memcontrol.c 175.1 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82
static int really_do_swap_account __initdata = 1;
#else
83
static int really_do_swap_account __initdata;
84 85
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
147 148 149 150
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
151
	struct mem_cgroup *last_visited;
152
	int last_dead_count;
M
Michal Hocko 已提交
153

154 155 156 157
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

158 159 160 161
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
162
	struct lruvec		lruvec;
163
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
164

165 166
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

167 168 169 170
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
171
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
172
						/* use container_of	   */
173 174 175 176 177 178
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

199 200 201 202 203
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
204
/* For threshold */
205
struct mem_cgroup_threshold_ary {
206
	/* An array index points to threshold just below or equal to usage. */
207
	int current_threshold;
208 209 210 211 212
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
213 214 215 216 217 218 219 220 221 222 223 224

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
225 226 227 228 229
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
230

231 232 233
/*
 * cgroup_event represents events which userspace want to receive.
 */
234
struct mem_cgroup_event {
235
	/*
236
	 * memcg which the event belongs to.
237
	 */
238
	struct mem_cgroup *memcg;
239 240 241 242 243 244 245 246
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
247 248 249 250 251
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
252
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
253
			      struct eventfd_ctx *eventfd, const char *args);
254 255 256 257 258
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
259
	void (*unregister_event)(struct mem_cgroup *memcg,
260
				 struct eventfd_ctx *eventfd);
261 262 263 264 265 266 267 268 269 270
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

271 272
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273

B
Balbir Singh 已提交
274 275 276 277 278 279 280
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 282 283
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
284 285 286 287 288 289 290
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
291

292 293 294
	/* vmpressure notifications */
	struct vmpressure vmpressure;

295 296 297
	/* css_online() has been completed */
	int initialized;

298 299 300 301
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
302

303 304 305 306
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
307 308 309 310
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
311
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
312 313 314

	bool		oom_lock;
	atomic_t	under_oom;
315
	atomic_t	oom_wakeups;
316

317
	int	swappiness;
318 319
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
320

321 322 323
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

324 325 326 327
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
328
	struct mem_cgroup_thresholds thresholds;
329

330
	/* thresholds for mem+swap usage. RCU-protected */
331
	struct mem_cgroup_thresholds memsw_thresholds;
332

K
KAMEZAWA Hiroyuki 已提交
333 334
	/* For oom notifier event fd */
	struct list_head oom_notify;
335

336 337 338 339
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
340
	unsigned long move_charge_at_immigrate;
341 342 343 344
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
345 346
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
347
	/*
348
	 * percpu counter.
349
	 */
350
	struct mem_cgroup_stat_cpu __percpu *stat;
351 352 353 354 355 356
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
357

M
Michal Hocko 已提交
358
	atomic_t	dead_count;
M
Michal Hocko 已提交
359
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
360
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
361
#endif
362
#if defined(CONFIG_MEMCG_KMEM)
363 364
	/* analogous to slab_common's slab_caches list, but per-memcg;
	 * protected by memcg_slab_mutex */
365 366 367 368
	struct list_head memcg_slab_caches;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
369 370 371 372 373 374 375

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
376

377 378 379 380
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

381 382
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
383 384
};

385 386
/* internal only representation about the status of kmem accounting. */
enum {
387
	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
388
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
389 390 391 392 393 394 395
};

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
396 397 398 399 400 401 402 403

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
404 405 406 407 408
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
409 410 411 412 413 414 415 416 417
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
418 419
#endif

420 421
/* Stuffs for move charges at task migration. */
/*
422 423
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
424 425
 */
enum move_type {
426
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
427
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
428 429 430
	NR_MOVE_TYPE,
};

431 432
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
433
	spinlock_t	  lock; /* for from, to */
434 435
	struct mem_cgroup *from;
	struct mem_cgroup *to;
436
	unsigned long immigrate_flags;
437
	unsigned long precharge;
438
	unsigned long moved_charge;
439
	unsigned long moved_swap;
440 441 442
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
443
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
444 445
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
446

D
Daisuke Nishimura 已提交
447 448
static bool move_anon(void)
{
449
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
450 451
}

452 453
static bool move_file(void)
{
454
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
455 456
}

457 458 459 460
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
461
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
462
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
463

464 465
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
466
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
467
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
468
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
469 470 471
	NR_CHARGE_TYPE,
};

472
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
473 474 475 476
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
477
	_KMEM,
G
Glauber Costa 已提交
478 479
};

480 481
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
482
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
483 484
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
485

486 487 488 489 490 491 492 493
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

494 495 496 497 498 499 500
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

501 502
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
503
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
504 505
}

506 507 508 509 510 511 512 513 514 515 516 517 518
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

519 520 521 522 523
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

524 525 526 527 528 529
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
530 531
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
532
	return memcg->css.id;
L
Li Zefan 已提交
533 534 535 536 537 538
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

539
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
540 541 542
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
543
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
544
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
545 546 547

void sock_update_memcg(struct sock *sk)
{
548
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
549
		struct mem_cgroup *memcg;
550
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
551 552 553

		BUG_ON(!sk->sk_prot->proto_cgroup);

554 555 556 557 558 559 560 561 562 563
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
564
			css_get(&sk->sk_cgrp->memcg->css);
565 566 567
			return;
		}

G
Glauber Costa 已提交
568 569
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
570
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
571
		if (!mem_cgroup_is_root(memcg) &&
572 573
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
574
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
575 576 577 578 579 580 581 582
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
583
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
584 585 586
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
587
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
588 589
	}
}
G
Glauber Costa 已提交
590 591 592 593 594 595

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

596
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
597 598
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
599

600 601
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
602
	if (!memcg_proto_activated(&memcg->tcp_mem))
603 604 605 606 607 608 609 610 611
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

612
#ifdef CONFIG_MEMCG_KMEM
613 614
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
615 616 617 618 619
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
620 621 622 623 624 625
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
626 627
int memcg_limited_groups_array_size;

628 629 630 631 632 633
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
634
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
635 636
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
637
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
638 639 640
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
641
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
642

643 644 645 646 647 648
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
649
struct static_key memcg_kmem_enabled_key;
650
EXPORT_SYMBOL(memcg_kmem_enabled_key);
651

652 653
static void memcg_free_cache_id(int id);

654 655
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
656
	if (memcg_kmem_is_active(memcg)) {
657
		static_key_slow_dec(&memcg_kmem_enabled_key);
658
		memcg_free_cache_id(memcg->kmemcg_id);
659
	}
660 661 662 663 664
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
665 666 667 668 669 670 671 672 673 674 675 676 677
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

678
static void drain_all_stock_async(struct mem_cgroup *memcg);
679

680
static struct mem_cgroup_per_zone *
681
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
682
{
683 684 685
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

686
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
687 688
}

689
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
690
{
691
	return &memcg->css;
692 693
}

694
static struct mem_cgroup_per_zone *
695
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
696
{
697 698
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
699

700
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
701 702
}

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

718 719 720
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
					 unsigned long long new_usage_in_excess)
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

750 751
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
752 753 754 755 756 757 758
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

759 760
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
761
{
762 763 764
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
765
	__mem_cgroup_remove_exceeded(mz, mctz);
766
	spin_unlock_irqrestore(&mctz->lock, flags);
767 768 769 770 771 772 773 774 775
}


static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
	unsigned long long excess;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

776
	mctz = soft_limit_tree_from_page(page);
777 778 779 780 781
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
782
		mz = mem_cgroup_page_zoneinfo(memcg, page);
783 784 785 786 787 788
		excess = res_counter_soft_limit_excess(&memcg->res);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
789 790 791
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
792 793
			/* if on-tree, remove it */
			if (mz->on_tree)
794
				__mem_cgroup_remove_exceeded(mz, mctz);
795 796 797 798
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
799
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
800
			spin_unlock_irqrestore(&mctz->lock, flags);
801 802 803 804 805 806 807
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
808 809
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
810

811 812 813 814
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
815
			mem_cgroup_remove_exceeded(mz, mctz);
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
838
	__mem_cgroup_remove_exceeded(mz, mctz);
839
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
840
	    !css_tryget_online(&mz->memcg->css))
841 842 843 844 845 846 847 848 849 850
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

851
	spin_lock_irq(&mctz->lock);
852
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
853
	spin_unlock_irq(&mctz->lock);
854 855 856
	return mz;
}

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
876
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
877
				 enum mem_cgroup_stat_index idx)
878
{
879
	long val = 0;
880 881
	int cpu;

882 883
	get_online_cpus();
	for_each_online_cpu(cpu)
884
		val += per_cpu(memcg->stat->count[idx], cpu);
885
#ifdef CONFIG_HOTPLUG_CPU
886 887 888
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
889 890
#endif
	put_online_cpus();
891 892 893
	return val;
}

894
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
895 896 897 898 899
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

900
	get_online_cpus();
901
	for_each_online_cpu(cpu)
902
		val += per_cpu(memcg->stat->events[idx], cpu);
903
#ifdef CONFIG_HOTPLUG_CPU
904 905 906
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
907
#endif
908
	put_online_cpus();
909 910 911
	return val;
}

912
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
913
					 struct page *page,
914
					 int nr_pages)
915
{
916 917 918 919
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
920
	if (PageAnon(page))
921
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
922
				nr_pages);
923
	else
924
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
925
				nr_pages);
926

927 928 929 930
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

931 932
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
933
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
934
	else {
935
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
936 937
		nr_pages = -nr_pages; /* for event */
	}
938

939
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
940 941
}

942
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
943 944 945 946 947 948 949
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

950 951 952
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
953
{
954
	unsigned long nr = 0;
955 956
	int zid;

957
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
958

959 960 961 962 963 964 965 966 967 968 969 970
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
971
}
972

973
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
974
			unsigned int lru_mask)
975
{
976
	unsigned long nr = 0;
977
	int nid;
978

979
	for_each_node_state(nid, N_MEMORY)
980 981
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
982 983
}

984 985
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
986 987 988
{
	unsigned long val, next;

989
	val = __this_cpu_read(memcg->stat->nr_page_events);
990
	next = __this_cpu_read(memcg->stat->targets[target]);
991
	/* from time_after() in jiffies.h */
992 993 994 995 996
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
997 998 999
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
1000 1001 1002 1003 1004 1005 1006 1007
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1008
	}
1009
	return false;
1010 1011 1012 1013 1014 1015
}

/*
 * Check events in order.
 *
 */
1016
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1017 1018
{
	/* threshold event is triggered in finer grain than soft limit */
1019 1020
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1021
		bool do_softlimit;
1022
		bool do_numainfo __maybe_unused;
1023

1024 1025
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1026 1027 1028 1029
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
1030
		mem_cgroup_threshold(memcg);
1031 1032
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1033
#if MAX_NUMNODES > 1
1034
		if (unlikely(do_numainfo))
1035
			atomic_inc(&memcg->numainfo_events);
1036
#endif
1037
	}
1038 1039
}

1040
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1041
{
1042 1043 1044 1045 1046 1047 1048 1049
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1050
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1051 1052
}

1053
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1054
{
1055
	struct mem_cgroup *memcg = NULL;
1056

1057 1058
	rcu_read_lock();
	do {
1059 1060 1061 1062 1063 1064
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1065
			memcg = root_mem_cgroup;
1066 1067 1068 1069 1070
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1071
	} while (!css_tryget_online(&memcg->css));
1072
	rcu_read_unlock();
1073
	return memcg;
1074 1075
}

1076 1077 1078 1079 1080 1081 1082
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1083
		struct mem_cgroup *last_visited)
1084
{
1085
	struct cgroup_subsys_state *prev_css, *next_css;
1086

1087
	prev_css = last_visited ? &last_visited->css : NULL;
1088
skip_node:
1089
	next_css = css_next_descendant_pre(prev_css, &root->css);
1090 1091 1092 1093 1094 1095 1096

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
1097 1098 1099 1100 1101 1102 1103 1104
	 *
	 * We do not take a reference on the root of the tree walk
	 * because we might race with the root removal when it would
	 * be the only node in the iterated hierarchy and mem_cgroup_iter
	 * would end up in an endless loop because it expects that at
	 * least one valid node will be returned. Root cannot disappear
	 * because caller of the iterator should hold it already so
	 * skipping css reference should be safe.
1105
	 */
1106
	if (next_css) {
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
		struct mem_cgroup *memcg = mem_cgroup_from_css(next_css);

		if (next_css == &root->css)
			return memcg;

		if (css_tryget_online(next_css)) {
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				return memcg;
			css_put(next_css);
		}
1122 1123 1124

		prev_css = next_css;
		goto skip_node;
1125 1126 1127 1128 1129
	}

	return NULL;
}

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
1158 1159 1160 1161 1162 1163 1164 1165

		/*
		 * We cannot take a reference to root because we might race
		 * with root removal and returning NULL would end up in
		 * an endless loop on the iterator user level when root
		 * would be returned all the time.
		 */
		if (position && position != root &&
1166
		    !css_tryget_online(&position->css))
1167 1168 1169 1170 1171 1172 1173 1174
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
1175
				   struct mem_cgroup *root,
1176 1177
				   int sequence)
{
1178 1179
	/* root reference counting symmetric to mem_cgroup_iter_load */
	if (last_visited && last_visited != root)
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1209
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1210
				   struct mem_cgroup *prev,
1211
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1212
{
1213
	struct mem_cgroup *memcg = NULL;
1214
	struct mem_cgroup *last_visited = NULL;
1215

1216 1217
	if (mem_cgroup_disabled())
		return NULL;
1218

1219 1220
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1221

1222
	if (prev && !reclaim)
1223
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1224

1225 1226
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1227
			goto out_css_put;
1228
		return root;
1229
	}
K
KAMEZAWA Hiroyuki 已提交
1230

1231
	rcu_read_lock();
1232
	while (!memcg) {
1233
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1234
		int uninitialized_var(seq);
1235

1236 1237 1238
		if (reclaim) {
			struct mem_cgroup_per_zone *mz;

1239
			mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1240
			iter = &mz->reclaim_iter[reclaim->priority];
1241
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1242
				iter->last_visited = NULL;
1243 1244
				goto out_unlock;
			}
M
Michal Hocko 已提交
1245

1246
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1247
		}
K
KAMEZAWA Hiroyuki 已提交
1248

1249
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1250

1251
		if (reclaim) {
1252 1253
			mem_cgroup_iter_update(iter, last_visited, memcg, root,
					seq);
1254

M
Michal Hocko 已提交
1255
			if (!memcg)
1256 1257 1258 1259
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1260

1261
		if (prev && !memcg)
1262
			goto out_unlock;
1263
	}
1264 1265
out_unlock:
	rcu_read_unlock();
1266 1267 1268 1269
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1270
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1271
}
K
KAMEZAWA Hiroyuki 已提交
1272

1273 1274 1275 1276 1277 1278 1279
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1280 1281 1282 1283 1284 1285
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1286

1287 1288 1289 1290 1291 1292
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1293
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1294
	     iter != NULL;				\
1295
	     iter = mem_cgroup_iter(root, iter, NULL))
1296

1297
#define for_each_mem_cgroup(iter)			\
1298
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1299
	     iter != NULL;				\
1300
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1301

1302
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1303
{
1304
	struct mem_cgroup *memcg;
1305 1306

	rcu_read_lock();
1307 1308
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1309 1310 1311 1312
		goto out;

	switch (idx) {
	case PGFAULT:
1313 1314 1315 1316
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1317 1318 1319 1320 1321 1322 1323
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1324
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1325

1326 1327 1328
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1329
 * @memcg: memcg of the wanted lruvec
1330 1331 1332 1333 1334 1335 1336 1337 1338
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1339
	struct lruvec *lruvec;
1340

1341 1342 1343 1344
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1345

1346
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1357 1358 1359
}

/**
1360
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1361
 * @page: the page
1362
 * @zone: zone of the page
1363
 */
1364
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1365 1366
{
	struct mem_cgroup_per_zone *mz;
1367 1368
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1369
	struct lruvec *lruvec;
1370

1371 1372 1373 1374
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1375

K
KAMEZAWA Hiroyuki 已提交
1376
	pc = lookup_page_cgroup(page);
1377
	memcg = pc->mem_cgroup;
1378 1379

	/*
1380
	 * Surreptitiously switch any uncharged offlist page to root:
1381 1382 1383 1384 1385 1386 1387
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1388
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1389 1390
		pc->mem_cgroup = memcg = root_mem_cgroup;

1391
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1402
}
1403

1404
/**
1405 1406 1407 1408
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1409
 *
1410 1411
 * This function must be called when a page is added to or removed from an
 * lru list.
1412
 */
1413 1414
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1415 1416
{
	struct mem_cgroup_per_zone *mz;
1417
	unsigned long *lru_size;
1418 1419 1420 1421

	if (mem_cgroup_disabled())
		return;

1422 1423 1424 1425
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1426
}
1427

1428
/*
1429
 * Checks whether given mem is same or in the root_mem_cgroup's
1430 1431
 * hierarchy subtree
 */
1432 1433
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1434
{
1435 1436
	if (root_memcg == memcg)
		return true;
1437
	if (!root_memcg->use_hierarchy || !memcg)
1438
		return false;
1439
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1440 1441 1442 1443 1444 1445 1446
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1447
	rcu_read_lock();
1448
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1449 1450
	rcu_read_unlock();
	return ret;
1451 1452
}

1453 1454
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1455
{
1456
	struct mem_cgroup *curr = NULL;
1457
	struct task_struct *p;
1458
	bool ret;
1459

1460
	p = find_lock_task_mm(task);
1461
	if (p) {
1462
		curr = get_mem_cgroup_from_mm(p->mm);
1463 1464 1465 1466 1467 1468 1469
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1470
		rcu_read_lock();
1471 1472 1473
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1474
		rcu_read_unlock();
1475
	}
1476
	/*
1477
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1478
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1479 1480
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1481
	 */
1482
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1483
	css_put(&curr->css);
1484 1485 1486
	return ret;
}

1487
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1488
{
1489
	unsigned long inactive_ratio;
1490
	unsigned long inactive;
1491
	unsigned long active;
1492
	unsigned long gb;
1493

1494 1495
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1496

1497 1498 1499 1500 1501 1502
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1503
	return inactive * inactive_ratio < active;
1504 1505
}

1506 1507 1508
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1509
/**
1510
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1511
 * @memcg: the memory cgroup
1512
 *
1513
 * Returns the maximum amount of memory @mem can be charged with, in
1514
 * pages.
1515
 */
1516
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1517
{
1518 1519
	unsigned long long margin;

1520
	margin = res_counter_margin(&memcg->res);
1521
	if (do_swap_account)
1522
		margin = min(margin, res_counter_margin(&memcg->memsw));
1523
	return margin >> PAGE_SHIFT;
1524 1525
}

1526
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1527 1528
{
	/* root ? */
1529
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1530 1531
		return vm_swappiness;

1532
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1533 1534
}

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1549 1550 1551 1552

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1553
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1554
{
1555
	atomic_inc(&memcg_moving);
1556
	atomic_inc(&memcg->moving_account);
1557 1558 1559
	synchronize_rcu();
}

1560
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1561
{
1562 1563 1564 1565
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1566 1567
	if (memcg) {
		atomic_dec(&memcg_moving);
1568
		atomic_dec(&memcg->moving_account);
1569
	}
1570
}
1571

1572
/*
Q
Qiang Huang 已提交
1573
 * A routine for checking "mem" is under move_account() or not.
1574
 *
Q
Qiang Huang 已提交
1575 1576 1577
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1578
 */
1579
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1580
{
1581 1582
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1583
	bool ret = false;
1584 1585 1586 1587 1588 1589 1590 1591 1592
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1593

1594 1595
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1596 1597
unlock:
	spin_unlock(&mc.lock);
1598 1599 1600
	return ret;
}

1601
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1602 1603
{
	if (mc.moving_task && current != mc.moving_task) {
1604
		if (mem_cgroup_under_move(memcg)) {
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1634
#define K(x) ((x) << (PAGE_SHIFT-10))
1635
/**
1636
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1637 1638 1639 1640 1641 1642 1643 1644
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1645
	/* oom_info_lock ensures that parallel ooms do not interleave */
1646
	static DEFINE_MUTEX(oom_info_lock);
1647 1648
	struct mem_cgroup *iter;
	unsigned int i;
1649

1650
	if (!p)
1651 1652
		return;

1653
	mutex_lock(&oom_info_lock);
1654 1655
	rcu_read_lock();

T
Tejun Heo 已提交
1656 1657 1658 1659 1660
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	pr_info(" killed as a result of limit of ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_info("\n");
1661 1662 1663

	rcu_read_unlock();

1664
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1665 1666 1667
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1668
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1669 1670 1671
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1672
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1673 1674 1675
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1676 1677

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1678 1679
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1695
	mutex_unlock(&oom_info_lock);
1696 1697
}

1698 1699 1700 1701
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1702
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1703 1704
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1705 1706
	struct mem_cgroup *iter;

1707
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1708
		num++;
1709 1710 1711
	return num;
}

D
David Rientjes 已提交
1712 1713 1714
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1715
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1716 1717 1718
{
	u64 limit;

1719 1720
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1721
	/*
1722
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1723
	 */
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1738 1739
}

1740 1741
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1742 1743 1744 1745 1746 1747 1748
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1749
	/*
1750 1751 1752
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1753
	 */
1754
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1755 1756 1757 1758 1759
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1760 1761
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1762
		struct css_task_iter it;
1763 1764
		struct task_struct *task;

1765 1766
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1779
				css_task_iter_end(&it);
1780 1781 1782 1783 1784 1785 1786 1787
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1800
		}
1801
		css_task_iter_end(&it);
1802 1803 1804 1805 1806 1807 1808 1809 1810
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1847 1848
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1849
 * @memcg: the target memcg
1850 1851 1852 1853 1854 1855 1856
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1857
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1858 1859
		int nid, bool noswap)
{
1860
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1861 1862 1863
		return true;
	if (noswap || !total_swap_pages)
		return false;
1864
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1865 1866 1867 1868
		return true;
	return false;

}
1869
#if MAX_NUMNODES > 1
1870 1871 1872 1873 1874 1875 1876

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1877
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1878 1879
{
	int nid;
1880 1881 1882 1883
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1884
	if (!atomic_read(&memcg->numainfo_events))
1885
		return;
1886
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1887 1888 1889
		return;

	/* make a nodemask where this memcg uses memory from */
1890
	memcg->scan_nodes = node_states[N_MEMORY];
1891

1892
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1893

1894 1895
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1896
	}
1897

1898 1899
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1914
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1915 1916 1917
{
	int node;

1918 1919
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1920

1921
	node = next_node(node, memcg->scan_nodes);
1922
	if (node == MAX_NUMNODES)
1923
		node = first_node(memcg->scan_nodes);
1924 1925 1926 1927 1928 1929 1930 1931 1932
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1933
	memcg->last_scanned_node = node;
1934 1935 1936
	return node;
}

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

1972
#else
1973
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1974 1975 1976
{
	return 0;
}
1977

1978 1979 1980 1981
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
1982 1983
#endif

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
			break;
2032
	}
2033 2034
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
2035 2036
}

2037 2038 2039 2040 2041 2042
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

2043 2044
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
2045 2046 2047 2048
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
2049
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2050
{
2051
	struct mem_cgroup *iter, *failed = NULL;
2052

2053 2054
	spin_lock(&memcg_oom_lock);

2055
	for_each_mem_cgroup_tree(iter, memcg) {
2056
		if (iter->oom_lock) {
2057 2058 2059 2060 2061
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2062 2063
			mem_cgroup_iter_break(memcg, iter);
			break;
2064 2065
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2066
	}
K
KAMEZAWA Hiroyuki 已提交
2067

2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
2079
		}
2080 2081
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2082 2083 2084 2085

	spin_unlock(&memcg_oom_lock);

	return !failed;
2086
}
2087

2088
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2089
{
K
KAMEZAWA Hiroyuki 已提交
2090 2091
	struct mem_cgroup *iter;

2092
	spin_lock(&memcg_oom_lock);
2093
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2094
	for_each_mem_cgroup_tree(iter, memcg)
2095
		iter->oom_lock = false;
2096
	spin_unlock(&memcg_oom_lock);
2097 2098
}

2099
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2100 2101 2102
{
	struct mem_cgroup *iter;

2103
	for_each_mem_cgroup_tree(iter, memcg)
2104 2105 2106
		atomic_inc(&iter->under_oom);
}

2107
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2108 2109 2110
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2111 2112 2113 2114 2115
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2116
	for_each_mem_cgroup_tree(iter, memcg)
2117
		atomic_add_unless(&iter->under_oom, -1, 0);
2118 2119
}

K
KAMEZAWA Hiroyuki 已提交
2120 2121
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2122
struct oom_wait_info {
2123
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2124 2125 2126 2127 2128 2129
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2130 2131
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2132 2133 2134
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2135
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2136 2137

	/*
2138
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2139 2140
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2141 2142
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2143 2144 2145 2146
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2147
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2148
{
2149
	atomic_inc(&memcg->oom_wakeups);
2150 2151
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2152 2153
}

2154
static void memcg_oom_recover(struct mem_cgroup *memcg)
2155
{
2156 2157
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2158 2159
}

2160
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2161
{
2162 2163
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2164
	/*
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2177
	 */
2178 2179 2180 2181
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2182 2183 2184 2185
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2186
 * @handle: actually kill/wait or just clean up the OOM state
2187
 *
2188 2189
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2190
 *
2191
 * Memcg supports userspace OOM handling where failed allocations must
2192 2193 2194 2195
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2196
 * the end of the page fault to complete the OOM handling.
2197 2198
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2199
 * completed, %false otherwise.
2200
 */
2201
bool mem_cgroup_oom_synchronize(bool handle)
2202
{
2203
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2204
	struct oom_wait_info owait;
2205
	bool locked;
2206 2207 2208

	/* OOM is global, do not handle */
	if (!memcg)
2209
		return false;
2210

2211 2212
	if (!handle)
		goto cleanup;
2213 2214 2215 2216 2217 2218

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2219

2220
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2234
		schedule();
2235 2236 2237 2238 2239
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2240 2241 2242 2243 2244 2245 2246 2247
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2248 2249
cleanup:
	current->memcg_oom.memcg = NULL;
2250
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2251
	return true;
2252 2253
}

2254
/*
2255
 * Used to update mapped file or writeback or other statistics.
2256 2257 2258
 *
 * Notes: Race condition
 *
2259 2260 2261
 * Charging occurs during page instantiation, while the page is
 * unmapped and locked in page migration, or while the page table is
 * locked in THP migration.  No race is possible.
2262
 *
2263
 * Uncharge happens to pages with zero references, no race possible.
2264
 *
2265 2266
 * Charge moving between groups is protected by checking mm->moving
 * account and taking the move_lock in the slowpath.
2267
 */
2268

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2282
	 * need to take move_lock_mem_cgroup(). Because we already hold
2283
	 * rcu_read_lock(), any calls to move_account will be delayed until
Q
Qiang Huang 已提交
2284
	 * rcu_read_unlock().
2285
	 */
Q
Qiang Huang 已提交
2286 2287
	VM_BUG_ON(!rcu_read_lock_held());
	if (atomic_read(&memcg->moving_account) <= 0)
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2305
	 * should take move_lock_mem_cgroup().
2306 2307 2308 2309
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2310
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2311
				 enum mem_cgroup_stat_index idx, int val)
2312
{
2313
	struct mem_cgroup *memcg;
2314
	struct page_cgroup *pc = lookup_page_cgroup(page);
2315
	unsigned long uninitialized_var(flags);
2316

2317
	if (mem_cgroup_disabled())
2318
		return;
2319

2320
	VM_BUG_ON(!rcu_read_lock_held());
2321 2322
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2323
		return;
2324

2325
	this_cpu_add(memcg->stat->count[idx], val);
2326
}
2327

2328 2329 2330 2331
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2332
#define CHARGE_BATCH	32U
2333 2334
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2335
	unsigned int nr_pages;
2336
	struct work_struct work;
2337
	unsigned long flags;
2338
#define FLUSHING_CACHED_CHARGE	0
2339 2340
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2341
static DEFINE_MUTEX(percpu_charge_mutex);
2342

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2353
 */
2354
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2355 2356 2357 2358
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2359 2360 2361
	if (nr_pages > CHARGE_BATCH)
		return false;

2362
	stock = &get_cpu_var(memcg_stock);
2363 2364
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2378 2379 2380 2381
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2382
		if (do_swap_account)
2383 2384
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2395
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2396
	drain_stock(stock);
2397
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2398 2399
}

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2411 2412
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2413
 * This will be consumed by consume_stock() function, later.
2414
 */
2415
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2416 2417 2418
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2419
	if (stock->cached != memcg) { /* reset if necessary */
2420
		drain_stock(stock);
2421
		stock->cached = memcg;
2422
	}
2423
	stock->nr_pages += nr_pages;
2424 2425 2426 2427
	put_cpu_var(memcg_stock);
}

/*
2428
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2429 2430
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2431
 */
2432
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2433
{
2434
	int cpu, curcpu;
2435

2436 2437
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2438
	curcpu = get_cpu();
2439 2440
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2441
		struct mem_cgroup *memcg;
2442

2443 2444
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2445
			continue;
2446
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2447
			continue;
2448 2449 2450 2451 2452 2453
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2454
	}
2455
	put_cpu();
2456 2457 2458 2459 2460 2461

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2462
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2463 2464 2465
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2466
	put_online_cpus();
2467 2468 2469 2470 2471 2472 2473 2474
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2475
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2476
{
2477 2478 2479 2480 2481
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2482
	drain_all_stock(root_memcg, false);
2483
	mutex_unlock(&percpu_charge_mutex);
2484 2485 2486
}

/* This is a synchronous drain interface. */
2487
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2488 2489
{
	/* called when force_empty is called */
2490
	mutex_lock(&percpu_charge_mutex);
2491
	drain_all_stock(root_memcg, true);
2492
	mutex_unlock(&percpu_charge_mutex);
2493 2494
}

2495 2496 2497 2498
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2499
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2500 2501 2502
{
	int i;

2503
	spin_lock(&memcg->pcp_counter_lock);
2504
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2505
		long x = per_cpu(memcg->stat->count[i], cpu);
2506

2507 2508
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2509
	}
2510
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2511
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2512

2513 2514
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2515
	}
2516
	spin_unlock(&memcg->pcp_counter_lock);
2517 2518
}

2519
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2520 2521 2522 2523 2524
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2525
	struct mem_cgroup *iter;
2526

2527
	if (action == CPU_ONLINE)
2528 2529
		return NOTIFY_OK;

2530
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2531
		return NOTIFY_OK;
2532

2533
	for_each_mem_cgroup(iter)
2534 2535
		mem_cgroup_drain_pcp_counter(iter, cpu);

2536 2537 2538 2539 2540
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2541 2542
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2543
{
2544
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2545
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2546 2547 2548 2549 2550
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long nr_reclaimed;
	unsigned long flags = 0;
	unsigned long long size;
2551
	int ret = 0;
2552

2553 2554
	if (mem_cgroup_is_root(memcg))
		goto done;
2555
retry:
2556 2557
	if (consume_stock(memcg, nr_pages))
		goto done;
2558

2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
	size = batch * PAGE_SIZE;
	if (!res_counter_charge(&memcg->res, size, &fail_res)) {
		if (!do_swap_account)
			goto done_restock;
		if (!res_counter_charge(&memcg->memsw, size, &fail_res))
			goto done_restock;
		res_counter_uncharge(&memcg->res, size);
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2570

2571 2572 2573 2574
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2575

2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2590 2591
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2592

2593 2594
	nr_reclaimed = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);

2595
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2596
		goto retry;
2597 2598 2599

	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2600 2601 2602 2603 2604 2605 2606 2607 2608
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2609
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2610 2611 2612 2613 2614 2615 2616 2617
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2618 2619 2620
	if (nr_retries--)
		goto retry;

2621 2622 2623
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2624 2625 2626
	if (fatal_signal_pending(current))
		goto bypass;

2627
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2628
nomem:
2629
	if (!(gfp_mask & __GFP_NOFAIL))
2630
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2631
bypass:
2632
	return -EINTR;
2633 2634 2635 2636 2637

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
done:
2638
	return ret;
2639
}
2640

2641
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2642
{
2643
	unsigned long bytes = nr_pages * PAGE_SIZE;
2644

2645 2646 2647
	if (mem_cgroup_is_root(memcg))
		return;

2648 2649 2650
	res_counter_uncharge(&memcg->res, bytes);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, bytes);
2651 2652
}

2653 2654 2655 2656 2657 2658 2659 2660 2661
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

2662 2663 2664
	if (mem_cgroup_is_root(memcg))
		return;

2665 2666 2667 2668 2669 2670
	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2671 2672
/*
 * A helper function to get mem_cgroup from ID. must be called under
2673 2674 2675
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2676 2677 2678 2679 2680 2681
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2682
	return mem_cgroup_from_id(id);
2683 2684
}

2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2695
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2696
{
2697
	struct mem_cgroup *memcg = NULL;
2698
	struct page_cgroup *pc;
2699
	unsigned short id;
2700 2701
	swp_entry_t ent;

2702
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2703 2704

	pc = lookup_page_cgroup(page);
2705
	if (PageCgroupUsed(pc)) {
2706
		memcg = pc->mem_cgroup;
2707
		if (memcg && !css_tryget_online(&memcg->css))
2708
			memcg = NULL;
2709
	} else if (PageSwapCache(page)) {
2710
		ent.val = page_private(page);
2711
		id = lookup_swap_cgroup_id(ent);
2712
		rcu_read_lock();
2713
		memcg = mem_cgroup_lookup(id);
2714
		if (memcg && !css_tryget_online(&memcg->css))
2715
			memcg = NULL;
2716
		rcu_read_unlock();
2717
	}
2718
	return memcg;
2719 2720
}

2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2752
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2753
			  bool lrucare)
2754
{
2755
	struct page_cgroup *pc = lookup_page_cgroup(page);
2756
	int isolated;
2757

2758
	VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2759 2760 2761 2762
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2763 2764 2765 2766 2767

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2768 2769
	if (lrucare)
		lock_page_lru(page, &isolated);
2770

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
	/*
	 * Nobody should be changing or seriously looking at
	 * pc->mem_cgroup and pc->flags at this point:
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2785
	pc->mem_cgroup = memcg;
2786
	pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
2787

2788 2789
	if (lrucare)
		unlock_page_lru(page, isolated);
2790
}
2791

2792 2793
static DEFINE_MUTEX(set_limit_mutex);

2794
#ifdef CONFIG_MEMCG_KMEM
2795 2796 2797 2798 2799 2800
/*
 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
 */
static DEFINE_MUTEX(memcg_slab_mutex);

2801 2802
static DEFINE_MUTEX(activate_kmem_mutex);

2803 2804 2805
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2806
		memcg_kmem_is_active(memcg);
2807 2808
}

G
Glauber Costa 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
2819
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
2820 2821
}

2822
#ifdef CONFIG_SLABINFO
2823
static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2824
{
2825
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2826 2827 2828 2829 2830 2831 2832
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

2833
	mutex_lock(&memcg_slab_mutex);
2834 2835
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
2836
	mutex_unlock(&memcg_slab_mutex);
2837 2838 2839 2840 2841

	return 0;
}
#endif

2842
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2843 2844 2845 2846 2847 2848 2849 2850
{
	struct res_counter *fail_res;
	int ret = 0;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

2851
	ret = try_charge(memcg, gfp, size >> PAGE_SHIFT);
2852 2853
	if (ret == -EINTR)  {
		/*
2854 2855 2856 2857 2858 2859
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2860 2861 2862
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2863 2864 2865
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

2879
static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2880 2881 2882 2883
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2884 2885 2886 2887 2888

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

2889 2890 2891 2892 2893 2894 2895 2896
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
2897
	if (memcg_kmem_test_and_clear_dead(memcg))
2898
		css_put(&memcg->css);
2899 2900
}

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2911
static int memcg_alloc_cache_id(void)
2912
{
2913 2914 2915 2916 2917 2918 2919
	int id, size;
	int err;

	id = ida_simple_get(&kmem_limited_groups,
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2920

2921 2922 2923 2924 2925 2926 2927 2928 2929
	if (id < memcg_limited_groups_array_size)
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */

	size = 2 * (id + 1);
2930 2931 2932 2933 2934
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
	mutex_lock(&memcg_slab_mutex);
	err = memcg_update_all_caches(size);
	mutex_unlock(&memcg_slab_mutex);

	if (err) {
		ida_simple_remove(&kmem_limited_groups, id);
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
	ida_simple_remove(&kmem_limited_groups, id);
2949 2950 2951 2952 2953 2954 2955 2956 2957
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
2958
	memcg_limited_groups_array_size = num;
2959 2960
}

2961 2962
static void memcg_register_cache(struct mem_cgroup *memcg,
				 struct kmem_cache *root_cache)
2963
{
2964 2965
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by
						     memcg_slab_mutex */
2966
	struct kmem_cache *cachep;
2967 2968
	int id;

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
	lockdep_assert_held(&memcg_slab_mutex);

	id = memcg_cache_id(memcg);

	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
	if (cache_from_memcg_idx(root_cache, id))
2979 2980
		return;

2981
	cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
2982
	cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2983
	/*
2984 2985 2986
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
2987
	 */
2988 2989
	if (!cachep)
		return;
2990

2991
	css_get(&memcg->css);
2992
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2993

2994
	/*
2995 2996 2997
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
2998
	 */
2999 3000
	smp_wmb();

3001 3002
	BUG_ON(root_cache->memcg_params->memcg_caches[id]);
	root_cache->memcg_params->memcg_caches[id] = cachep;
3003
}
3004

3005
static void memcg_unregister_cache(struct kmem_cache *cachep)
3006
{
3007
	struct kmem_cache *root_cache;
3008 3009 3010
	struct mem_cgroup *memcg;
	int id;

3011
	lockdep_assert_held(&memcg_slab_mutex);
3012

3013
	BUG_ON(is_root_cache(cachep));
3014

3015 3016
	root_cache = cachep->memcg_params->root_cache;
	memcg = cachep->memcg_params->memcg;
3017
	id = memcg_cache_id(memcg);
3018

3019 3020
	BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
	root_cache->memcg_params->memcg_caches[id] = NULL;
3021

3022 3023 3024
	list_del(&cachep->memcg_params->list);

	kmem_cache_destroy(cachep);
3025 3026 3027

	/* drop the reference taken in memcg_register_cache */
	css_put(&memcg->css);
3028 3029
}

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

3061
int __memcg_cleanup_cache_params(struct kmem_cache *s)
3062 3063
{
	struct kmem_cache *c;
3064
	int i, failed = 0;
3065

3066
	mutex_lock(&memcg_slab_mutex);
3067 3068
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
3069 3070 3071
		if (!c)
			continue;

3072
		memcg_unregister_cache(c);
3073 3074 3075

		if (cache_from_memcg_idx(s, i))
			failed++;
3076
	}
3077
	mutex_unlock(&memcg_slab_mutex);
3078
	return failed;
3079 3080
}

3081
static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3082 3083
{
	struct kmem_cache *cachep;
3084
	struct memcg_cache_params *params, *tmp;
G
Glauber Costa 已提交
3085 3086 3087 3088

	if (!memcg_kmem_is_active(memcg))
		return;

3089 3090
	mutex_lock(&memcg_slab_mutex);
	list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
G
Glauber Costa 已提交
3091
		cachep = memcg_params_to_cache(params);
3092 3093
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3094
			memcg_unregister_cache(cachep);
G
Glauber Costa 已提交
3095
	}
3096
	mutex_unlock(&memcg_slab_mutex);
G
Glauber Costa 已提交
3097 3098
}

3099
struct memcg_register_cache_work {
3100 3101 3102 3103 3104
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

3105
static void memcg_register_cache_func(struct work_struct *w)
3106
{
3107 3108
	struct memcg_register_cache_work *cw =
		container_of(w, struct memcg_register_cache_work, work);
3109 3110
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
3111

3112
	mutex_lock(&memcg_slab_mutex);
3113
	memcg_register_cache(memcg, cachep);
3114 3115
	mutex_unlock(&memcg_slab_mutex);

3116
	css_put(&memcg->css);
3117 3118 3119 3120 3121 3122
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3123 3124
static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
					    struct kmem_cache *cachep)
3125
{
3126
	struct memcg_register_cache_work *cw;
3127

3128
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
3129 3130
	if (cw == NULL) {
		css_put(&memcg->css);
3131 3132 3133 3134 3135 3136
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

3137
	INIT_WORK(&cw->work, memcg_register_cache_func);
3138 3139 3140
	schedule_work(&cw->work);
}

3141 3142
static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
					  struct kmem_cache *cachep)
3143 3144 3145 3146
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
3147
	 * in __memcg_schedule_register_cache will recurse.
3148 3149 3150 3151 3152 3153 3154 3155
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
3156
	__memcg_schedule_register_cache(memcg, cachep);
3157 3158
	memcg_resume_kmem_account();
}
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176

int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
{
	int res;

	res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
				PAGE_SIZE << order);
	if (!res)
		atomic_add(1 << order, &cachep->memcg_params->nr_pages);
	return res;
}

void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
{
	memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
	atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
}

3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
3194
	struct kmem_cache *memcg_cachep;
3195 3196 3197 3198

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3199 3200 3201
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3202 3203 3204 3205
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3206
		goto out;
3207

3208 3209 3210
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
	if (likely(memcg_cachep)) {
		cachep = memcg_cachep;
3211
		goto out;
3212 3213
	}

3214
	/* The corresponding put will be done in the workqueue. */
3215
	if (!css_tryget_online(&memcg->css))
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
3227 3228 3229
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
3230
	 */
3231
	memcg_schedule_register_cache(memcg, cachep);
3232 3233 3234 3235
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3236 3237
}

3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3259 3260 3261 3262

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
V
Vladimir Davydov 已提交
3263 3264 3265 3266 3267 3268
	 * check here, since direct calls to the page allocator that are
	 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
	 * outside memcg core. We are mostly concerned with cache allocations,
	 * and by having this test at memcg_kmem_get_cache, we are already able
	 * to relay the allocation to the root cache and bypass the memcg cache
	 * altogether.
3269 3270 3271 3272 3273 3274
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3275 3276 3277
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3288
	memcg = get_mem_cgroup_from_mm(current->mm);
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}
3315 3316 3317 3318
	/*
	 * The page is freshly allocated and not visible to any
	 * outside callers yet.  Set up pc non-atomically.
	 */
3319 3320
	pc = lookup_page_cgroup(page);
	pc->mem_cgroup = memcg;
3321
	pc->flags = PCG_USED;
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	if (!PageCgroupUsed(pc))
		return;

3334 3335
	memcg = pc->mem_cgroup;
	pc->flags = 0;
3336 3337 3338 3339 3340 3341 3342 3343

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

3344
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3345 3346
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3347
#else
3348
static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3349 3350
{
}
3351 3352
#endif /* CONFIG_MEMCG_KMEM */

3353 3354 3355 3356
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
3357 3358 3359
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3360
 */
3361
void mem_cgroup_split_huge_fixup(struct page *head)
3362 3363
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3364
	struct page_cgroup *pc;
3365
	struct mem_cgroup *memcg;
3366
	int i;
3367

3368 3369
	if (mem_cgroup_disabled())
		return;
3370 3371

	memcg = head_pc->mem_cgroup;
3372 3373
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3374
		pc->mem_cgroup = memcg;
3375
		pc->flags = head_pc->flags;
3376
	}
3377 3378
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3379
}
3380
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3381

3382
/**
3383
 * mem_cgroup_move_account - move account of the page
3384
 * @page: the page
3385
 * @nr_pages: number of regular pages (>1 for huge pages)
3386 3387 3388 3389 3390
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3391
 * - page is not on LRU (isolate_page() is useful.)
3392
 * - compound_lock is held when nr_pages > 1
3393
 *
3394 3395
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3396
 */
3397 3398 3399 3400
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3401
				   struct mem_cgroup *to)
3402
{
3403 3404
	unsigned long flags;
	int ret;
3405

3406
	VM_BUG_ON(from == to);
3407
	VM_BUG_ON_PAGE(PageLRU(page), page);
3408 3409 3410 3411 3412 3413 3414
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3415
	if (nr_pages > 1 && !PageTransHuge(page))
3416 3417
		goto out;

3418 3419 3420 3421 3422 3423 3424
	/*
	 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;
3425 3426 3427

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3428
		goto out_unlock;
3429

3430
	move_lock_mem_cgroup(from, &flags);
3431

3432
	if (!PageAnon(page) && page_mapped(page)) {
3433 3434 3435 3436 3437
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
3438

3439 3440 3441 3442 3443 3444
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
3445

3446 3447 3448 3449 3450
	/*
	 * It is safe to change pc->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */
3451

3452
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3453
	pc->mem_cgroup = to;
3454
	move_unlock_mem_cgroup(from, &flags);
3455
	ret = 0;
3456 3457 3458

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
3459
	memcg_check_events(to, page);
3460
	mem_cgroup_charge_statistics(from, page, -nr_pages);
3461
	memcg_check_events(from, page);
3462 3463 3464
	local_irq_enable();
out_unlock:
	unlock_page(page);
3465
out:
3466 3467 3468
	return ret;
}

3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3489
 */
3490 3491
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3492
				  struct mem_cgroup *child)
3493 3494
{
	struct mem_cgroup *parent;
3495
	unsigned int nr_pages;
3496
	unsigned long uninitialized_var(flags);
3497 3498
	int ret;

3499
	VM_BUG_ON(mem_cgroup_is_root(child));
3500

3501 3502 3503 3504 3505
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3506

3507
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3508

3509 3510 3511 3512 3513 3514
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3515

3516
	if (nr_pages > 1) {
3517
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3518
		flags = compound_lock_irqsave(page);
3519
	}
3520

3521
	ret = mem_cgroup_move_account(page, nr_pages,
3522
				pc, child, parent);
3523 3524
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3525

3526
	if (nr_pages > 1)
3527
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3528
	putback_lru_page(page);
3529
put:
3530
	put_page(page);
3531
out:
3532 3533 3534
	return ret;
}

A
Andrew Morton 已提交
3535
#ifdef CONFIG_MEMCG_SWAP
3536 3537
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
3538
{
3539 3540
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
3541
}
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3558
				struct mem_cgroup *from, struct mem_cgroup *to)
3559 3560 3561
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3562 3563
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3564 3565 3566

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3567
		mem_cgroup_swap_statistics(to, true);
3568
		/*
3569 3570 3571
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
3572 3573 3574 3575 3576 3577
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
3578
		 */
L
Li Zefan 已提交
3579
		css_get(&to->css);
3580 3581 3582 3583 3584 3585
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3586
				struct mem_cgroup *from, struct mem_cgroup *to)
3587 3588 3589
{
	return -EINVAL;
}
3590
#endif
K
KAMEZAWA Hiroyuki 已提交
3591

3592 3593 3594 3595 3596 3597
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3598 3599 3600 3601 3602
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3622 3623
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
3624 3625 3626 3627
	}
}
#endif

3628
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3629
				unsigned long long val)
3630
{
3631
	int retry_count;
3632
	u64 memswlimit, memlimit;
3633
	int ret = 0;
3634 3635
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3636
	int enlarge;
3637 3638 3639 3640 3641 3642 3643 3644 3645

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3646

3647
	enlarge = 0;
3648
	while (retry_count) {
3649 3650 3651 3652
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3653 3654 3655
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3656
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3657 3658 3659 3660 3661 3662
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3663 3664
			break;
		}
3665 3666 3667 3668 3669

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3670
		ret = res_counter_set_limit(&memcg->res, val);
3671 3672 3673 3674 3675 3676
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3677 3678 3679 3680 3681
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3682 3683
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3684 3685
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
3686
		if (curusage >= oldusage)
3687 3688 3689
			retry_count--;
		else
			oldusage = curusage;
3690
	}
3691 3692
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3693

3694 3695 3696
	return ret;
}

L
Li Zefan 已提交
3697 3698
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3699
{
3700
	int retry_count;
3701
	u64 memlimit, memswlimit, oldusage, curusage;
3702 3703
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3704
	int enlarge = 0;
3705

3706
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
3707
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3708
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3709 3710 3711 3712 3713 3714 3715 3716
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3717
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3718 3719 3720 3721 3722 3723 3724 3725
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3726 3727 3728
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3729
		ret = res_counter_set_limit(&memcg->memsw, val);
3730 3731 3732 3733 3734 3735
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3736 3737 3738 3739 3740
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3741 3742 3743
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3744
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3745
		/* Usage is reduced ? */
3746
		if (curusage >= oldusage)
3747
			retry_count--;
3748 3749
		else
			oldusage = curusage;
3750
	}
3751 3752
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3753 3754 3755
	return ret;
}

3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
	unsigned long long excess;
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3790
		spin_lock_irq(&mctz->lock);
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
3818
		__mem_cgroup_remove_exceeded(mz, mctz);
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3829
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3830
		spin_unlock_irq(&mctz->lock);
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3848 3849 3850 3851 3852 3853 3854
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
3855
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
3856 3857
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
3858
 */
3859
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3860
				int node, int zid, enum lru_list lru)
3861
{
3862
	struct lruvec *lruvec;
3863
	unsigned long flags;
3864
	struct list_head *list;
3865 3866
	struct page *busy;
	struct zone *zone;
3867

K
KAMEZAWA Hiroyuki 已提交
3868
	zone = &NODE_DATA(node)->node_zones[zid];
3869 3870
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
3871

3872
	busy = NULL;
3873
	do {
3874
		struct page_cgroup *pc;
3875 3876
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
3877
		spin_lock_irqsave(&zone->lru_lock, flags);
3878
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3879
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3880
			break;
3881
		}
3882 3883 3884
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3885
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3886
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3887 3888
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3889
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3890

3891
		pc = lookup_page_cgroup(page);
3892

3893
		if (mem_cgroup_move_parent(page, pc, memcg)) {
3894
			/* found lock contention or "pc" is obsolete. */
3895
			busy = page;
3896 3897
		} else
			busy = NULL;
3898
		cond_resched();
3899
	} while (!list_empty(list));
3900 3901 3902
}

/*
3903 3904
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
3905
 * This enables deleting this mem_cgroup.
3906 3907
 *
 * Caller is responsible for holding css reference on the memcg.
3908
 */
3909
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
3910
{
3911
	int node, zid;
3912
	u64 usage;
3913

3914
	do {
3915 3916
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3917 3918
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
3919
		for_each_node_state(node, N_MEMORY) {
3920
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3921 3922
				enum lru_list lru;
				for_each_lru(lru) {
3923
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3924
							node, zid, lru);
3925
				}
3926
			}
3927
		}
3928 3929
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3930
		cond_resched();
3931

3932
		/*
3933 3934 3935 3936 3937
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
3938 3939 3940 3941 3942 3943
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
3944 3945 3946
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
3947 3948
}

3949 3950 3951 3952 3953 3954
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3955 3956
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3957 3958
	bool ret;

3959
	/*
3960 3961 3962 3963
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3964
	 */
3965 3966 3967 3968 3969 3970
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3971 3972
}

3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3983 3984
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3985
	/* try to free all pages in this cgroup */
3986
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3987
		int progress;
3988

3989 3990 3991
		if (signal_pending(current))
			return -EINTR;

3992
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3993
						false);
3994
		if (!progress) {
3995
			nr_retries--;
3996
			/* maybe some writeback is necessary */
3997
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3998
		}
3999 4000

	}
4001 4002

	return 0;
4003 4004
}

4005 4006 4007
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
4008
{
4009
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4010

4011 4012
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4013
	return mem_cgroup_force_empty(memcg) ?: nbytes;
4014 4015
}

4016 4017
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
4018
{
4019
	return mem_cgroup_from_css(css)->use_hierarchy;
4020 4021
}

4022 4023
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
4024 4025
{
	int retval = 0;
4026
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4027
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
4028

4029
	mutex_lock(&memcg_create_mutex);
4030 4031 4032 4033

	if (memcg->use_hierarchy == val)
		goto out;

4034
	/*
4035
	 * If parent's use_hierarchy is set, we can't make any modifications
4036 4037 4038 4039 4040 4041
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4042
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4043
				(val == 1 || val == 0)) {
4044
		if (!memcg_has_children(memcg))
4045
			memcg->use_hierarchy = val;
4046 4047 4048 4049
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4050 4051

out:
4052
	mutex_unlock(&memcg_create_mutex);
4053 4054 4055 4056

	return retval;
}

4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
					       enum mem_cgroup_stat_index idx)
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

	if (!mem_cgroup_is_root(memcg)) {
		if (!swap)
			return res_counter_read_u64(&memcg->res, RES_USAGE);
		else
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
	}

	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);

	if (swap)
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);

	return val << PAGE_SHIFT;
}


4097
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4098
			       struct cftype *cft)
B
Balbir Singh 已提交
4099
{
4100
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4101 4102
	enum res_type type = MEMFILE_TYPE(cft->private);
	int name = MEMFILE_ATTR(cft->private);
4103

4104 4105
	switch (type) {
	case _MEM:
4106 4107
		if (name == RES_USAGE)
			return mem_cgroup_usage(memcg, false);
4108
		return res_counter_read_u64(&memcg->res, name);
4109
	case _MEMSWAP:
4110 4111
		if (name == RES_USAGE)
			return mem_cgroup_usage(memcg, true);
4112
		return res_counter_read_u64(&memcg->memsw, name);
4113
	case _KMEM:
4114
		return res_counter_read_u64(&memcg->kmem, name);
4115
		break;
4116 4117 4118
	default:
		BUG();
	}
B
Balbir Singh 已提交
4119
}
4120 4121

#ifdef CONFIG_MEMCG_KMEM
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
/* should be called with activate_kmem_mutex held */
static int __memcg_activate_kmem(struct mem_cgroup *memcg,
				 unsigned long long limit)
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

	/*
	 * We are going to allocate memory for data shared by all memory
	 * cgroups so let's stop accounting here.
	 */
	memcg_stop_kmem_account();

4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
4150
	mutex_lock(&memcg_create_mutex);
4151 4152
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
4153 4154 4155 4156
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
4157

4158
	memcg_id = memcg_alloc_cache_id();
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	memcg->kmemcg_id = memcg_id;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);

	/*
	 * We couldn't have accounted to this cgroup, because it hasn't got the
	 * active bit set yet, so this should succeed.
	 */
	err = res_counter_set_limit(&memcg->kmem, limit);
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
	 * Setting the active bit after enabling static branching will
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
	memcg_kmem_set_active(memcg);
4181
out:
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
	memcg_resume_kmem_account();
	return err;
}

static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long long limit)
{
	int ret;

	mutex_lock(&activate_kmem_mutex);
	ret = __memcg_activate_kmem(memcg, limit);
	mutex_unlock(&activate_kmem_mutex);
	return ret;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	int ret;

	if (!memcg_kmem_is_active(memcg))
		ret = memcg_activate_kmem(memcg, val);
	else
		ret = res_counter_set_limit(&memcg->kmem, val);
4206 4207 4208
	return ret;
}

4209
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4210
{
4211
	int ret = 0;
4212
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4213

4214 4215
	if (!parent)
		return 0;
4216

4217
	mutex_lock(&activate_kmem_mutex);
4218
	/*
4219 4220
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
4221
	 */
4222 4223 4224
	if (memcg_kmem_is_active(parent))
		ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
	mutex_unlock(&activate_kmem_mutex);
4225
	return ret;
4226
}
4227 4228 4229 4230 4231 4232
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	return -EINVAL;
}
4233
#endif /* CONFIG_MEMCG_KMEM */
4234

4235 4236 4237 4238
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4239 4240
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
4241
{
4242
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
G
Glauber Costa 已提交
4243 4244
	enum res_type type;
	int name;
4245 4246 4247
	unsigned long long val;
	int ret;

4248 4249 4250
	buf = strstrip(buf);
	type = MEMFILE_TYPE(of_cft(of)->private);
	name = MEMFILE_ATTR(of_cft(of)->private);
4251

4252
	switch (name) {
4253
	case RES_LIMIT:
4254 4255 4256 4257
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4258
		/* This function does all necessary parse...reuse it */
4259
		ret = res_counter_memparse_write_strategy(buf, &val);
4260 4261 4262
		if (ret)
			break;
		if (type == _MEM)
4263
			ret = mem_cgroup_resize_limit(memcg, val);
4264
		else if (type == _MEMSWAP)
4265
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4266
		else if (type == _KMEM)
4267
			ret = memcg_update_kmem_limit(memcg, val);
4268 4269
		else
			return -EINVAL;
4270
		break;
4271
	case RES_SOFT_LIMIT:
4272
		ret = res_counter_memparse_write_strategy(buf, &val);
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4285 4286 4287 4288
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
4289
	return ret ?: nbytes;
B
Balbir Singh 已提交
4290 4291
}

4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
4302 4303
	while (memcg->css.parent) {
		memcg = mem_cgroup_from_css(memcg->css.parent);
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

4316 4317
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
4318
{
4319
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
G
Glauber Costa 已提交
4320 4321
	int name;
	enum res_type type;
4322

4323 4324
	type = MEMFILE_TYPE(of_cft(of)->private);
	name = MEMFILE_ATTR(of_cft(of)->private);
4325

4326
	switch (name) {
4327
	case RES_MAX_USAGE:
4328
		if (type == _MEM)
4329
			res_counter_reset_max(&memcg->res);
4330
		else if (type == _MEMSWAP)
4331
			res_counter_reset_max(&memcg->memsw);
4332 4333 4334 4335
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
4336 4337
		break;
	case RES_FAILCNT:
4338
		if (type == _MEM)
4339
			res_counter_reset_failcnt(&memcg->res);
4340
		else if (type == _MEMSWAP)
4341
			res_counter_reset_failcnt(&memcg->memsw);
4342 4343 4344 4345
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
4346 4347
		break;
	}
4348

4349
	return nbytes;
4350 4351
}

4352
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
4353 4354
					struct cftype *cft)
{
4355
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
4356 4357
}

4358
#ifdef CONFIG_MMU
4359
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4360 4361
					struct cftype *cft, u64 val)
{
4362
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4363 4364 4365

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
4366

4367
	/*
4368 4369 4370 4371
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
4372
	 */
4373
	memcg->move_charge_at_immigrate = val;
4374 4375
	return 0;
}
4376
#else
4377
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4378 4379 4380 4381 4382
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4383

4384
#ifdef CONFIG_NUMA
4385
static int memcg_numa_stat_show(struct seq_file *m, void *v)
4386
{
4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
4399
	int nid;
4400
	unsigned long nr;
4401
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4402

4403 4404 4405 4406 4407 4408 4409 4410 4411
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
4412 4413
	}

4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
4429 4430 4431 4432 4433 4434
	}

	return 0;
}
#endif /* CONFIG_NUMA */

4435 4436 4437 4438 4439
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4440
static int memcg_stat_show(struct seq_file *m, void *v)
4441
{
4442
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4443 4444
	struct mem_cgroup *mi;
	unsigned int i;
4445

4446
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4447
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4448
			continue;
4449 4450
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4451
	}
L
Lee Schermerhorn 已提交
4452

4453 4454 4455 4456 4457 4458 4459 4460
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4461
	/* Hierarchical information */
4462 4463
	{
		unsigned long long limit, memsw_limit;
4464
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4465
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4466
		if (do_swap_account)
4467 4468
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
4469
	}
K
KOSAKI Motohiro 已提交
4470

4471 4472 4473
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4474
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4475
			continue;
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4496
	}
K
KAMEZAWA Hiroyuki 已提交
4497

K
KOSAKI Motohiro 已提交
4498 4499 4500 4501
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4502
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4503 4504 4505 4506 4507
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4508
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
4509
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4510

4511 4512 4513 4514
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4515
			}
4516 4517 4518 4519
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4520 4521 4522
	}
#endif

4523 4524 4525
	return 0;
}

4526 4527
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4528
{
4529
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4530

4531
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4532 4533
}

4534 4535
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4536
{
4537
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4538

4539
	if (val > 100)
K
KOSAKI Motohiro 已提交
4540 4541
		return -EINVAL;

4542
	if (css->parent)
4543 4544 4545
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4546

K
KOSAKI Motohiro 已提交
4547 4548 4549
	return 0;
}

4550 4551 4552 4553 4554 4555 4556 4557
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4558
		t = rcu_dereference(memcg->thresholds.primary);
4559
	else
4560
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4561 4562 4563 4564

	if (!t)
		goto unlock;

4565
	usage = mem_cgroup_usage(memcg, swap);
4566 4567

	/*
4568
	 * current_threshold points to threshold just below or equal to usage.
4569 4570 4571
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4572
	i = t->current_threshold;
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4596
	t->current_threshold = i - 1;
4597 4598 4599 4600 4601 4602
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4603 4604 4605 4606 4607 4608 4609
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4610 4611 4612 4613 4614 4615 4616
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4617 4618 4619 4620 4621 4622 4623
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4624 4625
}

4626
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4627 4628 4629
{
	struct mem_cgroup_eventfd_list *ev;

4630 4631
	spin_lock(&memcg_oom_lock);

4632
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4633
		eventfd_signal(ev->eventfd, 1);
4634 4635

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4636 4637 4638
	return 0;
}

4639
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4640
{
K
KAMEZAWA Hiroyuki 已提交
4641 4642
	struct mem_cgroup *iter;

4643
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4644
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4645 4646
}

4647
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4648
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4649
{
4650 4651
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4652
	u64 threshold, usage;
4653
	int i, size, ret;
4654 4655 4656 4657 4658 4659

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4660

4661
	if (type == _MEM) {
4662
		thresholds = &memcg->thresholds;
4663
		usage = mem_cgroup_usage(memcg, false);
4664
	} else if (type == _MEMSWAP) {
4665
		thresholds = &memcg->memsw_thresholds;
4666
		usage = mem_cgroup_usage(memcg, true);
4667
	} else
4668 4669 4670
		BUG();

	/* Check if a threshold crossed before adding a new one */
4671
	if (thresholds->primary)
4672 4673
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4674
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4675 4676

	/* Allocate memory for new array of thresholds */
4677
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4678
			GFP_KERNEL);
4679
	if (!new) {
4680 4681 4682
		ret = -ENOMEM;
		goto unlock;
	}
4683
	new->size = size;
4684 4685

	/* Copy thresholds (if any) to new array */
4686 4687
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4688
				sizeof(struct mem_cgroup_threshold));
4689 4690
	}

4691
	/* Add new threshold */
4692 4693
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4694 4695

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4696
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4697 4698 4699
			compare_thresholds, NULL);

	/* Find current threshold */
4700
	new->current_threshold = -1;
4701
	for (i = 0; i < size; i++) {
4702
		if (new->entries[i].threshold <= usage) {
4703
			/*
4704 4705
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4706 4707
			 * it here.
			 */
4708
			++new->current_threshold;
4709 4710
		} else
			break;
4711 4712
	}

4713 4714 4715 4716 4717
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4718

4719
	/* To be sure that nobody uses thresholds */
4720 4721 4722 4723 4724 4725 4726 4727
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4728
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4729 4730
	struct eventfd_ctx *eventfd, const char *args)
{
4731
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4732 4733
}

4734
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4735 4736
	struct eventfd_ctx *eventfd, const char *args)
{
4737
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4738 4739
}

4740
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4741
	struct eventfd_ctx *eventfd, enum res_type type)
4742
{
4743 4744
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4745
	u64 usage;
4746
	int i, j, size;
4747 4748

	mutex_lock(&memcg->thresholds_lock);
4749 4750

	if (type == _MEM) {
4751
		thresholds = &memcg->thresholds;
4752
		usage = mem_cgroup_usage(memcg, false);
4753
	} else if (type == _MEMSWAP) {
4754
		thresholds = &memcg->memsw_thresholds;
4755
		usage = mem_cgroup_usage(memcg, true);
4756
	} else
4757 4758
		BUG();

4759 4760 4761
	if (!thresholds->primary)
		goto unlock;

4762 4763 4764 4765
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4766 4767 4768
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4769 4770 4771
			size++;
	}

4772
	new = thresholds->spare;
4773

4774 4775
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4776 4777
		kfree(new);
		new = NULL;
4778
		goto swap_buffers;
4779 4780
	}

4781
	new->size = size;
4782 4783

	/* Copy thresholds and find current threshold */
4784 4785 4786
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4787 4788
			continue;

4789
		new->entries[j] = thresholds->primary->entries[i];
4790
		if (new->entries[j].threshold <= usage) {
4791
			/*
4792
			 * new->current_threshold will not be used
4793 4794 4795
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4796
			++new->current_threshold;
4797 4798 4799 4800
		}
		j++;
	}

4801
swap_buffers:
4802 4803
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4804 4805 4806 4807 4808 4809
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4810
	rcu_assign_pointer(thresholds->primary, new);
4811

4812
	/* To be sure that nobody uses thresholds */
4813
	synchronize_rcu();
4814
unlock:
4815 4816
	mutex_unlock(&memcg->thresholds_lock);
}
4817

4818
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4819 4820
	struct eventfd_ctx *eventfd)
{
4821
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4822 4823
}

4824
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4825 4826
	struct eventfd_ctx *eventfd)
{
4827
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4828 4829
}

4830
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4831
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4832 4833 4834 4835 4836 4837 4838
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4839
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4840 4841 4842 4843 4844

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4845
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4846
		eventfd_signal(eventfd, 1);
4847
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4848 4849 4850 4851

	return 0;
}

4852
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4853
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4854 4855 4856
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4857
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4858

4859
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4860 4861 4862 4863 4864 4865
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4866
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4867 4868
}

4869
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4870
{
4871
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4872

4873 4874
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4875 4876 4877
	return 0;
}

4878
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4879 4880
	struct cftype *cft, u64 val)
{
4881
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4882 4883

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4884
	if (!css->parent || !((val == 0) || (val == 1)))
4885 4886
		return -EINVAL;

4887
	memcg->oom_kill_disable = val;
4888
	if (!val)
4889
		memcg_oom_recover(memcg);
4890

4891 4892 4893
	return 0;
}

A
Andrew Morton 已提交
4894
#ifdef CONFIG_MEMCG_KMEM
4895
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4896
{
4897 4898
	int ret;

4899
	memcg->kmemcg_id = -1;
4900 4901 4902
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
4903

4904
	return mem_cgroup_sockets_init(memcg, ss);
4905
}
4906

4907
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4908
{
4909
	mem_cgroup_sockets_destroy(memcg);
4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
4930 4931 4932 4933
	 * css_offline() when the referencemight have dropped down to 0 and
	 * shouldn't be incremented anymore (css_tryget_online() would
	 * fail) we do not have other options because of the kmem
	 * allocations lifetime.
4934 4935
	 */
	css_get(&memcg->css);
4936 4937 4938 4939 4940 4941 4942

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
4943
		css_put(&memcg->css);
G
Glauber Costa 已提交
4944
}
4945
#else
4946
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4947 4948 4949
{
	return 0;
}
G
Glauber Costa 已提交
4950

4951 4952 4953 4954 4955
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4956 4957
{
}
4958 4959
#endif

4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4973 4974 4975 4976 4977
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4978
static void memcg_event_remove(struct work_struct *work)
4979
{
4980 4981
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4982
	struct mem_cgroup *memcg = event->memcg;
4983 4984 4985

	remove_wait_queue(event->wqh, &event->wait);

4986
	event->unregister_event(memcg, event->eventfd);
4987 4988 4989 4990 4991 4992

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4993
	css_put(&memcg->css);
4994 4995 4996 4997 4998 4999 5000
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
5001 5002
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
5003
{
5004 5005
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
5006
	struct mem_cgroup *memcg = event->memcg;
5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
5019
		spin_lock(&memcg->event_list_lock);
5020 5021 5022 5023 5024 5025 5026 5027
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
5028
		spin_unlock(&memcg->event_list_lock);
5029 5030 5031 5032 5033
	}

	return 0;
}

5034
static void memcg_event_ptable_queue_proc(struct file *file,
5035 5036
		wait_queue_head_t *wqh, poll_table *pt)
{
5037 5038
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
5039 5040 5041 5042 5043 5044

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
5045 5046
 * DO NOT USE IN NEW FILES.
 *
5047 5048 5049 5050 5051
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
5052 5053
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
5054
{
5055
	struct cgroup_subsys_state *css = of_css(of);
5056
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5057
	struct mem_cgroup_event *event;
5058 5059 5060 5061
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
5062
	const char *name;
5063 5064 5065
	char *endp;
	int ret;

5066 5067 5068
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
5069 5070
	if (*endp != ' ')
		return -EINVAL;
5071
	buf = endp + 1;
5072

5073
	cfd = simple_strtoul(buf, &endp, 10);
5074 5075
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
5076
	buf = endp + 1;
5077 5078 5079 5080 5081

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5082
	event->memcg = memcg;
5083
	INIT_LIST_HEAD(&event->list);
5084 5085 5086
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

5112 5113 5114 5115 5116
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
5117 5118
	 *
	 * DO NOT ADD NEW FILES.
5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131
	 */
	name = cfile.file->f_dentry->d_name.name;

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
5132 5133
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
5134 5135 5136 5137 5138
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

5139
	/*
5140 5141 5142
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
5143
	 */
5144 5145
	cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
					       &memory_cgrp_subsys);
5146
	ret = -EINVAL;
5147
	if (IS_ERR(cfile_css))
5148
		goto out_put_cfile;
5149 5150
	if (cfile_css != css) {
		css_put(cfile_css);
5151
		goto out_put_cfile;
5152
	}
5153

5154
	ret = event->register_event(memcg, event->eventfd, buf);
5155 5156 5157 5158 5159
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

5160 5161 5162
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
5163 5164 5165 5166

	fdput(cfile);
	fdput(efile);

5167
	return nbytes;
5168 5169

out_put_css:
5170
	css_put(css);
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
5183 5184
static struct cftype mem_cgroup_files[] = {
	{
5185
		.name = "usage_in_bytes",
5186
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5187
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5188
	},
5189 5190
	{
		.name = "max_usage_in_bytes",
5191
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5192
		.write = mem_cgroup_reset,
5193
		.read_u64 = mem_cgroup_read_u64,
5194
	},
B
Balbir Singh 已提交
5195
	{
5196
		.name = "limit_in_bytes",
5197
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5198
		.write = mem_cgroup_write,
5199
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5200
	},
5201 5202 5203
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5204
		.write = mem_cgroup_write,
5205
		.read_u64 = mem_cgroup_read_u64,
5206
	},
B
Balbir Singh 已提交
5207 5208
	{
		.name = "failcnt",
5209
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5210
		.write = mem_cgroup_reset,
5211
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5212
	},
5213 5214
	{
		.name = "stat",
5215
		.seq_show = memcg_stat_show,
5216
	},
5217 5218
	{
		.name = "force_empty",
5219
		.write = mem_cgroup_force_empty_write,
5220
	},
5221 5222 5223 5224 5225
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
5226
	{
5227
		.name = "cgroup.event_control",		/* XXX: for compat */
5228
		.write = memcg_write_event_control,
5229 5230 5231
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
5232 5233 5234 5235 5236
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5237 5238 5239 5240 5241
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5242 5243
	{
		.name = "oom_control",
5244
		.seq_show = mem_cgroup_oom_control_read,
5245
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5246 5247
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5248 5249 5250
	{
		.name = "pressure_level",
	},
5251 5252 5253
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5254
		.seq_show = memcg_numa_stat_show,
5255 5256
	},
#endif
5257 5258 5259 5260
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5261
		.write = mem_cgroup_write,
5262
		.read_u64 = mem_cgroup_read_u64,
5263 5264 5265 5266
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5267
		.read_u64 = mem_cgroup_read_u64,
5268 5269 5270 5271
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5272
		.write = mem_cgroup_reset,
5273
		.read_u64 = mem_cgroup_read_u64,
5274 5275 5276 5277
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5278
		.write = mem_cgroup_reset,
5279
		.read_u64 = mem_cgroup_read_u64,
5280
	},
5281 5282 5283
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
5284
		.seq_show = mem_cgroup_slabinfo_read,
5285 5286
	},
#endif
5287
#endif
5288
	{ },	/* terminate */
5289
};
5290

5291 5292 5293 5294 5295
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5296
		.read_u64 = mem_cgroup_read_u64,
5297 5298 5299 5300
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5301
		.write = mem_cgroup_reset,
5302
		.read_u64 = mem_cgroup_read_u64,
5303 5304 5305 5306
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5307
		.write = mem_cgroup_write,
5308
		.read_u64 = mem_cgroup_read_u64,
5309 5310 5311 5312
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5313
		.write = mem_cgroup_reset,
5314
		.read_u64 = mem_cgroup_read_u64,
5315 5316 5317 5318
	},
	{ },	/* terminate */
};
#endif
5319
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5320 5321
{
	struct mem_cgroup_per_node *pn;
5322
	struct mem_cgroup_per_zone *mz;
5323
	int zone, tmp = node;
5324 5325 5326 5327 5328 5329 5330 5331
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5332 5333
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5334
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5335 5336
	if (!pn)
		return 1;
5337 5338 5339

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5340
		lruvec_init(&mz->lruvec);
5341 5342
		mz->usage_in_excess = 0;
		mz->on_tree = false;
5343
		mz->memcg = memcg;
5344
	}
5345
	memcg->nodeinfo[node] = pn;
5346 5347 5348
	return 0;
}

5349
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5350
{
5351
	kfree(memcg->nodeinfo[node]);
5352 5353
}

5354 5355
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5356
	struct mem_cgroup *memcg;
5357
	size_t size;
5358

5359 5360
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5361

5362
	memcg = kzalloc(size, GFP_KERNEL);
5363
	if (!memcg)
5364 5365
		return NULL;

5366 5367
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5368
		goto out_free;
5369 5370
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5371 5372

out_free:
5373
	kfree(memcg);
5374
	return NULL;
5375 5376
}

5377
/*
5378 5379 5380 5381 5382 5383 5384 5385
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
5386
 */
5387 5388

static void __mem_cgroup_free(struct mem_cgroup *memcg)
5389
{
5390
	int node;
5391

5392
	mem_cgroup_remove_from_trees(memcg);
5393 5394 5395 5396 5397 5398

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5410
	disarm_static_keys(memcg);
5411
	kfree(memcg);
5412
}
5413

5414 5415 5416
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
5417
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5418
{
5419
	if (!memcg->res.parent)
5420
		return NULL;
5421
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
5422
}
G
Glauber Costa 已提交
5423
EXPORT_SYMBOL(parent_mem_cgroup);
5424

5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
5448
static struct cgroup_subsys_state * __ref
5449
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
5450
{
5451
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
5452
	long error = -ENOMEM;
5453
	int node;
B
Balbir Singh 已提交
5454

5455 5456
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5457
		return ERR_PTR(error);
5458

B
Bob Liu 已提交
5459
	for_each_node(node)
5460
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5461
			goto free_out;
5462

5463
	/* root ? */
5464
	if (parent_css == NULL) {
5465
		root_mem_cgroup = memcg;
5466 5467 5468
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
5469
	}
5470

5471 5472 5473 5474 5475
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5476
	vmpressure_init(&memcg->vmpressure);
5477 5478
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5479 5480 5481 5482 5483 5484 5485 5486 5487

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
5488
mem_cgroup_css_online(struct cgroup_subsys_state *css)
5489
{
5490
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5491
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
5492
	int ret;
5493

5494
	if (css->id > MEM_CGROUP_ID_MAX)
5495 5496
		return -ENOSPC;

T
Tejun Heo 已提交
5497
	if (!parent)
5498 5499
		return 0;

5500
	mutex_lock(&memcg_create_mutex);
5501 5502 5503 5504 5505 5506

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
5507 5508
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5509
		res_counter_init(&memcg->kmem, &parent->kmem);
5510

5511
		/*
5512 5513
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
5514
		 */
5515
	} else {
5516 5517 5518
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
5519 5520 5521 5522 5523
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5524
		if (parent != root_mem_cgroup)
5525
			memory_cgrp_subsys.broken_hierarchy = true;
5526
	}
5527
	mutex_unlock(&memcg_create_mutex);
5528

5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
5541 5542
}

M
Michal Hocko 已提交
5543 5544 5545 5546 5547 5548 5549 5550
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
5551
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
5552 5553 5554 5555 5556 5557

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
5558
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
5559 5560
}

5561
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5562
{
5563
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5564
	struct mem_cgroup_event *event, *tmp;
5565
	struct cgroup_subsys_state *iter;
5566 5567 5568 5569 5570 5571

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5572 5573
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5574 5575 5576
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5577
	spin_unlock(&memcg->event_list_lock);
5578

5579 5580
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
5581
	mem_cgroup_invalidate_reclaim_iterators(memcg);
5582 5583 5584 5585 5586 5587 5588 5589

	/*
	 * This requires that offlining is serialized.  Right now that is
	 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
	 */
	css_for_each_descendant_post(iter, css)
		mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));

5590
	memcg_unregister_all_caches(memcg);
5591
	vmpressure_cleanup(&memcg->vmpressure);
5592 5593
}

5594
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5595
{
5596
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5597 5598 5599
	/*
	 * XXX: css_offline() would be where we should reparent all
	 * memory to prepare the cgroup for destruction.  However,
5600
	 * memcg does not do css_tryget_online() and res_counter charging
5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613
	 * under the same RCU lock region, which means that charging
	 * could race with offlining.  Offlining only happens to
	 * cgroups with no tasks in them but charges can show up
	 * without any tasks from the swapin path when the target
	 * memcg is looked up from the swapout record and not from the
	 * current task as it usually is.  A race like this can leak
	 * charges and put pages with stale cgroup pointers into
	 * circulation:
	 *
	 * #0                        #1
	 *                           lookup_swap_cgroup_id()
	 *                           rcu_read_lock()
	 *                           mem_cgroup_lookup()
5614
	 *                           css_tryget_online()
5615
	 *                           rcu_read_unlock()
5616
	 * disable css_tryget_online()
5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632
	 * call_rcu()
	 *   offline_css()
	 *     reparent_charges()
	 *                           res_counter_charge()
	 *                           css_put()
	 *                             css_free()
	 *                           pc->mem_cgroup = dead memcg
	 *                           add page to lru
	 *
	 * The bulk of the charges are still moved in offline_css() to
	 * avoid pinning a lot of pages in case a long-term reference
	 * like a swapout record is deferring the css_free() to long
	 * after offlining.  But this makes sure we catch any charges
	 * made after offlining:
	 */
	mem_cgroup_reparent_charges(memcg);
5633

5634
	memcg_destroy_kmem(memcg);
5635
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5636 5637
}

5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	mem_cgroup_resize_limit(memcg, ULLONG_MAX);
	mem_cgroup_resize_memsw_limit(memcg, ULLONG_MAX);
	memcg_update_kmem_limit(memcg, ULLONG_MAX);
	res_counter_set_soft_limit(&memcg->res, ULLONG_MAX);
}

5661
#ifdef CONFIG_MMU
5662
/* Handlers for move charge at task migration. */
5663
static int mem_cgroup_do_precharge(unsigned long count)
5664
{
5665
	int ret;
5666 5667

	/* Try a single bulk charge without reclaim first */
5668
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
5669
	if (!ret) {
5670 5671 5672
		mc.precharge += count;
		return ret;
	}
5673
	if (ret == -EINTR) {
5674
		cancel_charge(root_mem_cgroup, count);
5675 5676
		return ret;
	}
5677 5678

	/* Try charges one by one with reclaim */
5679
	while (count--) {
5680
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
5681 5682 5683
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
5684 5685
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
5686
		 */
5687
		if (ret == -EINTR)
5688
			cancel_charge(root_mem_cgroup, 1);
5689 5690
		if (ret)
			return ret;
5691
		mc.precharge++;
5692
		cond_resched();
5693
	}
5694
	return 0;
5695 5696 5697
}

/**
5698
 * get_mctgt_type - get target type of moving charge
5699 5700 5701
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5702
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5703 5704 5705 5706 5707 5708
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5709 5710 5711
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5712 5713 5714 5715 5716
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5717
	swp_entry_t	ent;
5718 5719 5720
};

enum mc_target_type {
5721
	MC_TARGET_NONE = 0,
5722
	MC_TARGET_PAGE,
5723
	MC_TARGET_SWAP,
5724 5725
};

D
Daisuke Nishimura 已提交
5726 5727
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5728
{
D
Daisuke Nishimura 已提交
5729
	struct page *page = vm_normal_page(vma, addr, ptent);
5730

D
Daisuke Nishimura 已提交
5731 5732 5733 5734
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5735
		if (!move_anon())
D
Daisuke Nishimura 已提交
5736
			return NULL;
5737 5738
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5739 5740 5741 5742 5743 5744 5745
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5746
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5747 5748 5749 5750 5751 5752 5753 5754
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5755 5756 5757 5758
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5759
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
5760 5761 5762 5763 5764
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5765 5766 5767 5768 5769 5770 5771
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5772

5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5792 5793
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
5806
#endif
5807 5808 5809
	return page;
}

5810
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5811 5812 5813 5814
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5815
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5816 5817 5818 5819 5820 5821
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5822 5823
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5824 5825

	if (!page && !ent.val)
5826
		return ret;
5827 5828 5829
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
5830 5831 5832
		 * Do only loose check w/o serialization.
		 * mem_cgroup_move_account() checks the pc is valid or
		 * not under LRU exclusion.
5833 5834 5835 5836 5837 5838 5839 5840 5841
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5842 5843
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
5844
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5845 5846 5847
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5848 5849 5850 5851
	}
	return ret;
}

5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
5866
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5887 5888 5889 5890 5891 5892 5893 5894
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5895
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5896 5897
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5898
		spin_unlock(ptl);
5899
		return 0;
5900
	}
5901

5902 5903
	if (pmd_trans_unstable(pmd))
		return 0;
5904 5905
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5906
		if (get_mctgt_type(vma, addr, *pte, NULL))
5907 5908 5909 5910
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5911 5912 5913
	return 0;
}

5914 5915 5916 5917 5918
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5919
	down_read(&mm->mmap_sem);
5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5931
	up_read(&mm->mmap_sem);
5932 5933 5934 5935 5936 5937 5938 5939 5940

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5941 5942 5943 5944 5945
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5946 5947
}

5948 5949
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5950
{
5951 5952
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
5953
	int i;
5954

5955
	/* we must uncharge all the leftover precharges from mc.to */
5956
	if (mc.precharge) {
5957
		cancel_charge(mc.to, mc.precharge);
5958 5959 5960 5961 5962 5963 5964
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5965
		cancel_charge(mc.from, mc.moved_charge);
5966
		mc.moved_charge = 0;
5967
	}
5968 5969 5970
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5971 5972 5973
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
					     PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
5974 5975 5976

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
5977

5978 5979 5980 5981
		/*
		 * we charged both to->res and to->memsw, so we should
		 * uncharge to->res.
		 */
5982 5983 5984
		if (!mem_cgroup_is_root(mc.to))
			res_counter_uncharge(&mc.to->res,
					     PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
5985
		/* we've already done css_get(mc.to) */
5986 5987
		mc.moved_swap = 0;
	}
5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6003
	spin_lock(&mc.lock);
6004 6005
	mc.from = NULL;
	mc.to = NULL;
6006
	spin_unlock(&mc.lock);
6007
	mem_cgroup_end_move(from);
6008 6009
}

6010
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6011
				 struct cgroup_taskset *tset)
6012
{
6013
	struct task_struct *p = cgroup_taskset_first(tset);
6014
	int ret = 0;
6015
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6016
	unsigned long move_charge_at_immigrate;
6017

6018 6019 6020 6021 6022 6023 6024
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6025 6026 6027
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6028
		VM_BUG_ON(from == memcg);
6029 6030 6031 6032 6033

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6034 6035 6036 6037
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6038
			VM_BUG_ON(mc.moved_charge);
6039
			VM_BUG_ON(mc.moved_swap);
6040
			mem_cgroup_start_move(from);
6041
			spin_lock(&mc.lock);
6042
			mc.from = from;
6043
			mc.to = memcg;
6044
			mc.immigrate_flags = move_charge_at_immigrate;
6045
			spin_unlock(&mc.lock);
6046
			/* We set mc.moving_task later */
6047 6048 6049 6050

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6051 6052
		}
		mmput(mm);
6053 6054 6055 6056
	}
	return ret;
}

6057
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6058
				     struct cgroup_taskset *tset)
6059
{
6060
	mem_cgroup_clear_mc();
6061 6062
}

6063 6064 6065
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6066
{
6067 6068 6069 6070
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6071 6072 6073 6074
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6075

6076 6077 6078 6079 6080 6081 6082 6083 6084 6085
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
6086
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6087
		if (mc.precharge < HPAGE_PMD_NR) {
6088
			spin_unlock(ptl);
6089 6090 6091 6092 6093 6094 6095 6096
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6097
							pc, mc.from, mc.to)) {
6098 6099 6100 6101 6102 6103 6104
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
6105
		spin_unlock(ptl);
6106
		return 0;
6107 6108
	}

6109 6110
	if (pmd_trans_unstable(pmd))
		return 0;
6111 6112 6113 6114
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6115
		swp_entry_t ent;
6116 6117 6118 6119

		if (!mc.precharge)
			break;

6120
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6121 6122 6123 6124 6125
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6126
			if (!mem_cgroup_move_account(page, 1, pc,
6127
						     mc.from, mc.to)) {
6128
				mc.precharge--;
6129 6130
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6131 6132
			}
			putback_lru_page(page);
6133
put:			/* get_mctgt_type() gets the page */
6134 6135
			put_page(page);
			break;
6136 6137
		case MC_TARGET_SWAP:
			ent = target.ent;
6138
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6139
				mc.precharge--;
6140 6141 6142
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6143
			break;
6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6158
		ret = mem_cgroup_do_precharge(1);
6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6202
	up_read(&mm->mmap_sem);
6203 6204
}

6205
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6206
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6207
{
6208
	struct task_struct *p = cgroup_taskset_first(tset);
6209
	struct mm_struct *mm = get_task_mm(p);
6210 6211

	if (mm) {
6212 6213
		if (mc.to)
			mem_cgroup_move_charge(mm);
6214 6215
		mmput(mm);
	}
6216 6217
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6218
}
6219
#else	/* !CONFIG_MMU */
6220
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6221
				 struct cgroup_taskset *tset)
6222 6223 6224
{
	return 0;
}
6225
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6226
				     struct cgroup_taskset *tset)
6227 6228
{
}
6229
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6230
				 struct cgroup_taskset *tset)
6231 6232 6233
{
}
#endif
B
Balbir Singh 已提交
6234

6235 6236
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6237 6238
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
6239
 */
6240
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6241 6242
{
	/*
6243
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6244 6245 6246
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6247
	if (cgroup_on_dfl(root_css->cgroup))
6248
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6249 6250
}

6251
struct cgroup_subsys memory_cgrp_subsys = {
6252
	.css_alloc = mem_cgroup_css_alloc,
6253
	.css_online = mem_cgroup_css_online,
6254 6255
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6256
	.css_reset = mem_cgroup_css_reset,
6257 6258
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6259
	.attach = mem_cgroup_move_task,
6260
	.bind = mem_cgroup_bind,
6261
	.legacy_cftypes = mem_cgroup_files,
6262
	.early_init = 0,
B
Balbir Singh 已提交
6263
};
6264

A
Andrew Morton 已提交
6265
#ifdef CONFIG_MEMCG_SWAP
6266 6267
static int __init enable_swap_account(char *s)
{
6268
	if (!strcmp(s, "1"))
6269
		really_do_swap_account = 1;
6270
	else if (!strcmp(s, "0"))
6271 6272 6273
		really_do_swap_account = 0;
	return 1;
}
6274
__setup("swapaccount=", enable_swap_account);
6275

6276 6277
static void __init memsw_file_init(void)
{
6278 6279
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
					  memsw_cgroup_files));
6280 6281 6282 6283 6284 6285 6286 6287
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6288
}
6289

6290
#else
6291
static void __init enable_swap_cgroup(void)
6292 6293
{
}
6294
#endif
6295

6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348
#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct page_cgroup *pc;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	pc = lookup_page_cgroup(page);

	/* Readahead page, never charged */
	if (!PageCgroupUsed(pc))
		return;

	VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);

	oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
	VM_BUG_ON_PAGE(oldid, page);

	pc->flags &= ~PCG_MEMSW;
	css_get(&pc->mem_cgroup->css);
	mem_cgroup_swap_statistics(pc->mem_cgroup, true);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
6349 6350
		if (!mem_cgroup_is_root(memcg))
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
6351 6352 6353 6354 6355 6356 6357
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}
#endif

6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		struct page_cgroup *pc = lookup_page_cgroup(page);
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
		if (PageCgroupUsed(pc))
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

6455 6456
	commit_charge(page, memcg, lrucare);

6457 6458 6459 6460 6461
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

6462 6463 6464 6465
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

6507 6508 6509 6510 6511 6512 6513
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_mem, unsigned long nr_memsw,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
	unsigned long flags;

6514 6515 6516 6517 6518 6519 6520 6521 6522
	if (!mem_cgroup_is_root(memcg)) {
		if (nr_mem)
			res_counter_uncharge(&memcg->res,
					     nr_mem * PAGE_SIZE);
		if (nr_memsw)
			res_counter_uncharge(&memcg->memsw,
					     nr_memsw * PAGE_SIZE);
		memcg_oom_recover(memcg);
	}
6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
	__this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file);
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_memsw = 0;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	unsigned long nr_mem = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;
		struct page_cgroup *pc;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

		pc = lookup_page_cgroup(page);
		if (!PageCgroupUsed(pc))
			continue;

		/*
		 * Nobody should be changing or seriously looking at
		 * pc->mem_cgroup and pc->flags at this point, we have
		 * fully exclusive access to the page.
		 */

		if (memcg != pc->mem_cgroup) {
			if (memcg) {
				uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
					       nr_anon, nr_file, nr_huge, page);
				pgpgout = nr_mem = nr_memsw = 0;
				nr_anon = nr_file = nr_huge = 0;
			}
			memcg = pc->mem_cgroup;
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

		if (pc->flags & PCG_MEM)
			nr_mem += nr_pages;
		if (pc->flags & PCG_MEMSW)
			nr_memsw += nr_pages;
		pc->flags = 0;

		pgpgout++;
	} while (next != page_list);

	if (memcg)
		uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
			       nr_anon, nr_file, nr_huge, page);
}

6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

6616
	/* Don't touch page->lru of any random page, pre-check: */
6617 6618 6619 6620
	pc = lookup_page_cgroup(page);
	if (!PageCgroupUsed(pc))
		return;

6621 6622 6623
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
6624

6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6636

6637 6638
	if (!list_empty(page_list))
		uncharge_list(page_list);
6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
 * @lrucare: both pages might be on the LRU already
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
	struct page_cgroup *pc;
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6662 6663
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
	pc = lookup_page_cgroup(newpage);
	if (PageCgroupUsed(pc))
		return;

	/* Re-entrant migration: old page already uncharged? */
	pc = lookup_page_cgroup(oldpage);
	if (!PageCgroupUsed(pc))
		return;

	VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
	VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

	pc->flags = 0;

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

6689
	commit_charge(newpage, pc->mem_cgroup, lrucare);
6690 6691
}

6692
/*
6693 6694 6695 6696 6697 6698
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6699 6700 6701 6702
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6703
	enable_swap_cgroup();
6704
	mem_cgroup_soft_limit_tree_init();
6705
	memcg_stock_init();
6706 6707 6708
	return 0;
}
subsys_initcall(mem_cgroup_init);