memcontrol.c 158.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82
static int really_do_swap_account __initdata = 1;
#else
83
static int really_do_swap_account __initdata;
84 85
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146 147
struct reclaim_iter {
	struct mem_cgroup *position;
148 149 150 151
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

152 153 154 155
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
156
	struct lruvec		lruvec;
157
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
158

159
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
160

161
	struct rb_node		tree_node;	/* RB tree node */
162
	unsigned long		usage_in_excess;/* Set to the value by which */
163 164
						/* the soft limit is exceeded*/
	bool			on_tree;
165
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
166
						/* use container_of	   */
167 168 169 170 171 172
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

193 194
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
195
	unsigned long threshold;
196 197
};

K
KAMEZAWA Hiroyuki 已提交
198
/* For threshold */
199
struct mem_cgroup_threshold_ary {
200
	/* An array index points to threshold just below or equal to usage. */
201
	int current_threshold;
202 203 204 205 206
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
207 208 209 210 211 212 213 214 215 216 217 218

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
219 220 221 222 223
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
224

225 226 227
/*
 * cgroup_event represents events which userspace want to receive.
 */
228
struct mem_cgroup_event {
229
	/*
230
	 * memcg which the event belongs to.
231
	 */
232
	struct mem_cgroup *memcg;
233 234 235 236 237 238 239 240
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
241 242 243 244 245
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
246
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
247
			      struct eventfd_ctx *eventfd, const char *args);
248 249 250 251 252
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
253
	void (*unregister_event)(struct mem_cgroup *memcg,
254
				 struct eventfd_ctx *eventfd);
255 256 257 258 259 260 261 262 263 264
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

265 266
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
267

B
Balbir Singh 已提交
268 269 270 271 272 273 274
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
275 276 277
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
278 279 280
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
281 282 283 284 285 286 287

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

	unsigned long soft_limit;
288

289 290 291
	/* vmpressure notifications */
	struct vmpressure vmpressure;

292 293 294
	/* css_online() has been completed */
	int initialized;

295 296 297 298
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
299
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
300 301 302

	bool		oom_lock;
	atomic_t	under_oom;
303
	atomic_t	oom_wakeups;
304

305
	int	swappiness;
306 307
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
308

309 310 311 312
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
313
	struct mem_cgroup_thresholds thresholds;
314

315
	/* thresholds for mem+swap usage. RCU-protected */
316
	struct mem_cgroup_thresholds memsw_thresholds;
317

K
KAMEZAWA Hiroyuki 已提交
318 319
	/* For oom notifier event fd */
	struct list_head oom_notify;
320

321 322 323 324
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
325
	unsigned long move_charge_at_immigrate;
326 327 328 329
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
330 331
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
332
	/*
333
	 * percpu counter.
334
	 */
335
	struct mem_cgroup_stat_cpu __percpu *stat;
336 337 338 339 340 341
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
342

M
Michal Hocko 已提交
343
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
344
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
345
#endif
346
#if defined(CONFIG_MEMCG_KMEM)
347 348
	/* analogous to slab_common's slab_caches list, but per-memcg;
	 * protected by memcg_slab_mutex */
349 350 351 352
	struct list_head memcg_slab_caches;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
353 354 355 356 357 358 359

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
360

361 362 363 364
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

365 366
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
367 368
};

369 370
/* internal only representation about the status of kmem accounting. */
enum {
371
	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
372 373 374 375 376 377 378
};

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
379 380 381 382 383 384

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

385 386
#endif

387 388
/* Stuffs for move charges at task migration. */
/*
389 390
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
391 392
 */
enum move_type {
393
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
394
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
395 396 397
	NR_MOVE_TYPE,
};

398 399
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
400
	spinlock_t	  lock; /* for from, to */
401 402
	struct mem_cgroup *from;
	struct mem_cgroup *to;
403
	unsigned long immigrate_flags;
404
	unsigned long precharge;
405
	unsigned long moved_charge;
406
	unsigned long moved_swap;
407 408 409
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
410
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
411 412
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
413

D
Daisuke Nishimura 已提交
414 415
static bool move_anon(void)
{
416
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
417 418
}

419 420
static bool move_file(void)
{
421
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
422 423
}

424 425 426 427
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
428
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
429
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
430

431 432
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
433
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
434
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
435
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
436 437 438
	NR_CHARGE_TYPE,
};

439
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
440 441 442 443
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
444
	_KMEM,
G
Glauber Costa 已提交
445 446
};

447 448
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
449
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
450 451
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
452

453 454 455 456 457 458 459
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

460 461
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
462
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
463 464
}

465 466 467 468 469 470 471 472 473 474 475 476 477
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

478 479 480 481 482
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

483 484 485 486 487 488
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
489 490
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
491
	return memcg->css.id;
L
Li Zefan 已提交
492 493 494 495 496 497
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

498
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
499 500 501
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
502
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
503
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
504 505 506

void sock_update_memcg(struct sock *sk)
{
507
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
508
		struct mem_cgroup *memcg;
509
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
510 511 512

		BUG_ON(!sk->sk_prot->proto_cgroup);

513 514 515 516 517 518 519 520 521 522
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
523
			css_get(&sk->sk_cgrp->memcg->css);
524 525 526
			return;
		}

G
Glauber Costa 已提交
527 528
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
529
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
530
		if (!mem_cgroup_is_root(memcg) &&
531 532
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
533
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
534 535 536 537 538 539 540 541
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
542
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
543 544 545
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
546
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
547 548
	}
}
G
Glauber Costa 已提交
549 550 551 552 553 554

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

555
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
556 557
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
558

559 560
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
561
	if (!memcg_proto_activated(&memcg->tcp_mem))
562 563 564 565 566 567 568 569 570
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

571
#ifdef CONFIG_MEMCG_KMEM
572 573
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
574 575 576 577 578
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
579 580 581 582 583 584
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
585 586
int memcg_limited_groups_array_size;

587 588 589 590 591 592
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
593
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
594 595
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
596
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
597 598 599
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
600
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
601

602 603 604 605 606 607
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
608
struct static_key memcg_kmem_enabled_key;
609
EXPORT_SYMBOL(memcg_kmem_enabled_key);
610

611 612
static void memcg_free_cache_id(int id);

613 614
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
615
	if (memcg_kmem_is_active(memcg)) {
616
		static_key_slow_dec(&memcg_kmem_enabled_key);
617
		memcg_free_cache_id(memcg->kmemcg_id);
618
	}
619 620 621 622
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
623
	WARN_ON(page_counter_read(&memcg->kmem));
624 625 626 627 628 629 630 631 632 633 634 635 636
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

637
static struct mem_cgroup_per_zone *
638
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
639
{
640 641 642
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

643
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
644 645
}

646
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
647
{
648
	return &memcg->css;
649 650
}

651
static struct mem_cgroup_per_zone *
652
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
653
{
654 655
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
656

657
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
658 659
}

660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

675 676
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
677
					 unsigned long new_usage_in_excess)
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

707 708
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
709 710 711 712 713 714 715
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

716 717
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
718
{
719 720 721
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
722
	__mem_cgroup_remove_exceeded(mz, mctz);
723
	spin_unlock_irqrestore(&mctz->lock, flags);
724 725
}

726 727 728 729 730 731 732 733 734 735 736
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
	unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
737 738 739

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
740
	unsigned long excess;
741 742 743
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

744
	mctz = soft_limit_tree_from_page(page);
745 746 747 748 749
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
750
		mz = mem_cgroup_page_zoneinfo(memcg, page);
751
		excess = soft_limit_excess(memcg);
752 753 754 755 756
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
757 758 759
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
760 761
			/* if on-tree, remove it */
			if (mz->on_tree)
762
				__mem_cgroup_remove_exceeded(mz, mctz);
763 764 765 766
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
767
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
768
			spin_unlock_irqrestore(&mctz->lock, flags);
769 770 771 772 773 774 775
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
776 777
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
778

779 780 781 782
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
783
			mem_cgroup_remove_exceeded(mz, mctz);
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
806
	__mem_cgroup_remove_exceeded(mz, mctz);
807
	if (!soft_limit_excess(mz->memcg) ||
808
	    !css_tryget_online(&mz->memcg->css))
809 810 811 812 813 814 815 816 817 818
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

819
	spin_lock_irq(&mctz->lock);
820
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
821
	spin_unlock_irq(&mctz->lock);
822 823 824
	return mz;
}

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
844
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
845
				 enum mem_cgroup_stat_index idx)
846
{
847
	long val = 0;
848 849
	int cpu;

850 851
	get_online_cpus();
	for_each_online_cpu(cpu)
852
		val += per_cpu(memcg->stat->count[idx], cpu);
853
#ifdef CONFIG_HOTPLUG_CPU
854 855 856
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
857 858
#endif
	put_online_cpus();
859 860 861
	return val;
}

862
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
863 864 865 866 867
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

868
	get_online_cpus();
869
	for_each_online_cpu(cpu)
870
		val += per_cpu(memcg->stat->events[idx], cpu);
871
#ifdef CONFIG_HOTPLUG_CPU
872 873 874
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
875
#endif
876
	put_online_cpus();
877 878 879
	return val;
}

880
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
881
					 struct page *page,
882
					 int nr_pages)
883
{
884 885 886 887
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
888
	if (PageAnon(page))
889
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
890
				nr_pages);
891
	else
892
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
893
				nr_pages);
894

895 896 897 898
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

899 900
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
901
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
902
	else {
903
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
904 905
		nr_pages = -nr_pages; /* for event */
	}
906

907
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
908 909
}

910
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
911 912 913 914 915 916 917
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

918 919 920
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
921
{
922
	unsigned long nr = 0;
923 924
	int zid;

925
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
926

927 928 929 930 931 932 933 934 935 936 937 938
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
939
}
940

941
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
942
			unsigned int lru_mask)
943
{
944
	unsigned long nr = 0;
945
	int nid;
946

947
	for_each_node_state(nid, N_MEMORY)
948 949
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
950 951
}

952 953
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
954 955 956
{
	unsigned long val, next;

957
	val = __this_cpu_read(memcg->stat->nr_page_events);
958
	next = __this_cpu_read(memcg->stat->targets[target]);
959
	/* from time_after() in jiffies.h */
960 961 962 963 964
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
965 966 967
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
968 969 970 971 972 973 974 975
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
976
	}
977
	return false;
978 979 980 981 982 983
}

/*
 * Check events in order.
 *
 */
984
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
985 986
{
	/* threshold event is triggered in finer grain than soft limit */
987 988
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
989
		bool do_softlimit;
990
		bool do_numainfo __maybe_unused;
991

992 993
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
994 995 996 997
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
998
		mem_cgroup_threshold(memcg);
999 1000
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1001
#if MAX_NUMNODES > 1
1002
		if (unlikely(do_numainfo))
1003
			atomic_inc(&memcg->numainfo_events);
1004
#endif
1005
	}
1006 1007
}

1008
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1009
{
1010 1011 1012 1013 1014 1015 1016 1017
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1018
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1019 1020
}

1021
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1022
{
1023
	struct mem_cgroup *memcg = NULL;
1024

1025 1026
	rcu_read_lock();
	do {
1027 1028 1029 1030 1031 1032
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1033
			memcg = root_mem_cgroup;
1034 1035 1036 1037 1038
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1039
	} while (!css_tryget_online(&memcg->css));
1040
	rcu_read_unlock();
1041
	return memcg;
1042 1043
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1061
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1062
				   struct mem_cgroup *prev,
1063
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1064
{
1065 1066
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1067
	struct mem_cgroup *memcg = NULL;
1068
	struct mem_cgroup *pos = NULL;
1069

1070 1071
	if (mem_cgroup_disabled())
		return NULL;
1072

1073 1074
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1075

1076
	if (prev && !reclaim)
1077
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1078

1079 1080
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1081
			goto out;
1082
		return root;
1083
	}
K
KAMEZAWA Hiroyuki 已提交
1084

1085
	rcu_read_lock();
M
Michal Hocko 已提交
1086

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
			pos = ACCESS_ONCE(iter->position);
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1121
		}
K
KAMEZAWA Hiroyuki 已提交
1122

1123 1124 1125 1126 1127 1128
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1129

1130 1131
		if (css == &root->css)
			break;
1132

1133
		if (css_tryget(css)) {
1134 1135 1136 1137 1138 1139 1140 1141 1142
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;

			css_put(css);
1143
		}
1144

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		memcg = NULL;
	}

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1167
	}
1168

1169 1170
out_unlock:
	rcu_read_unlock();
1171
out:
1172 1173 1174
	if (prev && prev != root)
		css_put(&prev->css);

1175
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1176
}
K
KAMEZAWA Hiroyuki 已提交
1177

1178 1179 1180 1181 1182 1183 1184
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1185 1186 1187 1188 1189 1190
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1191

1192 1193 1194 1195 1196 1197
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1198
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1199
	     iter != NULL;				\
1200
	     iter = mem_cgroup_iter(root, iter, NULL))
1201

1202
#define for_each_mem_cgroup(iter)			\
1203
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1204
	     iter != NULL;				\
1205
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1206

1207
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1208
{
1209
	struct mem_cgroup *memcg;
1210 1211

	rcu_read_lock();
1212 1213
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1214 1215 1216 1217
		goto out;

	switch (idx) {
	case PGFAULT:
1218 1219 1220 1221
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1222 1223 1224 1225 1226 1227 1228
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1229
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1230

1231 1232 1233
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1234
 * @memcg: memcg of the wanted lruvec
1235 1236 1237 1238 1239 1240 1241 1242 1243
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1244
	struct lruvec *lruvec;
1245

1246 1247 1248 1249
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1250

1251
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1262 1263 1264
}

/**
1265
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1266
 * @page: the page
1267
 * @zone: zone of the page
1268 1269 1270 1271
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1272
 */
1273
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1274 1275
{
	struct mem_cgroup_per_zone *mz;
1276 1277
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1278
	struct lruvec *lruvec;
1279

1280 1281 1282 1283
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1284

K
KAMEZAWA Hiroyuki 已提交
1285
	pc = lookup_page_cgroup(page);
1286
	memcg = pc->mem_cgroup;
1287 1288

	/*
1289 1290 1291
	 * Swapcache readahead pages are added to the LRU - and
	 * possibly migrated - before they are charged.  Ensure
	 * pc->mem_cgroup is sane.
1292
	 */
1293
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1294 1295
		pc->mem_cgroup = memcg = root_mem_cgroup;

1296
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1307
}
1308

1309
/**
1310 1311 1312 1313
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1314
 *
1315 1316
 * This function must be called when a page is added to or removed from an
 * lru list.
1317
 */
1318 1319
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1320 1321
{
	struct mem_cgroup_per_zone *mz;
1322
	unsigned long *lru_size;
1323 1324 1325 1326

	if (mem_cgroup_disabled())
		return;

1327 1328 1329 1330
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1331
}
1332

1333
/*
1334
 * Checks whether given mem is same or in the root_mem_cgroup's
1335 1336
 * hierarchy subtree
 */
1337 1338
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1339
{
1340 1341
	if (root_memcg == memcg)
		return true;
1342
	if (!root_memcg->use_hierarchy || !memcg)
1343
		return false;
1344
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1345 1346 1347 1348 1349 1350 1351
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1352
	rcu_read_lock();
1353
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1354 1355
	rcu_read_unlock();
	return ret;
1356 1357
}

1358 1359
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1360
{
1361
	struct mem_cgroup *curr = NULL;
1362
	struct task_struct *p;
1363
	bool ret;
1364

1365
	p = find_lock_task_mm(task);
1366
	if (p) {
1367
		curr = get_mem_cgroup_from_mm(p->mm);
1368 1369 1370 1371 1372 1373 1374
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1375
		rcu_read_lock();
1376 1377 1378
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1379
		rcu_read_unlock();
1380
	}
1381
	/*
1382
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1383
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1384 1385
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1386
	 */
1387
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1388
	css_put(&curr->css);
1389 1390 1391
	return ret;
}

1392
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1393
{
1394
	unsigned long inactive_ratio;
1395
	unsigned long inactive;
1396
	unsigned long active;
1397
	unsigned long gb;
1398

1399 1400
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1401

1402 1403 1404 1405 1406 1407
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1408
	return inactive * inactive_ratio < active;
1409 1410
}

1411
#define mem_cgroup_from_counter(counter, member)	\
1412 1413
	container_of(counter, struct mem_cgroup, member)

1414
/**
1415
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1416
 * @memcg: the memory cgroup
1417
 *
1418
 * Returns the maximum amount of memory @mem can be charged with, in
1419
 * pages.
1420
 */
1421
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1422
{
1423 1424 1425
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1426

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	count = page_counter_read(&memcg->memory);
	limit = ACCESS_ONCE(memcg->memory.limit);
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
		limit = ACCESS_ONCE(memcg->memsw.limit);
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1440 1441
}

1442
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1443 1444
{
	/* root ? */
1445
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1446 1447
		return vm_swappiness;

1448
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1449 1450
}

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1465

1466
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1467
{
1468
	atomic_inc(&memcg->moving_account);
1469 1470 1471
	synchronize_rcu();
}

1472
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1473
{
1474 1475 1476 1477
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1478
	if (memcg)
1479
		atomic_dec(&memcg->moving_account);
1480
}
1481

1482
/*
Q
Qiang Huang 已提交
1483
 * A routine for checking "mem" is under move_account() or not.
1484
 *
Q
Qiang Huang 已提交
1485 1486 1487
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1488
 */
1489
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1490
{
1491 1492
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1493
	bool ret = false;
1494 1495 1496 1497 1498 1499 1500 1501 1502
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1503

1504 1505
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1506 1507
unlock:
	spin_unlock(&mc.lock);
1508 1509 1510
	return ret;
}

1511
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1512 1513
{
	if (mc.moving_task && current != mc.moving_task) {
1514
		if (mem_cgroup_under_move(memcg)) {
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1544
#define K(x) ((x) << (PAGE_SHIFT-10))
1545
/**
1546
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1547 1548 1549 1550 1551 1552 1553 1554
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1555
	/* oom_info_lock ensures that parallel ooms do not interleave */
1556
	static DEFINE_MUTEX(oom_info_lock);
1557 1558
	struct mem_cgroup *iter;
	unsigned int i;
1559

1560
	if (!p)
1561 1562
		return;

1563
	mutex_lock(&oom_info_lock);
1564 1565
	rcu_read_lock();

T
Tejun Heo 已提交
1566 1567 1568 1569 1570
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	pr_info(" killed as a result of limit of ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_info("\n");
1571 1572 1573

	rcu_read_unlock();

1574 1575 1576 1577 1578 1579 1580 1581 1582
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1583 1584

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1585 1586
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1602
	mutex_unlock(&oom_info_lock);
1603 1604
}

1605 1606 1607 1608
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1609
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1610 1611
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1612 1613
	struct mem_cgroup *iter;

1614
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1615
		num++;
1616 1617 1618
	return num;
}

D
David Rientjes 已提交
1619 1620 1621
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1622
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1623
{
1624
	unsigned long limit;
D
David Rientjes 已提交
1625

1626
	limit = memcg->memory.limit;
1627
	if (mem_cgroup_swappiness(memcg)) {
1628
		unsigned long memsw_limit;
1629

1630 1631
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1632 1633
	}
	return limit;
D
David Rientjes 已提交
1634 1635
}

1636 1637
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1638 1639 1640 1641 1642 1643 1644
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1645
	/*
1646 1647 1648
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1649
	 */
1650
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1651 1652 1653 1654 1655
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1656
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1657
	for_each_mem_cgroup_tree(iter, memcg) {
1658
		struct css_task_iter it;
1659 1660
		struct task_struct *task;

1661 1662
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1675
				css_task_iter_end(&it);
1676 1677 1678 1679 1680 1681 1682 1683
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1696
		}
1697
		css_task_iter_end(&it);
1698 1699 1700 1701 1702 1703 1704 1705 1706
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1707 1708
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1709
 * @memcg: the target memcg
1710 1711 1712 1713 1714 1715 1716
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1717
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1718 1719
		int nid, bool noswap)
{
1720
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1721 1722 1723
		return true;
	if (noswap || !total_swap_pages)
		return false;
1724
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1725 1726 1727 1728
		return true;
	return false;

}
1729
#if MAX_NUMNODES > 1
1730 1731 1732 1733 1734 1735 1736

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1737
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1738 1739
{
	int nid;
1740 1741 1742 1743
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1744
	if (!atomic_read(&memcg->numainfo_events))
1745
		return;
1746
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1747 1748 1749
		return;

	/* make a nodemask where this memcg uses memory from */
1750
	memcg->scan_nodes = node_states[N_MEMORY];
1751

1752
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1753

1754 1755
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1756
	}
1757

1758 1759
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1774
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1775 1776 1777
{
	int node;

1778 1779
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1780

1781
	node = next_node(node, memcg->scan_nodes);
1782
	if (node == MAX_NUMNODES)
1783
		node = first_node(memcg->scan_nodes);
1784 1785 1786 1787 1788 1789 1790 1791 1792
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1793
	memcg->last_scanned_node = node;
1794 1795 1796
	return node;
}

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

1832
#else
1833
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1834 1835 1836
{
	return 0;
}
1837

1838 1839 1840 1841
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
1842 1843
#endif

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1859
	excess = soft_limit_excess(root_memcg);
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1890
		if (!soft_limit_excess(root_memcg))
1891
			break;
1892
	}
1893 1894
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1895 1896
}

1897 1898 1899 1900 1901 1902
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1903 1904
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1905 1906 1907 1908
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1909
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1910
{
1911
	struct mem_cgroup *iter, *failed = NULL;
1912

1913 1914
	spin_lock(&memcg_oom_lock);

1915
	for_each_mem_cgroup_tree(iter, memcg) {
1916
		if (iter->oom_lock) {
1917 1918 1919 1920 1921
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1922 1923
			mem_cgroup_iter_break(memcg, iter);
			break;
1924 1925
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1926
	}
K
KAMEZAWA Hiroyuki 已提交
1927

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1939
		}
1940 1941
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1942 1943 1944 1945

	spin_unlock(&memcg_oom_lock);

	return !failed;
1946
}
1947

1948
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1949
{
K
KAMEZAWA Hiroyuki 已提交
1950 1951
	struct mem_cgroup *iter;

1952
	spin_lock(&memcg_oom_lock);
1953
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1954
	for_each_mem_cgroup_tree(iter, memcg)
1955
		iter->oom_lock = false;
1956
	spin_unlock(&memcg_oom_lock);
1957 1958
}

1959
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1960 1961 1962
{
	struct mem_cgroup *iter;

1963
	for_each_mem_cgroup_tree(iter, memcg)
1964 1965 1966
		atomic_inc(&iter->under_oom);
}

1967
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1968 1969 1970
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1971 1972 1973 1974 1975
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1976
	for_each_mem_cgroup_tree(iter, memcg)
1977
		atomic_add_unless(&iter->under_oom, -1, 0);
1978 1979
}

K
KAMEZAWA Hiroyuki 已提交
1980 1981
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1982
struct oom_wait_info {
1983
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1984 1985 1986 1987 1988 1989
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1990 1991
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1992 1993 1994
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1995
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1996 1997

	/*
1998
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1999 2000
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2001 2002
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2003 2004 2005 2006
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2007
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2008
{
2009
	atomic_inc(&memcg->oom_wakeups);
2010 2011
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2012 2013
}

2014
static void memcg_oom_recover(struct mem_cgroup *memcg)
2015
{
2016 2017
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2018 2019
}

2020
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2021
{
2022 2023
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2024
	/*
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2037
	 */
2038 2039 2040 2041
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2042 2043 2044 2045
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2046
 * @handle: actually kill/wait or just clean up the OOM state
2047
 *
2048 2049
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2050
 *
2051
 * Memcg supports userspace OOM handling where failed allocations must
2052 2053 2054 2055
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2056
 * the end of the page fault to complete the OOM handling.
2057 2058
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2059
 * completed, %false otherwise.
2060
 */
2061
bool mem_cgroup_oom_synchronize(bool handle)
2062
{
2063
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2064
	struct oom_wait_info owait;
2065
	bool locked;
2066 2067 2068

	/* OOM is global, do not handle */
	if (!memcg)
2069
		return false;
2070

2071 2072
	if (!handle)
		goto cleanup;
2073 2074 2075 2076 2077 2078

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2079

2080
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2094
		schedule();
2095 2096 2097 2098 2099
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2100 2101 2102 2103 2104 2105 2106 2107
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2108 2109
cleanup:
	current->memcg_oom.memcg = NULL;
2110
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2111
	return true;
2112 2113
}

2114 2115 2116 2117 2118
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
 * @locked: &memcg->move_lock slowpath was taken
 * @flags: IRQ-state flags for &memcg->move_lock
2119
 *
2120 2121 2122
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
2123
 *
2124 2125 2126 2127
 *   memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
 *   mem_cgroup_end_page_stat(memcg, locked, flags);
2128
 *
2129 2130 2131
 * The RCU lock is held throughout the transaction.  The fast path can
 * get away without acquiring the memcg->move_lock (@locked is false)
 * because page moving starts with an RCU grace period.
2132
 *
2133 2134 2135 2136 2137
 * The RCU lock also protects the memcg from being freed when the page
 * state that is going to change is the only thing preventing the page
 * from being uncharged.  E.g. end-writeback clearing PageWriteback(),
 * which allows migration to go ahead and uncharge the page before the
 * account transaction might be complete.
2138
 */
2139 2140 2141
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
					      bool *locked,
					      unsigned long *flags)
2142 2143 2144 2145
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

2146 2147 2148 2149 2150
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;

2151 2152 2153 2154
	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2155 2156 2157
		return NULL;

	*locked = false;
Q
Qiang Huang 已提交
2158
	if (atomic_read(&memcg->moving_account) <= 0)
2159
		return memcg;
2160 2161 2162 2163 2164 2165 2166

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
2167 2168

	return memcg;
2169 2170
}

2171 2172 2173 2174 2175 2176 2177 2178
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 * @locked: value received from mem_cgroup_begin_page_stat()
 * @flags: value received from mem_cgroup_begin_page_stat()
 */
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
			      unsigned long flags)
2179
{
2180 2181
	if (memcg && locked)
		move_unlock_mem_cgroup(memcg, &flags);
2182

2183
	rcu_read_unlock();
2184 2185
}

2186 2187 2188 2189 2190 2191 2192 2193 2194
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2195
				 enum mem_cgroup_stat_index idx, int val)
2196
{
2197
	VM_BUG_ON(!rcu_read_lock_held());
2198

2199 2200
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2201
}
2202

2203 2204 2205 2206
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2207
#define CHARGE_BATCH	32U
2208 2209
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2210
	unsigned int nr_pages;
2211
	struct work_struct work;
2212
	unsigned long flags;
2213
#define FLUSHING_CACHED_CHARGE	0
2214 2215
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2216
static DEFINE_MUTEX(percpu_charge_mutex);
2217

2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2228
 */
2229
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2230 2231
{
	struct memcg_stock_pcp *stock;
2232
	bool ret = false;
2233

2234
	if (nr_pages > CHARGE_BATCH)
2235
		return ret;
2236

2237
	stock = &get_cpu_var(memcg_stock);
2238
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2239
		stock->nr_pages -= nr_pages;
2240 2241
		ret = true;
	}
2242 2243 2244 2245 2246
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2247
 * Returns stocks cached in percpu and reset cached information.
2248 2249 2250 2251 2252
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2253
	if (stock->nr_pages) {
2254
		page_counter_uncharge(&old->memory, stock->nr_pages);
2255
		if (do_swap_account)
2256
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2257
		css_put_many(&old->css, stock->nr_pages);
2258
		stock->nr_pages = 0;
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2269
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2270
	drain_stock(stock);
2271
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2272 2273
}

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2285
/*
2286
 * Cache charges(val) to local per_cpu area.
2287
 * This will be consumed by consume_stock() function, later.
2288
 */
2289
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2290 2291 2292
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2293
	if (stock->cached != memcg) { /* reset if necessary */
2294
		drain_stock(stock);
2295
		stock->cached = memcg;
2296
	}
2297
	stock->nr_pages += nr_pages;
2298 2299 2300 2301
	put_cpu_var(memcg_stock);
}

/*
2302
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2303
 * of the hierarchy under it.
2304
 */
2305
static void drain_all_stock(struct mem_cgroup *root_memcg)
2306
{
2307
	int cpu, curcpu;
2308

2309 2310 2311
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2312 2313
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2314
	curcpu = get_cpu();
2315 2316
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2317
		struct mem_cgroup *memcg;
2318

2319 2320
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2321
			continue;
2322
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2323
			continue;
2324 2325 2326 2327 2328 2329
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2330
	}
2331
	put_cpu();
A
Andrew Morton 已提交
2332
	put_online_cpus();
2333
	mutex_unlock(&percpu_charge_mutex);
2334 2335
}

2336 2337 2338 2339
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2340
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2341 2342 2343
{
	int i;

2344
	spin_lock(&memcg->pcp_counter_lock);
2345
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2346
		long x = per_cpu(memcg->stat->count[i], cpu);
2347

2348 2349
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2350
	}
2351
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2352
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2353

2354 2355
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2356
	}
2357
	spin_unlock(&memcg->pcp_counter_lock);
2358 2359
}

2360
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2361 2362 2363 2364 2365
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2366
	struct mem_cgroup *iter;
2367

2368
	if (action == CPU_ONLINE)
2369 2370
		return NOTIFY_OK;

2371
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2372
		return NOTIFY_OK;
2373

2374
	for_each_mem_cgroup(iter)
2375 2376
		mem_cgroup_drain_pcp_counter(iter, cpu);

2377 2378 2379 2380 2381
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2382 2383
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2384
{
2385
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2386
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2387
	struct mem_cgroup *mem_over_limit;
2388
	struct page_counter *counter;
2389
	unsigned long nr_reclaimed;
2390 2391
	bool may_swap = true;
	bool drained = false;
2392
	int ret = 0;
2393

2394 2395
	if (mem_cgroup_is_root(memcg))
		goto done;
2396
retry:
2397 2398
	if (consume_stock(memcg, nr_pages))
		goto done;
2399

2400
	if (!do_swap_account ||
2401 2402
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2403
			goto done_restock;
2404
		if (do_swap_account)
2405 2406
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2407
	} else {
2408
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2409
		may_swap = false;
2410
	}
2411

2412 2413 2414 2415
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2416

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2431 2432
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2433

2434 2435
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2436

2437
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2438
		goto retry;
2439

2440
	if (!drained) {
2441
		drain_all_stock(mem_over_limit);
2442 2443 2444 2445
		drained = true;
		goto retry;
	}

2446 2447
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2448 2449 2450 2451 2452 2453 2454 2455 2456
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2457
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2458 2459 2460 2461 2462 2463 2464 2465
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2466 2467 2468
	if (nr_retries--)
		goto retry;

2469 2470 2471
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2472 2473 2474
	if (fatal_signal_pending(current))
		goto bypass;

2475
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2476
nomem:
2477
	if (!(gfp_mask & __GFP_NOFAIL))
2478
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2479
bypass:
2480
	return -EINTR;
2481 2482

done_restock:
2483
	css_get_many(&memcg->css, batch);
2484 2485 2486
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
done:
2487
	return ret;
2488
}
2489

2490
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2491
{
2492 2493 2494
	if (mem_cgroup_is_root(memcg))
		return;

2495
	page_counter_uncharge(&memcg->memory, nr_pages);
2496
	if (do_swap_account)
2497
		page_counter_uncharge(&memcg->memsw, nr_pages);
2498 2499

	css_put_many(&memcg->css, nr_pages);
2500 2501
}

2502 2503
/*
 * A helper function to get mem_cgroup from ID. must be called under
2504 2505 2506
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2507 2508 2509 2510 2511 2512
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2513
	return mem_cgroup_from_id(id);
2514 2515
}

2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2526
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2527
{
2528
	struct mem_cgroup *memcg = NULL;
2529
	struct page_cgroup *pc;
2530
	unsigned short id;
2531 2532
	swp_entry_t ent;

2533
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2534 2535

	pc = lookup_page_cgroup(page);
2536
	if (PageCgroupUsed(pc)) {
2537
		memcg = pc->mem_cgroup;
2538
		if (memcg && !css_tryget_online(&memcg->css))
2539
			memcg = NULL;
2540
	} else if (PageSwapCache(page)) {
2541
		ent.val = page_private(page);
2542
		id = lookup_swap_cgroup_id(ent);
2543
		rcu_read_lock();
2544
		memcg = mem_cgroup_lookup(id);
2545
		if (memcg && !css_tryget_online(&memcg->css))
2546
			memcg = NULL;
2547
		rcu_read_unlock();
2548
	}
2549
	return memcg;
2550 2551
}

2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2583
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2584
			  bool lrucare)
2585
{
2586
	struct page_cgroup *pc = lookup_page_cgroup(page);
2587
	int isolated;
2588

2589
	VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2590 2591 2592 2593
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2594 2595 2596 2597 2598

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2599 2600
	if (lrucare)
		lock_page_lru(page, &isolated);
2601

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
	/*
	 * Nobody should be changing or seriously looking at
	 * pc->mem_cgroup and pc->flags at this point:
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2616
	pc->mem_cgroup = memcg;
2617
	pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
2618

2619 2620
	if (lrucare)
		unlock_page_lru(page, isolated);
2621
}
2622

2623
#ifdef CONFIG_MEMCG_KMEM
2624 2625 2626 2627 2628 2629
/*
 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
 */
static DEFINE_MUTEX(memcg_slab_mutex);

G
Glauber Costa 已提交
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
2640
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
2641 2642
}

2643
#ifdef CONFIG_SLABINFO
2644
static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2645
{
2646
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2647 2648
	struct memcg_cache_params *params;

2649
	if (!memcg_kmem_is_active(memcg))
2650 2651 2652 2653
		return -EIO;

	print_slabinfo_header(m);

2654
	mutex_lock(&memcg_slab_mutex);
2655 2656
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
2657
	mutex_unlock(&memcg_slab_mutex);
2658 2659 2660 2661 2662

	return 0;
}
#endif

2663 2664
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
			     unsigned long nr_pages)
2665
{
2666
	struct page_counter *counter;
2667 2668
	int ret = 0;

2669 2670
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2671 2672
		return ret;

2673
	ret = try_charge(memcg, gfp, nr_pages);
2674 2675
	if (ret == -EINTR)  {
		/*
2676 2677 2678 2679 2680 2681
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2682 2683 2684
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2685 2686 2687
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2688 2689
		 * directed to the root cgroup in memcontrol.h
		 */
2690
		page_counter_charge(&memcg->memory, nr_pages);
2691
		if (do_swap_account)
2692
			page_counter_charge(&memcg->memsw, nr_pages);
2693
		css_get_many(&memcg->css, nr_pages);
2694 2695
		ret = 0;
	} else if (ret)
2696
		page_counter_uncharge(&memcg->kmem, nr_pages);
2697 2698 2699 2700

	return ret;
}

2701 2702
static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
				unsigned long nr_pages)
2703
{
2704
	page_counter_uncharge(&memcg->memory, nr_pages);
2705
	if (do_swap_account)
2706
		page_counter_uncharge(&memcg->memsw, nr_pages);
2707

2708
	page_counter_uncharge(&memcg->kmem, nr_pages);
2709 2710

	css_put_many(&memcg->css, nr_pages);
2711 2712
}

2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2723
static int memcg_alloc_cache_id(void)
2724
{
2725 2726 2727 2728 2729 2730 2731
	int id, size;
	int err;

	id = ida_simple_get(&kmem_limited_groups,
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2732

2733 2734 2735 2736 2737 2738 2739 2740 2741
	if (id < memcg_limited_groups_array_size)
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */

	size = 2 * (id + 1);
2742 2743 2744 2745 2746
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
	mutex_lock(&memcg_slab_mutex);
	err = memcg_update_all_caches(size);
	mutex_unlock(&memcg_slab_mutex);

	if (err) {
		ida_simple_remove(&kmem_limited_groups, id);
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
	ida_simple_remove(&kmem_limited_groups, id);
2761 2762 2763 2764 2765 2766 2767 2768 2769
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
2770
	memcg_limited_groups_array_size = num;
2771 2772
}

2773 2774
static void memcg_register_cache(struct mem_cgroup *memcg,
				 struct kmem_cache *root_cache)
2775
{
2776 2777
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by
						     memcg_slab_mutex */
2778
	struct kmem_cache *cachep;
2779 2780
	int id;

2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
	lockdep_assert_held(&memcg_slab_mutex);

	id = memcg_cache_id(memcg);

	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
	if (cache_from_memcg_idx(root_cache, id))
2791 2792
		return;

2793
	cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
2794
	cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2795
	/*
2796 2797 2798
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
2799
	 */
2800 2801
	if (!cachep)
		return;
2802

2803
	css_get(&memcg->css);
2804
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2805

2806
	/*
2807 2808 2809
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
2810
	 */
2811 2812
	smp_wmb();

2813 2814
	BUG_ON(root_cache->memcg_params->memcg_caches[id]);
	root_cache->memcg_params->memcg_caches[id] = cachep;
2815
}
2816

2817
static void memcg_unregister_cache(struct kmem_cache *cachep)
2818
{
2819
	struct kmem_cache *root_cache;
2820 2821 2822
	struct mem_cgroup *memcg;
	int id;

2823
	lockdep_assert_held(&memcg_slab_mutex);
2824

2825
	BUG_ON(is_root_cache(cachep));
2826

2827 2828
	root_cache = cachep->memcg_params->root_cache;
	memcg = cachep->memcg_params->memcg;
2829
	id = memcg_cache_id(memcg);
2830

2831 2832
	BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
	root_cache->memcg_params->memcg_caches[id] = NULL;
2833

2834 2835 2836
	list_del(&cachep->memcg_params->list);

	kmem_cache_destroy(cachep);
2837 2838 2839

	/* drop the reference taken in memcg_register_cache */
	css_put(&memcg->css);
2840 2841
}

2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

2873
int __memcg_cleanup_cache_params(struct kmem_cache *s)
2874 2875
{
	struct kmem_cache *c;
2876
	int i, failed = 0;
2877

2878
	mutex_lock(&memcg_slab_mutex);
2879 2880
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
2881 2882 2883
		if (!c)
			continue;

2884
		memcg_unregister_cache(c);
2885 2886 2887

		if (cache_from_memcg_idx(s, i))
			failed++;
2888
	}
2889
	mutex_unlock(&memcg_slab_mutex);
2890
	return failed;
2891 2892
}

2893
static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
2894 2895
{
	struct kmem_cache *cachep;
2896
	struct memcg_cache_params *params, *tmp;
G
Glauber Costa 已提交
2897 2898 2899 2900

	if (!memcg_kmem_is_active(memcg))
		return;

2901 2902
	mutex_lock(&memcg_slab_mutex);
	list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
G
Glauber Costa 已提交
2903
		cachep = memcg_params_to_cache(params);
2904 2905
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
2906
			memcg_unregister_cache(cachep);
G
Glauber Costa 已提交
2907
	}
2908
	mutex_unlock(&memcg_slab_mutex);
G
Glauber Costa 已提交
2909 2910
}

2911
struct memcg_register_cache_work {
2912 2913 2914 2915 2916
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2917
static void memcg_register_cache_func(struct work_struct *w)
2918
{
2919 2920
	struct memcg_register_cache_work *cw =
		container_of(w, struct memcg_register_cache_work, work);
2921 2922
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2923

2924
	mutex_lock(&memcg_slab_mutex);
2925
	memcg_register_cache(memcg, cachep);
2926 2927
	mutex_unlock(&memcg_slab_mutex);

2928
	css_put(&memcg->css);
2929 2930 2931 2932 2933 2934
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2935 2936
static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
					    struct kmem_cache *cachep)
2937
{
2938
	struct memcg_register_cache_work *cw;
2939

2940
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2941 2942
	if (cw == NULL) {
		css_put(&memcg->css);
2943 2944 2945 2946 2947 2948
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

2949
	INIT_WORK(&cw->work, memcg_register_cache_func);
2950 2951 2952
	schedule_work(&cw->work);
}

2953 2954
static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
					  struct kmem_cache *cachep)
2955 2956 2957 2958
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2959
	 * in __memcg_schedule_register_cache will recurse.
2960 2961 2962 2963 2964 2965 2966 2967
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
2968
	__memcg_schedule_register_cache(memcg, cachep);
2969 2970
	memcg_resume_kmem_account();
}
2971 2972 2973

int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
{
2974
	unsigned int nr_pages = 1 << order;
2975 2976
	int res;

2977
	res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
2978
	if (!res)
2979
		atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
2980 2981 2982 2983 2984
	return res;
}

void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
{
2985 2986 2987 2988
	unsigned int nr_pages = 1 << order;

	memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
	atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
2989 2990
}

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
3008
	struct kmem_cache *memcg_cachep;
3009 3010 3011 3012

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3013 3014 3015
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3016 3017 3018
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

3019
	if (!memcg_kmem_is_active(memcg))
3020
		goto out;
3021

3022 3023 3024
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
	if (likely(memcg_cachep)) {
		cachep = memcg_cachep;
3025
		goto out;
3026 3027
	}

3028
	/* The corresponding put will be done in the workqueue. */
3029
	if (!css_tryget_online(&memcg->css))
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
3041 3042 3043
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
3044
	 */
3045
	memcg_schedule_register_cache(memcg, cachep);
3046 3047 3048 3049
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3050 3051
}

3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3073 3074 3075 3076

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
V
Vladimir Davydov 已提交
3077 3078 3079 3080 3081 3082
	 * check here, since direct calls to the page allocator that are
	 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
	 * outside memcg core. We are mostly concerned with cache allocations,
	 * and by having this test at memcg_kmem_get_cache, we are already able
	 * to relay the allocation to the root cache and bypass the memcg cache
	 * altogether.
3083 3084 3085 3086 3087 3088
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3089 3090 3091
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3102
	memcg = get_mem_cgroup_from_mm(current->mm);
3103

3104
	if (!memcg_kmem_is_active(memcg)) {
3105 3106 3107 3108
		css_put(&memcg->css);
		return true;
	}

3109
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
3126
		memcg_uncharge_kmem(memcg, 1 << order);
3127 3128
		return;
	}
3129 3130 3131 3132
	/*
	 * The page is freshly allocated and not visible to any
	 * outside callers yet.  Set up pc non-atomically.
	 */
3133 3134
	pc = lookup_page_cgroup(page);
	pc->mem_cgroup = memcg;
3135
	pc->flags = PCG_USED;
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	if (!PageCgroupUsed(pc))
		return;

3148 3149
	memcg = pc->mem_cgroup;
	pc->flags = 0;
3150 3151 3152 3153 3154 3155 3156 3157

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

3158
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3159
	memcg_uncharge_kmem(memcg, 1 << order);
3160
}
G
Glauber Costa 已提交
3161
#else
3162
static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3163 3164
{
}
3165 3166
#endif /* CONFIG_MEMCG_KMEM */

3167 3168 3169 3170
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
3171 3172 3173
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3174
 */
3175
void mem_cgroup_split_huge_fixup(struct page *head)
3176 3177
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3178
	struct page_cgroup *pc;
3179
	struct mem_cgroup *memcg;
3180
	int i;
3181

3182 3183
	if (mem_cgroup_disabled())
		return;
3184 3185

	memcg = head_pc->mem_cgroup;
3186 3187
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3188
		pc->mem_cgroup = memcg;
3189
		pc->flags = head_pc->flags;
3190
	}
3191 3192
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3193
}
3194
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3195

3196
/**
3197
 * mem_cgroup_move_account - move account of the page
3198
 * @page: the page
3199
 * @nr_pages: number of regular pages (>1 for huge pages)
3200 3201 3202 3203 3204
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3205
 * - page is not on LRU (isolate_page() is useful.)
3206
 * - compound_lock is held when nr_pages > 1
3207
 *
3208 3209
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3210
 */
3211 3212 3213 3214
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3215
				   struct mem_cgroup *to)
3216
{
3217 3218
	unsigned long flags;
	int ret;
3219

3220
	VM_BUG_ON(from == to);
3221
	VM_BUG_ON_PAGE(PageLRU(page), page);
3222 3223 3224 3225 3226 3227 3228
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3229
	if (nr_pages > 1 && !PageTransHuge(page))
3230 3231
		goto out;

3232 3233 3234 3235 3236 3237 3238
	/*
	 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;
3239 3240 3241

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3242
		goto out_unlock;
3243

3244
	move_lock_mem_cgroup(from, &flags);
3245

3246
	if (!PageAnon(page) && page_mapped(page)) {
3247 3248 3249 3250 3251
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
3252

3253 3254 3255 3256 3257 3258
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
3259

3260 3261 3262 3263 3264
	/*
	 * It is safe to change pc->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */
3265

3266
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3267
	pc->mem_cgroup = to;
3268
	move_unlock_mem_cgroup(from, &flags);
3269
	ret = 0;
3270 3271 3272

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
3273
	memcg_check_events(to, page);
3274
	mem_cgroup_charge_statistics(from, page, -nr_pages);
3275
	memcg_check_events(from, page);
3276 3277 3278
	local_irq_enable();
out_unlock:
	unlock_page(page);
3279
out:
3280 3281 3282
	return ret;
}

A
Andrew Morton 已提交
3283
#ifdef CONFIG_MEMCG_SWAP
3284 3285
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
3286
{
3287 3288
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
3289
}
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3302
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3303 3304 3305
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3306
				struct mem_cgroup *from, struct mem_cgroup *to)
3307 3308 3309
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3310 3311
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3312 3313 3314

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3315
		mem_cgroup_swap_statistics(to, true);
3316
		/*
3317
		 * This function is only called from task migration context now.
3318
		 * It postpones page_counter and refcount handling till the end
3319
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
3320 3321 3322 3323 3324 3325
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
3326
		 */
L
Li Zefan 已提交
3327
		css_get(&to->css);
3328 3329 3330 3331 3332 3333
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3334
				struct mem_cgroup *from, struct mem_cgroup *to)
3335 3336 3337
{
	return -EINVAL;
}
3338
#endif
K
KAMEZAWA Hiroyuki 已提交
3339

3340 3341 3342 3343 3344 3345
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3346 3347 3348 3349 3350
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3370 3371
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
3372 3373 3374 3375
	}
}
#endif

3376 3377
static DEFINE_MUTEX(memcg_limit_mutex);

3378
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3379
				   unsigned long limit)
3380
{
3381 3382 3383
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
3384
	int retry_count;
3385
	int ret;
3386 3387 3388 3389 3390 3391

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
3392 3393
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
3394

3395
	oldusage = page_counter_read(&memcg->memory);
3396

3397
	do {
3398 3399 3400 3401
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3402 3403 3404 3405

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
3406
			ret = -EINVAL;
3407 3408
			break;
		}
3409 3410 3411 3412
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
3413 3414 3415 3416

		if (!ret)
			break;

3417 3418
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

3419
		curusage = page_counter_read(&memcg->memory);
3420
		/* Usage is reduced ? */
A
Andrew Morton 已提交
3421
		if (curusage >= oldusage)
3422 3423 3424
			retry_count--;
		else
			oldusage = curusage;
3425 3426
	} while (retry_count);

3427 3428
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3429

3430 3431 3432
	return ret;
}

L
Li Zefan 已提交
3433
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3434
					 unsigned long limit)
3435
{
3436 3437 3438
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
3439
	int retry_count;
3440
	int ret;
3441

3442
	/* see mem_cgroup_resize_res_limit */
3443 3444 3445 3446 3447 3448
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
3449 3450 3451 3452
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3453 3454 3455 3456

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
3457 3458 3459
			ret = -EINVAL;
			break;
		}
3460 3461 3462 3463
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
3464 3465 3466 3467

		if (!ret)
			break;

3468 3469
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

3470
		curusage = page_counter_read(&memcg->memsw);
3471
		/* Usage is reduced ? */
3472
		if (curusage >= oldusage)
3473
			retry_count--;
3474 3475
		else
			oldusage = curusage;
3476 3477
	} while (retry_count);

3478 3479
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3480

3481 3482 3483
	return ret;
}

3484 3485 3486 3487 3488 3489 3490 3491 3492
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3493
	unsigned long excess;
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3518
		spin_lock_irq(&mctz->lock);
3519
		__mem_cgroup_remove_exceeded(mz, mctz);
3520 3521 3522 3523 3524 3525

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3526 3527 3528
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3529
		excess = soft_limit_excess(mz->memcg);
3530 3531 3532 3533 3534 3535 3536 3537 3538
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3539
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3540
		spin_unlock_irq(&mctz->lock);
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3558 3559 3560 3561 3562 3563
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3564 3565
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3566 3567
	bool ret;

3568
	/*
3569 3570 3571 3572
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3573
	 */
3574 3575 3576 3577 3578 3579
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3580 3581
}

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3592 3593
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3594
	/* try to free all pages in this cgroup */
3595
	while (nr_retries && page_counter_read(&memcg->memory)) {
3596
		int progress;
3597

3598 3599 3600
		if (signal_pending(current))
			return -EINTR;

3601 3602
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3603
		if (!progress) {
3604
			nr_retries--;
3605
			/* maybe some writeback is necessary */
3606
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3607
		}
3608 3609

	}
3610 3611

	return 0;
3612 3613
}

3614 3615 3616
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3617
{
3618
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3619

3620 3621
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3622
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3623 3624
}

3625 3626
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3627
{
3628
	return mem_cgroup_from_css(css)->use_hierarchy;
3629 3630
}

3631 3632
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3633 3634
{
	int retval = 0;
3635
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3636
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3637

3638
	mutex_lock(&memcg_create_mutex);
3639 3640 3641 3642

	if (memcg->use_hierarchy == val)
		goto out;

3643
	/*
3644
	 * If parent's use_hierarchy is set, we can't make any modifications
3645 3646 3647 3648 3649 3650
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3651
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3652
				(val == 1 || val == 0)) {
3653
		if (!memcg_has_children(memcg))
3654
			memcg->use_hierarchy = val;
3655 3656 3657 3658
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3659 3660

out:
3661
	mutex_unlock(&memcg_create_mutex);
3662 3663 3664 3665

	return retval;
}

3666 3667
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3685 3686 3687 3688 3689 3690
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3691
		if (!swap)
3692
			val = page_counter_read(&memcg->memory);
3693
		else
3694
			val = page_counter_read(&memcg->memsw);
3695 3696 3697 3698
	}
	return val << PAGE_SHIFT;
}

3699 3700 3701 3702 3703 3704 3705
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3706

3707
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3708
			       struct cftype *cft)
B
Balbir Singh 已提交
3709
{
3710
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3711
	struct page_counter *counter;
3712

3713
	switch (MEMFILE_TYPE(cft->private)) {
3714
	case _MEM:
3715 3716
		counter = &memcg->memory;
		break;
3717
	case _MEMSWAP:
3718 3719
		counter = &memcg->memsw;
		break;
3720
	case _KMEM:
3721
		counter = &memcg->kmem;
3722
		break;
3723 3724 3725
	default:
		BUG();
	}
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3745
}
3746 3747

#ifdef CONFIG_MEMCG_KMEM
3748 3749
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

	/*
	 * We are going to allocate memory for data shared by all memory
	 * cgroups so let's stop accounting here.
	 */
	memcg_stop_kmem_account();

3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
3775
	mutex_lock(&memcg_create_mutex);
3776 3777
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3778 3779 3780 3781
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
3782

3783
	memcg_id = memcg_alloc_cache_id();
3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	memcg->kmemcg_id = memcg_id;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);

	/*
	 * We couldn't have accounted to this cgroup, because it hasn't got the
	 * active bit set yet, so this should succeed.
	 */
3796
	err = page_counter_limit(&memcg->kmem, nr_pages);
3797 3798 3799 3800 3801 3802 3803 3804 3805
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
	 * Setting the active bit after enabling static branching will
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
	memcg_kmem_set_active(memcg);
3806
out:
3807 3808 3809 3810 3811
	memcg_resume_kmem_account();
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3812
				   unsigned long limit)
3813 3814 3815
{
	int ret;

3816
	mutex_lock(&memcg_limit_mutex);
3817
	if (!memcg_kmem_is_active(memcg))
3818
		ret = memcg_activate_kmem(memcg, limit);
3819
	else
3820 3821
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
3822 3823 3824
	return ret;
}

3825
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3826
{
3827
	int ret = 0;
3828
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3829

3830 3831
	if (!parent)
		return 0;
3832

3833
	mutex_lock(&memcg_limit_mutex);
3834
	/*
3835 3836
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3837
	 */
3838
	if (memcg_kmem_is_active(parent))
3839 3840
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3841
	return ret;
3842
}
3843 3844
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3845
				   unsigned long limit)
3846 3847 3848
{
	return -EINVAL;
}
3849
#endif /* CONFIG_MEMCG_KMEM */
3850

3851 3852 3853 3854
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3855 3856
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3857
{
3858
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3859
	unsigned long nr_pages;
3860 3861
	int ret;

3862
	buf = strstrip(buf);
3863 3864 3865
	ret = page_counter_memparse(buf, &nr_pages);
	if (ret)
		return ret;
3866

3867
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3868
	case RES_LIMIT:
3869 3870 3871 3872
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3873 3874 3875
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3876
			break;
3877 3878
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3879
			break;
3880 3881 3882 3883
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3884
		break;
3885 3886 3887
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3888 3889
		break;
	}
3890
	return ret ?: nbytes;
B
Balbir Singh 已提交
3891 3892
}

3893 3894
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3895
{
3896
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3897
	struct page_counter *counter;
3898

3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3912

3913
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3914
	case RES_MAX_USAGE:
3915
		page_counter_reset_watermark(counter);
3916 3917
		break;
	case RES_FAILCNT:
3918
		counter->failcnt = 0;
3919
		break;
3920 3921
	default:
		BUG();
3922
	}
3923

3924
	return nbytes;
3925 3926
}

3927
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3928 3929
					struct cftype *cft)
{
3930
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3931 3932
}

3933
#ifdef CONFIG_MMU
3934
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3935 3936
					struct cftype *cft, u64 val)
{
3937
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3938 3939 3940

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
3941

3942
	/*
3943 3944 3945 3946
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3947
	 */
3948
	memcg->move_charge_at_immigrate = val;
3949 3950
	return 0;
}
3951
#else
3952
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3953 3954 3955 3956 3957
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3958

3959
#ifdef CONFIG_NUMA
3960
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3961
{
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3974
	int nid;
3975
	unsigned long nr;
3976
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3977

3978 3979 3980 3981 3982 3983 3984 3985 3986
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3987 3988
	}

3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
4004 4005 4006 4007 4008 4009
	}

	return 0;
}
#endif /* CONFIG_NUMA */

4010 4011 4012 4013 4014
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4015
static int memcg_stat_show(struct seq_file *m, void *v)
4016
{
4017
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4018
	unsigned long memory, memsw;
4019 4020
	struct mem_cgroup *mi;
	unsigned int i;
4021

4022
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4023
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4024
			continue;
4025 4026
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4027
	}
L
Lee Schermerhorn 已提交
4028

4029 4030 4031 4032 4033 4034 4035 4036
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4037
	/* Hierarchical information */
4038 4039 4040 4041
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
4042
	}
4043 4044 4045 4046 4047
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
4048

4049 4050 4051
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4052
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4053
			continue;
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4074
	}
K
KAMEZAWA Hiroyuki 已提交
4075

K
KOSAKI Motohiro 已提交
4076 4077 4078 4079
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4080
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4081 4082 4083 4084 4085
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4086
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
4087
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4088

4089 4090 4091 4092
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4093
			}
4094 4095 4096 4097
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4098 4099 4100
	}
#endif

4101 4102 4103
	return 0;
}

4104 4105
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4106
{
4107
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4108

4109
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4110 4111
}

4112 4113
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4114
{
4115
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4116

4117
	if (val > 100)
K
KOSAKI Motohiro 已提交
4118 4119
		return -EINVAL;

4120
	if (css->parent)
4121 4122 4123
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4124

K
KOSAKI Motohiro 已提交
4125 4126 4127
	return 0;
}

4128 4129 4130
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4131
	unsigned long usage;
4132 4133 4134 4135
	int i;

	rcu_read_lock();
	if (!swap)
4136
		t = rcu_dereference(memcg->thresholds.primary);
4137
	else
4138
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4139 4140 4141 4142

	if (!t)
		goto unlock;

4143
	usage = mem_cgroup_usage(memcg, swap);
4144 4145

	/*
4146
	 * current_threshold points to threshold just below or equal to usage.
4147 4148 4149
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4150
	i = t->current_threshold;
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4174
	t->current_threshold = i - 1;
4175 4176 4177 4178 4179 4180
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4181 4182 4183 4184 4185 4186 4187
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4188 4189 4190 4191 4192 4193 4194
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4195 4196 4197 4198 4199 4200 4201
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4202 4203
}

4204
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4205 4206 4207
{
	struct mem_cgroup_eventfd_list *ev;

4208 4209
	spin_lock(&memcg_oom_lock);

4210
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4211
		eventfd_signal(ev->eventfd, 1);
4212 4213

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4214 4215 4216
	return 0;
}

4217
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4218
{
K
KAMEZAWA Hiroyuki 已提交
4219 4220
	struct mem_cgroup *iter;

4221
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4222
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4223 4224
}

4225
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4226
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4227
{
4228 4229
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4230 4231
	unsigned long threshold;
	unsigned long usage;
4232
	int i, size, ret;
4233

4234
	ret = page_counter_memparse(args, &threshold);
4235 4236 4237 4238
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4239

4240
	if (type == _MEM) {
4241
		thresholds = &memcg->thresholds;
4242
		usage = mem_cgroup_usage(memcg, false);
4243
	} else if (type == _MEMSWAP) {
4244
		thresholds = &memcg->memsw_thresholds;
4245
		usage = mem_cgroup_usage(memcg, true);
4246
	} else
4247 4248 4249
		BUG();

	/* Check if a threshold crossed before adding a new one */
4250
	if (thresholds->primary)
4251 4252
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4253
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4254 4255

	/* Allocate memory for new array of thresholds */
4256
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4257
			GFP_KERNEL);
4258
	if (!new) {
4259 4260 4261
		ret = -ENOMEM;
		goto unlock;
	}
4262
	new->size = size;
4263 4264

	/* Copy thresholds (if any) to new array */
4265 4266
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4267
				sizeof(struct mem_cgroup_threshold));
4268 4269
	}

4270
	/* Add new threshold */
4271 4272
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4273 4274

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4275
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4276 4277 4278
			compare_thresholds, NULL);

	/* Find current threshold */
4279
	new->current_threshold = -1;
4280
	for (i = 0; i < size; i++) {
4281
		if (new->entries[i].threshold <= usage) {
4282
			/*
4283 4284
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4285 4286
			 * it here.
			 */
4287
			++new->current_threshold;
4288 4289
		} else
			break;
4290 4291
	}

4292 4293 4294 4295 4296
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4297

4298
	/* To be sure that nobody uses thresholds */
4299 4300 4301 4302 4303 4304 4305 4306
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4307
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4308 4309
	struct eventfd_ctx *eventfd, const char *args)
{
4310
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4311 4312
}

4313
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4314 4315
	struct eventfd_ctx *eventfd, const char *args)
{
4316
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4317 4318
}

4319
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4320
	struct eventfd_ctx *eventfd, enum res_type type)
4321
{
4322 4323
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4324
	unsigned long usage;
4325
	int i, j, size;
4326 4327

	mutex_lock(&memcg->thresholds_lock);
4328 4329

	if (type == _MEM) {
4330
		thresholds = &memcg->thresholds;
4331
		usage = mem_cgroup_usage(memcg, false);
4332
	} else if (type == _MEMSWAP) {
4333
		thresholds = &memcg->memsw_thresholds;
4334
		usage = mem_cgroup_usage(memcg, true);
4335
	} else
4336 4337
		BUG();

4338 4339 4340
	if (!thresholds->primary)
		goto unlock;

4341 4342 4343 4344
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4345 4346 4347
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4348 4349 4350
			size++;
	}

4351
	new = thresholds->spare;
4352

4353 4354
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4355 4356
		kfree(new);
		new = NULL;
4357
		goto swap_buffers;
4358 4359
	}

4360
	new->size = size;
4361 4362

	/* Copy thresholds and find current threshold */
4363 4364 4365
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4366 4367
			continue;

4368
		new->entries[j] = thresholds->primary->entries[i];
4369
		if (new->entries[j].threshold <= usage) {
4370
			/*
4371
			 * new->current_threshold will not be used
4372 4373 4374
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4375
			++new->current_threshold;
4376 4377 4378 4379
		}
		j++;
	}

4380
swap_buffers:
4381 4382
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4383 4384 4385 4386 4387 4388
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4389
	rcu_assign_pointer(thresholds->primary, new);
4390

4391
	/* To be sure that nobody uses thresholds */
4392
	synchronize_rcu();
4393
unlock:
4394 4395
	mutex_unlock(&memcg->thresholds_lock);
}
4396

4397
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4398 4399
	struct eventfd_ctx *eventfd)
{
4400
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4401 4402
}

4403
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4404 4405
	struct eventfd_ctx *eventfd)
{
4406
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4407 4408
}

4409
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4410
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4411 4412 4413 4414 4415 4416 4417
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4418
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4419 4420 4421 4422 4423

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4424
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4425
		eventfd_signal(eventfd, 1);
4426
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4427 4428 4429 4430

	return 0;
}

4431
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4432
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4433 4434 4435
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4436
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4437

4438
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4439 4440 4441 4442 4443 4444
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4445
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4446 4447
}

4448
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4449
{
4450
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4451

4452 4453
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4454 4455 4456
	return 0;
}

4457
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4458 4459
	struct cftype *cft, u64 val)
{
4460
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4461 4462

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4463
	if (!css->parent || !((val == 0) || (val == 1)))
4464 4465
		return -EINVAL;

4466
	memcg->oom_kill_disable = val;
4467
	if (!val)
4468
		memcg_oom_recover(memcg);
4469

4470 4471 4472
	return 0;
}

A
Andrew Morton 已提交
4473
#ifdef CONFIG_MEMCG_KMEM
4474
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4475
{
4476 4477
	int ret;

4478
	memcg->kmemcg_id = -1;
4479 4480 4481
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
4482

4483
	return mem_cgroup_sockets_init(memcg, ss);
4484
}
4485

4486
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4487
{
4488
	mem_cgroup_sockets_destroy(memcg);
4489
}
4490
#else
4491
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4492 4493 4494
{
	return 0;
}
G
Glauber Costa 已提交
4495

4496 4497 4498
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
4499 4500
#endif

4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4514 4515 4516 4517 4518
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4519
static void memcg_event_remove(struct work_struct *work)
4520
{
4521 4522
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4523
	struct mem_cgroup *memcg = event->memcg;
4524 4525 4526

	remove_wait_queue(event->wqh, &event->wait);

4527
	event->unregister_event(memcg, event->eventfd);
4528 4529 4530 4531 4532 4533

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4534
	css_put(&memcg->css);
4535 4536 4537 4538 4539 4540 4541
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4542 4543
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4544
{
4545 4546
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4547
	struct mem_cgroup *memcg = event->memcg;
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4560
		spin_lock(&memcg->event_list_lock);
4561 4562 4563 4564 4565 4566 4567 4568
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4569
		spin_unlock(&memcg->event_list_lock);
4570 4571 4572 4573 4574
	}

	return 0;
}

4575
static void memcg_event_ptable_queue_proc(struct file *file,
4576 4577
		wait_queue_head_t *wqh, poll_table *pt)
{
4578 4579
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4580 4581 4582 4583 4584 4585

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4586 4587
 * DO NOT USE IN NEW FILES.
 *
4588 4589 4590 4591 4592
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4593 4594
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4595
{
4596
	struct cgroup_subsys_state *css = of_css(of);
4597
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4598
	struct mem_cgroup_event *event;
4599 4600 4601 4602
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4603
	const char *name;
4604 4605 4606
	char *endp;
	int ret;

4607 4608 4609
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4610 4611
	if (*endp != ' ')
		return -EINVAL;
4612
	buf = endp + 1;
4613

4614
	cfd = simple_strtoul(buf, &endp, 10);
4615 4616
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4617
	buf = endp + 1;
4618 4619 4620 4621 4622

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4623
	event->memcg = memcg;
4624
	INIT_LIST_HEAD(&event->list);
4625 4626 4627
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4653 4654 4655 4656 4657
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4658 4659
	 *
	 * DO NOT ADD NEW FILES.
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672
	 */
	name = cfile.file->f_dentry->d_name.name;

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4673 4674
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4675 4676 4677 4678 4679
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4680
	/*
4681 4682 4683
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4684
	 */
4685 4686
	cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
					       &memory_cgrp_subsys);
4687
	ret = -EINVAL;
4688
	if (IS_ERR(cfile_css))
4689
		goto out_put_cfile;
4690 4691
	if (cfile_css != css) {
		css_put(cfile_css);
4692
		goto out_put_cfile;
4693
	}
4694

4695
	ret = event->register_event(memcg, event->eventfd, buf);
4696 4697 4698 4699 4700
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4701 4702 4703
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4704 4705 4706 4707

	fdput(cfile);
	fdput(efile);

4708
	return nbytes;
4709 4710

out_put_css:
4711
	css_put(css);
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
4724 4725
static struct cftype mem_cgroup_files[] = {
	{
4726
		.name = "usage_in_bytes",
4727
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4728
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4729
	},
4730 4731
	{
		.name = "max_usage_in_bytes",
4732
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4733
		.write = mem_cgroup_reset,
4734
		.read_u64 = mem_cgroup_read_u64,
4735
	},
B
Balbir Singh 已提交
4736
	{
4737
		.name = "limit_in_bytes",
4738
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4739
		.write = mem_cgroup_write,
4740
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4741
	},
4742 4743 4744
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4745
		.write = mem_cgroup_write,
4746
		.read_u64 = mem_cgroup_read_u64,
4747
	},
B
Balbir Singh 已提交
4748 4749
	{
		.name = "failcnt",
4750
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4751
		.write = mem_cgroup_reset,
4752
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4753
	},
4754 4755
	{
		.name = "stat",
4756
		.seq_show = memcg_stat_show,
4757
	},
4758 4759
	{
		.name = "force_empty",
4760
		.write = mem_cgroup_force_empty_write,
4761
	},
4762 4763 4764 4765 4766
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4767
	{
4768
		.name = "cgroup.event_control",		/* XXX: for compat */
4769
		.write = memcg_write_event_control,
4770 4771 4772
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4773 4774 4775 4776 4777
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4778 4779 4780 4781 4782
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4783 4784
	{
		.name = "oom_control",
4785
		.seq_show = mem_cgroup_oom_control_read,
4786
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4787 4788
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4789 4790 4791
	{
		.name = "pressure_level",
	},
4792 4793 4794
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4795
		.seq_show = memcg_numa_stat_show,
4796 4797
	},
#endif
4798 4799 4800 4801
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4802
		.write = mem_cgroup_write,
4803
		.read_u64 = mem_cgroup_read_u64,
4804 4805 4806 4807
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4808
		.read_u64 = mem_cgroup_read_u64,
4809 4810 4811 4812
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4813
		.write = mem_cgroup_reset,
4814
		.read_u64 = mem_cgroup_read_u64,
4815 4816 4817 4818
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4819
		.write = mem_cgroup_reset,
4820
		.read_u64 = mem_cgroup_read_u64,
4821
	},
4822 4823 4824
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4825
		.seq_show = mem_cgroup_slabinfo_read,
4826 4827
	},
#endif
4828
#endif
4829
	{ },	/* terminate */
4830
};
4831

4832 4833 4834 4835 4836
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4837
		.read_u64 = mem_cgroup_read_u64,
4838 4839 4840 4841
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4842
		.write = mem_cgroup_reset,
4843
		.read_u64 = mem_cgroup_read_u64,
4844 4845 4846 4847
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4848
		.write = mem_cgroup_write,
4849
		.read_u64 = mem_cgroup_read_u64,
4850 4851 4852 4853
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4854
		.write = mem_cgroup_reset,
4855
		.read_u64 = mem_cgroup_read_u64,
4856 4857 4858 4859
	},
	{ },	/* terminate */
};
#endif
4860
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4861 4862
{
	struct mem_cgroup_per_node *pn;
4863
	struct mem_cgroup_per_zone *mz;
4864
	int zone, tmp = node;
4865 4866 4867 4868 4869 4870 4871 4872
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4873 4874
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4875
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4876 4877
	if (!pn)
		return 1;
4878 4879 4880

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4881
		lruvec_init(&mz->lruvec);
4882 4883
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4884
		mz->memcg = memcg;
4885
	}
4886
	memcg->nodeinfo[node] = pn;
4887 4888 4889
	return 0;
}

4890
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4891
{
4892
	kfree(memcg->nodeinfo[node]);
4893 4894
}

4895 4896
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4897
	struct mem_cgroup *memcg;
4898
	size_t size;
4899

4900 4901
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4902

4903
	memcg = kzalloc(size, GFP_KERNEL);
4904
	if (!memcg)
4905 4906
		return NULL;

4907 4908
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4909
		goto out_free;
4910 4911
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4912 4913

out_free:
4914
	kfree(memcg);
4915
	return NULL;
4916 4917
}

4918
/*
4919 4920 4921 4922 4923 4924 4925 4926
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4927
 */
4928 4929

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4930
{
4931
	int node;
4932

4933
	mem_cgroup_remove_from_trees(memcg);
4934 4935 4936 4937 4938 4939

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
4951
	disarm_static_keys(memcg);
4952
	kfree(memcg);
4953
}
4954

4955 4956 4957
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4958
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4959
{
4960
	if (!memcg->memory.parent)
4961
		return NULL;
4962
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4963
}
G
Glauber Costa 已提交
4964
EXPORT_SYMBOL(parent_mem_cgroup);
4965

4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
4989
static struct cgroup_subsys_state * __ref
4990
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4991
{
4992
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4993
	long error = -ENOMEM;
4994
	int node;
B
Balbir Singh 已提交
4995

4996 4997
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4998
		return ERR_PTR(error);
4999

B
Bob Liu 已提交
5000
	for_each_node(node)
5001
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5002
			goto free_out;
5003

5004
	/* root ? */
5005
	if (parent_css == NULL) {
5006
		root_mem_cgroup = memcg;
5007 5008 5009
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
5010
	}
5011

5012 5013 5014 5015 5016
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5017
	vmpressure_init(&memcg->vmpressure);
5018 5019
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5020 5021 5022 5023 5024 5025 5026 5027 5028

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
5029
mem_cgroup_css_online(struct cgroup_subsys_state *css)
5030
{
5031
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5032
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
5033
	int ret;
5034

5035
	if (css->id > MEM_CGROUP_ID_MAX)
5036 5037
		return -ENOSPC;

T
Tejun Heo 已提交
5038
	if (!parent)
5039 5040
		return 0;

5041
	mutex_lock(&memcg_create_mutex);
5042 5043 5044 5045 5046 5047

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
5048 5049 5050
		page_counter_init(&memcg->memory, &parent->memory);
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
5051

5052
		/*
5053 5054
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
5055
		 */
5056
	} else {
5057 5058 5059
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
5060 5061 5062 5063 5064
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5065
		if (parent != root_mem_cgroup)
5066
			memory_cgrp_subsys.broken_hierarchy = true;
5067
	}
5068
	mutex_unlock(&memcg_create_mutex);
5069

5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
5082 5083
}

5084
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5085
{
5086
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5087
	struct mem_cgroup_event *event, *tmp;
5088 5089 5090 5091 5092 5093

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5094 5095
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5096 5097 5098
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5099
	spin_unlock(&memcg->event_list_lock);
5100

5101
	memcg_unregister_all_caches(memcg);
5102
	vmpressure_cleanup(&memcg->vmpressure);
5103 5104
}

5105
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5106
{
5107
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5108

5109
	memcg_destroy_kmem(memcg);
5110
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5111 5112
}

5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5130 5131 5132 5133
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
	memcg->soft_limit = 0;
5134 5135
}

5136
#ifdef CONFIG_MMU
5137
/* Handlers for move charge at task migration. */
5138
static int mem_cgroup_do_precharge(unsigned long count)
5139
{
5140
	int ret;
5141 5142

	/* Try a single bulk charge without reclaim first */
5143
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
5144
	if (!ret) {
5145 5146 5147
		mc.precharge += count;
		return ret;
	}
5148
	if (ret == -EINTR) {
5149
		cancel_charge(root_mem_cgroup, count);
5150 5151
		return ret;
	}
5152 5153

	/* Try charges one by one with reclaim */
5154
	while (count--) {
5155
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
5156 5157 5158
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
5159 5160
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
5161
		 */
5162
		if (ret == -EINTR)
5163
			cancel_charge(root_mem_cgroup, 1);
5164 5165
		if (ret)
			return ret;
5166
		mc.precharge++;
5167
		cond_resched();
5168
	}
5169
	return 0;
5170 5171 5172
}

/**
5173
 * get_mctgt_type - get target type of moving charge
5174 5175 5176
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5177
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5178 5179 5180 5181 5182 5183
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5184 5185 5186
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5187 5188 5189 5190 5191
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5192
	swp_entry_t	ent;
5193 5194 5195
};

enum mc_target_type {
5196
	MC_TARGET_NONE = 0,
5197
	MC_TARGET_PAGE,
5198
	MC_TARGET_SWAP,
5199 5200
};

D
Daisuke Nishimura 已提交
5201 5202
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5203
{
D
Daisuke Nishimura 已提交
5204
	struct page *page = vm_normal_page(vma, addr, ptent);
5205

D
Daisuke Nishimura 已提交
5206 5207 5208 5209
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5210
		if (!move_anon())
D
Daisuke Nishimura 已提交
5211
			return NULL;
5212 5213
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5214 5215 5216 5217 5218 5219 5220
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5221
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5222 5223 5224 5225 5226 5227 5228 5229
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5230 5231 5232 5233
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5234
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
5235 5236 5237 5238 5239
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5240 5241 5242 5243 5244 5245 5246
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5247

5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5267 5268
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
5281
#endif
5282 5283 5284
	return page;
}

5285
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5286 5287 5288 5289
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5290
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5291 5292 5293 5294 5295 5296
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5297 5298
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5299 5300

	if (!page && !ent.val)
5301
		return ret;
5302 5303 5304
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
5305 5306 5307
		 * Do only loose check w/o serialization.
		 * mem_cgroup_move_account() checks the pc is valid or
		 * not under LRU exclusion.
5308 5309 5310 5311 5312 5313 5314 5315 5316
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5317 5318
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
5319
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5320 5321 5322
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5323 5324 5325 5326
	}
	return ret;
}

5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
5341
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5362 5363 5364 5365 5366 5367 5368 5369
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5370
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5371 5372
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5373
		spin_unlock(ptl);
5374
		return 0;
5375
	}
5376

5377 5378
	if (pmd_trans_unstable(pmd))
		return 0;
5379 5380
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5381
		if (get_mctgt_type(vma, addr, *pte, NULL))
5382 5383 5384 5385
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5386 5387 5388
	return 0;
}

5389 5390 5391 5392 5393
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5394
	down_read(&mm->mmap_sem);
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5406
	up_read(&mm->mmap_sem);
5407 5408 5409 5410 5411 5412 5413 5414 5415

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5416 5417 5418 5419 5420
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5421 5422
}

5423 5424
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5425
{
5426 5427 5428
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5429
	/* we must uncharge all the leftover precharges from mc.to */
5430
	if (mc.precharge) {
5431
		cancel_charge(mc.to, mc.precharge);
5432 5433 5434 5435 5436 5437 5438
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5439
		cancel_charge(mc.from, mc.moved_charge);
5440
		mc.moved_charge = 0;
5441
	}
5442 5443 5444
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5445
		if (!mem_cgroup_is_root(mc.from))
5446
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5447

5448
		/*
5449 5450
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5451
		 */
5452
		if (!mem_cgroup_is_root(mc.to))
5453 5454
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5455
		css_put_many(&mc.from->css, mc.moved_swap);
5456

L
Li Zefan 已提交
5457
		/* we've already done css_get(mc.to) */
5458 5459
		mc.moved_swap = 0;
	}
5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5475
	spin_lock(&mc.lock);
5476 5477
	mc.from = NULL;
	mc.to = NULL;
5478
	spin_unlock(&mc.lock);
5479
	mem_cgroup_end_move(from);
5480 5481
}

5482
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5483
				 struct cgroup_taskset *tset)
5484
{
5485
	struct task_struct *p = cgroup_taskset_first(tset);
5486
	int ret = 0;
5487
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5488
	unsigned long move_charge_at_immigrate;
5489

5490 5491 5492 5493 5494 5495 5496
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
5497 5498 5499
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5500
		VM_BUG_ON(from == memcg);
5501 5502 5503 5504 5505

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5506 5507 5508 5509
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5510
			VM_BUG_ON(mc.moved_charge);
5511
			VM_BUG_ON(mc.moved_swap);
5512
			mem_cgroup_start_move(from);
5513
			spin_lock(&mc.lock);
5514
			mc.from = from;
5515
			mc.to = memcg;
5516
			mc.immigrate_flags = move_charge_at_immigrate;
5517
			spin_unlock(&mc.lock);
5518
			/* We set mc.moving_task later */
5519 5520 5521 5522

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5523 5524
		}
		mmput(mm);
5525 5526 5527 5528
	}
	return ret;
}

5529
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5530
				     struct cgroup_taskset *tset)
5531
{
5532
	mem_cgroup_clear_mc();
5533 5534
}

5535 5536 5537
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5538
{
5539 5540 5541 5542
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5543 5544 5545 5546
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5547

5548 5549 5550 5551 5552 5553 5554 5555 5556 5557
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5558
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5559
		if (mc.precharge < HPAGE_PMD_NR) {
5560
			spin_unlock(ptl);
5561 5562 5563 5564 5565 5566 5567 5568
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5569
							pc, mc.from, mc.to)) {
5570 5571 5572 5573 5574 5575 5576
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5577
		spin_unlock(ptl);
5578
		return 0;
5579 5580
	}

5581 5582
	if (pmd_trans_unstable(pmd))
		return 0;
5583 5584 5585 5586
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5587
		swp_entry_t ent;
5588 5589 5590 5591

		if (!mc.precharge)
			break;

5592
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5593 5594 5595 5596 5597
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5598
			if (!mem_cgroup_move_account(page, 1, pc,
5599
						     mc.from, mc.to)) {
5600
				mc.precharge--;
5601 5602
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5603 5604
			}
			putback_lru_page(page);
5605
put:			/* get_mctgt_type() gets the page */
5606 5607
			put_page(page);
			break;
5608 5609
		case MC_TARGET_SWAP:
			ent = target.ent;
5610
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5611
				mc.precharge--;
5612 5613 5614
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5615
			break;
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5630
		ret = mem_cgroup_do_precharge(1);
5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5674
	up_read(&mm->mmap_sem);
5675 5676
}

5677
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5678
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5679
{
5680
	struct task_struct *p = cgroup_taskset_first(tset);
5681
	struct mm_struct *mm = get_task_mm(p);
5682 5683

	if (mm) {
5684 5685
		if (mc.to)
			mem_cgroup_move_charge(mm);
5686 5687
		mmput(mm);
	}
5688 5689
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5690
}
5691
#else	/* !CONFIG_MMU */
5692
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5693
				 struct cgroup_taskset *tset)
5694 5695 5696
{
	return 0;
}
5697
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5698
				     struct cgroup_taskset *tset)
5699 5700
{
}
5701
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5702
				 struct cgroup_taskset *tset)
5703 5704 5705
{
}
#endif
B
Balbir Singh 已提交
5706

5707 5708
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5709 5710
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5711
 */
5712
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5713 5714
{
	/*
5715
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5716 5717 5718
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5719
	if (cgroup_on_dfl(root_css->cgroup))
5720
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
5721 5722
}

5723
struct cgroup_subsys memory_cgrp_subsys = {
5724
	.css_alloc = mem_cgroup_css_alloc,
5725
	.css_online = mem_cgroup_css_online,
5726 5727
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5728
	.css_reset = mem_cgroup_css_reset,
5729 5730
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5731
	.attach = mem_cgroup_move_task,
5732
	.bind = mem_cgroup_bind,
5733
	.legacy_cftypes = mem_cgroup_files,
5734
	.early_init = 0,
B
Balbir Singh 已提交
5735
};
5736

A
Andrew Morton 已提交
5737
#ifdef CONFIG_MEMCG_SWAP
5738 5739
static int __init enable_swap_account(char *s)
{
5740
	if (!strcmp(s, "1"))
5741
		really_do_swap_account = 1;
5742
	else if (!strcmp(s, "0"))
5743 5744 5745
		really_do_swap_account = 0;
	return 1;
}
5746
__setup("swapaccount=", enable_swap_account);
5747

5748 5749
static void __init memsw_file_init(void)
{
5750 5751
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
					  memsw_cgroup_files));
5752 5753 5754 5755 5756 5757 5758 5759
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
5760
}
5761

5762
#else
5763
static void __init enable_swap_cgroup(void)
5764 5765
{
}
5766
#endif
5767

5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820
#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct page_cgroup *pc;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	pc = lookup_page_cgroup(page);

	/* Readahead page, never charged */
	if (!PageCgroupUsed(pc))
		return;

	VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);

	oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
	VM_BUG_ON_PAGE(oldid, page);

	pc->flags &= ~PCG_MEMSW;
	css_get(&pc->mem_cgroup->css);
	mem_cgroup_swap_statistics(pc->mem_cgroup, true);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
5821
		if (!mem_cgroup_is_root(memcg))
5822
			page_counter_uncharge(&memcg->memsw, 1);
5823 5824 5825 5826 5827 5828 5829
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}
#endif

5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		struct page_cgroup *pc = lookup_page_cgroup(page);
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
		if (PageCgroupUsed(pc))
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5927 5928
	commit_charge(page, memcg, lrucare);

5929 5930 5931 5932 5933
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5934 5935 5936 5937
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5979 5980 5981 5982 5983 5984 5985
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_mem, unsigned long nr_memsw,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
	unsigned long flags;

5986 5987
	if (!mem_cgroup_is_root(memcg)) {
		if (nr_mem)
5988
			page_counter_uncharge(&memcg->memory, nr_mem);
5989
		if (nr_memsw)
5990
			page_counter_uncharge(&memcg->memsw, nr_memsw);
5991 5992
		memcg_oom_recover(memcg);
	}
5993 5994 5995 5996 5997 5998 5999 6000 6001

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
	__this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file);
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
6002 6003 6004

	if (!mem_cgroup_is_root(memcg))
		css_put_many(&memcg->css, max(nr_mem, nr_memsw));
6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_memsw = 0;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	unsigned long nr_mem = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;
		struct page_cgroup *pc;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

		pc = lookup_page_cgroup(page);
		if (!PageCgroupUsed(pc))
			continue;

		/*
		 * Nobody should be changing or seriously looking at
		 * pc->mem_cgroup and pc->flags at this point, we have
		 * fully exclusive access to the page.
		 */

		if (memcg != pc->mem_cgroup) {
			if (memcg) {
				uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
					       nr_anon, nr_file, nr_huge, page);
				pgpgout = nr_mem = nr_memsw = 0;
				nr_anon = nr_file = nr_huge = 0;
			}
			memcg = pc->mem_cgroup;
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

		if (pc->flags & PCG_MEM)
			nr_mem += nr_pages;
		if (pc->flags & PCG_MEMSW)
			nr_memsw += nr_pages;
		pc->flags = 0;

		pgpgout++;
	} while (next != page_list);

	if (memcg)
		uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
			       nr_anon, nr_file, nr_huge, page);
}

6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

6089
	/* Don't touch page->lru of any random page, pre-check: */
6090 6091 6092 6093
	pc = lookup_page_cgroup(page);
	if (!PageCgroupUsed(pc))
		return;

6094 6095 6096
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
6097

6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6109

6110 6111
	if (!list_empty(page_list))
		uncharge_list(page_list);
6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
 * @lrucare: both pages might be on the LRU already
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
	struct page_cgroup *pc;
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6135 6136
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6137 6138 6139 6140 6141 6142 6143 6144 6145

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
	pc = lookup_page_cgroup(newpage);
	if (PageCgroupUsed(pc))
		return;

6146 6147 6148 6149 6150 6151
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166
	pc = lookup_page_cgroup(oldpage);
	if (!PageCgroupUsed(pc))
		return;

	VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
	VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

	pc->flags = 0;

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

6167
	commit_charge(newpage, pc->mem_cgroup, lrucare);
6168 6169
}

6170
/*
6171 6172 6173 6174 6175 6176
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6177 6178 6179 6180
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6181
	enable_swap_cgroup();
6182
	mem_cgroup_soft_limit_tree_init();
6183
	memcg_stock_init();
6184 6185 6186
	return 0;
}
subsys_initcall(mem_cgroup_init);