memcontrol.c 154.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/shmem_fs.h>
39
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
40
#include <linux/pagemap.h>
41
#include <linux/smp.h>
42
#include <linux/page-flags.h>
43
#include <linux/backing-dev.h>
44 45
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
46
#include <linux/limits.h>
47
#include <linux/export.h>
48
#include <linux/mutex.h>
49
#include <linux/rbtree.h>
50
#include <linux/slab.h>
51
#include <linux/swap.h>
52
#include <linux/swapops.h>
53
#include <linux/spinlock.h>
54
#include <linux/eventfd.h>
55
#include <linux/poll.h>
56
#include <linux/sort.h>
57
#include <linux/fs.h>
58
#include <linux/seq_file.h>
59
#include <linux/vmpressure.h>
60
#include <linux/mm_inline.h>
61
#include <linux/swap_cgroup.h>
62
#include <linux/cpu.h>
63
#include <linux/oom.h>
64
#include <linux/lockdep.h>
65
#include <linux/file.h>
66
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
67
#include "internal.h"
G
Glauber Costa 已提交
68
#include <net/sock.h>
M
Michal Hocko 已提交
69
#include <net/ip.h>
70
#include "slab.h"
B
Balbir Singh 已提交
71

72
#include <linux/uaccess.h>
73

74 75
#include <trace/events/vmscan.h>

76 77
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
78

79 80
struct mem_cgroup *root_mem_cgroup __read_mostly;

81
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
82

83 84 85
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

86 87 88
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

89
/* Whether the swap controller is active */
A
Andrew Morton 已提交
90
#ifdef CONFIG_MEMCG_SWAP
91 92
int do_swap_account __read_mostly;
#else
93
#define do_swap_account		0
94 95
#endif

96 97 98 99 100 101
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

102 103 104
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
105
	"rss_huge",
106
	"mapped_file",
107
	"dirty",
108
	"writeback",
109 110 111 112 113 114 115 116 117 118
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

119 120 121 122 123 124 125 126
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

127 128 129
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
130

131 132 133 134 135
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

136
struct mem_cgroup_tree_per_node {
137 138 139 140 141 142 143 144 145 146
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
147 148 149 150 151
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
152

153 154 155
/*
 * cgroup_event represents events which userspace want to receive.
 */
156
struct mem_cgroup_event {
157
	/*
158
	 * memcg which the event belongs to.
159
	 */
160
	struct mem_cgroup *memcg;
161 162 163 164 165 166 167 168
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
169 170 171 172 173
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
174
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
175
			      struct eventfd_ctx *eventfd, const char *args);
176 177 178 179 180
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
181
	void (*unregister_event)(struct mem_cgroup *memcg,
182
				 struct eventfd_ctx *eventfd);
183 184 185 186 187 188 189 190 191 192
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

193 194
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
195

196 197
/* Stuffs for move charges at task migration. */
/*
198
 * Types of charges to be moved.
199
 */
200 201 202
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
203

204 205
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
206
	spinlock_t	  lock; /* for from, to */
207
	struct mm_struct  *mm;
208 209
	struct mem_cgroup *from;
	struct mem_cgroup *to;
210
	unsigned long flags;
211
	unsigned long precharge;
212
	unsigned long moved_charge;
213
	unsigned long moved_swap;
214 215 216
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
217
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
218 219
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
220

221 222 223 224
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
225
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
226
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
227

228 229
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
230
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
231
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
232
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
233 234 235
	NR_CHARGE_TYPE,
};

236
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
237 238 239 240
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
241
	_KMEM,
V
Vladimir Davydov 已提交
242
	_TCP,
G
Glauber Costa 已提交
243 244
};

245 246
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
247
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
248 249
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
250

251 252 253 254 255 256 257 258 259 260 261 262 263
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

264 265 266 267 268
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

269
#ifndef CONFIG_SLOB
270
/*
271
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
272 273 274 275 276
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
277
 *
278 279
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
280
 */
281 282
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
283

284 285 286 287 288 289 290 291 292 293 294 295 296
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

297 298 299 300 301 302
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
303
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
304 305
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
306
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
307 308 309
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
310
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
311

312 313 314 315 316 317
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
318
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
319
EXPORT_SYMBOL(memcg_kmem_enabled_key);
320

321 322
struct workqueue_struct *memcg_kmem_cache_wq;

323
#endif /* !CONFIG_SLOB */
324

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

342
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
343 344 345 346 347
		memcg = root_mem_cgroup;

	return &memcg->css;
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

376 377
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
378
{
379
	int nid = page_to_nid(page);
380

381
	return memcg->nodeinfo[nid];
382 383
}

384 385
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
386
{
387
	return soft_limit_tree.rb_tree_per_node[nid];
388 389
}

390
static struct mem_cgroup_tree_per_node *
391 392 393 394
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

395
	return soft_limit_tree.rb_tree_per_node[nid];
396 397
}

398 399
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
400
					 unsigned long new_usage_in_excess)
401 402 403
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
404
	struct mem_cgroup_per_node *mz_node;
405 406 407 408 409 410 411 412 413

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
414
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

430 431
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
432 433 434 435 436 437 438
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

439 440
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
441
{
442 443 444
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
445
	__mem_cgroup_remove_exceeded(mz, mctz);
446
	spin_unlock_irqrestore(&mctz->lock, flags);
447 448
}

449 450 451
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
452
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
453 454 455 456 457 458 459
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
460 461 462

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
463
	unsigned long excess;
464 465
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
466

467
	mctz = soft_limit_tree_from_page(page);
468 469 470 471 472
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
473
		mz = mem_cgroup_page_nodeinfo(memcg, page);
474
		excess = soft_limit_excess(memcg);
475 476 477 478 479
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
480 481 482
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
483 484
			/* if on-tree, remove it */
			if (mz->on_tree)
485
				__mem_cgroup_remove_exceeded(mz, mctz);
486 487 488 489
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
490
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
491
			spin_unlock_irqrestore(&mctz->lock, flags);
492 493 494 495 496 497
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
498 499 500
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
501

502
	for_each_node(nid) {
503 504 505
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
		mem_cgroup_remove_exceeded(mz, mctz);
506 507 508
	}
}

509 510
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
511 512
{
	struct rb_node *rightmost = NULL;
513
	struct mem_cgroup_per_node *mz;
514 515 516 517 518 519 520

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

521
	mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
522 523 524 525 526
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
527
	__mem_cgroup_remove_exceeded(mz, mctz);
528
	if (!soft_limit_excess(mz->memcg) ||
529
	    !css_tryget_online(&mz->memcg->css))
530 531 532 533 534
		goto retry;
done:
	return mz;
}

535 536
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
537
{
538
	struct mem_cgroup_per_node *mz;
539

540
	spin_lock_irq(&mctz->lock);
541
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
542
	spin_unlock_irq(&mctz->lock);
543 544 545
	return mz;
}

546
/*
547 548
 * Return page count for single (non recursive) @memcg.
 *
549 550 551 552 553
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
554
 * a periodic synchronization of counter in memcg's counter.
555 556 557 558 559 560 561 562 563
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
564
 * common workload, threshold and synchronization as vmstat[] should be
565 566
 * implemented.
 */
567 568
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
569
{
570
	long val = 0;
571 572
	int cpu;

573
	/* Per-cpu values can be negative, use a signed accumulator */
574
	for_each_possible_cpu(cpu)
575
		val += per_cpu(memcg->stat->count[idx], cpu);
576 577 578 579 580 581
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
582 583 584
	return val;
}

585
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
586 587 588 589 590
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

591
	for_each_possible_cpu(cpu)
592
		val += per_cpu(memcg->stat->events[idx], cpu);
593 594 595
	return val;
}

596
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
597
					 struct page *page,
598
					 bool compound, int nr_pages)
599
{
600 601 602 603
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
604
	if (PageAnon(page))
605
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
606
				nr_pages);
607
	else
608
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
609
				nr_pages);
610

611 612
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
613 614
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);
615
	}
616

617 618
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
619
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
620
	else {
621
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
622 623
		nr_pages = -nr_pages; /* for event */
	}
624

625
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
626 627
}

628 629
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
630
{
631
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
632
	unsigned long nr = 0;
633
	enum lru_list lru;
634

635
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
636

637 638 639
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
640
		nr += mem_cgroup_get_lru_size(lruvec, lru);
641 642
	}
	return nr;
643
}
644

645
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
646
			unsigned int lru_mask)
647
{
648
	unsigned long nr = 0;
649
	int nid;
650

651
	for_each_node_state(nid, N_MEMORY)
652 653
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
654 655
}

656 657
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
658 659 660
{
	unsigned long val, next;

661
	val = __this_cpu_read(memcg->stat->nr_page_events);
662
	next = __this_cpu_read(memcg->stat->targets[target]);
663
	/* from time_after() in jiffies.h */
664 665 666 667 668
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
669 670 671
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
672 673 674 675 676 677 678 679
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
680
	}
681
	return false;
682 683 684 685 686 687
}

/*
 * Check events in order.
 *
 */
688
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
689 690
{
	/* threshold event is triggered in finer grain than soft limit */
691 692
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
693
		bool do_softlimit;
694
		bool do_numainfo __maybe_unused;
695

696 697
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
698 699 700 701
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
702
		mem_cgroup_threshold(memcg);
703 704
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
705
#if MAX_NUMNODES > 1
706
		if (unlikely(do_numainfo))
707
			atomic_inc(&memcg->numainfo_events);
708
#endif
709
	}
710 711
}

712
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
713
{
714 715 716 717 718 719 720 721
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

722
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
723
}
M
Michal Hocko 已提交
724
EXPORT_SYMBOL(mem_cgroup_from_task);
725

726
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
727
{
728
	struct mem_cgroup *memcg = NULL;
729

730 731
	rcu_read_lock();
	do {
732 733 734 735 736 737
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
738
			memcg = root_mem_cgroup;
739 740 741 742 743
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
744
	} while (!css_tryget_online(&memcg->css));
745
	rcu_read_unlock();
746
	return memcg;
747 748
}

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
766
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
767
				   struct mem_cgroup *prev,
768
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
769
{
M
Michal Hocko 已提交
770
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
771
	struct cgroup_subsys_state *css = NULL;
772
	struct mem_cgroup *memcg = NULL;
773
	struct mem_cgroup *pos = NULL;
774

775 776
	if (mem_cgroup_disabled())
		return NULL;
777

778 779
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
780

781
	if (prev && !reclaim)
782
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
783

784 785
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
786
			goto out;
787
		return root;
788
	}
K
KAMEZAWA Hiroyuki 已提交
789

790
	rcu_read_lock();
M
Michal Hocko 已提交
791

792
	if (reclaim) {
793
		struct mem_cgroup_per_node *mz;
794

795
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
796 797 798 799 800
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

801
		while (1) {
802
			pos = READ_ONCE(iter->position);
803 804
			if (!pos || css_tryget(&pos->css))
				break;
805
			/*
806 807 808 809 810 811
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
812
			 */
813 814
			(void)cmpxchg(&iter->position, pos, NULL);
		}
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
832
		}
K
KAMEZAWA Hiroyuki 已提交
833

834 835 836 837 838 839
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
840

841 842
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
843

844 845
		if (css_tryget(css))
			break;
846

847
		memcg = NULL;
848
	}
849 850 851

	if (reclaim) {
		/*
852 853 854
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
855
		 */
856 857
		(void)cmpxchg(&iter->position, pos, memcg);

858 859 860 861 862 863 864
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
865
	}
866

867 868
out_unlock:
	rcu_read_unlock();
869
out:
870 871 872
	if (prev && prev != root)
		css_put(&prev->css);

873
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
874
}
K
KAMEZAWA Hiroyuki 已提交
875

876 877 878 879 880 881 882
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
883 884 885 886 887 888
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
889

890 891 892 893
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
894 895
	struct mem_cgroup_per_node *mz;
	int nid;
896 897 898 899
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
900 901 902 903 904
			mz = mem_cgroup_nodeinfo(memcg, nid);
			for (i = 0; i <= DEF_PRIORITY; i++) {
				iter = &mz->iter[i];
				cmpxchg(&iter->position,
					dead_memcg, NULL);
905 906 907 908 909
			}
		}
	}
}

910 911 912 913 914 915
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
916
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
917
	     iter != NULL;				\
918
	     iter = mem_cgroup_iter(root, iter, NULL))
919

920
#define for_each_mem_cgroup(iter)			\
921
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
922
	     iter != NULL;				\
923
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
924

925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

		css_task_iter_start(&iter->css, &it);
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

962
/**
963
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
964
 * @page: the page
965
 * @zone: zone of the page
966 967 968 969
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
970
 */
M
Mel Gorman 已提交
971
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
972
{
973
	struct mem_cgroup_per_node *mz;
974
	struct mem_cgroup *memcg;
975
	struct lruvec *lruvec;
976

977
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
978
		lruvec = &pgdat->lruvec;
979 980
		goto out;
	}
981

982
	memcg = page->mem_cgroup;
983
	/*
984
	 * Swapcache readahead pages are added to the LRU - and
985
	 * possibly migrated - before they are charged.
986
	 */
987 988
	if (!memcg)
		memcg = root_mem_cgroup;
989

990
	mz = mem_cgroup_page_nodeinfo(memcg, page);
991 992 993 994 995 996 997
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
998 999
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1000
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1001
}
1002

1003
/**
1004 1005 1006
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1007
 * @zid: zone id of the accounted pages
1008
 * @nr_pages: positive when adding or negative when removing
1009
 *
1010 1011 1012
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1013
 */
1014
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1015
				int zid, int nr_pages)
1016
{
1017
	struct mem_cgroup_per_node *mz;
1018
	unsigned long *lru_size;
1019
	long size;
1020 1021 1022 1023

	if (mem_cgroup_disabled())
		return;

1024
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1025
	lru_size = &mz->lru_zone_size[zid][lru];
1026 1027 1028 1029 1030

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1031 1032 1033
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1034 1035 1036 1037 1038 1039
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1040
}
1041

1042
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1043
{
1044
	struct mem_cgroup *task_memcg;
1045
	struct task_struct *p;
1046
	bool ret;
1047

1048
	p = find_lock_task_mm(task);
1049
	if (p) {
1050
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1051 1052 1053 1054 1055 1056 1057
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1058
		rcu_read_lock();
1059 1060
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1061
		rcu_read_unlock();
1062
	}
1063 1064
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1065 1066 1067
	return ret;
}

1068
/**
1069
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1070
 * @memcg: the memory cgroup
1071
 *
1072
 * Returns the maximum amount of memory @mem can be charged with, in
1073
 * pages.
1074
 */
1075
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1076
{
1077 1078 1079
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1080

1081
	count = page_counter_read(&memcg->memory);
1082
	limit = READ_ONCE(memcg->memory.limit);
1083 1084 1085
	if (count < limit)
		margin = limit - count;

1086
	if (do_memsw_account()) {
1087
		count = page_counter_read(&memcg->memsw);
1088
		limit = READ_ONCE(memcg->memsw.limit);
1089 1090
		if (count <= limit)
			margin = min(margin, limit - count);
1091 1092
		else
			margin = 0;
1093 1094 1095
	}

	return margin;
1096 1097
}

1098
/*
Q
Qiang Huang 已提交
1099
 * A routine for checking "mem" is under move_account() or not.
1100
 *
Q
Qiang Huang 已提交
1101 1102 1103
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1104
 */
1105
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1106
{
1107 1108
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1109
	bool ret = false;
1110 1111 1112 1113 1114 1115 1116 1117 1118
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1119

1120 1121
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1122 1123
unlock:
	spin_unlock(&mc.lock);
1124 1125 1126
	return ret;
}

1127
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1128 1129
{
	if (mc.moving_task && current != mc.moving_task) {
1130
		if (mem_cgroup_under_move(memcg)) {
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1143
#define K(x) ((x) << (PAGE_SHIFT-10))
1144
/**
1145
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146 1147 1148 1149 1150 1151 1152 1153
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1154 1155
	struct mem_cgroup *iter;
	unsigned int i;
1156 1157 1158

	rcu_read_lock();

1159 1160 1161 1162 1163 1164 1165 1166
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1167
	pr_cont_cgroup_path(memcg->css.cgroup);
1168
	pr_cont("\n");
1169 1170 1171

	rcu_read_unlock();

1172 1173 1174 1175 1176 1177 1178 1179 1180
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1181 1182

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1183 1184
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1185 1186 1187
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1188
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1189
				continue;
1190
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1191 1192 1193 1194 1195 1196 1197 1198 1199
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1200 1201
}

1202 1203 1204 1205
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1206
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1207 1208
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1209 1210
	struct mem_cgroup *iter;

1211
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1212
		num++;
1213 1214 1215
	return num;
}

D
David Rientjes 已提交
1216 1217 1218
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1219
unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1220
{
1221
	unsigned long limit;
1222

1223
	limit = memcg->memory.limit;
1224
	if (mem_cgroup_swappiness(memcg)) {
1225
		unsigned long memsw_limit;
1226
		unsigned long swap_limit;
1227

1228
		memsw_limit = memcg->memsw.limit;
1229 1230 1231
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1232 1233
	}
	return limit;
D
David Rientjes 已提交
1234 1235
}

1236
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1237
				     int order)
1238
{
1239 1240 1241
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1242
		.memcg = memcg,
1243 1244 1245
		.gfp_mask = gfp_mask,
		.order = order,
	};
1246
	bool ret;
1247

1248
	mutex_lock(&oom_lock);
1249
	ret = out_of_memory(&oc);
1250
	mutex_unlock(&oom_lock);
1251
	return ret;
1252 1253
}

1254 1255
#if MAX_NUMNODES > 1

1256 1257
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1258
 * @memcg: the target memcg
1259 1260 1261 1262 1263 1264 1265
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1266
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1267 1268
		int nid, bool noswap)
{
1269
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1270 1271 1272
		return true;
	if (noswap || !total_swap_pages)
		return false;
1273
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1274 1275 1276 1277
		return true;
	return false;

}
1278 1279 1280 1281 1282 1283 1284

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1285
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1286 1287
{
	int nid;
1288 1289 1290 1291
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1292
	if (!atomic_read(&memcg->numainfo_events))
1293
		return;
1294
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1295 1296 1297
		return;

	/* make a nodemask where this memcg uses memory from */
1298
	memcg->scan_nodes = node_states[N_MEMORY];
1299

1300
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1301

1302 1303
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1304
	}
1305

1306 1307
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1322
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1323 1324 1325
{
	int node;

1326 1327
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1328

1329
	node = next_node_in(node, memcg->scan_nodes);
1330
	/*
1331 1332 1333
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1334 1335 1336 1337
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1338
	memcg->last_scanned_node = node;
1339 1340 1341
	return node;
}
#else
1342
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1343 1344 1345 1346 1347
{
	return 0;
}
#endif

1348
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1349
				   pg_data_t *pgdat,
1350 1351 1352 1353 1354 1355 1356 1357 1358
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1359
		.pgdat = pgdat,
1360 1361 1362
		.priority = 0,
	};

1363
	excess = soft_limit_excess(root_memcg);
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1389
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1390
					pgdat, &nr_scanned);
1391
		*total_scanned += nr_scanned;
1392
		if (!soft_limit_excess(root_memcg))
1393
			break;
1394
	}
1395 1396
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1397 1398
}

1399 1400 1401 1402 1403 1404
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1405 1406
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1407 1408 1409 1410
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1411
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1412
{
1413
	struct mem_cgroup *iter, *failed = NULL;
1414

1415 1416
	spin_lock(&memcg_oom_lock);

1417
	for_each_mem_cgroup_tree(iter, memcg) {
1418
		if (iter->oom_lock) {
1419 1420 1421 1422 1423
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1424 1425
			mem_cgroup_iter_break(memcg, iter);
			break;
1426 1427
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1428
	}
K
KAMEZAWA Hiroyuki 已提交
1429

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1441
		}
1442 1443
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1444 1445 1446 1447

	spin_unlock(&memcg_oom_lock);

	return !failed;
1448
}
1449

1450
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1451
{
K
KAMEZAWA Hiroyuki 已提交
1452 1453
	struct mem_cgroup *iter;

1454
	spin_lock(&memcg_oom_lock);
1455
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1456
	for_each_mem_cgroup_tree(iter, memcg)
1457
		iter->oom_lock = false;
1458
	spin_unlock(&memcg_oom_lock);
1459 1460
}

1461
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1462 1463 1464
{
	struct mem_cgroup *iter;

1465
	spin_lock(&memcg_oom_lock);
1466
	for_each_mem_cgroup_tree(iter, memcg)
1467 1468
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1469 1470
}

1471
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1472 1473 1474
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1475 1476
	/*
	 * When a new child is created while the hierarchy is under oom,
1477
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1478
	 */
1479
	spin_lock(&memcg_oom_lock);
1480
	for_each_mem_cgroup_tree(iter, memcg)
1481 1482 1483
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1484 1485
}

K
KAMEZAWA Hiroyuki 已提交
1486 1487
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1488
struct oom_wait_info {
1489
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1490 1491 1492 1493 1494 1495
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1496 1497
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1498 1499 1500
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1501
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1502

1503 1504
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1505 1506 1507 1508
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1509
static void memcg_oom_recover(struct mem_cgroup *memcg)
1510
{
1511 1512 1513 1514 1515 1516 1517 1518 1519
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1520
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1521 1522
}

1523
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1524
{
1525
	if (!current->memcg_may_oom)
1526
		return;
K
KAMEZAWA Hiroyuki 已提交
1527
	/*
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1540
	 */
1541
	css_get(&memcg->css);
T
Tejun Heo 已提交
1542 1543 1544
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1545 1546 1547 1548
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1549
 * @handle: actually kill/wait or just clean up the OOM state
1550
 *
1551 1552
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1553
 *
1554
 * Memcg supports userspace OOM handling where failed allocations must
1555 1556 1557 1558
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1559
 * the end of the page fault to complete the OOM handling.
1560 1561
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1562
 * completed, %false otherwise.
1563
 */
1564
bool mem_cgroup_oom_synchronize(bool handle)
1565
{
T
Tejun Heo 已提交
1566
	struct mem_cgroup *memcg = current->memcg_in_oom;
1567
	struct oom_wait_info owait;
1568
	bool locked;
1569 1570 1571

	/* OOM is global, do not handle */
	if (!memcg)
1572
		return false;
1573

1574
	if (!handle)
1575
		goto cleanup;
1576 1577 1578 1579 1580 1581

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1582

1583
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1594 1595
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1596
	} else {
1597
		schedule();
1598 1599 1600 1601 1602
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1603 1604 1605 1606 1607 1608 1609 1610
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1611
cleanup:
T
Tejun Heo 已提交
1612
	current->memcg_in_oom = NULL;
1613
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1614
	return true;
1615 1616
}

1617
/**
1618 1619
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1620
 *
1621 1622
 * This function protects unlocked LRU pages from being moved to
 * another cgroup and stabilizes their page->mem_cgroup binding.
1623
 */
J
Johannes Weiner 已提交
1624
void lock_page_memcg(struct page *page)
1625 1626
{
	struct mem_cgroup *memcg;
1627
	unsigned long flags;
1628

1629 1630 1631 1632 1633
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 */
1634 1635 1636
	rcu_read_lock();

	if (mem_cgroup_disabled())
J
Johannes Weiner 已提交
1637
		return;
1638
again:
1639
	memcg = page->mem_cgroup;
1640
	if (unlikely(!memcg))
J
Johannes Weiner 已提交
1641
		return;
1642

Q
Qiang Huang 已提交
1643
	if (atomic_read(&memcg->moving_account) <= 0)
J
Johannes Weiner 已提交
1644
		return;
1645

1646
	spin_lock_irqsave(&memcg->move_lock, flags);
1647
	if (memcg != page->mem_cgroup) {
1648
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1649 1650
		goto again;
	}
1651 1652 1653 1654

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1655
	 * the task who has the lock for unlock_page_memcg().
1656 1657 1658
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1659

J
Johannes Weiner 已提交
1660
	return;
1661
}
1662
EXPORT_SYMBOL(lock_page_memcg);
1663

1664
/**
1665
 * unlock_page_memcg - unlock a page->mem_cgroup binding
J
Johannes Weiner 已提交
1666
 * @page: the page
1667
 */
J
Johannes Weiner 已提交
1668
void unlock_page_memcg(struct page *page)
1669
{
J
Johannes Weiner 已提交
1670 1671
	struct mem_cgroup *memcg = page->mem_cgroup;

1672 1673 1674 1675 1676 1677 1678 1679
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1680

1681
	rcu_read_unlock();
1682
}
1683
EXPORT_SYMBOL(unlock_page_memcg);
1684

1685 1686 1687 1688
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1689
#define CHARGE_BATCH	32U
1690 1691
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1692
	unsigned int nr_pages;
1693
	struct work_struct work;
1694
	unsigned long flags;
1695
#define FLUSHING_CACHED_CHARGE	0
1696 1697
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1698
static DEFINE_MUTEX(percpu_charge_mutex);
1699

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1710
 */
1711
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1712 1713
{
	struct memcg_stock_pcp *stock;
1714
	unsigned long flags;
1715
	bool ret = false;
1716

1717
	if (nr_pages > CHARGE_BATCH)
1718
		return ret;
1719

1720 1721 1722
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1723
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1724
		stock->nr_pages -= nr_pages;
1725 1726
		ret = true;
	}
1727 1728 1729

	local_irq_restore(flags);

1730 1731 1732 1733
	return ret;
}

/*
1734
 * Returns stocks cached in percpu and reset cached information.
1735 1736 1737 1738 1739
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1740
	if (stock->nr_pages) {
1741
		page_counter_uncharge(&old->memory, stock->nr_pages);
1742
		if (do_memsw_account())
1743
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1744
		css_put_many(&old->css, stock->nr_pages);
1745
		stock->nr_pages = 0;
1746 1747 1748 1749 1750 1751
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
1752 1753 1754 1755 1756 1757
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1758
	drain_stock(stock);
1759
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1760 1761

	local_irq_restore(flags);
1762 1763 1764
}

/*
1765
 * Cache charges(val) to local per_cpu area.
1766
 * This will be consumed by consume_stock() function, later.
1767
 */
1768
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1769
{
1770 1771 1772 1773
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
1774

1775
	stock = this_cpu_ptr(&memcg_stock);
1776
	if (stock->cached != memcg) { /* reset if necessary */
1777
		drain_stock(stock);
1778
		stock->cached = memcg;
1779
	}
1780
	stock->nr_pages += nr_pages;
1781 1782

	local_irq_restore(flags);
1783 1784 1785
}

/*
1786
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1787
 * of the hierarchy under it.
1788
 */
1789
static void drain_all_stock(struct mem_cgroup *root_memcg)
1790
{
1791
	int cpu, curcpu;
1792

1793 1794 1795
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1796 1797
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1798
	curcpu = get_cpu();
1799 1800
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1801
		struct mem_cgroup *memcg;
1802

1803 1804
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1805
			continue;
1806
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1807
			continue;
1808 1809 1810 1811 1812 1813
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1814
	}
1815
	put_cpu();
A
Andrew Morton 已提交
1816
	put_online_cpus();
1817
	mutex_unlock(&percpu_charge_mutex);
1818 1819
}

1820
static int memcg_hotplug_cpu_dead(unsigned int cpu)
1821 1822 1823 1824 1825
{
	struct memcg_stock_pcp *stock;

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
1826
	return 0;
1827 1828
}

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1849 1850 1851 1852 1853 1854 1855
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1856
	struct mem_cgroup *memcg;
1857 1858 1859 1860

	if (likely(!nr_pages))
		return;

1861 1862
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1863 1864 1865 1866
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1867 1868
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1869
{
1870
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1871
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1872
	struct mem_cgroup *mem_over_limit;
1873
	struct page_counter *counter;
1874
	unsigned long nr_reclaimed;
1875 1876
	bool may_swap = true;
	bool drained = false;
1877

1878
	if (mem_cgroup_is_root(memcg))
1879
		return 0;
1880
retry:
1881
	if (consume_stock(memcg, nr_pages))
1882
		return 0;
1883

1884
	if (!do_memsw_account() ||
1885 1886
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1887
			goto done_restock;
1888
		if (do_memsw_account())
1889 1890
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1891
	} else {
1892
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1893
		may_swap = false;
1894
	}
1895

1896 1897 1898 1899
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1900

1901 1902 1903 1904 1905 1906 1907 1908 1909
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1910
		goto force;
1911

1912 1913 1914 1915 1916 1917 1918 1919 1920
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

1921 1922 1923
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1924
	if (!gfpflags_allow_blocking(gfp_mask))
1925
		goto nomem;
1926

1927 1928
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

1929 1930
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
1931

1932
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1933
		goto retry;
1934

1935
	if (!drained) {
1936
		drain_all_stock(mem_over_limit);
1937 1938 1939 1940
		drained = true;
		goto retry;
	}

1941 1942
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
1943 1944 1945 1946 1947 1948 1949 1950 1951
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
1952
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1953 1954 1955 1956 1957 1958 1959 1960
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

1961 1962 1963
	if (nr_retries--)
		goto retry;

1964
	if (gfp_mask & __GFP_NOFAIL)
1965
		goto force;
1966

1967
	if (fatal_signal_pending(current))
1968
		goto force;
1969

1970 1971
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

1972 1973
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
1974
nomem:
1975
	if (!(gfp_mask & __GFP_NOFAIL))
1976
		return -ENOMEM;
1977 1978 1979 1980 1981 1982 1983
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
1984
	if (do_memsw_account())
1985 1986 1987 1988
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
1989 1990

done_restock:
1991
	css_get_many(&memcg->css, batch);
1992 1993
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
1994

1995
	/*
1996 1997
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
1998
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
1999 2000 2001 2002
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2003 2004
	 */
	do {
2005
		if (page_counter_read(&memcg->memory) > memcg->high) {
2006 2007 2008 2009 2010
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2011
			current->memcg_nr_pages_over_high += batch;
2012 2013 2014
			set_notify_resume(current);
			break;
		}
2015
	} while ((memcg = parent_mem_cgroup(memcg)));
2016 2017

	return 0;
2018
}
2019

2020
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2021
{
2022 2023 2024
	if (mem_cgroup_is_root(memcg))
		return;

2025
	page_counter_uncharge(&memcg->memory, nr_pages);
2026
	if (do_memsw_account())
2027
		page_counter_uncharge(&memcg->memsw, nr_pages);
2028

2029
	css_put_many(&memcg->css, nr_pages);
2030 2031
}

2032 2033 2034 2035
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

2036
	spin_lock_irq(zone_lru_lock(zone));
2037 2038 2039
	if (PageLRU(page)) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2040
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2055
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2056 2057 2058 2059
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2060
	spin_unlock_irq(zone_lru_lock(zone));
2061 2062
}

2063
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2064
			  bool lrucare)
2065
{
2066
	int isolated;
2067

2068
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2069 2070 2071 2072 2073

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2074 2075
	if (lrucare)
		lock_page_lru(page, &isolated);
2076

2077 2078
	/*
	 * Nobody should be changing or seriously looking at
2079
	 * page->mem_cgroup at this point:
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2091
	page->mem_cgroup = memcg;
2092

2093 2094
	if (lrucare)
		unlock_page_lru(page, isolated);
2095
}
2096

2097
#ifndef CONFIG_SLOB
2098
static int memcg_alloc_cache_id(void)
2099
{
2100 2101 2102
	int id, size;
	int err;

2103
	id = ida_simple_get(&memcg_cache_ida,
2104 2105 2106
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2107

2108
	if (id < memcg_nr_cache_ids)
2109 2110 2111 2112 2113 2114
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2115
	down_write(&memcg_cache_ids_sem);
2116 2117

	size = 2 * (id + 1);
2118 2119 2120 2121 2122
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2123
	err = memcg_update_all_caches(size);
2124 2125
	if (!err)
		err = memcg_update_all_list_lrus(size);
2126 2127 2128 2129 2130
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2131
	if (err) {
2132
		ida_simple_remove(&memcg_cache_ida, id);
2133 2134 2135 2136 2137 2138 2139
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2140
	ida_simple_remove(&memcg_cache_ida, id);
2141 2142
}

2143
struct memcg_kmem_cache_create_work {
2144 2145 2146 2147 2148
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2149
static void memcg_kmem_cache_create_func(struct work_struct *w)
2150
{
2151 2152
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2153 2154
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2155

2156
	memcg_create_kmem_cache(memcg, cachep);
2157

2158
	css_put(&memcg->css);
2159 2160 2161 2162 2163 2164
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2165 2166
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2167
{
2168
	struct memcg_kmem_cache_create_work *cw;
2169

2170
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2171
	if (!cw)
2172
		return;
2173 2174

	css_get(&memcg->css);
2175 2176 2177

	cw->memcg = memcg;
	cw->cachep = cachep;
2178
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2179

2180
	queue_work(memcg_kmem_cache_wq, &cw->work);
2181 2182
}

2183 2184
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2185 2186 2187 2188
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2189
	 * in __memcg_schedule_kmem_cache_create will recurse.
2190 2191 2192 2193 2194 2195 2196
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2197
	current->memcg_kmem_skip_account = 1;
2198
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2199
	current->memcg_kmem_skip_account = 0;
2200
}
2201

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2213 2214 2215
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2216 2217 2218
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2219
 *
2220 2221 2222 2223
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2224
 */
2225
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2226 2227
{
	struct mem_cgroup *memcg;
2228
	struct kmem_cache *memcg_cachep;
2229
	int kmemcg_id;
2230

2231
	VM_BUG_ON(!is_root_cache(cachep));
2232

2233
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2234 2235
		return cachep;

2236
	if (current->memcg_kmem_skip_account)
2237 2238
		return cachep;

2239
	memcg = get_mem_cgroup_from_mm(current->mm);
2240
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2241
	if (kmemcg_id < 0)
2242
		goto out;
2243

2244
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2245 2246
	if (likely(memcg_cachep))
		return memcg_cachep;
2247 2248 2249 2250 2251 2252 2253 2254 2255

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2256 2257 2258
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2259
	 */
2260
	memcg_schedule_kmem_cache_create(memcg, cachep);
2261
out:
2262
	css_put(&memcg->css);
2263
	return cachep;
2264 2265
}

2266 2267 2268 2269 2270
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2271 2272
{
	if (!is_root_cache(cachep))
2273
		css_put(&cachep->memcg_params.memcg->css);
2274 2275
}

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
/**
 * memcg_kmem_charge: charge a kmem page
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			    struct mem_cgroup *memcg)
2287
{
2288 2289
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2290 2291
	int ret;

2292
	ret = try_charge(memcg, gfp, nr_pages);
2293
	if (ret)
2294
		return ret;
2295 2296 2297 2298 2299

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2300 2301
	}

2302
	page->mem_cgroup = memcg;
2303

2304
	return 0;
2305 2306
}

2307 2308 2309 2310 2311 2312 2313 2314 2315
/**
 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2316
{
2317
	struct mem_cgroup *memcg;
2318
	int ret = 0;
2319

2320 2321 2322
	if (memcg_kmem_bypass())
		return 0;

2323
	memcg = get_mem_cgroup_from_mm(current->mm);
2324
	if (!mem_cgroup_is_root(memcg)) {
2325
		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2326 2327 2328
		if (!ret)
			__SetPageKmemcg(page);
	}
2329
	css_put(&memcg->css);
2330
	return ret;
2331
}
2332 2333 2334 2335 2336 2337
/**
 * memcg_kmem_uncharge: uncharge a kmem page
 * @page: page to uncharge
 * @order: allocation order
 */
void memcg_kmem_uncharge(struct page *page, int order)
2338
{
2339
	struct mem_cgroup *memcg = page->mem_cgroup;
2340
	unsigned int nr_pages = 1 << order;
2341 2342 2343 2344

	if (!memcg)
		return;

2345
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2346

2347 2348 2349
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2350
	page_counter_uncharge(&memcg->memory, nr_pages);
2351
	if (do_memsw_account())
2352
		page_counter_uncharge(&memcg->memsw, nr_pages);
2353

2354
	page->mem_cgroup = NULL;
2355 2356 2357 2358 2359

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2360
	css_put_many(&memcg->css, nr_pages);
2361
}
2362
#endif /* !CONFIG_SLOB */
2363

2364 2365 2366 2367
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2368
 * zone_lru_lock and migration entries setup in all page mappings.
2369
 */
2370
void mem_cgroup_split_huge_fixup(struct page *head)
2371
{
2372
	int i;
2373

2374 2375
	if (mem_cgroup_disabled())
		return;
2376

2377
	for (i = 1; i < HPAGE_PMD_NR; i++)
2378
		head[i].mem_cgroup = head->mem_cgroup;
2379

2380
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2381
		       HPAGE_PMD_NR);
2382
}
2383
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2384

A
Andrew Morton 已提交
2385
#ifdef CONFIG_MEMCG_SWAP
2386 2387
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2388
{
2389 2390
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2391
}
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2404
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2405 2406 2407
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2408
				struct mem_cgroup *from, struct mem_cgroup *to)
2409 2410 2411
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2412 2413
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2414 2415 2416

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2417
		mem_cgroup_swap_statistics(to, true);
2418 2419 2420 2421 2422 2423
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2424
				struct mem_cgroup *from, struct mem_cgroup *to)
2425 2426 2427
{
	return -EINVAL;
}
2428
#endif
K
KAMEZAWA Hiroyuki 已提交
2429

2430
static DEFINE_MUTEX(memcg_limit_mutex);
2431

2432
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2433
				   unsigned long limit)
2434
{
2435 2436 2437
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2438
	int retry_count;
2439
	int ret;
2440 2441 2442 2443 2444 2445

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2446 2447
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2448

2449
	oldusage = page_counter_read(&memcg->memory);
2450

2451
	do {
2452 2453 2454 2455
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2456 2457 2458 2459

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2460
			ret = -EINVAL;
2461 2462
			break;
		}
2463 2464 2465 2466
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2467 2468 2469 2470

		if (!ret)
			break;

2471 2472
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2473
		curusage = page_counter_read(&memcg->memory);
2474
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2475
		if (curusage >= oldusage)
2476 2477 2478
			retry_count--;
		else
			oldusage = curusage;
2479 2480
	} while (retry_count);

2481 2482
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2483

2484 2485 2486
	return ret;
}

L
Li Zefan 已提交
2487
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2488
					 unsigned long limit)
2489
{
2490 2491 2492
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2493
	int retry_count;
2494
	int ret;
2495

2496
	/* see mem_cgroup_resize_res_limit */
2497 2498 2499 2500 2501 2502
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2503 2504 2505 2506
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2507 2508 2509 2510

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2511 2512 2513
			ret = -EINVAL;
			break;
		}
2514 2515 2516 2517
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2518 2519 2520 2521

		if (!ret)
			break;

2522 2523
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2524
		curusage = page_counter_read(&memcg->memsw);
2525
		/* Usage is reduced ? */
2526
		if (curusage >= oldusage)
2527
			retry_count--;
2528 2529
		else
			oldusage = curusage;
2530 2531
	} while (retry_count);

2532 2533
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2534

2535 2536 2537
	return ret;
}

2538
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2539 2540 2541 2542
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
2543
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2544 2545
	unsigned long reclaimed;
	int loop = 0;
2546
	struct mem_cgroup_tree_per_node *mctz;
2547
	unsigned long excess;
2548 2549 2550 2551 2552
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

2553
	mctz = soft_limit_tree_node(pgdat->node_id);
2554 2555 2556 2557 2558 2559 2560 2561 2562

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
	if (RB_EMPTY_ROOT(&mctz->rb_root))
		return 0;

2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
2577
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2578 2579 2580
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2581
		spin_lock_irq(&mctz->lock);
2582
		__mem_cgroup_remove_exceeded(mz, mctz);
2583 2584 2585 2586 2587 2588

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2589 2590 2591
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2592
		excess = soft_limit_excess(mz->memcg);
2593 2594 2595 2596 2597 2598 2599 2600 2601
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2602
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2603
		spin_unlock_irq(&mctz->lock);
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2621 2622 2623 2624 2625 2626
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2627 2628
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2629 2630 2631 2632 2633 2634
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2635 2636
}

2637
/*
2638
 * Reclaims as many pages from the given memcg as possible.
2639 2640 2641 2642 2643 2644 2645
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2646 2647
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2648
	/* try to free all pages in this cgroup */
2649
	while (nr_retries && page_counter_read(&memcg->memory)) {
2650
		int progress;
2651

2652 2653 2654
		if (signal_pending(current))
			return -EINTR;

2655 2656
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2657
		if (!progress) {
2658
			nr_retries--;
2659
			/* maybe some writeback is necessary */
2660
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2661
		}
2662 2663

	}
2664 2665

	return 0;
2666 2667
}

2668 2669 2670
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2671
{
2672
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2673

2674 2675
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2676
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2677 2678
}

2679 2680
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2681
{
2682
	return mem_cgroup_from_css(css)->use_hierarchy;
2683 2684
}

2685 2686
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2687 2688
{
	int retval = 0;
2689
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2690
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2691

2692
	if (memcg->use_hierarchy == val)
2693
		return 0;
2694

2695
	/*
2696
	 * If parent's use_hierarchy is set, we can't make any modifications
2697 2698 2699 2700 2701 2702
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2703
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2704
				(val == 1 || val == 0)) {
2705
		if (!memcg_has_children(memcg))
2706
			memcg->use_hierarchy = val;
2707 2708 2709 2710
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2711

2712 2713 2714
	return retval;
}

2715
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2716 2717
{
	struct mem_cgroup *iter;
2718
	int i;
2719

2720
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2721

2722 2723 2724 2725
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
			stat[i] += mem_cgroup_read_stat(iter, i);
	}
2726 2727
}

2728
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2729 2730
{
	struct mem_cgroup *iter;
2731
	int i;
2732

2733
	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2734

2735 2736 2737 2738
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_EVENTS; i++)
			events[i] += mem_cgroup_read_events(iter, i);
	}
2739 2740
}

2741
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2742
{
2743
	unsigned long val = 0;
2744

2745
	if (mem_cgroup_is_root(memcg)) {
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_CACHE);
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_RSS);
			if (swap)
				val += mem_cgroup_read_stat(iter,
						MEM_CGROUP_STAT_SWAP);
		}
2757
	} else {
2758
		if (!swap)
2759
			val = page_counter_read(&memcg->memory);
2760
		else
2761
			val = page_counter_read(&memcg->memsw);
2762
	}
2763
	return val;
2764 2765
}

2766 2767 2768 2769 2770 2771 2772
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2773

2774
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2775
			       struct cftype *cft)
B
Balbir Singh 已提交
2776
{
2777
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2778
	struct page_counter *counter;
2779

2780
	switch (MEMFILE_TYPE(cft->private)) {
2781
	case _MEM:
2782 2783
		counter = &memcg->memory;
		break;
2784
	case _MEMSWAP:
2785 2786
		counter = &memcg->memsw;
		break;
2787
	case _KMEM:
2788
		counter = &memcg->kmem;
2789
		break;
V
Vladimir Davydov 已提交
2790
	case _TCP:
2791
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2792
		break;
2793 2794 2795
	default:
		BUG();
	}
2796 2797 2798 2799

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2800
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2801
		if (counter == &memcg->memsw)
2802
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2815
}
2816

2817
#ifndef CONFIG_SLOB
2818
static int memcg_online_kmem(struct mem_cgroup *memcg)
2819 2820 2821
{
	int memcg_id;

2822 2823 2824
	if (cgroup_memory_nokmem)
		return 0;

2825
	BUG_ON(memcg->kmemcg_id >= 0);
2826
	BUG_ON(memcg->kmem_state);
2827

2828
	memcg_id = memcg_alloc_cache_id();
2829 2830
	if (memcg_id < 0)
		return memcg_id;
2831

2832
	static_branch_inc(&memcg_kmem_enabled_key);
2833
	/*
2834
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2835
	 * kmemcg_id. Setting the id after enabling static branching will
2836 2837 2838
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2839
	memcg->kmemcg_id = memcg_id;
2840
	memcg->kmem_state = KMEM_ONLINE;
2841
	INIT_LIST_HEAD(&memcg->kmem_caches);
2842 2843

	return 0;
2844 2845
}

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
2879
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2880 2881 2882 2883 2884 2885 2886
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
2887 2888
	rcu_read_unlock();

2889 2890 2891 2892 2893 2894 2895
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2896 2897 2898 2899
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2900 2901 2902 2903 2904 2905
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2906
#else
2907
static int memcg_online_kmem(struct mem_cgroup *memcg)
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2919
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2920
				   unsigned long limit)
2921
{
2922
	int ret;
2923 2924 2925 2926 2927

	mutex_lock(&memcg_limit_mutex);
	ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2928
}
2929

V
Vladimir Davydov 已提交
2930 2931 2932 2933 2934 2935
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2936
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2937 2938 2939
	if (ret)
		goto out;

2940
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2941 2942 2943
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
2944 2945 2946
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
2947 2948 2949 2950 2951 2952
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
2953
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
2954 2955 2956 2957
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
2958
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
2959 2960 2961 2962 2963 2964
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

2965 2966 2967 2968
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2969 2970
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
2971
{
2972
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2973
	unsigned long nr_pages;
2974 2975
	int ret;

2976
	buf = strstrip(buf);
2977
	ret = page_counter_memparse(buf, "-1", &nr_pages);
2978 2979
	if (ret)
		return ret;
2980

2981
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2982
	case RES_LIMIT:
2983 2984 2985 2986
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2987 2988 2989
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2990
			break;
2991 2992
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2993
			break;
2994 2995 2996
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
2997 2998 2999
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
3000
		}
3001
		break;
3002 3003 3004
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3005 3006
		break;
	}
3007
	return ret ?: nbytes;
B
Balbir Singh 已提交
3008 3009
}

3010 3011
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3012
{
3013
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3014
	struct page_counter *counter;
3015

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3026
	case _TCP:
3027
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3028
		break;
3029 3030 3031
	default:
		BUG();
	}
3032

3033
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3034
	case RES_MAX_USAGE:
3035
		page_counter_reset_watermark(counter);
3036 3037
		break;
	case RES_FAILCNT:
3038
		counter->failcnt = 0;
3039
		break;
3040 3041
	default:
		BUG();
3042
	}
3043

3044
	return nbytes;
3045 3046
}

3047
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3048 3049
					struct cftype *cft)
{
3050
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3051 3052
}

3053
#ifdef CONFIG_MMU
3054
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3055 3056
					struct cftype *cft, u64 val)
{
3057
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3058

3059
	if (val & ~MOVE_MASK)
3060
		return -EINVAL;
3061

3062
	/*
3063 3064 3065 3066
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3067
	 */
3068
	memcg->move_charge_at_immigrate = val;
3069 3070
	return 0;
}
3071
#else
3072
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3073 3074 3075 3076 3077
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3078

3079
#ifdef CONFIG_NUMA
3080
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3081
{
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3094
	int nid;
3095
	unsigned long nr;
3096
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3097

3098 3099 3100 3101 3102 3103 3104 3105 3106
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3107 3108
	}

3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3124 3125 3126 3127 3128 3129
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3130
static int memcg_stat_show(struct seq_file *m, void *v)
3131
{
3132
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3133
	unsigned long memory, memsw;
3134 3135
	struct mem_cgroup *mi;
	unsigned int i;
3136

3137 3138 3139 3140
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3141 3142
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3143
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3144
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3145
			continue;
3146
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3147
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3148
	}
L
Lee Schermerhorn 已提交
3149

3150 3151 3152 3153 3154 3155 3156 3157
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3158
	/* Hierarchical information */
3159 3160 3161 3162
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3163
	}
3164 3165
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3166
	if (do_memsw_account())
3167 3168
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3169

3170
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3171
		unsigned long long val = 0;
3172

3173
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3174
			continue;
3175 3176
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3177
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3195
	}
K
KAMEZAWA Hiroyuki 已提交
3196

K
KOSAKI Motohiro 已提交
3197 3198
#ifdef CONFIG_DEBUG_VM
	{
3199 3200
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3201
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3202 3203 3204
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3205 3206 3207
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3208

3209 3210 3211 3212 3213
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3214 3215 3216 3217
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3218 3219 3220
	}
#endif

3221 3222 3223
	return 0;
}

3224 3225
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3226
{
3227
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3228

3229
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3230 3231
}

3232 3233
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3234
{
3235
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3236

3237
	if (val > 100)
K
KOSAKI Motohiro 已提交
3238 3239
		return -EINVAL;

3240
	if (css->parent)
3241 3242 3243
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3244

K
KOSAKI Motohiro 已提交
3245 3246 3247
	return 0;
}

3248 3249 3250
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3251
	unsigned long usage;
3252 3253 3254 3255
	int i;

	rcu_read_lock();
	if (!swap)
3256
		t = rcu_dereference(memcg->thresholds.primary);
3257
	else
3258
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3259 3260 3261 3262

	if (!t)
		goto unlock;

3263
	usage = mem_cgroup_usage(memcg, swap);
3264 3265

	/*
3266
	 * current_threshold points to threshold just below or equal to usage.
3267 3268 3269
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3270
	i = t->current_threshold;
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3294
	t->current_threshold = i - 1;
3295 3296 3297 3298 3299 3300
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3301 3302
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3303
		if (do_memsw_account())
3304 3305 3306 3307
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3308 3309 3310 3311 3312 3313 3314
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3315 3316 3317 3318 3319 3320 3321
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3322 3323
}

3324
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3325 3326 3327
{
	struct mem_cgroup_eventfd_list *ev;

3328 3329
	spin_lock(&memcg_oom_lock);

3330
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3331
		eventfd_signal(ev->eventfd, 1);
3332 3333

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3334 3335 3336
	return 0;
}

3337
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3338
{
K
KAMEZAWA Hiroyuki 已提交
3339 3340
	struct mem_cgroup *iter;

3341
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3342
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3343 3344
}

3345
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3346
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3347
{
3348 3349
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3350 3351
	unsigned long threshold;
	unsigned long usage;
3352
	int i, size, ret;
3353

3354
	ret = page_counter_memparse(args, "-1", &threshold);
3355 3356 3357 3358
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3359

3360
	if (type == _MEM) {
3361
		thresholds = &memcg->thresholds;
3362
		usage = mem_cgroup_usage(memcg, false);
3363
	} else if (type == _MEMSWAP) {
3364
		thresholds = &memcg->memsw_thresholds;
3365
		usage = mem_cgroup_usage(memcg, true);
3366
	} else
3367 3368 3369
		BUG();

	/* Check if a threshold crossed before adding a new one */
3370
	if (thresholds->primary)
3371 3372
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3373
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3374 3375

	/* Allocate memory for new array of thresholds */
3376
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3377
			GFP_KERNEL);
3378
	if (!new) {
3379 3380 3381
		ret = -ENOMEM;
		goto unlock;
	}
3382
	new->size = size;
3383 3384

	/* Copy thresholds (if any) to new array */
3385 3386
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3387
				sizeof(struct mem_cgroup_threshold));
3388 3389
	}

3390
	/* Add new threshold */
3391 3392
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3393 3394

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3395
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3396 3397 3398
			compare_thresholds, NULL);

	/* Find current threshold */
3399
	new->current_threshold = -1;
3400
	for (i = 0; i < size; i++) {
3401
		if (new->entries[i].threshold <= usage) {
3402
			/*
3403 3404
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3405 3406
			 * it here.
			 */
3407
			++new->current_threshold;
3408 3409
		} else
			break;
3410 3411
	}

3412 3413 3414 3415 3416
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3417

3418
	/* To be sure that nobody uses thresholds */
3419 3420 3421 3422 3423 3424 3425 3426
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3427
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3428 3429
	struct eventfd_ctx *eventfd, const char *args)
{
3430
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3431 3432
}

3433
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3434 3435
	struct eventfd_ctx *eventfd, const char *args)
{
3436
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3437 3438
}

3439
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3440
	struct eventfd_ctx *eventfd, enum res_type type)
3441
{
3442 3443
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3444
	unsigned long usage;
3445
	int i, j, size;
3446 3447

	mutex_lock(&memcg->thresholds_lock);
3448 3449

	if (type == _MEM) {
3450
		thresholds = &memcg->thresholds;
3451
		usage = mem_cgroup_usage(memcg, false);
3452
	} else if (type == _MEMSWAP) {
3453
		thresholds = &memcg->memsw_thresholds;
3454
		usage = mem_cgroup_usage(memcg, true);
3455
	} else
3456 3457
		BUG();

3458 3459 3460
	if (!thresholds->primary)
		goto unlock;

3461 3462 3463 3464
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3465 3466 3467
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3468 3469 3470
			size++;
	}

3471
	new = thresholds->spare;
3472

3473 3474
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3475 3476
		kfree(new);
		new = NULL;
3477
		goto swap_buffers;
3478 3479
	}

3480
	new->size = size;
3481 3482

	/* Copy thresholds and find current threshold */
3483 3484 3485
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3486 3487
			continue;

3488
		new->entries[j] = thresholds->primary->entries[i];
3489
		if (new->entries[j].threshold <= usage) {
3490
			/*
3491
			 * new->current_threshold will not be used
3492 3493 3494
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3495
			++new->current_threshold;
3496 3497 3498 3499
		}
		j++;
	}

3500
swap_buffers:
3501 3502
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3503

3504
	rcu_assign_pointer(thresholds->primary, new);
3505

3506
	/* To be sure that nobody uses thresholds */
3507
	synchronize_rcu();
3508 3509 3510 3511 3512 3513

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3514
unlock:
3515 3516
	mutex_unlock(&memcg->thresholds_lock);
}
3517

3518
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3519 3520
	struct eventfd_ctx *eventfd)
{
3521
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3522 3523
}

3524
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3525 3526
	struct eventfd_ctx *eventfd)
{
3527
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3528 3529
}

3530
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3531
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3532 3533 3534 3535 3536 3537 3538
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3539
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3540 3541 3542 3543 3544

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3545
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3546
		eventfd_signal(eventfd, 1);
3547
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3548 3549 3550 3551

	return 0;
}

3552
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3553
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3554 3555 3556
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3557
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3558

3559
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3560 3561 3562 3563 3564 3565
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3566
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3567 3568
}

3569
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3570
{
3571
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3572

3573
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3574
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3575 3576 3577
	return 0;
}

3578
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3579 3580
	struct cftype *cft, u64 val)
{
3581
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3582 3583

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3584
	if (!css->parent || !((val == 0) || (val == 1)))
3585 3586
		return -EINVAL;

3587
	memcg->oom_kill_disable = val;
3588
	if (!val)
3589
		memcg_oom_recover(memcg);
3590

3591 3592 3593
	return 0;
}

3594 3595 3596 3597 3598 3599 3600
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3611 3612 3613 3614 3615
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3626 3627 3628
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3629 3630
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3631 3632 3633
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3634 3635 3636
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3637
 *
3638 3639 3640 3641 3642
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3643
 */
3644 3645 3646
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3647 3648 3649 3650 3651 3652 3653 3654
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3655 3656 3657
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3658 3659 3660 3661 3662

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3663
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3664 3665 3666 3667
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3679 3680 3681 3682
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3683 3684
#endif	/* CONFIG_CGROUP_WRITEBACK */

3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3698 3699 3700 3701 3702
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3703
static void memcg_event_remove(struct work_struct *work)
3704
{
3705 3706
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3707
	struct mem_cgroup *memcg = event->memcg;
3708 3709 3710

	remove_wait_queue(event->wqh, &event->wait);

3711
	event->unregister_event(memcg, event->eventfd);
3712 3713 3714 3715 3716 3717

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3718
	css_put(&memcg->css);
3719 3720 3721 3722 3723 3724 3725
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3726 3727
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3728
{
3729 3730
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3731
	struct mem_cgroup *memcg = event->memcg;
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3744
		spin_lock(&memcg->event_list_lock);
3745 3746 3747 3748 3749 3750 3751 3752
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3753
		spin_unlock(&memcg->event_list_lock);
3754 3755 3756 3757 3758
	}

	return 0;
}

3759
static void memcg_event_ptable_queue_proc(struct file *file,
3760 3761
		wait_queue_head_t *wqh, poll_table *pt)
{
3762 3763
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3764 3765 3766 3767 3768 3769

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3770 3771
 * DO NOT USE IN NEW FILES.
 *
3772 3773 3774 3775 3776
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3777 3778
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3779
{
3780
	struct cgroup_subsys_state *css = of_css(of);
3781
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3782
	struct mem_cgroup_event *event;
3783 3784 3785 3786
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3787
	const char *name;
3788 3789 3790
	char *endp;
	int ret;

3791 3792 3793
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3794 3795
	if (*endp != ' ')
		return -EINVAL;
3796
	buf = endp + 1;
3797

3798
	cfd = simple_strtoul(buf, &endp, 10);
3799 3800
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3801
	buf = endp + 1;
3802 3803 3804 3805 3806

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3807
	event->memcg = memcg;
3808
	INIT_LIST_HEAD(&event->list);
3809 3810 3811
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3837 3838 3839 3840 3841
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3842 3843
	 *
	 * DO NOT ADD NEW FILES.
3844
	 */
A
Al Viro 已提交
3845
	name = cfile.file->f_path.dentry->d_name.name;
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3857 3858
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3859 3860 3861 3862 3863
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3864
	/*
3865 3866 3867
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3868
	 */
A
Al Viro 已提交
3869
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3870
					       &memory_cgrp_subsys);
3871
	ret = -EINVAL;
3872
	if (IS_ERR(cfile_css))
3873
		goto out_put_cfile;
3874 3875
	if (cfile_css != css) {
		css_put(cfile_css);
3876
		goto out_put_cfile;
3877
	}
3878

3879
	ret = event->register_event(memcg, event->eventfd, buf);
3880 3881 3882 3883 3884
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3885 3886 3887
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3888 3889 3890 3891

	fdput(cfile);
	fdput(efile);

3892
	return nbytes;
3893 3894

out_put_css:
3895
	css_put(css);
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3908
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3909
	{
3910
		.name = "usage_in_bytes",
3911
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3912
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3913
	},
3914 3915
	{
		.name = "max_usage_in_bytes",
3916
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3917
		.write = mem_cgroup_reset,
3918
		.read_u64 = mem_cgroup_read_u64,
3919
	},
B
Balbir Singh 已提交
3920
	{
3921
		.name = "limit_in_bytes",
3922
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3923
		.write = mem_cgroup_write,
3924
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3925
	},
3926 3927 3928
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3929
		.write = mem_cgroup_write,
3930
		.read_u64 = mem_cgroup_read_u64,
3931
	},
B
Balbir Singh 已提交
3932 3933
	{
		.name = "failcnt",
3934
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3935
		.write = mem_cgroup_reset,
3936
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3937
	},
3938 3939
	{
		.name = "stat",
3940
		.seq_show = memcg_stat_show,
3941
	},
3942 3943
	{
		.name = "force_empty",
3944
		.write = mem_cgroup_force_empty_write,
3945
	},
3946 3947 3948 3949 3950
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
3951
	{
3952
		.name = "cgroup.event_control",		/* XXX: for compat */
3953
		.write = memcg_write_event_control,
3954
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3955
	},
K
KOSAKI Motohiro 已提交
3956 3957 3958 3959 3960
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3961 3962 3963 3964 3965
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3966 3967
	{
		.name = "oom_control",
3968
		.seq_show = mem_cgroup_oom_control_read,
3969
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3970 3971
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
3972 3973 3974
	{
		.name = "pressure_level",
	},
3975 3976 3977
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
3978
		.seq_show = memcg_numa_stat_show,
3979 3980
	},
#endif
3981 3982 3983
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3984
		.write = mem_cgroup_write,
3985
		.read_u64 = mem_cgroup_read_u64,
3986 3987 3988 3989
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3990
		.read_u64 = mem_cgroup_read_u64,
3991 3992 3993 3994
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3995
		.write = mem_cgroup_reset,
3996
		.read_u64 = mem_cgroup_read_u64,
3997 3998 3999 4000
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4001
		.write = mem_cgroup_reset,
4002
		.read_u64 = mem_cgroup_read_u64,
4003
	},
4004 4005 4006
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4007 4008 4009
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4010
		.seq_show = memcg_slab_show,
4011 4012
	},
#endif
V
Vladimir Davydov 已提交
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4036
	{ },	/* terminate */
4037
};
4038

4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4065
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4066
{
4067
	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4068
	atomic_add(n, &memcg->id.ref);
4069 4070
}

4071
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4072
{
4073
	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4074
	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4075 4076 4077 4078 4079 4080 4081 4082
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4105
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4106 4107
{
	struct mem_cgroup_per_node *pn;
4108
	int tmp = node;
4109 4110 4111 4112 4113 4114 4115 4116
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4117 4118
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4119
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4120 4121
	if (!pn)
		return 1;
4122

4123 4124 4125 4126 4127
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4128
	memcg->nodeinfo[node] = pn;
4129 4130 4131
	return 0;
}

4132
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4133
{
4134
	kfree(memcg->nodeinfo[node]);
4135 4136
}

4137
static void mem_cgroup_free(struct mem_cgroup *memcg)
4138
{
4139
	int node;
4140

4141
	memcg_wb_domain_exit(memcg);
4142
	for_each_node(node)
4143
		free_mem_cgroup_per_node_info(memcg, node);
4144
	free_percpu(memcg->stat);
4145
	kfree(memcg);
4146
}
4147

4148
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4149
{
4150
	struct mem_cgroup *memcg;
4151
	size_t size;
4152
	int node;
B
Balbir Singh 已提交
4153

4154 4155 4156 4157
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4158
	if (!memcg)
4159 4160
		return NULL;

4161 4162 4163 4164 4165 4166
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4167 4168 4169
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4170

B
Bob Liu 已提交
4171
	for_each_node(node)
4172
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4173
			goto fail;
4174

4175 4176
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4177

4178
	INIT_WORK(&memcg->high_work, high_work_func);
4179 4180 4181 4182
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4183
	vmpressure_init(&memcg->vmpressure);
4184 4185
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4186
	memcg->socket_pressure = jiffies;
4187
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4188 4189
	memcg->kmemcg_id = -1;
#endif
4190 4191 4192
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4193
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4194 4195
	return memcg;
fail:
4196 4197
	if (memcg->id.id > 0)
		idr_remove(&mem_cgroup_idr, memcg->id.id);
4198 4199
	mem_cgroup_free(memcg);
	return NULL;
4200 4201
}

4202 4203
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4204
{
4205 4206 4207
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4208

4209 4210 4211
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4212

4213 4214 4215 4216 4217 4218 4219 4220
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4221
		page_counter_init(&memcg->memory, &parent->memory);
4222
		page_counter_init(&memcg->swap, &parent->swap);
4223 4224
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4225
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4226
	} else {
4227
		page_counter_init(&memcg->memory, NULL);
4228
		page_counter_init(&memcg->swap, NULL);
4229 4230
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4231
		page_counter_init(&memcg->tcpmem, NULL);
4232 4233 4234 4235 4236
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4237
		if (parent != root_mem_cgroup)
4238
			memory_cgrp_subsys.broken_hierarchy = true;
4239
	}
4240

4241 4242 4243 4244 4245 4246
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4247
	error = memcg_online_kmem(memcg);
4248 4249
	if (error)
		goto fail;
4250

4251
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4252
		static_branch_inc(&memcg_sockets_enabled_key);
4253

4254 4255 4256
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
4257
	return ERR_PTR(-ENOMEM);
4258 4259
}

4260
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4261
{
4262 4263
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4264
	/* Online state pins memcg ID, memcg ID pins CSS */
4265
	atomic_set(&memcg->id.ref, 1);
4266
	css_get(css);
4267
	return 0;
B
Balbir Singh 已提交
4268 4269
}

4270
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4271
{
4272
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4273
	struct mem_cgroup_event *event, *tmp;
4274 4275 4276 4277 4278 4279

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4280 4281
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4282 4283 4284
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4285
	spin_unlock(&memcg->event_list_lock);
4286

4287
	memcg_offline_kmem(memcg);
4288
	wb_memcg_offline(memcg);
4289 4290

	mem_cgroup_id_put(memcg);
4291 4292
}

4293 4294 4295 4296 4297 4298 4299
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4300
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4301
{
4302
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4303

4304
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4305
		static_branch_dec(&memcg_sockets_enabled_key);
4306

4307
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4308
		static_branch_dec(&memcg_sockets_enabled_key);
4309

4310 4311 4312
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4313
	memcg_free_kmem(memcg);
4314
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4315 4316
}

4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4334 4335 4336 4337 4338
	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4339 4340
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4341
	memcg->soft_limit = PAGE_COUNTER_MAX;
4342
	memcg_wb_domain_size_changed(memcg);
4343 4344
}

4345
#ifdef CONFIG_MMU
4346
/* Handlers for move charge at task migration. */
4347
static int mem_cgroup_do_precharge(unsigned long count)
4348
{
4349
	int ret;
4350

4351 4352
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4353
	if (!ret) {
4354 4355 4356
		mc.precharge += count;
		return ret;
	}
4357

4358
	/* Try charges one by one with reclaim, but do not retry */
4359
	while (count--) {
4360
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4361 4362
		if (ret)
			return ret;
4363
		mc.precharge++;
4364
		cond_resched();
4365
	}
4366
	return 0;
4367 4368 4369 4370
}

union mc_target {
	struct page	*page;
4371
	swp_entry_t	ent;
4372 4373 4374
};

enum mc_target_type {
4375
	MC_TARGET_NONE = 0,
4376
	MC_TARGET_PAGE,
4377
	MC_TARGET_SWAP,
4378 4379
};

D
Daisuke Nishimura 已提交
4380 4381
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4382
{
D
Daisuke Nishimura 已提交
4383
	struct page *page = vm_normal_page(vma, addr, ptent);
4384

D
Daisuke Nishimura 已提交
4385 4386 4387
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4388
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4389
			return NULL;
4390 4391 4392 4393
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4394 4395 4396 4397 4398 4399
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4400
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4401
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4402
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4403 4404 4405 4406
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4407
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4408
		return NULL;
4409 4410 4411 4412
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4413
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4414
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4415 4416 4417 4418
		entry->val = ent.val;

	return page;
}
4419 4420
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4421
			pte_t ptent, swp_entry_t *entry)
4422 4423 4424 4425
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4426

4427 4428 4429 4430 4431 4432 4433 4434 4435
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4436
	if (!(mc.flags & MOVE_FILE))
4437 4438 4439
		return NULL;

	mapping = vma->vm_file->f_mapping;
4440
	pgoff = linear_page_index(vma, addr);
4441 4442

	/* page is moved even if it's not RSS of this task(page-faulted). */
4443 4444
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4445 4446 4447 4448
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4449
			if (do_memsw_account())
4450
				*entry = swp;
4451 4452
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
4453 4454 4455 4456 4457
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4458
#endif
4459 4460 4461
	return page;
}

4462 4463 4464
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4465
 * @compound: charge the page as compound or small page
4466 4467 4468
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4469
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4470 4471 4472 4473 4474
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4475
				   bool compound,
4476 4477 4478 4479
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4480
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4481
	int ret;
4482
	bool anon;
4483 4484 4485

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4486
	VM_BUG_ON(compound && !PageTransHuge(page));
4487 4488

	/*
4489
	 * Prevent mem_cgroup_migrate() from looking at
4490
	 * page->mem_cgroup of its source page while we change it.
4491
	 */
4492
	ret = -EBUSY;
4493 4494 4495 4496 4497 4498 4499
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4500 4501
	anon = PageAnon(page);

4502 4503
	spin_lock_irqsave(&from->move_lock, flags);

4504
	if (!anon && page_mapped(page)) {
4505 4506 4507 4508 4509 4510
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4547
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4548
	memcg_check_events(to, page);
4549
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4550 4551 4552 4553 4554 4555 4556 4557
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
 *
 * Called with pte lock held.
 */

4577
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4578 4579 4580
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4581
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4582 4583 4584 4585 4586
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4587
		page = mc_handle_swap_pte(vma, ptent, &ent);
4588
	else if (pte_none(ptent))
4589
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4590 4591

	if (!page && !ent.val)
4592
		return ret;
4593 4594
	if (page) {
		/*
4595
		 * Do only loose check w/o serialization.
4596
		 * mem_cgroup_move_account() checks the page is valid or
4597
		 * not under LRU exclusion.
4598
		 */
4599
		if (page->mem_cgroup == mc.from) {
4600 4601 4602 4603 4604 4605 4606
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4607 4608
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4609
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4610 4611 4612
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4613 4614 4615 4616
	}
	return ret;
}

4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4630
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4631
	if (!(mc.flags & MOVE_ANON))
4632
		return ret;
4633
	if (page->mem_cgroup == mc.from) {
4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4650 4651 4652 4653
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4654
	struct vm_area_struct *vma = walk->vma;
4655 4656 4657
	pte_t *pte;
	spinlock_t *ptl;

4658 4659
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4660 4661
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4662
		spin_unlock(ptl);
4663
		return 0;
4664
	}
4665

4666 4667
	if (pmd_trans_unstable(pmd))
		return 0;
4668 4669
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4670
		if (get_mctgt_type(vma, addr, *pte, NULL))
4671 4672 4673 4674
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4675 4676 4677
	return 0;
}

4678 4679 4680 4681
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4682 4683 4684 4685
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4686
	down_read(&mm->mmap_sem);
4687 4688
	walk_page_range(0, mm->highest_vm_end,
			&mem_cgroup_count_precharge_walk);
4689
	up_read(&mm->mmap_sem);
4690 4691 4692 4693 4694 4695 4696 4697 4698

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4699 4700 4701 4702 4703
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4704 4705
}

4706 4707
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4708
{
4709 4710 4711
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4712
	/* we must uncharge all the leftover precharges from mc.to */
4713
	if (mc.precharge) {
4714
		cancel_charge(mc.to, mc.precharge);
4715 4716 4717 4718 4719 4720 4721
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4722
		cancel_charge(mc.from, mc.moved_charge);
4723
		mc.moved_charge = 0;
4724
	}
4725 4726 4727
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4728
		if (!mem_cgroup_is_root(mc.from))
4729
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4730

4731 4732
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

4733
		/*
4734 4735
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4736
		 */
4737
		if (!mem_cgroup_is_root(mc.to))
4738 4739
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4740 4741
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
4742

4743 4744
		mc.moved_swap = 0;
	}
4745 4746 4747 4748 4749 4750 4751
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
4752 4753
	struct mm_struct *mm = mc.mm;

4754 4755 4756 4757 4758 4759
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4760
	spin_lock(&mc.lock);
4761 4762
	mc.from = NULL;
	mc.to = NULL;
4763
	mc.mm = NULL;
4764
	spin_unlock(&mc.lock);
4765 4766

	mmput(mm);
4767 4768
}

4769
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4770
{
4771
	struct cgroup_subsys_state *css;
4772
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4773
	struct mem_cgroup *from;
4774
	struct task_struct *leader, *p;
4775
	struct mm_struct *mm;
4776
	unsigned long move_flags;
4777
	int ret = 0;
4778

4779 4780
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4781 4782
		return 0;

4783 4784 4785 4786 4787 4788 4789
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4790
	cgroup_taskset_for_each_leader(leader, css, tset) {
4791 4792
		WARN_ON_ONCE(p);
		p = leader;
4793
		memcg = mem_cgroup_from_css(css);
4794 4795 4796 4797
	}
	if (!p)
		return 0;

4798 4799 4800 4801 4802 4803 4804 4805 4806
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
4823
		mc.mm = mm;
4824 4825 4826 4827 4828 4829 4830 4831 4832
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4833 4834
	} else {
		mmput(mm);
4835 4836 4837 4838
	}
	return ret;
}

4839
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4840
{
4841 4842
	if (mc.to)
		mem_cgroup_clear_mc();
4843 4844
}

4845 4846 4847
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4848
{
4849
	int ret = 0;
4850
	struct vm_area_struct *vma = walk->vma;
4851 4852
	pte_t *pte;
	spinlock_t *ptl;
4853 4854 4855
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4856

4857 4858
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4859
		if (mc.precharge < HPAGE_PMD_NR) {
4860
			spin_unlock(ptl);
4861 4862 4863 4864 4865 4866
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4867
				if (!mem_cgroup_move_account(page, true,
4868
							     mc.from, mc.to)) {
4869 4870 4871 4872 4873 4874 4875
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4876
		spin_unlock(ptl);
4877
		return 0;
4878 4879
	}

4880 4881
	if (pmd_trans_unstable(pmd))
		return 0;
4882 4883 4884 4885
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4886
		swp_entry_t ent;
4887 4888 4889 4890

		if (!mc.precharge)
			break;

4891
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4892 4893
		case MC_TARGET_PAGE:
			page = target.page;
4894 4895 4896 4897 4898 4899 4900 4901
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4902 4903
			if (isolate_lru_page(page))
				goto put;
4904 4905
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4906
				mc.precharge--;
4907 4908
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4909 4910
			}
			putback_lru_page(page);
4911
put:			/* get_mctgt_type() gets the page */
4912 4913
			put_page(page);
			break;
4914 4915
		case MC_TARGET_SWAP:
			ent = target.ent;
4916
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4917
				mc.precharge--;
4918 4919 4920
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4921
			break;
4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4936
		ret = mem_cgroup_do_precharge(1);
4937 4938 4939 4940 4941 4942 4943
		if (!ret)
			goto retry;
	}

	return ret;
}

4944
static void mem_cgroup_move_charge(void)
4945
{
4946 4947
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
4948
		.mm = mc.mm,
4949
	};
4950 4951

	lru_add_drain_all();
4952
	/*
4953 4954 4955
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
4956 4957 4958
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4959
retry:
4960
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4972 4973 4974 4975
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
4976 4977
	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);

4978
	up_read(&mc.mm->mmap_sem);
4979
	atomic_dec(&mc.from->moving_account);
4980 4981
}

4982
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
4983
{
4984 4985
	if (mc.to) {
		mem_cgroup_move_charge();
4986
		mem_cgroup_clear_mc();
4987
	}
B
Balbir Singh 已提交
4988
}
4989
#else	/* !CONFIG_MMU */
4990
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4991 4992 4993
{
	return 0;
}
4994
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4995 4996
{
}
4997
static void mem_cgroup_move_task(void)
4998 4999 5000
{
}
#endif
B
Balbir Singh 已提交
5001

5002 5003
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5004 5005
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5006
 */
5007
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5008 5009
{
	/*
5010
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5011 5012 5013
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5014
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5015 5016 5017
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5018 5019
}

5020 5021 5022
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5023 5024 5025
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5026 5027 5028 5029 5030
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5031
	unsigned long low = READ_ONCE(memcg->low);
5032 5033

	if (low == PAGE_COUNTER_MAX)
5034
		seq_puts(m, "max\n");
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5049
	err = page_counter_memparse(buf, "max", &low);
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5061
	unsigned long high = READ_ONCE(memcg->high);
5062 5063

	if (high == PAGE_COUNTER_MAX)
5064
		seq_puts(m, "max\n");
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5075
	unsigned long nr_pages;
5076 5077 5078 5079
	unsigned long high;
	int err;

	buf = strstrip(buf);
5080
	err = page_counter_memparse(buf, "max", &high);
5081 5082 5083 5084 5085
	if (err)
		return err;

	memcg->high = high;

5086 5087 5088 5089 5090
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5091
	memcg_wb_domain_size_changed(memcg);
5092 5093 5094 5095 5096 5097
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5098
	unsigned long max = READ_ONCE(memcg->memory.limit);
5099 5100

	if (max == PAGE_COUNTER_MAX)
5101
		seq_puts(m, "max\n");
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5112 5113
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5114 5115 5116 5117
	unsigned long max;
	int err;

	buf = strstrip(buf);
5118
	err = page_counter_memparse(buf, "max", &max);
5119 5120 5121
	if (err)
		return err;

5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151
	xchg(&memcg->memory.limit, max);

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

		mem_cgroup_events(memcg, MEMCG_OOM, 1);
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5152

5153
	memcg_wb_domain_size_changed(memcg);
5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

5169 5170 5171
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5172 5173
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[MEMCG_NR_EVENTS];
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5187 5188 5189
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5190
	seq_printf(m, "anon %llu\n",
5191
		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5192
	seq_printf(m, "file %llu\n",
5193
		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5194
	seq_printf(m, "kernel_stack %llu\n",
5195
		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5196 5197 5198
	seq_printf(m, "slab %llu\n",
		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5199
	seq_printf(m, "sock %llu\n",
5200
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5201 5202

	seq_printf(m, "file_mapped %llu\n",
5203
		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5204
	seq_printf(m, "file_dirty %llu\n",
5205
		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5206
	seq_printf(m, "file_writeback %llu\n",
5207
		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5219 5220 5221 5222 5223
	seq_printf(m, "slab_reclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
	seq_printf(m, "slab_unreclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);

5224 5225 5226
	/* Accumulated memory events */

	seq_printf(m, "pgfault %lu\n",
5227
		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5228
	seq_printf(m, "pgmajfault %lu\n",
5229
		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5230 5231 5232 5233

	return 0;
}

5234 5235 5236
static struct cftype memory_files[] = {
	{
		.name = "current",
5237
		.flags = CFTYPE_NOT_ON_ROOT,
5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5261
		.file_offset = offsetof(struct mem_cgroup, events_file),
5262 5263
		.seq_show = memory_events_show,
	},
5264 5265 5266 5267 5268
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5269 5270 5271
	{ }	/* terminate */
};

5272
struct cgroup_subsys memory_cgrp_subsys = {
5273
	.css_alloc = mem_cgroup_css_alloc,
5274
	.css_online = mem_cgroup_css_online,
5275
	.css_offline = mem_cgroup_css_offline,
5276
	.css_released = mem_cgroup_css_released,
5277
	.css_free = mem_cgroup_css_free,
5278
	.css_reset = mem_cgroup_css_reset,
5279 5280
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5281
	.post_attach = mem_cgroup_move_task,
5282
	.bind = mem_cgroup_bind,
5283 5284
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5285
	.early_init = 0,
B
Balbir Singh 已提交
5286
};
5287

5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5310
	if (page_counter_read(&memcg->memory) >= memcg->low)
5311 5312 5313 5314 5315 5316 5317 5318
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5319
		if (page_counter_read(&memcg->memory) >= memcg->low)
5320 5321 5322 5323 5324
			return false;
	}
	return true;
}

5325 5326 5327 5328 5329 5330
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5331
 * @compound: charge the page as compound or small page
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5344 5345
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5346 5347
{
	struct mem_cgroup *memcg = NULL;
5348
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5362
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5363
		if (page->mem_cgroup)
5364
			goto out;
5365

5366
		if (do_swap_account) {
5367 5368 5369 5370 5371 5372 5373 5374 5375
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5394
 * @compound: charge the page as compound or small page
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5407
			      bool lrucare, bool compound)
5408
{
5409
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5424 5425 5426
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5427
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5428 5429
	memcg_check_events(memcg, page);
	local_irq_enable();
5430

5431
	if (do_memsw_account() && PageSwapCache(page)) {
5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
5446
 * @compound: charge the page as compound or small page
5447 5448 5449
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5450 5451
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5452
{
5453
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5468 5469
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
5470 5471
			   unsigned long nr_huge, unsigned long nr_kmem,
			   struct page *dummy_page)
5472
{
5473
	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5474 5475
	unsigned long flags;

5476
	if (!mem_cgroup_is_root(memcg)) {
5477
		page_counter_uncharge(&memcg->memory, nr_pages);
5478
		if (do_memsw_account())
5479
			page_counter_uncharge(&memcg->memsw, nr_pages);
5480 5481
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
			page_counter_uncharge(&memcg->kmem, nr_kmem);
5482 5483
		memcg_oom_recover(memcg);
	}
5484 5485 5486 5487 5488 5489

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5490
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5491 5492
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5493 5494

	if (!mem_cgroup_is_root(memcg))
5495
		css_put_many(&memcg->css, nr_pages);
5496 5497 5498 5499 5500 5501 5502 5503
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
5504
	unsigned long nr_kmem = 0;
5505 5506 5507 5508
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

5509 5510 5511 5512
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
5513 5514 5515 5516 5517 5518 5519 5520
	next = page_list->next;
	do {
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5521
		if (!page->mem_cgroup)
5522 5523 5524 5525
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5526
		 * page->mem_cgroup at this point, we have fully
5527
		 * exclusive access to the page.
5528 5529
		 */

5530
		if (memcg != page->mem_cgroup) {
5531
			if (memcg) {
5532
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5533 5534 5535
					       nr_huge, nr_kmem, page);
				pgpgout = nr_anon = nr_file =
					nr_huge = nr_kmem = 0;
5536
			}
5537
			memcg = page->mem_cgroup;
5538 5539
		}

5540 5541
		if (!PageKmemcg(page)) {
			unsigned int nr_pages = 1;
5542

5543 5544 5545 5546 5547 5548 5549 5550 5551
			if (PageTransHuge(page)) {
				nr_pages <<= compound_order(page);
				nr_huge += nr_pages;
			}
			if (PageAnon(page))
				nr_anon += nr_pages;
			else
				nr_file += nr_pages;
			pgpgout++;
5552
		} else {
5553
			nr_kmem += 1 << compound_order(page);
5554 5555
			__ClearPageKmemcg(page);
		}
5556

5557
		page->mem_cgroup = NULL;
5558 5559 5560
	} while (next != page_list);

	if (memcg)
5561
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5562
			       nr_huge, nr_kmem, page);
5563 5564
}

5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5577
	/* Don't touch page->lru of any random page, pre-check: */
5578
	if (!page->mem_cgroup)
5579 5580
		return;

5581 5582 5583
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5584

5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5596

5597 5598
	if (!list_empty(page_list))
		uncharge_list(page_list);
5599 5600 5601
}

/**
5602 5603 5604
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5605
 *
5606 5607
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5608 5609 5610
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5611
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5612
{
5613
	struct mem_cgroup *memcg;
5614 5615
	unsigned int nr_pages;
	bool compound;
5616
	unsigned long flags;
5617 5618 5619 5620

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5621 5622
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5623 5624 5625 5626 5627

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5628
	if (newpage->mem_cgroup)
5629 5630
		return;

5631
	/* Swapcache readahead pages can get replaced before being charged */
5632
	memcg = oldpage->mem_cgroup;
5633
	if (!memcg)
5634 5635
		return;

5636 5637 5638 5639 5640 5641 5642 5643
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5644

5645
	commit_charge(newpage, memcg, false);
5646

5647
	local_irq_save(flags);
5648 5649
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
5650
	local_irq_restore(flags);
5651 5652
}

5653
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5654 5655
EXPORT_SYMBOL(memcg_sockets_enabled_key);

5656
void mem_cgroup_sk_alloc(struct sock *sk)
5657 5658 5659
{
	struct mem_cgroup *memcg;

5660 5661 5662 5663 5664
	if (!mem_cgroup_sockets_enabled)
		return;

	/*
	 * Socket cloning can throw us here with sk_memcg already
5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5680 5681
	if (memcg == root_mem_cgroup)
		goto out;
5682
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5683 5684
		goto out;
	if (css_tryget_online(&memcg->css))
5685
		sk->sk_memcg = memcg;
5686
out:
5687 5688 5689
	rcu_read_unlock();
}

5690
void mem_cgroup_sk_free(struct sock *sk)
5691
{
5692 5693
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5706
	gfp_t gfp_mask = GFP_KERNEL;
5707

5708
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5709
		struct page_counter *fail;
5710

5711 5712
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5713 5714
			return true;
		}
5715 5716
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5717
		return false;
5718
	}
5719

5720 5721 5722 5723
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5724 5725
	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);

5726 5727 5728 5729
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5740
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5741
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5742 5743
		return;
	}
5744

5745 5746
	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);

5747 5748
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5749 5750
}

5751 5752 5753 5754 5755 5756 5757 5758 5759
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5760 5761
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5762 5763 5764 5765
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5766

5767
/*
5768 5769
 * subsys_initcall() for memory controller.
 *
5770 5771 5772 5773
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
5774 5775 5776
 */
static int __init mem_cgroup_init(void)
{
5777 5778
	int cpu, node;

5779 5780 5781
#ifndef CONFIG_SLOB
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
5782 5783 5784
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
5785
	 */
5786 5787
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
5788 5789
#endif

5790 5791
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

5803 5804
		rtpn->rb_root = RB_ROOT;
		spin_lock_init(&rtpn->lock);
5805 5806 5807
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5808 5809 5810
	return 0;
}
subsys_initcall(mem_cgroup_init);
5811 5812

#ifdef CONFIG_MEMCG_SWAP
5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
	while (!atomic_inc_not_zero(&memcg->id.ref)) {
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

5831 5832 5833 5834 5835 5836 5837 5838 5839
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
5840
	struct mem_cgroup *memcg, *swap_memcg;
5841 5842 5843 5844 5845
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5846
	if (!do_memsw_account())
5847 5848 5849 5850 5851 5852 5853 5854
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

5855 5856 5857 5858 5859 5860 5861
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5862
	VM_BUG_ON_PAGE(oldid, page);
5863
	mem_cgroup_swap_statistics(swap_memcg, true);
5864 5865 5866 5867 5868 5869

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5870 5871 5872 5873 5874 5875
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
			page_counter_charge(&swap_memcg->memsw, 1);
		page_counter_uncharge(&memcg->memsw, 1);
	}

5876 5877 5878 5879 5880 5881 5882
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5883
	mem_cgroup_charge_statistics(memcg, page, false, -1);
5884
	memcg_check_events(memcg, page);
5885 5886 5887

	if (!mem_cgroup_is_root(memcg))
		css_put(&memcg->css);
5888 5889
}

5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913
/*
 * mem_cgroup_try_charge_swap - try charging a swap entry
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
 * Try to charge @entry to the memcg that @page belongs to.
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	struct page_counter *counter;
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

5914 5915
	memcg = mem_cgroup_id_get_online(memcg);

5916
	if (!mem_cgroup_is_root(memcg) &&
5917 5918
	    !page_counter_try_charge(&memcg->swap, 1, &counter)) {
		mem_cgroup_id_put(memcg);
5919
		return -ENOMEM;
5920
	}
5921 5922 5923 5924 5925 5926 5927 5928

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	return 0;
}

5929 5930 5931 5932
/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
5933
 * Drop the swap charge associated with @entry.
5934 5935 5936 5937 5938 5939
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5940
	if (!do_swap_account)
5941 5942 5943 5944
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5945
	memcg = mem_cgroup_from_id(id);
5946
	if (memcg) {
5947 5948 5949 5950 5951 5952
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
				page_counter_uncharge(&memcg->swap, 1);
			else
				page_counter_uncharge(&memcg->memsw, 1);
		}
5953
		mem_cgroup_swap_statistics(memcg, false);
5954
		mem_cgroup_id_put(memcg);
5955 5956 5957 5958
	}
	rcu_read_unlock();
}

5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6099 6100
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6101 6102 6103 6104 6105 6106 6107 6108
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */