memcontrol.c 131.2 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
50
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include "internal.h"
B
Balbir Singh 已提交
52

53 54
#include <asm/uaccess.h>

55 56
#include <trace/events/vmscan.h>

57 58
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
59
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
60

61
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
62
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63
int do_swap_account __read_mostly;
64 65 66 67 68 69 70 71

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

72 73 74 75
#else
#define do_swap_account		(0)
#endif

76 77 78 79 80 81 82 83 84
/*
 * Per memcg event counter is incremented at every pagein/pageout. This counter
 * is used for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 *
 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 */
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85

86 87 88 89 90 91 92 93
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
94
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
95
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96 97
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
98
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 100 101
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
	/* incremented at every  pagein/pageout */
	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
103 104 105 106 107 108 109 110

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
};

111 112 113 114
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
115 116 117
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
118 119
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
120 121

	struct zone_reclaim_stat reclaim_stat;
122 123 124 125
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
126 127
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
128 129 130 131 132 133 134 135 136 137 138 139
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

160 161 162 163 164
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
165
/* For threshold */
166 167
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
168
	int current_threshold;
169 170 171 172 173
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
174 175 176 177 178 179 180 181 182 183 184 185

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
186 187 188 189 190
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
191 192

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
193
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194

B
Balbir Singh 已提交
195 196 197 198 199 200 201
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 203 204
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
205 206 207 208 209 210 211
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
212 213 214 215
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
216 217 218 219
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
220
	struct mem_cgroup_lru_info info;
221
	/*
222
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
223
	 * reclaimed from.
224
	 */
K
KAMEZAWA Hiroyuki 已提交
225
	int last_scanned_child;
226 227 228 229
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
230
	atomic_t	oom_lock;
231
	atomic_t	refcnt;
232

K
KOSAKI Motohiro 已提交
233
	unsigned int	swappiness;
234 235
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
236

237 238 239
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

240 241 242 243
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
244
	struct mem_cgroup_thresholds thresholds;
245

246
	/* thresholds for mem+swap usage. RCU-protected */
247
	struct mem_cgroup_thresholds memsw_thresholds;
248

K
KAMEZAWA Hiroyuki 已提交
249 250 251
	/* For oom notifier event fd */
	struct list_head oom_notify;

252 253 254 255 256
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
257
	/*
258
	 * percpu counter.
259
	 */
260
	struct mem_cgroup_stat_cpu *stat;
261 262 263 264 265 266
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
267 268
};

269 270 271 272 273 274
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
275
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
276
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
277 278 279
	NR_MOVE_TYPE,
};

280 281
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
282
	spinlock_t	  lock; /* for from, to */
283 284 285
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
286
	unsigned long moved_charge;
287
	unsigned long moved_swap;
288 289 290
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
291
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
292 293
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
294

D
Daisuke Nishimura 已提交
295 296 297 298 299 300
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

301 302 303 304 305 306
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

307 308 309 310 311 312 313
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

314 315 316
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
317
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
318
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
319
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
320
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
321 322 323
	NR_CHARGE_TYPE,
};

324 325 326
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
327
#define _OOM_TYPE		(2)
328 329 330
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
331 332
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
333

334 335 336 337 338 339 340
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
341 342
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
343

344 345
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
346
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
347
static void drain_all_stock_async(void);
348

349 350 351 352 353 354
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

355 356 357 358 359
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

360
static struct mem_cgroup_per_zone *
361
page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
362
{
363 364
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
385
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
386
				struct mem_cgroup_per_zone *mz,
387 388
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
389 390 391 392 393 394 395 396
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

397 398 399
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
416 417 418 419 420 421 422 423 424 425 426 427 428
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

429 430 431 432 433 434
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
435
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
436 437 438 439 440 441
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
442
	unsigned long long excess;
443 444
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
445 446
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
447 448 449
	mctz = soft_limit_tree_from_page(page);

	/*
450 451
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
452
	 */
453 454
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
455
		excess = res_counter_soft_limit_excess(&mem->res);
456 457 458 459
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
460
		if (excess || mz->on_tree) {
461 462 463 464 465
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
466 467
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
468
			 */
469
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
470 471
			spin_unlock(&mctz->lock);
		}
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

490 491 492 493
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
494
	struct mem_cgroup_per_zone *mz;
495 496

retry:
497
	mz = NULL;
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
546 547 548 549 550 551
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

552 553
	get_online_cpus();
	for_each_online_cpu(cpu)
554
		val += per_cpu(mem->stat->count[idx], cpu);
555 556 557 558 559 560
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
561 562 563 564 565 566 567 568 569 570 571 572
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

573 574 575 576
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
577
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
578 579
}

580
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
581
					 bool file, int nr_pages)
582
{
583 584
	preempt_disable();

585 586
	if (file)
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
587
	else
588
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
589

590 591
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
592
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
593
	else {
594
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
595 596
		nr_pages = -nr_pages; /* for event */
	}
597 598

	__this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
599

600
	preempt_enable();
601 602
}

K
KAMEZAWA Hiroyuki 已提交
603
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
604
					enum lru_list idx)
605 606 607 608 609 610 611 612 613 614 615
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
616 617
}

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
	s64 val;

	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);

	return !(val & ((1 << event_mask_shift) - 1));
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
		mem_cgroup_threshold(mem);
		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
			mem_cgroup_update_tree(mem, page);
	}
}

641
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
642 643 644 645 646 647
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

648
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
649
{
650 651 652 653 654 655 656 657
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

658 659 660 661
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

662 663 664
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
665 666 667

	if (!mm)
		return NULL;
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
683 684
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
685
{
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
708 709 710 711 712 713 714 715 716
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
717 718
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
719
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
720

K
KAMEZAWA Hiroyuki 已提交
721
	css_put(&iter->css);
722 723
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
724
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
725

726 727 728
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
729 730
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
731
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
732 733 734

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
735
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
736
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
737
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
738
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
739
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
740
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
741

K
KAMEZAWA Hiroyuki 已提交
742
	return iter;
K
KAMEZAWA Hiroyuki 已提交
743
}
K
KAMEZAWA Hiroyuki 已提交
744 745 746 747 748 749 750 751 752 753 754 755 756
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

757 758 759
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
760

761 762 763 764 765
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
779

K
KAMEZAWA Hiroyuki 已提交
780 781 782 783
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
784

785
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
786 787 788
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
789
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
790
		return;
791
	VM_BUG_ON(!pc->mem_cgroup);
792 793 794 795
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
796
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
797 798
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
799 800 801
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
802
	list_del_init(&pc->lru);
803 804
}

K
KAMEZAWA Hiroyuki 已提交
805
void mem_cgroup_del_lru(struct page *page)
806
{
K
KAMEZAWA Hiroyuki 已提交
807 808
	mem_cgroup_del_lru_list(page, page_lru(page));
}
809

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
832
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
833 834 835
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
836 837 838 839
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
840

841
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
842
		return;
843

K
KAMEZAWA Hiroyuki 已提交
844
	pc = lookup_page_cgroup(page);
845
	/* unused or root page is not rotated. */
846 847 848 849 850
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
851
		return;
852
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
853
	list_move(&pc->lru, &mz->lists[lru]);
854 855
}

K
KAMEZAWA Hiroyuki 已提交
856
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
857
{
K
KAMEZAWA Hiroyuki 已提交
858 859
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
860

861
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
862 863
		return;
	pc = lookup_page_cgroup(page);
864
	VM_BUG_ON(PageCgroupAcctLRU(pc));
K
KAMEZAWA Hiroyuki 已提交
865
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
866
		return;
867 868
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
869
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
870 871
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
872 873 874
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
875 876
	list_add(&pc->lru, &mz->lists[lru]);
}
877

K
KAMEZAWA Hiroyuki 已提交
878
/*
879 880 881 882 883
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
884
 */
885
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
886
{
887 888 889 890 891 892 893 894 895 896 897 898
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
899 900
}

901 902 903 904 905 906 907 908
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
909
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
910 911 912 913 914
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
915 916 917
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
918
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
919 920 921
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
922 923
}

924 925 926
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
927
	struct mem_cgroup *curr = NULL;
928
	struct task_struct *p;
929

930 931 932 933 934
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
935 936
	if (!curr)
		return 0;
937 938 939 940 941 942 943
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
944 945 946 947
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
948 949 950
	return ret;
}

951
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
952 953 954
{
	unsigned long active;
	unsigned long inactive;
955 956
	unsigned long gb;
	unsigned long inactive_ratio;
957

K
KAMEZAWA Hiroyuki 已提交
958 959
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
960

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
988 989 990 991 992
		return 1;

	return 0;
}

993 994 995 996 997 998 999 1000 1001 1002 1003
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

1004 1005 1006 1007
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
1008
	int nid = zone_to_nid(zone);
1009 1010 1011 1012 1013 1014
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
1015 1016 1017
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1018
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1035 1036
	if (!PageCgroupUsed(pc))
		return NULL;
1037 1038
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1039
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1040 1041 1042
	return &mz->reclaim_stat;
}

1043 1044 1045 1046 1047
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1048
					int active, int file)
1049 1050 1051 1052 1053 1054
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1055
	struct page_cgroup *pc, *tmp;
1056
	int nid = zone_to_nid(z);
1057 1058
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1059
	int lru = LRU_FILE * file + active;
1060
	int ret;
1061

1062
	BUG_ON(!mem_cont);
1063
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1064
	src = &mz->lists[lru];
1065

1066 1067
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1068
		if (scan >= nr_to_scan)
1069
			break;
K
KAMEZAWA Hiroyuki 已提交
1070

1071 1072
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1073

1074
		page = lookup_cgroup_page(pc);
1075

H
Hugh Dickins 已提交
1076
		if (unlikely(!PageLRU(page)))
1077 1078
			continue;

H
Hugh Dickins 已提交
1079
		scan++;
1080 1081 1082
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1083
			list_move(&page->lru, dst);
1084
			mem_cgroup_del_lru(page);
1085
			nr_taken += hpage_nr_pages(page);
1086 1087 1088 1089 1090 1091 1092
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1093 1094 1095 1096
		}
	}

	*scanned = scan;
1097 1098 1099 1100

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1101 1102 1103
	return nr_taken;
}

1104 1105 1106
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1107
/**
1108 1109
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1110
 *
1111 1112
 * Returns the maximum amount of memory @mem can be charged with, in
 * bytes.
1113
 */
1114
static unsigned long long mem_cgroup_margin(struct mem_cgroup *mem)
1115
{
1116 1117 1118 1119 1120 1121
	unsigned long long margin;

	margin = res_counter_margin(&mem->res);
	if (do_swap_account)
		margin = min(margin, res_counter_margin(&mem->memsw));
	return margin;
1122 1123
}

K
KOSAKI Motohiro 已提交
1124 1125 1126 1127 1128 1129 1130 1131
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1132
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1133 1134
}

1135 1136 1137
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1138 1139 1140 1141

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1142
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1143 1144 1145
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1156 1157 1158
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1159
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1160 1161 1162
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1181 1182 1183

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1184 1185
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1186
	bool ret = false;
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1221
/**
1222
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1241
	if (!memcg || !p)
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1288 1289 1290 1291 1292 1293 1294
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1295 1296 1297 1298
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1299 1300 1301
	return num;
}

D
David Rientjes 已提交
1302 1303 1304 1305 1306 1307 1308 1309
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1310 1311 1312
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1313 1314 1315 1316 1317 1318 1319 1320
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1321
/*
K
KAMEZAWA Hiroyuki 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1362 1363
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1364 1365 1366
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1367 1368
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1369 1370
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1371
						struct zone *zone,
1372 1373
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1374
{
K
KAMEZAWA Hiroyuki 已提交
1375 1376 1377
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1378 1379
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1380
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1381 1382 1383
	unsigned long excess;

	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1384

1385 1386 1387 1388
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1389
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1390
		victim = mem_cgroup_select_victim(root_mem);
1391
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1392
			loop++;
1393 1394
			if (loop >= 1)
				drain_all_stock_async();
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1418
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1419 1420
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1421 1422
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1423
		/* we use swappiness of local cgroup */
1424 1425
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1426
				noswap, get_swappiness(victim), zone);
1427 1428 1429
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1430
		css_put(&victim->css);
1431 1432 1433 1434 1435 1436 1437
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1438
		total += ret;
1439
		if (check_soft) {
1440
			if (!res_counter_soft_limit_excess(&root_mem->res))
1441
				return total;
1442
		} else if (mem_cgroup_margin(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1443
			return 1 + total;
1444
	}
K
KAMEZAWA Hiroyuki 已提交
1445
	return total;
1446 1447
}

K
KAMEZAWA Hiroyuki 已提交
1448 1449 1450 1451 1452 1453
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
1454 1455
	int x, lock_count = 0;
	struct mem_cgroup *iter;
1456

K
KAMEZAWA Hiroyuki 已提交
1457 1458 1459 1460
	for_each_mem_cgroup_tree(iter, mem) {
		x = atomic_inc_return(&iter->oom_lock);
		lock_count = max(x, lock_count);
	}
K
KAMEZAWA Hiroyuki 已提交
1461 1462 1463 1464

	if (lock_count == 1)
		return true;
	return false;
1465
}
1466

K
KAMEZAWA Hiroyuki 已提交
1467
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1468
{
K
KAMEZAWA Hiroyuki 已提交
1469 1470
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1471 1472 1473 1474 1475
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1476 1477
	for_each_mem_cgroup_tree(iter, mem)
		atomic_add_unless(&iter->oom_lock, -1, 0);
1478 1479 1480
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1481 1482 1483 1484

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1521 1522
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1523
	if (mem && atomic_read(&mem->oom_lock))
1524 1525 1526
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1527 1528 1529 1530
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1531
{
K
KAMEZAWA Hiroyuki 已提交
1532
	struct oom_wait_info owait;
1533
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1534

K
KAMEZAWA Hiroyuki 已提交
1535 1536 1537 1538 1539
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1540
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1541 1542 1543 1544 1545 1546 1547 1548
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1549 1550 1551 1552
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1553
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1554 1555
	mutex_unlock(&memcg_oom_mutex);

1556 1557
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1558
		mem_cgroup_out_of_memory(mem, mask);
1559
	} else {
K
KAMEZAWA Hiroyuki 已提交
1560
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1561
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1562 1563 1564
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1565
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1566 1567 1568 1569 1570 1571 1572
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1573 1574
}

1575 1576 1577
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1597
 */
1598

1599 1600
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1601 1602
{
	struct mem_cgroup *mem;
1603 1604
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1605
	unsigned long uninitialized_var(flags);
1606 1607 1608 1609

	if (unlikely(!pc))
		return;

1610
	rcu_read_lock();
1611
	mem = pc->mem_cgroup;
1612 1613 1614
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
1615
	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1616
		/* take a lock against to access pc->mem_cgroup */
1617
		move_lock_page_cgroup(pc, &flags);
1618 1619 1620 1621 1622
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
1623 1624

	switch (idx) {
1625
	case MEMCG_NR_FILE_MAPPED:
1626 1627 1628
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1629
			ClearPageCgroupFileMapped(pc);
1630
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1631 1632 1633
		break;
	default:
		BUG();
1634
	}
1635

1636 1637
	this_cpu_add(mem->stat->count[idx], val);

1638 1639
out:
	if (unlikely(need_unlock))
1640
		move_unlock_page_cgroup(pc, &flags);
1641 1642
	rcu_read_unlock();
	return;
1643
}
1644
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1645

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1707
 * This will be consumed by consume_stock() function, later.
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
		s64 x = per_cpu(mem->stat->count[i], cpu);

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1785 1786 1787 1788
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1789 1790 1791 1792 1793
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
1794
	struct mem_cgroup *iter;
1795

1796 1797 1798 1799 1800 1801
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

1802
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1803
		return NOTIFY_OK;
1804 1805 1806 1807

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

1808 1809 1810 1811 1812
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				int csize, bool oom_check)
{
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

1840
		res_counter_uncharge(&mem->res, csize);
1841 1842 1843 1844
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1845 1846 1847 1848 1849 1850 1851 1852 1853
	/*
	 * csize can be either a huge page (HPAGE_SIZE), a batch of
	 * regular pages (CHARGE_SIZE), or a single regular page
	 * (PAGE_SIZE).
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
	if (csize == CHARGE_SIZE)
1854 1855 1856 1857 1858 1859
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1860
					      gfp_mask, flags);
1861
	if (mem_cgroup_margin(mem_over_limit) >= csize)
1862
		return CHARGE_RETRY;
1863
	/*
1864 1865 1866 1867 1868 1869 1870
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
1871
	 */
1872
	if (csize == PAGE_SIZE && ret)
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

1892 1893 1894
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1895
 */
1896
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
1897 1898 1899
				   gfp_t gfp_mask,
				   struct mem_cgroup **memcg, bool oom,
				   int page_size)
1900
{
1901 1902 1903
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
A
Andrea Arcangeli 已提交
1904
	int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1905

K
KAMEZAWA Hiroyuki 已提交
1906 1907 1908 1909 1910 1911 1912 1913
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
1914

1915
	/*
1916 1917
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1918 1919 1920
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
1921 1922 1923 1924
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
1925
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
1926 1927 1928
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
A
Andrea Arcangeli 已提交
1929
		if (page_size == PAGE_SIZE && consume_stock(mem))
K
KAMEZAWA Hiroyuki 已提交
1930
			goto done;
1931 1932
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
1933
		struct task_struct *p;
1934

K
KAMEZAWA Hiroyuki 已提交
1935 1936 1937
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
1938 1939 1940 1941 1942 1943 1944 1945
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
1946 1947
		 */
		mem = mem_cgroup_from_task(p);
1948
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
1949 1950 1951
			rcu_read_unlock();
			goto done;
		}
A
Andrea Arcangeli 已提交
1952
		if (page_size == PAGE_SIZE && consume_stock(mem)) {
K
KAMEZAWA Hiroyuki 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
1971

1972 1973
	do {
		bool oom_check;
1974

1975
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
1976 1977
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
1978
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
1979
		}
1980

1981 1982 1983 1984
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1985
		}
1986

1987
		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1988

1989 1990 1991 1992
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
A
Andrea Arcangeli 已提交
1993
			csize = page_size;
K
KAMEZAWA Hiroyuki 已提交
1994 1995 1996
			css_put(&mem->css);
			mem = NULL;
			goto again;
1997
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
1998
			css_put(&mem->css);
1999 2000
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2001 2002
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2003
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2004
			}
2005 2006 2007 2008
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2009
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2010
			goto bypass;
2011
		}
2012 2013
	} while (ret != CHARGE_OK);

A
Andrea Arcangeli 已提交
2014 2015
	if (csize > page_size)
		refill_stock(mem, csize - page_size);
K
KAMEZAWA Hiroyuki 已提交
2016
	css_put(&mem->css);
2017
done:
K
KAMEZAWA Hiroyuki 已提交
2018
	*memcg = mem;
2019 2020
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2021
	*memcg = NULL;
2022
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2023 2024 2025
bypass:
	*memcg = NULL;
	return 0;
2026
}
2027

2028 2029 2030 2031 2032
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2033
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2034
				       unsigned int nr_pages)
2035 2036
{
	if (!mem_cgroup_is_root(mem)) {
2037 2038 2039
		unsigned long bytes = nr_pages * PAGE_SIZE;

		res_counter_uncharge(&mem->res, bytes);
2040
		if (do_swap_account)
2041
			res_counter_uncharge(&mem->memsw, bytes);
2042
	}
2043 2044
}

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2064
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2065
{
2066
	struct mem_cgroup *mem = NULL;
2067
	struct page_cgroup *pc;
2068
	unsigned short id;
2069 2070
	swp_entry_t ent;

2071 2072 2073
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2074
	lock_page_cgroup(pc);
2075
	if (PageCgroupUsed(pc)) {
2076
		mem = pc->mem_cgroup;
2077 2078
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2079
	} else if (PageSwapCache(page)) {
2080
		ent.val = page_private(page);
2081 2082 2083 2084 2085 2086
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2087
	}
2088
	unlock_page_cgroup(pc);
2089 2090 2091
	return mem;
}

2092
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2093
				       struct page *page,
2094 2095 2096
				       struct page_cgroup *pc,
				       enum charge_type ctype,
				       int page_size)
2097
{
2098 2099 2100 2101 2102
	int nr_pages = page_size >> PAGE_SHIFT;

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2103
		__mem_cgroup_cancel_charge(mem, nr_pages);
2104 2105 2106 2107 2108 2109
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2110
	pc->mem_cgroup = mem;
2111 2112 2113 2114 2115 2116 2117
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2118
	smp_wmb();
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2132

2133
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2134
	unlock_page_cgroup(pc);
2135 2136 2137 2138 2139
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2140
	memcg_check_events(mem, page);
2141
}
2142

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2157 2158
	if (mem_cgroup_disabled())
		return;
2159
	/*
2160
	 * We have no races with charge/uncharge but will have races with
2161 2162 2163 2164 2165 2166
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2177
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2178 2179
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2180 2181 2182 2183 2184
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2185
/**
2186
 * mem_cgroup_move_account - move account of the page
2187
 * @page: the page
2188 2189 2190
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2191
 * @uncharge: whether we should call uncharge and css_put against @from.
2192
 * @charge_size: number of bytes to charge (regular or huge page)
2193 2194
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2195
 * - page is not on LRU (isolate_page() is useful.)
2196
 * - compound_lock is held when charge_size > PAGE_SIZE
2197
 *
2198 2199 2200 2201
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2202
 */
2203
static int mem_cgroup_move_account(struct page *page, struct page_cgroup *pc,
2204 2205
				   struct mem_cgroup *from, struct mem_cgroup *to,
				   bool uncharge, int charge_size)
2206
{
2207
	int nr_pages = charge_size >> PAGE_SHIFT;
2208 2209
	unsigned long flags;
	int ret;
2210

2211
	VM_BUG_ON(from == to);
2212
	VM_BUG_ON(PageLRU(page));
2213 2214 2215 2216 2217 2218 2219
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2220
	if (charge_size > PAGE_SIZE && !PageTransHuge(page))
2221 2222 2223 2224 2225 2226 2227 2228 2229
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2230

2231
	if (PageCgroupFileMapped(pc)) {
2232 2233 2234 2235 2236
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2237
	}
2238
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2239 2240
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2241
		__mem_cgroup_cancel_charge(from, nr_pages);
2242

2243
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2244
	pc->mem_cgroup = to;
2245
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2246 2247 2248
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2249 2250 2251
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
2252
	 */
2253 2254 2255
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2256
	unlock_page_cgroup(pc);
2257 2258 2259
	/*
	 * check events
	 */
2260 2261
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2262
out:
2263 2264 2265 2266 2267 2268 2269
	return ret;
}

/*
 * move charges to its parent.
 */

2270 2271
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2272 2273 2274 2275 2276 2277
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2278
	int page_size = PAGE_SIZE;
2279
	unsigned long flags;
2280 2281 2282 2283 2284 2285
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2286 2287 2288 2289 2290
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2291 2292 2293

	if (PageTransHuge(page))
		page_size = HPAGE_SIZE;
K
KAMEZAWA Hiroyuki 已提交
2294

2295
	parent = mem_cgroup_from_cont(pcg);
2296 2297
	ret = __mem_cgroup_try_charge(NULL, gfp_mask,
				&parent, false, page_size);
2298
	if (ret || !parent)
2299
		goto put_back;
2300

2301
	if (page_size > PAGE_SIZE)
2302 2303
		flags = compound_lock_irqsave(page);

2304
	ret = mem_cgroup_move_account(page, pc, child, parent, true, page_size);
2305
	if (ret)
2306
		__mem_cgroup_cancel_charge(parent, page_size >> PAGE_SHIFT);
2307

2308
	if (page_size > PAGE_SIZE)
2309
		compound_unlock_irqrestore(page, flags);
2310
put_back:
K
KAMEZAWA Hiroyuki 已提交
2311
	putback_lru_page(page);
2312
put:
2313
	put_page(page);
2314
out:
2315 2316 2317
	return ret;
}

2318 2319 2320 2321 2322 2323 2324
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2325
				gfp_t gfp_mask, enum charge_type ctype)
2326
{
2327
	struct mem_cgroup *mem = NULL;
2328
	int page_size = PAGE_SIZE;
2329
	struct page_cgroup *pc;
2330
	bool oom = true;
2331
	int ret;
A
Andrea Arcangeli 已提交
2332

A
Andrea Arcangeli 已提交
2333
	if (PageTransHuge(page)) {
A
Andrea Arcangeli 已提交
2334
		page_size <<= compound_order(page);
A
Andrea Arcangeli 已提交
2335
		VM_BUG_ON(!PageTransHuge(page));
2336 2337 2338 2339 2340
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2341
	}
2342 2343

	pc = lookup_page_cgroup(page);
2344
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2345

2346
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
2347
	if (ret || !mem)
2348 2349
		return ret;

2350
	__mem_cgroup_commit_charge(mem, page, pc, ctype, page_size);
2351 2352 2353
	return 0;
}

2354 2355
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2356
{
2357
	if (mem_cgroup_disabled())
2358
		return 0;
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2370
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2371
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2372 2373
}

D
Daisuke Nishimura 已提交
2374 2375 2376 2377
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2378 2379
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2380
{
2381 2382
	int ret;

2383
	if (mem_cgroup_disabled())
2384
		return 0;
2385 2386
	if (PageCompound(page))
		return 0;
2387 2388 2389 2390 2391 2392 2393 2394
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2395 2396
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2397 2398 2399 2400
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2401 2402 2403 2404 2405 2406
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2407 2408
			return 0;
		}
2409
		unlock_page_cgroup(pc);
2410 2411
	}

2412
	if (unlikely(!mm))
2413
		mm = &init_mm;
2414

2415 2416
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
2417
				MEM_CGROUP_CHARGE_TYPE_CACHE);
2418

D
Daisuke Nishimura 已提交
2419 2420
	/* shmem */
	if (PageSwapCache(page)) {
2421
		struct mem_cgroup *mem;
2422

D
Daisuke Nishimura 已提交
2423 2424 2425 2426 2427 2428
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2429
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2430 2431

	return ret;
2432 2433
}

2434 2435 2436
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2437
 * struct page_cgroup is acquired. This refcnt will be consumed by
2438 2439
 * "commit()" or removed by "cancel()"
 */
2440 2441 2442 2443 2444
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2445
	int ret;
2446

2447 2448
	*ptr = NULL;

2449
	if (mem_cgroup_disabled())
2450 2451 2452 2453 2454 2455
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2456 2457 2458
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2459 2460
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2461
		goto charge_cur_mm;
2462
	mem = try_get_mem_cgroup_from_page(page);
2463 2464
	if (!mem)
		goto charge_cur_mm;
2465
	*ptr = mem;
A
Andrea Arcangeli 已提交
2466
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2467 2468
	css_put(&mem->css);
	return ret;
2469 2470 2471
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
A
Andrea Arcangeli 已提交
2472
	return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2473 2474
}

D
Daisuke Nishimura 已提交
2475 2476 2477
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2478 2479 2480
{
	struct page_cgroup *pc;

2481
	if (mem_cgroup_disabled())
2482 2483 2484
		return;
	if (!ptr)
		return;
2485
	cgroup_exclude_rmdir(&ptr->css);
2486
	pc = lookup_page_cgroup(page);
2487
	mem_cgroup_lru_del_before_commit_swapcache(page);
2488
	__mem_cgroup_commit_charge(ptr, page, pc, ctype, PAGE_SIZE);
2489
	mem_cgroup_lru_add_after_commit_swapcache(page);
2490 2491 2492
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2493 2494 2495
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2496
	 */
2497
	if (do_swap_account && PageSwapCache(page)) {
2498
		swp_entry_t ent = {.val = page_private(page)};
2499
		unsigned short id;
2500
		struct mem_cgroup *memcg;
2501 2502 2503 2504

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2505
		if (memcg) {
2506 2507 2508 2509
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2510
			if (!mem_cgroup_is_root(memcg))
2511
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2512
			mem_cgroup_swap_statistics(memcg, false);
2513 2514
			mem_cgroup_put(memcg);
		}
2515
		rcu_read_unlock();
2516
	}
2517 2518 2519 2520 2521 2522
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2523 2524
}

D
Daisuke Nishimura 已提交
2525 2526 2527 2528 2529 2530
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2531 2532
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2533
	if (mem_cgroup_disabled())
2534 2535 2536
		return;
	if (!mem)
		return;
2537
	__mem_cgroup_cancel_charge(mem, 1);
2538 2539
}

2540
static void
A
Andrea Arcangeli 已提交
2541 2542
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
	      int page_size)
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

A
Andrea Arcangeli 已提交
2569 2570 2571
	if (page_size != PAGE_SIZE)
		goto direct_uncharge;

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
A
Andrea Arcangeli 已提交
2585
	res_counter_uncharge(&mem->res, page_size);
2586
	if (uncharge_memsw)
A
Andrea Arcangeli 已提交
2587
		res_counter_uncharge(&mem->memsw, page_size);
2588 2589
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2590 2591
	return;
}
2592

2593
/*
2594
 * uncharge if !page_mapped(page)
2595
 */
2596
static struct mem_cgroup *
2597
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2598
{
2599
	int count;
H
Hugh Dickins 已提交
2600
	struct page_cgroup *pc;
2601
	struct mem_cgroup *mem = NULL;
A
Andrea Arcangeli 已提交
2602
	int page_size = PAGE_SIZE;
2603

2604
	if (mem_cgroup_disabled())
2605
		return NULL;
2606

K
KAMEZAWA Hiroyuki 已提交
2607
	if (PageSwapCache(page))
2608
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2609

A
Andrea Arcangeli 已提交
2610
	if (PageTransHuge(page)) {
A
Andrea Arcangeli 已提交
2611
		page_size <<= compound_order(page);
A
Andrea Arcangeli 已提交
2612 2613
		VM_BUG_ON(!PageTransHuge(page));
	}
A
Andrea Arcangeli 已提交
2614

2615
	count = page_size >> PAGE_SHIFT;
2616
	/*
2617
	 * Check if our page_cgroup is valid
2618
	 */
2619 2620
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2621
		return NULL;
2622

2623
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2624

2625 2626
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2627 2628 2629 2630 2631
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2632
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2633 2634
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2646
	}
K
KAMEZAWA Hiroyuki 已提交
2647

2648
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
K
KAMEZAWA Hiroyuki 已提交
2649

2650
	ClearPageCgroupUsed(pc);
2651 2652 2653 2654 2655 2656
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2657

2658
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2659 2660 2661 2662
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
2663
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2664 2665 2666 2667 2668
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
A
Andrea Arcangeli 已提交
2669
		__do_uncharge(mem, ctype, page_size);
2670

2671
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2672 2673 2674

unlock_out:
	unlock_page_cgroup(pc);
2675
	return NULL;
2676 2677
}

2678 2679
void mem_cgroup_uncharge_page(struct page *page)
{
2680 2681 2682 2683 2684
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2685 2686 2687 2688 2689 2690
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2691
	VM_BUG_ON(page->mapping);
2692 2693 2694
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2735
	memcg_oom_recover(batch->memcg);
2736 2737 2738 2739
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2740
#ifdef CONFIG_SWAP
2741
/*
2742
 * called after __delete_from_swap_cache() and drop "page" account.
2743 2744
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2745 2746
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2747 2748
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2749 2750 2751 2752 2753 2754
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2755

K
KAMEZAWA Hiroyuki 已提交
2756 2757 2758 2759 2760
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
2761
		swap_cgroup_record(ent, css_id(&memcg->css));
2762
}
2763
#endif
2764 2765 2766 2767 2768 2769 2770

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2771
{
2772
	struct mem_cgroup *memcg;
2773
	unsigned short id;
2774 2775 2776 2777

	if (!do_swap_account)
		return;

2778 2779 2780
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2781
	if (memcg) {
2782 2783 2784 2785
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2786
		if (!mem_cgroup_is_root(memcg))
2787
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2788
		mem_cgroup_swap_statistics(memcg, false);
2789 2790
		mem_cgroup_put(memcg);
	}
2791
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2792
}
2793 2794 2795 2796 2797 2798

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2799
 * @need_fixup: whether we should fixup res_counters and refcounts.
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2810
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2811 2812 2813 2814 2815 2816 2817 2818
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2819
		mem_cgroup_swap_statistics(to, true);
2820
		/*
2821 2822 2823 2824 2825 2826
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2827 2828
		 */
		mem_cgroup_get(to);
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
2840 2841 2842 2843 2844 2845
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2846
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2847 2848 2849
{
	return -EINVAL;
}
2850
#endif
K
KAMEZAWA Hiroyuki 已提交
2851

2852
/*
2853 2854
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2855
 */
2856
int mem_cgroup_prepare_migration(struct page *page,
2857
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
2858 2859
{
	struct page_cgroup *pc;
2860
	struct mem_cgroup *mem = NULL;
2861
	enum charge_type ctype;
2862
	int ret = 0;
2863

2864 2865
	*ptr = NULL;

A
Andrea Arcangeli 已提交
2866
	VM_BUG_ON(PageTransHuge(page));
2867
	if (mem_cgroup_disabled())
2868 2869
		return 0;

2870 2871 2872
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2873 2874
		mem = pc->mem_cgroup;
		css_get(&mem->css);
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
2906
	}
2907
	unlock_page_cgroup(pc);
2908 2909 2910 2911 2912 2913
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
2914

A
Andrea Arcangeli 已提交
2915
	*ptr = mem;
2916
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, ptr, false, PAGE_SIZE);
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
2929
	}
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2943
	__mem_cgroup_commit_charge(mem, page, pc, ctype, PAGE_SIZE);
2944
	return ret;
2945
}
2946

2947
/* remove redundant charge if migration failed*/
2948
void mem_cgroup_end_migration(struct mem_cgroup *mem,
2949
	struct page *oldpage, struct page *newpage, bool migration_ok)
2950
{
2951
	struct page *used, *unused;
2952 2953 2954 2955
	struct page_cgroup *pc;

	if (!mem)
		return;
2956
	/* blocks rmdir() */
2957
	cgroup_exclude_rmdir(&mem->css);
2958
	if (!migration_ok) {
2959 2960
		used = oldpage;
		unused = newpage;
2961
	} else {
2962
		used = newpage;
2963 2964
		unused = oldpage;
	}
2965
	/*
2966 2967 2968
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
2969
	 */
2970 2971 2972 2973
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
2974

2975 2976
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

2977
	/*
2978 2979 2980 2981 2982 2983
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
2984
	 */
2985 2986
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
2987
	/*
2988 2989
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
2990 2991 2992 2993
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2994
}
2995

2996
/*
2997 2998 2999 3000 3001 3002
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
3003
 */
3004
int mem_cgroup_shmem_charge_fallback(struct page *page,
3005 3006
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
3007
{
3008
	struct mem_cgroup *mem;
3009
	int ret;
3010

3011
	if (mem_cgroup_disabled())
3012
		return 0;
3013

3014 3015 3016
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3017

3018
	return ret;
3019 3020
}

3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3067 3068
static DEFINE_MUTEX(set_limit_mutex);

3069
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3070
				unsigned long long val)
3071
{
3072
	int retry_count;
3073
	u64 memswlimit, memlimit;
3074
	int ret = 0;
3075 3076
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3077
	int enlarge;
3078 3079 3080 3081 3082 3083 3084 3085 3086

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3087

3088
	enlarge = 0;
3089
	while (retry_count) {
3090 3091 3092 3093
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3104 3105
			break;
		}
3106 3107 3108 3109 3110

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3111
		ret = res_counter_set_limit(&memcg->res, val);
3112 3113 3114 3115 3116 3117
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3118 3119 3120 3121 3122
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3123
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3124
						MEM_CGROUP_RECLAIM_SHRINK);
3125 3126 3127 3128 3129 3130
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3131
	}
3132 3133
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3134

3135 3136 3137
	return ret;
}

L
Li Zefan 已提交
3138 3139
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3140
{
3141
	int retry_count;
3142
	u64 memlimit, memswlimit, oldusage, curusage;
3143 3144
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3145
	int enlarge = 0;
3146

3147 3148 3149
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3167 3168 3169
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3170
		ret = res_counter_set_limit(&memcg->memsw, val);
3171 3172 3173 3174 3175 3176
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3177 3178 3179 3180 3181
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3182
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3183 3184
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
3185
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3186
		/* Usage is reduced ? */
3187
		if (curusage >= oldusage)
3188
			retry_count--;
3189 3190
		else
			oldusage = curusage;
3191
	}
3192 3193
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3194 3195 3196
	return ret;
}

3197
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3198
					    gfp_t gfp_mask)
3199 3200 3201 3202 3203 3204
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3205
	unsigned long long excess;
3206 3207 3208 3209

	if (order > 0)
		return 0;

3210
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3258
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3259 3260 3261 3262 3263 3264 3265 3266
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3267 3268
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3287 3288 3289 3290
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3291
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3292
				int node, int zid, enum lru_list lru)
3293
{
K
KAMEZAWA Hiroyuki 已提交
3294 3295
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3296
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3297
	unsigned long flags, loop;
3298
	struct list_head *list;
3299
	int ret = 0;
3300

K
KAMEZAWA Hiroyuki 已提交
3301 3302
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3303
	list = &mz->lists[lru];
3304

3305 3306 3307 3308 3309
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3310 3311
		struct page *page;

3312
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3313
		spin_lock_irqsave(&zone->lru_lock, flags);
3314
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3315
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3316
			break;
3317 3318 3319 3320
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3321
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3322
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3323 3324
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3325
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3326

3327
		page = lookup_cgroup_page(pc);
3328 3329

		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3330
		if (ret == -ENOMEM)
3331
			break;
3332 3333 3334 3335 3336 3337 3338

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3339
	}
K
KAMEZAWA Hiroyuki 已提交
3340

3341 3342 3343
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3344 3345 3346 3347 3348 3349
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3350
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3351
{
3352 3353 3354
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3355
	struct cgroup *cgrp = mem->css.cgroup;
3356

3357
	css_get(&mem->css);
3358 3359

	shrink = 0;
3360 3361 3362
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3363
move_account:
3364
	do {
3365
		ret = -EBUSY;
3366 3367 3368 3369
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3370
			goto out;
3371 3372
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3373
		drain_all_stock_sync();
3374
		ret = 0;
3375
		mem_cgroup_start_move(mem);
3376
		for_each_node_state(node, N_HIGH_MEMORY) {
3377
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3378
				enum lru_list l;
3379 3380
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3381
							node, zid, l);
3382 3383 3384
					if (ret)
						break;
				}
3385
			}
3386 3387 3388
			if (ret)
				break;
		}
3389
		mem_cgroup_end_move(mem);
3390
		memcg_oom_recover(mem);
3391 3392 3393
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3394
		cond_resched();
3395 3396
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3397 3398 3399
out:
	css_put(&mem->css);
	return ret;
3400 3401

try_to_free:
3402 3403
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3404 3405 3406
		ret = -EBUSY;
		goto out;
	}
3407 3408
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3409 3410 3411 3412
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3413 3414 3415 3416 3417

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3418 3419
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3420
		if (!progress) {
3421
			nr_retries--;
3422
			/* maybe some writeback is necessary */
3423
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3424
		}
3425 3426

	}
K
KAMEZAWA Hiroyuki 已提交
3427
	lru_add_drain();
3428
	/* try move_account...there may be some *locked* pages. */
3429
	goto move_account;
3430 3431
}

3432 3433 3434 3435 3436 3437
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3456
	 * If parent's use_hierarchy is set, we can't make any modifications
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3476

K
KAMEZAWA Hiroyuki 已提交
3477 3478
static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx)
3479
{
K
KAMEZAWA Hiroyuki 已提交
3480 3481
	struct mem_cgroup *iter;
	s64 val = 0;
3482

K
KAMEZAWA Hiroyuki 已提交
3483 3484 3485 3486 3487 3488 3489
	/* each per cpu's value can be minus.Then, use s64 */
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3490 3491
}

3492 3493
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3494
	u64 val;
3495 3496 3497 3498 3499 3500 3501 3502

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

K
KAMEZAWA Hiroyuki 已提交
3503 3504
	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3505

K
KAMEZAWA Hiroyuki 已提交
3506 3507 3508
	if (swap)
		val += mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT);
3509 3510 3511 3512

	return val << PAGE_SHIFT;
}

3513
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3514
{
3515
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3516
	u64 val;
3517 3518 3519 3520 3521 3522
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3523 3524 3525
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3526
			val = res_counter_read_u64(&mem->res, name);
3527 3528
		break;
	case _MEMSWAP:
3529 3530 3531
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3532
			val = res_counter_read_u64(&mem->memsw, name);
3533 3534 3535 3536 3537 3538
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3539
}
3540 3541 3542 3543
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3544 3545
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3546
{
3547
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3548
	int type, name;
3549 3550 3551
	unsigned long long val;
	int ret;

3552 3553 3554
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3555
	case RES_LIMIT:
3556 3557 3558 3559
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3560 3561
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3562 3563 3564
		if (ret)
			break;
		if (type == _MEM)
3565
			ret = mem_cgroup_resize_limit(memcg, val);
3566 3567
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3568
		break;
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3583 3584 3585 3586 3587
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3588 3589
}

3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3618
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3619 3620
{
	struct mem_cgroup *mem;
3621
	int type, name;
3622 3623

	mem = mem_cgroup_from_cont(cont);
3624 3625 3626
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3627
	case RES_MAX_USAGE:
3628 3629 3630 3631
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3632 3633
		break;
	case RES_FAILCNT:
3634 3635 3636 3637
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3638 3639
		break;
	}
3640

3641
	return 0;
3642 3643
}

3644 3645 3646 3647 3648 3649
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3650
#ifdef CONFIG_MMU
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3669 3670 3671 3672 3673 3674 3675
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3676

K
KAMEZAWA Hiroyuki 已提交
3677 3678 3679 3680 3681

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3682
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3683 3684
	MCS_PGPGIN,
	MCS_PGPGOUT,
3685
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3696 3697
};

K
KAMEZAWA Hiroyuki 已提交
3698 3699 3700 3701 3702 3703
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3704
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3705 3706
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3707
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3708 3709 3710 3711 3712 3713 3714 3715
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
3716 3717
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
3718 3719 3720 3721
{
	s64 val;

	/* per cpu stat */
3722
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3723
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3724
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3725
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3726
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3727
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3728
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3729
	s->stat[MCS_PGPGIN] += val;
3730
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3731
	s->stat[MCS_PGPGOUT] += val;
3732
	if (do_swap_account) {
3733
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3734 3735
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
3753 3754 3755 3756
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
3757 3758
}

3759 3760
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3761 3762
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3763
	struct mcs_total_stat mystat;
3764 3765
	int i;

K
KAMEZAWA Hiroyuki 已提交
3766 3767
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3768

3769 3770 3771
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3772
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3773
	}
L
Lee Schermerhorn 已提交
3774

K
KAMEZAWA Hiroyuki 已提交
3775
	/* Hierarchical information */
3776 3777 3778 3779 3780 3781 3782
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3783

K
KAMEZAWA Hiroyuki 已提交
3784 3785
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3786 3787 3788
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3789
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3790
	}
K
KAMEZAWA Hiroyuki 已提交
3791

K
KOSAKI Motohiro 已提交
3792
#ifdef CONFIG_DEBUG_VM
3793
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3821 3822 3823
	return 0;
}

K
KOSAKI Motohiro 已提交
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3836

K
KOSAKI Motohiro 已提交
3837 3838 3839 3840 3841 3842 3843
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3844 3845 3846

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3847 3848
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3849 3850
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3851
		return -EINVAL;
3852
	}
K
KOSAKI Motohiro 已提交
3853 3854 3855

	memcg->swappiness = val;

3856 3857
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3858 3859 3860
	return 0;
}

3861 3862 3863 3864 3865 3866 3867 3868
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
3869
		t = rcu_dereference(memcg->thresholds.primary);
3870
	else
3871
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3883
	i = t->current_threshold;
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3907
	t->current_threshold = i - 1;
3908 3909 3910 3911 3912 3913
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3914 3915 3916 3917 3918 3919 3920
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
3931
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
3942 3943 3944 3945
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3946 3947 3948 3949
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3950 3951
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3952 3953
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3954 3955
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
3956
	int i, size, ret;
3957 3958 3959 3960 3961 3962

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3963

3964
	if (type == _MEM)
3965
		thresholds = &memcg->thresholds;
3966
	else if (type == _MEMSWAP)
3967
		thresholds = &memcg->memsw_thresholds;
3968 3969 3970 3971 3972 3973
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
3974
	if (thresholds->primary)
3975 3976
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3977
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3978 3979

	/* Allocate memory for new array of thresholds */
3980
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3981
			GFP_KERNEL);
3982
	if (!new) {
3983 3984 3985
		ret = -ENOMEM;
		goto unlock;
	}
3986
	new->size = size;
3987 3988

	/* Copy thresholds (if any) to new array */
3989 3990
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3991
				sizeof(struct mem_cgroup_threshold));
3992 3993
	}

3994
	/* Add new threshold */
3995 3996
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3997 3998

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3999
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4000 4001 4002
			compare_thresholds, NULL);

	/* Find current threshold */
4003
	new->current_threshold = -1;
4004
	for (i = 0; i < size; i++) {
4005
		if (new->entries[i].threshold < usage) {
4006
			/*
4007 4008
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4009 4010
			 * it here.
			 */
4011
			++new->current_threshold;
4012 4013 4014
		}
	}

4015 4016 4017 4018 4019
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4020

4021
	/* To be sure that nobody uses thresholds */
4022 4023 4024 4025 4026 4027 4028 4029
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4030
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4031
	struct cftype *cft, struct eventfd_ctx *eventfd)
4032 4033
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4034 4035
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4036 4037
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4038
	int i, j, size;
4039 4040 4041

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4042
		thresholds = &memcg->thresholds;
4043
	else if (type == _MEMSWAP)
4044
		thresholds = &memcg->memsw_thresholds;
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4060 4061 4062
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4063 4064 4065
			size++;
	}

4066
	new = thresholds->spare;
4067

4068 4069
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4070 4071
		kfree(new);
		new = NULL;
4072
		goto swap_buffers;
4073 4074
	}

4075
	new->size = size;
4076 4077

	/* Copy thresholds and find current threshold */
4078 4079 4080
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4081 4082
			continue;

4083 4084
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4085
			/*
4086
			 * new->current_threshold will not be used
4087 4088 4089
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4090
			++new->current_threshold;
4091 4092 4093 4094
		}
		j++;
	}

4095
swap_buffers:
4096 4097 4098
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4099

4100
	/* To be sure that nobody uses thresholds */
4101 4102 4103 4104
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4105

K
KAMEZAWA Hiroyuki 已提交
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

4131
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4186 4187
	if (!val)
		memcg_oom_recover(mem);
4188 4189 4190 4191
	cgroup_unlock();
	return 0;
}

B
Balbir Singh 已提交
4192 4193
static struct cftype mem_cgroup_files[] = {
	{
4194
		.name = "usage_in_bytes",
4195
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4196
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4197 4198
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4199
	},
4200 4201
	{
		.name = "max_usage_in_bytes",
4202
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4203
		.trigger = mem_cgroup_reset,
4204 4205
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4206
	{
4207
		.name = "limit_in_bytes",
4208
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4209
		.write_string = mem_cgroup_write,
4210
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4211
	},
4212 4213 4214 4215 4216 4217
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4218 4219
	{
		.name = "failcnt",
4220
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4221
		.trigger = mem_cgroup_reset,
4222
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4223
	},
4224 4225
	{
		.name = "stat",
4226
		.read_map = mem_control_stat_show,
4227
	},
4228 4229 4230 4231
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4232 4233 4234 4235 4236
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4237 4238 4239 4240 4241
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4242 4243 4244 4245 4246
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4247 4248
	{
		.name = "oom_control",
4249 4250
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4251 4252 4253 4254
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
B
Balbir Singh 已提交
4255 4256
};

4257 4258 4259 4260 4261 4262
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4263 4264
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4300 4301 4302
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4303
	struct mem_cgroup_per_zone *mz;
4304
	enum lru_list l;
4305
	int zone, tmp = node;
4306 4307 4308 4309 4310 4311 4312 4313
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4314 4315
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4316
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4317 4318
	if (!pn)
		return 1;
4319

4320
	mem->info.nodeinfo[node] = pn;
4321 4322
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4323 4324
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4325
		mz->usage_in_excess = 0;
4326 4327
		mz->on_tree = false;
		mz->mem = mem;
4328
	}
4329 4330 4331
	return 0;
}

4332 4333 4334 4335 4336
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4337 4338 4339
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4340
	int size = sizeof(struct mem_cgroup);
4341

4342
	/* Can be very big if MAX_NUMNODES is very big */
4343
	if (size < PAGE_SIZE)
4344
		mem = kzalloc(size, GFP_KERNEL);
4345
	else
4346
		mem = vzalloc(size);
4347

4348 4349 4350
	if (!mem)
		return NULL;

4351
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4352 4353
	if (!mem->stat)
		goto out_free;
4354
	spin_lock_init(&mem->pcp_counter_lock);
4355
	return mem;
4356 4357 4358 4359 4360 4361 4362

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4363 4364
}

4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4376
static void __mem_cgroup_free(struct mem_cgroup *mem)
4377
{
K
KAMEZAWA Hiroyuki 已提交
4378 4379
	int node;

4380
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4381 4382
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4383 4384 4385
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4386 4387
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4388 4389 4390 4391 4392
		kfree(mem);
	else
		vfree(mem);
}

4393 4394 4395 4396 4397
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4398
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4399
{
4400
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4401
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4402
		__mem_cgroup_free(mem);
4403 4404 4405
		if (parent)
			mem_cgroup_put(parent);
	}
4406 4407
}

4408 4409 4410 4411 4412
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4413 4414 4415 4416 4417 4418 4419 4420 4421
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4422

4423 4424 4425
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4426
	if (!mem_cgroup_disabled() && really_do_swap_account)
4427 4428 4429 4430 4431 4432 4433 4434
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4460
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4461 4462
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4463
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4464
	long error = -ENOMEM;
4465
	int node;
B
Balbir Singh 已提交
4466

4467 4468
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4469
		return ERR_PTR(error);
4470

4471 4472 4473
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4474

4475
	/* root ? */
4476
	if (cont->parent == NULL) {
4477
		int cpu;
4478
		enable_swap_cgroup();
4479
		parent = NULL;
4480
		root_mem_cgroup = mem;
4481 4482
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4483 4484 4485 4486 4487
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4488
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4489
	} else {
4490
		parent = mem_cgroup_from_cont(cont->parent);
4491
		mem->use_hierarchy = parent->use_hierarchy;
4492
		mem->oom_kill_disable = parent->oom_kill_disable;
4493
	}
4494

4495 4496 4497
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4498 4499 4500 4501 4502 4503 4504
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4505 4506 4507 4508
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4509
	mem->last_scanned_child = 0;
K
KAMEZAWA Hiroyuki 已提交
4510
	INIT_LIST_HEAD(&mem->oom_notify);
4511

K
KOSAKI Motohiro 已提交
4512 4513
	if (parent)
		mem->swappiness = get_swappiness(parent);
4514
	atomic_set(&mem->refcnt, 1);
4515
	mem->move_charge_at_immigrate = 0;
4516
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4517
	return &mem->css;
4518
free_out:
4519
	__mem_cgroup_free(mem);
4520
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4521
	return ERR_PTR(error);
B
Balbir Singh 已提交
4522 4523
}

4524
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4525 4526 4527
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4528 4529

	return mem_cgroup_force_empty(mem, false);
4530 4531
}

B
Balbir Singh 已提交
4532 4533 4534
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4535 4536 4537
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4538 4539 4540 4541 4542
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4543 4544 4545 4546 4547 4548 4549 4550
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4551 4552
}

4553
#ifdef CONFIG_MMU
4554
/* Handlers for move charge at task migration. */
4555 4556
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4557
{
4558 4559
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4560 4561
	struct mem_cgroup *mem = mc.to;

4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
A
Andrea Arcangeli 已提交
4597 4598
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
					      PAGE_SIZE);
4599 4600 4601 4602 4603
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4604 4605 4606 4607 4608 4609 4610 4611
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4612
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4613 4614 4615 4616 4617 4618
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4619 4620 4621
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4622 4623 4624 4625 4626
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4627
	swp_entry_t	ent;
4628 4629 4630 4631 4632
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4633
	MC_TARGET_SWAP,
4634 4635
};

D
Daisuke Nishimura 已提交
4636 4637
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4638
{
D
Daisuke Nishimura 已提交
4639
	struct page *page = vm_normal_page(vma, addr, ptent);
4640

D
Daisuke Nishimura 已提交
4641 4642 4643 4644 4645 4646
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
4647 4648
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
4667 4668
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
4669
		return NULL;
4670
	}
D
Daisuke Nishimura 已提交
4671 4672 4673 4674 4675 4676
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4722 4723
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4724 4725 4726

	if (!page && !ent.val)
		return 0;
4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4742 4743
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
4744 4745 4746 4747
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

4760 4761
	split_huge_page_pmd(walk->mm, pmd);

4762 4763 4764 4765 4766 4767 4768
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4769 4770 4771
	return 0;
}

4772 4773 4774 4775 4776
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

4777
	down_read(&mm->mmap_sem);
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
4789
	up_read(&mm->mmap_sem);
4790 4791 4792 4793 4794 4795 4796 4797 4798

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4799 4800 4801 4802 4803
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4804 4805
}

4806 4807
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4808
{
4809 4810 4811
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4812
	/* we must uncharge all the leftover precharges from mc.to */
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4824
	}
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4859
	spin_lock(&mc.lock);
4860 4861
	mc.from = NULL;
	mc.to = NULL;
4862
	spin_unlock(&mc.lock);
4863
	mem_cgroup_end_move(from);
4864 4865
}

4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4884 4885 4886 4887
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4888
			VM_BUG_ON(mc.moved_charge);
4889
			VM_BUG_ON(mc.moved_swap);
4890
			mem_cgroup_start_move(from);
4891
			spin_lock(&mc.lock);
4892 4893
			mc.from = from;
			mc.to = mem;
4894
			spin_unlock(&mc.lock);
4895
			/* We set mc.moving_task later */
4896 4897 4898 4899

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
4900 4901
		}
		mmput(mm);
4902 4903 4904 4905 4906 4907 4908 4909 4910
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4911
	mem_cgroup_clear_mc();
4912 4913
}

4914 4915 4916
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4917
{
4918 4919 4920 4921 4922
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

4923
	split_huge_page_pmd(walk->mm, pmd);
4924 4925 4926 4927 4928 4929 4930 4931
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4932
		swp_entry_t ent;
4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4944
			if (!mem_cgroup_move_account(page, pc,
4945
					mc.from, mc.to, false, PAGE_SIZE)) {
4946
				mc.precharge--;
4947 4948
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4949 4950 4951 4952 4953
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4954 4955
		case MC_TARGET_SWAP:
			ent = target.ent;
4956 4957
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4958
				mc.precharge--;
4959 4960 4961
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4962
			break;
4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4977
		ret = mem_cgroup_do_precharge(1);
4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5021
	up_read(&mm->mmap_sem);
5022 5023
}

B
Balbir Singh 已提交
5024 5025 5026
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5027 5028
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
5029
{
5030 5031 5032
	struct mm_struct *mm;

	if (!mc.to)
5033 5034 5035
		/* no need to move charge */
		return;

5036 5037 5038 5039 5040
	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
5041
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5042
}
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
B
Balbir Singh 已提交
5065

B
Balbir Singh 已提交
5066 5067 5068 5069
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5070
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5071 5072
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5073 5074
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5075
	.attach = mem_cgroup_move_task,
5076
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5077
	.use_id = 1,
B
Balbir Singh 已提交
5078
};
5079 5080

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5081 5082 5083
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5084
	if (!(*s) || !strcmp(s, "=1"))
5085
		really_do_swap_account = 1;
5086
	else if (!strcmp(s, "=0"))
5087 5088 5089 5090
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount", enable_swap_account);
5091 5092 5093

static int __init disable_swap_account(char *s)
{
5094
	printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5095
	enable_swap_account("=0");
5096 5097 5098 5099
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif