 */
3113 3114 3115 3116 3117 3118
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3119 3120
}

3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3131 3132
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3133
	/* try to free all pages in this cgroup */
3134
	while (nr_retries && page_counter_read(&memcg->memory)) {
3135
		int progress;
3136

3137 3138 3139
		if (signal_pending(current))
			return -EINTR;

3140 3141
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3142
		if (!progress) {
3143
			nr_retries--;
3144
			/* maybe some writeback is necessary */
3145
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3146
		}
3147 3148

	}
3149 3150

	return 0;
3151 3152
}

3153 3154 3155
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3156
{
3157
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3158

3159 3160
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3161
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3162 3163
}

3164 3165
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3166
{
3167
	return mem_cgroup_from_css(css)->use_hierarchy;
3168 3169
}

3170 3171
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3172 3173
{
	int retval = 0;
3174
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3175
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3176

3177
	mutex_lock(&memcg_create_mutex);
3178 3179 3180 3181

	if (memcg->use_hierarchy == val)
		goto out;

3182
	/*
3183
	 * If parent's use_hierarchy is set, we can't make any modifications
3184 3185 3186 3187 3188 3189
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3190
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3191
				(val == 1 || val == 0)) {
3192
		if (!memcg_has_children(memcg))
3193
			memcg->use_hierarchy = val;
3194 3195 3196 3197
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3198 3199

out:
3200
	mutex_unlock(&memcg_create_mutex);
3201 3202 3203 3204

	return retval;
}

3205 3206
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3224 3225 3226 3227 3228 3229
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3230
		if (!swap)
3231
			val = page_counter_read(&memcg->memory);
3232
		else
3233
			val = page_counter_read(&memcg->memsw);
3234 3235 3236 3237
	}
	return val << PAGE_SHIFT;
}

3238 3239 3240 3241 3242 3243 3244
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3245

3246
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3247
			       struct cftype *cft)
B
Balbir Singh 已提交
3248
{
3249
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3250
	struct page_counter *counter;
3251

3252
	switch (MEMFILE_TYPE(cft->private)) {
3253
	case _MEM:
3254 3255
		counter = &memcg->memory;
		break;
3256
	case _MEMSWAP:
3257 3258
		counter = &memcg->memsw;
		break;
3259
	case _KMEM:
3260
		counter = &memcg->kmem;
3261
		break;
3262 3263 3264
	default:
		BUG();
	}
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3284
}
3285 3286

#ifdef CONFIG_MEMCG_KMEM
3287 3288
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
3289 3290 3291 3292 3293 3294 3295
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
3308
	mutex_lock(&memcg_create_mutex);
3309 3310
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3311 3312 3313 3314
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
3315

3316
	memcg_id = memcg_alloc_cache_id();
3317 3318 3319 3320 3321 3322
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
3323 3324
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
3325
	 */
3326
	err = page_counter_limit(&memcg->kmem, nr_pages);
3327 3328 3329 3330
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
3331 3332
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
3333 3334 3335
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3336
	memcg->kmemcg_id = memcg_id;
3337
out:
3338 3339 3340 3341
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3342
				   unsigned long limit)
3343 3344 3345
{
	int ret;

3346
	mutex_lock(&memcg_limit_mutex);
3347
	if (!memcg_kmem_is_active(memcg))
3348
		ret = memcg_activate_kmem(memcg, limit);
3349
	else
3350 3351
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
3352 3353 3354
	return ret;
}

3355
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3356
{
3357
	int ret = 0;
3358
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3359

3360 3361
	if (!parent)
		return 0;
3362

3363
	mutex_lock(&memcg_limit_mutex);
3364
	/*
3365 3366
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3367
	 */
3368
	if (memcg_kmem_is_active(parent))
3369 3370
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3371
	return ret;
3372
}
3373 3374
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3375
				   unsigned long limit)
3376 3377 3378
{
	return -EINVAL;
}
3379
#endif /* CONFIG_MEMCG_KMEM */
3380

3381 3382 3383 3384
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3385 3386
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3387
{
3388
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3389
	unsigned long nr_pages;
3390 3391
	int ret;

3392
	buf = strstrip(buf);
3393
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3394 3395
	if (ret)
		return ret;
3396

3397
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3398
	case RES_LIMIT:
3399 3400 3401 3402
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3403 3404 3405
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3406
			break;
3407 3408
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3409
			break;
3410 3411 3412 3413
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3414
		break;
3415 3416 3417
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3418 3419
		break;
	}
3420
	return ret ?: nbytes;
B
Balbir Singh 已提交
3421 3422
}

3423 3424
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3425
{
3426
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3427
	struct page_counter *counter;
3428

3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3442

3443
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3444
	case RES_MAX_USAGE:
3445
		page_counter_reset_watermark(counter);
3446 3447
		break;
	case RES_FAILCNT:
3448
		counter->failcnt = 0;
3449
		break;
3450 3451
	default:
		BUG();
3452
	}
3453

3454
	return nbytes;
3455 3456
}

3457
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3458 3459
					struct cftype *cft)
{
3460
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3461 3462
}

3463
#ifdef CONFIG_MMU
3464
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3465 3466
					struct cftype *cft, u64 val)
{
3467
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3468

3469
	if (val & ~MOVE_MASK)
3470
		return -EINVAL;
3471

3472
	/*
3473 3474 3475 3476
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3477
	 */
3478
	memcg->move_charge_at_immigrate = val;
3479 3480
	return 0;
}
3481
#else
3482
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3483 3484 3485 3486 3487
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3488

3489
#ifdef CONFIG_NUMA
3490
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3491
{
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3504
	int nid;
3505
	unsigned long nr;
3506
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3507

3508 3509 3510 3511 3512 3513 3514 3515 3516
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3517 3518
	}

3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3534 3535 3536 3537 3538 3539
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3540
static int memcg_stat_show(struct seq_file *m, void *v)
3541
{
3542
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3543
	unsigned long memory, memsw;
3544 3545
	struct mem_cgroup *mi;
	unsigned int i;
3546

3547 3548 3549 3550
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3551 3552
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3553
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3554
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3555
			continue;
3556 3557
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3558
	}
L
Lee Schermerhorn 已提交
3559

3560 3561 3562 3563 3564 3565 3566 3567
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3568
	/* Hierarchical information */
3569 3570 3571 3572
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3573
	}
3574 3575 3576 3577 3578
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3579

3580 3581 3582
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

3583
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3584
			continue;
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3605
	}
K
KAMEZAWA Hiroyuki 已提交
3606

K
KOSAKI Motohiro 已提交
3607 3608 3609 3610
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3611
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3612 3613 3614 3615 3616
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3617
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3618
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3619

3620 3621 3622 3623
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3624
			}
3625 3626 3627 3628
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3629 3630 3631
	}
#endif

3632 3633 3634
	return 0;
}

3635 3636
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3637
{
3638
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3639

3640
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3641 3642
}

3643 3644
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3645
{
3646
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3647

3648
	if (val > 100)
K
KOSAKI Motohiro 已提交
3649 3650
		return -EINVAL;

3651
	if (css->parent)
3652 3653 3654
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3655

K
KOSAKI Motohiro 已提交
3656 3657 3658
	return 0;
}

3659 3660 3661
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3662
	unsigned long usage;
3663 3664 3665 3666
	int i;

	rcu_read_lock();
	if (!swap)
3667
		t = rcu_dereference(memcg->thresholds.primary);
3668
	else
3669
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3670 3671 3672 3673

	if (!t)
		goto unlock;

3674
	usage = mem_cgroup_usage(memcg, swap);
3675 3676

	/*
3677
	 * current_threshold points to threshold just below or equal to usage.
3678 3679 3680
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3681
	i = t->current_threshold;
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3705
	t->current_threshold = i - 1;
3706 3707 3708 3709 3710 3711
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3712 3713 3714 3715 3716 3717 3718
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3719 3720 3721 3722 3723 3724 3725
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3726 3727 3728 3729 3730 3731 3732
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3733 3734
}

3735
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3736 3737 3738
{
	struct mem_cgroup_eventfd_list *ev;

3739 3740
	spin_lock(&memcg_oom_lock);

3741
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3742
		eventfd_signal(ev->eventfd, 1);
3743 3744

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3745 3746 3747
	return 0;
}

3748
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3749
{
K
KAMEZAWA Hiroyuki 已提交
3750 3751
	struct mem_cgroup *iter;

3752
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3753
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3754 3755
}

3756
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3757
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3758
{
3759 3760
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3761 3762
	unsigned long threshold;
	unsigned long usage;
3763
	int i, size, ret;
3764

3765
	ret = page_counter_memparse(args, "-1", &threshold);
3766 3767 3768 3769
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3770

3771
	if (type == _MEM) {
3772
		thresholds = &memcg->thresholds;
3773
		usage = mem_cgroup_usage(memcg, false);
3774
	} else if (type == _MEMSWAP) {
3775
		thresholds = &memcg->memsw_thresholds;
3776
		usage = mem_cgroup_usage(memcg, true);
3777
	} else
3778 3779 3780
		BUG();

	/* Check if a threshold crossed before adding a new one */
3781
	if (thresholds->primary)
3782 3783
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3784
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3785 3786

	/* Allocate memory for new array of thresholds */
3787
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3788
			GFP_KERNEL);
3789
	if (!new) {
3790 3791 3792
		ret = -ENOMEM;
		goto unlock;
	}
3793
	new->size = size;
3794 3795

	/* Copy thresholds (if any) to new array */
3796 3797
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3798
				sizeof(struct mem_cgroup_threshold));
3799 3800
	}

3801
	/* Add new threshold */
3802 3803
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3804 3805

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3806
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3807 3808 3809
			compare_thresholds, NULL);

	/* Find current threshold */
3810
	new->current_threshold = -1;
3811
	for (i = 0; i < size; i++) {
3812
		if (new->entries[i].threshold <= usage) {
3813
			/*
3814 3815
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3816 3817
			 * it here.
			 */
3818
			++new->current_threshold;
3819 3820
		} else
			break;
3821 3822
	}

3823 3824 3825 3826 3827
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3828

3829
	/* To be sure that nobody uses thresholds */
3830 3831 3832 3833 3834 3835 3836 3837
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3838
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3839 3840
	struct eventfd_ctx *eventfd, const char *args)
{
3841
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3842 3843
}

3844
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3845 3846
	struct eventfd_ctx *eventfd, const char *args)
{
3847
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3848 3849
}

3850
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3851
	struct eventfd_ctx *eventfd, enum res_type type)
3852
{
3853 3854
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3855
	unsigned long usage;
3856
	int i, j, size;
3857 3858

	mutex_lock(&memcg->thresholds_lock);
3859 3860

	if (type == _MEM) {
3861
		thresholds = &memcg->thresholds;
3862
		usage = mem_cgroup_usage(memcg, false);
3863
	} else if (type == _MEMSWAP) {
3864
		thresholds = &memcg->memsw_thresholds;
3865
		usage = mem_cgroup_usage(memcg, true);
3866
	} else
3867 3868
		BUG();

3869 3870 3871
	if (!thresholds->primary)
		goto unlock;

3872 3873 3874 3875
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3876 3877 3878
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3879 3880 3881
			size++;
	}

3882
	new = thresholds->spare;
3883

3884 3885
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3886 3887
		kfree(new);
		new = NULL;
3888
		goto swap_buffers;
3889 3890
	}

3891
	new->size = size;
3892 3893

	/* Copy thresholds and find current threshold */
3894 3895 3896
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3897 3898
			continue;

3899
		new->entries[j] = thresholds->primary->entries[i];
3900
		if (new->entries[j].threshold <= usage) {
3901
			/*
3902
			 * new->current_threshold will not be used
3903 3904 3905
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3906
			++new->current_threshold;
3907 3908 3909 3910
		}
		j++;
	}

3911
swap_buffers:
3912 3913
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3914 3915 3916 3917 3918 3919
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3920
	rcu_assign_pointer(thresholds->primary, new);
3921

3922
	/* To be sure that nobody uses thresholds */
3923
	synchronize_rcu();
3924
unlock:
3925 3926
	mutex_unlock(&memcg->thresholds_lock);
}
3927

3928
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3929 3930
	struct eventfd_ctx *eventfd)
{
3931
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3932 3933
}

3934
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3935 3936
	struct eventfd_ctx *eventfd)
{
3937
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3938 3939
}

3940
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3941
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3942 3943 3944 3945 3946 3947 3948
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3949
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3950 3951 3952 3953 3954

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3955
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
3956
		eventfd_signal(eventfd, 1);
3957
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3958 3959 3960 3961

	return 0;
}

3962
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3963
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3964 3965 3966
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3967
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3968

3969
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3970 3971 3972 3973 3974 3975
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3976
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3977 3978
}

3979
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3980
{
3981
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3982

3983 3984
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3985 3986 3987
	return 0;
}

3988
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3989 3990
	struct cftype *cft, u64 val)
{
3991
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3992 3993

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3994
	if (!css->parent || !((val == 0) || (val == 1)))
3995 3996
		return -EINVAL;

3997
	memcg->oom_kill_disable = val;
3998
	if (!val)
3999
		memcg_oom_recover(memcg);
4000

4001 4002 4003
	return 0;
}

A
Andrew Morton 已提交
4004
#ifdef CONFIG_MEMCG_KMEM
4005
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4006
{
4007 4008 4009 4010 4011
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
4012

4013
	return mem_cgroup_sockets_init(memcg, ss);
4014
}
4015

4016
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4017
{
4018
	memcg_destroy_kmem_caches(memcg);
4019
	mem_cgroup_sockets_destroy(memcg);
4020
}
4021
#else
4022
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4023 4024 4025
{
	return 0;
}
G
Glauber Costa 已提交
4026

4027 4028 4029
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
4030 4031
#endif

4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4045 4046 4047 4048 4049
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4050
static void memcg_event_remove(struct work_struct *work)
4051
{
4052 4053
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4054
	struct mem_cgroup *memcg = event->memcg;
4055 4056 4057

	remove_wait_queue(event->wqh, &event->wait);

4058
	event->unregister_event(memcg, event->eventfd);
4059 4060 4061 4062 4063 4064

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4065
	css_put(&memcg->css);
4066 4067 4068 4069 4070 4071 4072
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4073 4074
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4075
{
4076 4077
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4078
	struct mem_cgroup *memcg = event->memcg;
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4091
		spin_lock(&memcg->event_list_lock);
4092 4093 4094 4095 4096 4097 4098 4099
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4100
		spin_unlock(&memcg->event_list_lock);
4101 4102 4103 4104 4105
	}

	return 0;
}

4106
static void memcg_event_ptable_queue_proc(struct file *file,
4107 4108
		wait_queue_head_t *wqh, poll_table *pt)
{
4109 4110
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4111 4112 4113 4114 4115 4116

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4117 4118
 * DO NOT USE IN NEW FILES.
 *
4119 4120 4121 4122 4123
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4124 4125
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4126
{
4127
	struct cgroup_subsys_state *css = of_css(of);
4128
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4129
	struct mem_cgroup_event *event;
4130 4131 4132 4133
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4134
	const char *name;
4135 4136 4137
	char *endp;
	int ret;

4138 4139 4140
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4141 4142
	if (*endp != ' ')
		return -EINVAL;
4143
	buf = endp + 1;
4144

4145
	cfd = simple_strtoul(buf, &endp, 10);
4146 4147
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4148
	buf = endp + 1;
4149 4150 4151 4152 4153

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4154
	event->memcg = memcg;
4155
	INIT_LIST_HEAD(&event->list);
4156 4157 4158
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4184 4185 4186 4187 4188
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4189 4190
	 *
	 * DO NOT ADD NEW FILES.
4191
	 */
A
Al Viro 已提交
4192
	name = cfile.file->f_path.dentry->d_name.name;
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4204 4205
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4206 4207 4208 4209 4210
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4211
	/*
4212 4213 4214
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4215
	 */
A
Al Viro 已提交
4216
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4217
					       &memory_cgrp_subsys);
4218
	ret = -EINVAL;
4219
	if (IS_ERR(cfile_css))
4220
		goto out_put_cfile;
4221 4222
	if (cfile_css != css) {
		css_put(cfile_css);
4223
		goto out_put_cfile;
4224
	}
4225

4226
	ret = event->register_event(memcg, event->eventfd, buf);
4227 4228 4229 4230 4231
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4232 4233 4234
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4235 4236 4237 4238

	fdput(cfile);
	fdput(efile);

4239
	return nbytes;
4240 4241

out_put_css:
4242
	css_put(css);
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4255
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4256
	{
4257
		.name = "usage_in_bytes",
4258
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4259
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4260
	},
4261 4262
	{
		.name = "max_usage_in_bytes",
4263
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4264
		.write = mem_cgroup_reset,
4265
		.read_u64 = mem_cgroup_read_u64,
4266
	},
B
Balbir Singh 已提交
4267
	{
4268
		.name = "limit_in_bytes",
4269
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4270
		.write = mem_cgroup_write,
4271
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4272
	},
4273 4274 4275
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4276
		.write = mem_cgroup_write,
4277
		.read_u64 = mem_cgroup_read_u64,
4278
	},
B
Balbir Singh 已提交
4279 4280
	{
		.name = "failcnt",
4281
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4282
		.write = mem_cgroup_reset,
4283
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4284
	},
4285 4286
	{
		.name = "stat",
4287
		.seq_show = memcg_stat_show,
4288
	},
4289 4290
	{
		.name = "force_empty",
4291
		.write = mem_cgroup_force_empty_write,
4292
	},
4293 4294 4295 4296 4297
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4298
	{
4299
		.name = "cgroup.event_control",		/* XXX: for compat */
4300
		.write = memcg_write_event_control,
4301 4302 4303
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4304 4305 4306 4307 4308
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4309 4310 4311 4312 4313
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4314 4315
	{
		.name = "oom_control",
4316
		.seq_show = mem_cgroup_oom_control_read,
4317
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4318 4319
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4320 4321 4322
	{
		.name = "pressure_level",
	},
4323 4324 4325
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4326
		.seq_show = memcg_numa_stat_show,
4327 4328
	},
#endif
4329 4330 4331 4332
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4333
		.write = mem_cgroup_write,
4334
		.read_u64 = mem_cgroup_read_u64,
4335 4336 4337 4338
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4339
		.read_u64 = mem_cgroup_read_u64,
4340 4341 4342 4343
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4344
		.write = mem_cgroup_reset,
4345
		.read_u64 = mem_cgroup_read_u64,
4346 4347 4348 4349
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4350
		.write = mem_cgroup_reset,
4351
		.read_u64 = mem_cgroup_read_u64,
4352
	},
4353 4354 4355
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4356 4357 4358 4359
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4360 4361
	},
#endif
4362
#endif
4363
	{ },	/* terminate */
4364
};
4365

4366
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4367 4368
{
	struct mem_cgroup_per_node *pn;
4369
	struct mem_cgroup_per_zone *mz;
4370
	int zone, tmp = node;
4371 4372 4373 4374 4375 4376 4377 4378
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4379 4380
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4381
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4382 4383
	if (!pn)
		return 1;
4384 4385 4386

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4387
		lruvec_init(&mz->lruvec);
4388 4389
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4390
		mz->memcg = memcg;
4391
	}
4392
	memcg->nodeinfo[node] = pn;
4393 4394 4395
	return 0;
}

4396
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4397
{
4398
	kfree(memcg->nodeinfo[node]);
4399 4400
}

4401 4402
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4403
	struct mem_cgroup *memcg;
4404
	size_t size;
4405

4406 4407
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4408

4409
	memcg = kzalloc(size, GFP_KERNEL);
4410
	if (!memcg)
4411 4412
		return NULL;

4413 4414
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4415
		goto out_free;
4416 4417
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4418 4419

out_free:
4420
	kfree(memcg);
4421
	return NULL;
4422 4423
}

4424
/*
4425 4426 4427 4428 4429 4430 4431 4432
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4433
 */
4434 4435

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4436
{
4437
	int node;
4438

4439
	mem_cgroup_remove_from_trees(memcg);
4440 4441 4442 4443 4444 4445

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

4446
	disarm_static_keys(memcg);
4447
	kfree(memcg);
4448
}
4449

4450 4451 4452
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4453
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4454
{
4455
	if (!memcg->memory.parent)
4456
		return NULL;
4457
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4458
}
G
Glauber Costa 已提交
4459
EXPORT_SYMBOL(parent_mem_cgroup);
4460

L
Li Zefan 已提交
4461
static struct cgroup_subsys_state * __ref
4462
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4463
{
4464
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4465
	long error = -ENOMEM;
4466
	int node;
B
Balbir Singh 已提交
4467

4468 4469
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4470
		return ERR_PTR(error);
4471

B
Bob Liu 已提交
4472
	for_each_node(node)
4473
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4474
			goto free_out;
4475

4476
	/* root ? */
4477
	if (parent_css == NULL) {
4478
		root_mem_cgroup = memcg;
4479
		page_counter_init(&memcg->memory, NULL);
4480
		memcg->high = PAGE_COUNTER_MAX;
4481
		memcg->soft_limit = PAGE_COUNTER_MAX;
4482 4483
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4484
	}
4485

4486 4487 4488 4489 4490
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4491
	vmpressure_init(&memcg->vmpressure);
4492 4493
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4494 4495 4496
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4497 4498 4499 4500 4501 4502 4503 4504 4505

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4506
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4507
{
4508
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4509
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4510
	int ret;
4511

4512
	if (css->id > MEM_CGROUP_ID_MAX)
4513 4514
		return -ENOSPC;

T
Tejun Heo 已提交
4515
	if (!parent)
4516 4517
		return 0;

4518
	mutex_lock(&memcg_create_mutex);
4519 4520 4521 4522 4523 4524

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4525
		page_counter_init(&memcg->memory, &parent->memory);
4526
		memcg->high = PAGE_COUNTER_MAX;
4527
		memcg->soft_limit = PAGE_COUNTER_MAX;
4528 4529
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4530

4531
		/*
4532 4533
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4534
		 */
4535
	} else {
4536
		page_counter_init(&memcg->memory, NULL);
4537
		memcg->high = PAGE_COUNTER_MAX;
4538
		memcg->soft_limit = PAGE_COUNTER_MAX;
4539 4540
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4541 4542 4543 4544 4545
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4546
		if (parent != root_mem_cgroup)
4547
			memory_cgrp_subsys.broken_hierarchy = true;
4548
	}
4549
	mutex_unlock(&memcg_create_mutex);
4550

4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4563 4564
}

4565
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4566
{
4567
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4568
	struct mem_cgroup_event *event, *tmp;
4569 4570 4571 4572 4573 4574

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4575 4576
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4577 4578 4579
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4580
	spin_unlock(&memcg->event_list_lock);
4581

4582
	vmpressure_cleanup(&memcg->vmpressure);
4583 4584
}

4585
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4586
{
4587
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4588

4589
	memcg_destroy_kmem(memcg);
4590
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4591 4592
}

4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4610 4611 4612
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4613 4614
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4615
	memcg->soft_limit = PAGE_COUNTER_MAX;
4616 4617
}

4618
#ifdef CONFIG_MMU
4619
/* Handlers for move charge at task migration. */
4620
static int mem_cgroup_do_precharge(unsigned long count)
4621
{
4622
	int ret;
4623 4624

	/* Try a single bulk charge without reclaim first */
4625
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4626
	if (!ret) {
4627 4628 4629
		mc.precharge += count;
		return ret;
	}
4630
	if (ret == -EINTR) {
4631
		cancel_charge(root_mem_cgroup, count);
4632 4633
		return ret;
	}
4634 4635

	/* Try charges one by one with reclaim */
4636
	while (count--) {
4637
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4638 4639 4640
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
4641 4642
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
4643
		 */
4644
		if (ret == -EINTR)
4645
			cancel_charge(root_mem_cgroup, 1);
4646 4647
		if (ret)
			return ret;
4648
		mc.precharge++;
4649
		cond_resched();
4650
	}
4651
	return 0;
4652 4653 4654
}

/**
4655
 * get_mctgt_type - get target type of moving charge
4656 4657 4658
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4659
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4660 4661 4662 4663 4664 4665
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4666 4667 4668
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4669 4670 4671 4672 4673
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4674
	swp_entry_t	ent;
4675 4676 4677
};

enum mc_target_type {
4678
	MC_TARGET_NONE = 0,
4679
	MC_TARGET_PAGE,
4680
	MC_TARGET_SWAP,
4681 4682
};

D
Daisuke Nishimura 已提交
4683 4684
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4685
{
D
Daisuke Nishimura 已提交
4686
	struct page *page = vm_normal_page(vma, addr, ptent);
4687

D
Daisuke Nishimura 已提交
4688 4689 4690
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4691
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4692
			return NULL;
4693 4694 4695 4696
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4697 4698 4699 4700 4701 4702
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4703
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4704 4705 4706 4707 4708 4709
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4710
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4711
		return NULL;
4712 4713 4714 4715
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4716
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4717 4718 4719 4720 4721
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4722 4723 4724 4725 4726 4727 4728
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4729

4730 4731 4732 4733 4734 4735 4736 4737 4738
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4739
	if (!(mc.flags & MOVE_FILE))
4740 4741 4742
		return NULL;

	mapping = vma->vm_file->f_mapping;
4743
	pgoff = linear_page_index(vma, addr);
4744 4745

	/* page is moved even if it's not RSS of this task(page-faulted). */
4746 4747
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4760
#endif
4761 4762 4763
	return page;
}

4764
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4765 4766 4767
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4768
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4769 4770 4771 4772 4773 4774
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4775
	else if (pte_none(ptent))
4776
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4777 4778

	if (!page && !ent.val)
4779
		return ret;
4780 4781
	if (page) {
		/*
4782
		 * Do only loose check w/o serialization.
4783
		 * mem_cgroup_move_account() checks the page is valid or
4784
		 * not under LRU exclusion.
4785
		 */
4786
		if (page->mem_cgroup == mc.from) {
4787 4788 4789 4790 4791 4792 4793
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4794 4795
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4796
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4797 4798 4799
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4800 4801 4802 4803
	}
	return ret;
}

4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4817
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4818
	if (!(mc.flags & MOVE_ANON))
4819
		return ret;
4820
	if (page->mem_cgroup == mc.from) {
4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4837 4838 4839 4840
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4841
	struct vm_area_struct *vma = walk->vma;
4842 4843 4844
	pte_t *pte;
	spinlock_t *ptl;

4845
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4846 4847
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4848
		spin_unlock(ptl);
4849
		return 0;
4850
	}
4851

4852 4853
	if (pmd_trans_unstable(pmd))
		return 0;
4854 4855
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4856
		if (get_mctgt_type(vma, addr, *pte, NULL))
4857 4858 4859 4860
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4861 4862 4863
	return 0;
}

4864 4865 4866 4867
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4868 4869 4870 4871
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4872
	down_read(&mm->mmap_sem);
4873
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4874
	up_read(&mm->mmap_sem);
4875 4876 4877 4878 4879 4880 4881 4882 4883

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4884 4885 4886 4887 4888
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4889 4890
}

4891 4892
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4893
{
4894 4895 4896
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4897
	/* we must uncharge all the leftover precharges from mc.to */
4898
	if (mc.precharge) {
4899
		cancel_charge(mc.to, mc.precharge);
4900 4901 4902 4903 4904 4905 4906
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4907
		cancel_charge(mc.from, mc.moved_charge);
4908
		mc.moved_charge = 0;
4909
	}
4910 4911 4912
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4913
		if (!mem_cgroup_is_root(mc.from))
4914
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4915

4916
		/*
4917 4918
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4919
		 */
4920
		if (!mem_cgroup_is_root(mc.to))
4921 4922
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4923
		css_put_many(&mc.from->css, mc.moved_swap);
4924

L
Li Zefan 已提交
4925
		/* we've already done css_get(mc.to) */
4926 4927
		mc.moved_swap = 0;
	}
4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4941
	spin_lock(&mc.lock);
4942 4943
	mc.from = NULL;
	mc.to = NULL;
4944
	spin_unlock(&mc.lock);
4945 4946
}

4947
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
4948
				 struct cgroup_taskset *tset)
4949
{
4950
	struct task_struct *p = cgroup_taskset_first(tset);
4951
	int ret = 0;
4952
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4953
	unsigned long move_flags;
4954

4955 4956 4957 4958 4959
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
4960 4961
	move_flags = ACCESS_ONCE(memcg->move_charge_at_immigrate);
	if (move_flags) {
4962 4963 4964
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

4965
		VM_BUG_ON(from == memcg);
4966 4967 4968 4969 4970

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4971 4972 4973 4974
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4975
			VM_BUG_ON(mc.moved_charge);
4976
			VM_BUG_ON(mc.moved_swap);
4977

4978
			spin_lock(&mc.lock);
4979
			mc.from = from;
4980
			mc.to = memcg;
4981
			mc.flags = move_flags;
4982
			spin_unlock(&mc.lock);
4983
			/* We set mc.moving_task later */
4984 4985 4986 4987

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
4988 4989
		}
		mmput(mm);
4990 4991 4992 4993
	}
	return ret;
}

4994
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
4995
				     struct cgroup_taskset *tset)
4996
{
4997 4998
	if (mc.to)
		mem_cgroup_clear_mc();
4999 5000
}

5001 5002 5003
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5004
{
5005
	int ret = 0;
5006
	struct vm_area_struct *vma = walk->vma;
5007 5008
	pte_t *pte;
	spinlock_t *ptl;
5009 5010 5011
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5012

5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5023
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5024
		if (mc.precharge < HPAGE_PMD_NR) {
5025
			spin_unlock(ptl);
5026 5027 5028 5029 5030 5031 5032
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5033
							     mc.from, mc.to)) {
5034 5035 5036 5037 5038 5039 5040
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5041
		spin_unlock(ptl);
5042
		return 0;
5043 5044
	}

5045 5046
	if (pmd_trans_unstable(pmd))
		return 0;
5047 5048 5049 5050
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5051
		swp_entry_t ent;
5052 5053 5054 5055

		if (!mc.precharge)
			break;

5056
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5057 5058 5059 5060
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
5061
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5062
				mc.precharge--;
5063 5064
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5065 5066
			}
			putback_lru_page(page);
5067
put:			/* get_mctgt_type() gets the page */
5068 5069
			put_page(page);
			break;
5070 5071
		case MC_TARGET_SWAP:
			ent = target.ent;
5072
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5073
				mc.precharge--;
5074 5075 5076
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5077
			break;
5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5092
		ret = mem_cgroup_do_precharge(1);
5093 5094 5095 5096 5097 5098 5099 5100 5101
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
5102 5103 5104 5105
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
5106 5107

	lru_add_drain_all();
5108 5109 5110 5111 5112 5113 5114
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5128 5129 5130 5131 5132
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5133
	up_read(&mm->mmap_sem);
5134
	atomic_dec(&mc.from->moving_account);
5135 5136
}

5137
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5138
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5139
{
5140
	struct task_struct *p = cgroup_taskset_first(tset);
5141
	struct mm_struct *mm = get_task_mm(p);
5142 5143

	if (mm) {
5144 5145
		if (mc.to)
			mem_cgroup_move_charge(mm);
5146 5147
		mmput(mm);
	}
5148 5149
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5150
}
5151
#else	/* !CONFIG_MMU */
5152
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5153
				 struct cgroup_taskset *tset)
5154 5155 5156
{
	return 0;
}
5157
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5158
				     struct cgroup_taskset *tset)
5159 5160
{
}
5161
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5162
				 struct cgroup_taskset *tset)
5163 5164 5165
{
}
#endif
B
Balbir Singh 已提交
5166

5167 5168
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5169 5170
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5171
 */
5172
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5173 5174
{
	/*
5175
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5176 5177 5178
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5179
	if (cgroup_on_dfl(root_css->cgroup))
5180
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
5181 5182
}

5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	return mem_cgroup_usage(mem_cgroup_from_css(css), false);
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long low = ACCESS_ONCE(memcg->low);

	if (low == PAGE_COUNTER_MAX)
		seq_puts(m, "infinity\n");
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "infinity", &low);
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long high = ACCESS_ONCE(memcg->high);

	if (high == PAGE_COUNTER_MAX)
		seq_puts(m, "infinity\n");
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "infinity", &high);
	if (err)
		return err;

	memcg->high = high;

	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = ACCESS_ONCE(memcg->memory.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "infinity\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "infinity", &max);
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5324
struct cgroup_subsys memory_cgrp_subsys = {
5325
	.css_alloc = mem_cgroup_css_alloc,
5326
	.css_online = mem_cgroup_css_online,
5327 5328
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5329
	.css_reset = mem_cgroup_css_reset,
5330 5331
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5332
	.attach = mem_cgroup_move_task,
5333
	.bind = mem_cgroup_bind,
5334 5335
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5336
	.early_init = 0,
B
Balbir Singh 已提交
5337
};
5338

5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
/**
 * mem_cgroup_events - count memory events against a cgroup
 * @memcg: the memory cgroup
 * @idx: the event index
 * @nr: the number of events to account for
 */
void mem_cgroup_events(struct mem_cgroup *memcg,
		       enum mem_cgroup_events_index idx,
		       unsigned int nr)
{
	this_cpu_add(memcg->stat->events[idx], nr);
}

/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

	if (page_counter_read(&memcg->memory) > memcg->low)
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

		if (page_counter_read(&memcg->memory) > memcg->low)
			return false;
	}
	return true;
}

5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5424
		if (page->mem_cgroup)
5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5485 5486
	commit_charge(page, memcg, lrucare);

5487 5488 5489 5490 5491
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5492 5493 5494 5495
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5537 5538 5539 5540
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5541
	unsigned long nr_pages = nr_anon + nr_file;
5542 5543
	unsigned long flags;

5544
	if (!mem_cgroup_is_root(memcg)) {
5545 5546 5547
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5548 5549
		memcg_oom_recover(memcg);
	}
5550 5551 5552 5553 5554 5555

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5556
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5557 5558
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5559 5560

	if (!mem_cgroup_is_root(memcg))
5561
		css_put_many(&memcg->css, nr_pages);
5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5584
		if (!page->mem_cgroup)
5585 5586 5587 5588
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5589
		 * page->mem_cgroup at this point, we have fully
5590
		 * exclusive access to the page.
5591 5592
		 */

5593
		if (memcg != page->mem_cgroup) {
5594
			if (memcg) {
5595 5596 5597
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5598
			}
5599
			memcg = page->mem_cgroup;
5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5613
		page->mem_cgroup = NULL;
5614 5615 5616 5617 5618

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5619 5620
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5621 5622
}

5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5635
	/* Don't touch page->lru of any random page, pre-check: */
5636
	if (!page->mem_cgroup)
5637 5638
		return;

5639 5640 5641
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5642

5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5654

5655 5656
	if (!list_empty(page_list))
		uncharge_list(page_list);
5657 5658 5659 5660 5661 5662
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
5663
 * @lrucare: either or both pages might be on the LRU already
5664 5665 5666 5667 5668 5669 5670 5671
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
5672
	struct mem_cgroup *memcg;
5673 5674 5675 5676 5677 5678 5679
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5680 5681
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5682 5683 5684 5685 5686

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5687
	if (newpage->mem_cgroup)
5688 5689
		return;

5690 5691 5692 5693 5694 5695
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
5696
	memcg = oldpage->mem_cgroup;
5697
	if (!memcg)
5698 5699 5700 5701 5702
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

5703
	oldpage->mem_cgroup = NULL;
5704 5705 5706 5707

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

5708
	commit_charge(newpage, memcg, lrucare);
5709 5710
}

5711
/*
5712 5713 5714 5715 5716 5717
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5718 5719 5720
 */
static int __init mem_cgroup_init(void)
{
5721 5722
	int cpu, node;

5723
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5746 5747 5748
	return 0;
}
subsys_initcall(mem_cgroup_init);
5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

	/* XXX: caller holds IRQ-safe mapping->tree_lock */
	VM_BUG_ON(!irqs_disabled());

	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
		if (!mem_cgroup_is_root(memcg))
			page_counter_uncharge(&memcg->memsw, 1);
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */