memcontrol.c 191.8 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmalloc.h>
53
#include <linux/vmpressure.h>
54
#include <linux/mm_inline.h>
55
#include <linux/page_cgroup.h>
56
#include <linux/cpu.h>
57
#include <linux/oom.h>
58
#include <linux/lockdep.h>
59
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
60
#include "internal.h"
G
Glauber Costa 已提交
61
#include <net/sock.h>
M
Michal Hocko 已提交
62
#include <net/ip.h>
G
Glauber Costa 已提交
63
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
70 71
EXPORT_SYMBOL(mem_cgroup_subsys);

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82 83 84 85
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
147 148 149 150
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
151
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
152 153
	unsigned long last_dead_count;

154 155 156 157
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

158 159 160 161
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
162
	struct lruvec		lruvec;
163
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
164

165 166
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

167 168 169 170
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
171
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
172
						/* use container_of	   */
173 174 175 176 177 178
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

199 200 201 202 203
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
204
/* For threshold */
205
struct mem_cgroup_threshold_ary {
206
	/* An array index points to threshold just below or equal to usage. */
207
	int current_threshold;
208 209 210 211 212
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
213 214 215 216 217 218 219 220 221 222 223 224

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
225 226 227 228 229
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
230

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
/*
 * cgroup_event represents events which userspace want to receive.
 */
struct cgroup_event {
	/*
	 * css which the event belongs to.
	 */
	struct cgroup_subsys_state *css;
	/*
	 * Control file which the event associated.
	 */
	struct cftype *cft;
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

261 262
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
263

B
Balbir Singh 已提交
264 265 266 267 268 269 270
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
271 272 273
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
274 275 276 277 278 279 280
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
281

282 283 284
	/* vmpressure notifications */
	struct vmpressure vmpressure;

285 286 287 288
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
289

290 291 292 293
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
294 295 296 297
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
298
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
299 300 301

	bool		oom_lock;
	atomic_t	under_oom;
302
	atomic_t	oom_wakeups;
303

304
	int	swappiness;
305 306
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
307

308 309 310
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

311 312 313 314
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
315
	struct mem_cgroup_thresholds thresholds;
316

317
	/* thresholds for mem+swap usage. RCU-protected */
318
	struct mem_cgroup_thresholds memsw_thresholds;
319

K
KAMEZAWA Hiroyuki 已提交
320 321
	/* For oom notifier event fd */
	struct list_head oom_notify;
322

323 324 325 326
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
327
	unsigned long move_charge_at_immigrate;
328 329 330 331
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
332 333
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
334
	/*
335
	 * percpu counter.
336
	 */
337
	struct mem_cgroup_stat_cpu __percpu *stat;
338 339 340 341 342 343
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
344

M
Michal Hocko 已提交
345
	atomic_t	dead_count;
M
Michal Hocko 已提交
346
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
347 348
	struct tcp_memcontrol tcp_mem;
#endif
349 350 351 352 353 354 355 356
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
357 358 359 360 361 362 363

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
364

365 366
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
367 368
};

369 370 371 372 373 374
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

375 376 377
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
378
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
379
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
380 381
};

382 383 384
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
385 386 387 388 389 390

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
391 392 393 394 395 396

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

397 398 399 400 401
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

402 403 404 405 406
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

407 408
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
409 410 411 412 413
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
414 415 416 417 418 419 420 421 422
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
423 424
#endif

425 426
/* Stuffs for move charges at task migration. */
/*
427 428
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
429 430
 */
enum move_type {
431
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
432
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
433 434 435
	NR_MOVE_TYPE,
};

436 437
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
438
	spinlock_t	  lock; /* for from, to */
439 440
	struct mem_cgroup *from;
	struct mem_cgroup *to;
441
	unsigned long immigrate_flags;
442
	unsigned long precharge;
443
	unsigned long moved_charge;
444
	unsigned long moved_swap;
445 446 447
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
448
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
449 450
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
451

D
Daisuke Nishimura 已提交
452 453
static bool move_anon(void)
{
454
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
455 456
}

457 458
static bool move_file(void)
{
459
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
460 461
}

462 463 464 465
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
466
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
467
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
468

469 470
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
471
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
472
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
473
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
474 475 476
	NR_CHARGE_TYPE,
};

477
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
478 479 480 481
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
482
	_KMEM,
G
Glauber Costa 已提交
483 484
};

485 486
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
487
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
488 489
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
490

491 492 493 494 495 496 497 498
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

499 500 501 502 503 504 505
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

506 507
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
508
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
509 510
}

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

529 530 531 532 533
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
534
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
535
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
536 537 538

void sock_update_memcg(struct sock *sk)
{
539
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
540
		struct mem_cgroup *memcg;
541
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
542 543 544

		BUG_ON(!sk->sk_prot->proto_cgroup);

545 546 547 548 549 550 551 552 553 554
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
555
			css_get(&sk->sk_cgrp->memcg->css);
556 557 558
			return;
		}

G
Glauber Costa 已提交
559 560
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
561
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
562 563
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
564
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
565 566 567 568 569 570 571 572
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
573
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
574 575 576
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
577
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
578 579
	}
}
G
Glauber Costa 已提交
580 581 582 583 584 585 586 587 588

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
589

590 591 592 593 594 595 596 597 598 599 600 601
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

602
#ifdef CONFIG_MEMCG_KMEM
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
621 622
int memcg_limited_groups_array_size;

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

638 639 640 641 642 643
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
644
struct static_key memcg_kmem_enabled_key;
645
EXPORT_SYMBOL(memcg_kmem_enabled_key);
646 647 648

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
649
	if (memcg_kmem_is_active(memcg)) {
650
		static_key_slow_dec(&memcg_kmem_enabled_key);
651 652
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
653 654 655 656 657
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
658 659 660 661 662 663 664 665 666 667 668 669 670
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

671
static void drain_all_stock_async(struct mem_cgroup *memcg);
672

673
static struct mem_cgroup_per_zone *
674
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
675
{
676
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
677
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
678 679
}

680
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
681
{
682
	return &memcg->css;
683 684
}

685
static struct mem_cgroup_per_zone *
686
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
687
{
688 689
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
690

691
	return mem_cgroup_zoneinfo(memcg, nid, zid);
692 693
}

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

static void
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
	unsigned long long excess;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
	mctz = soft_limit_tree_from_page(page);

	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
			spin_unlock(&mctz->lock);
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node(node) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
871
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
872
				 enum mem_cgroup_stat_index idx)
873
{
874
	long val = 0;
875 876
	int cpu;

877 878
	get_online_cpus();
	for_each_online_cpu(cpu)
879
		val += per_cpu(memcg->stat->count[idx], cpu);
880
#ifdef CONFIG_HOTPLUG_CPU
881 882 883
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
884 885
#endif
	put_online_cpus();
886 887 888
	return val;
}

889
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
890 891 892
					 bool charge)
{
	int val = (charge) ? 1 : -1;
893
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
894 895
}

896
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
897 898 899 900 901
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

902
	get_online_cpus();
903
	for_each_online_cpu(cpu)
904
		val += per_cpu(memcg->stat->events[idx], cpu);
905
#ifdef CONFIG_HOTPLUG_CPU
906 907 908
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
909
#endif
910
	put_online_cpus();
911 912 913
	return val;
}

914
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
915
					 struct page *page,
916
					 bool anon, int nr_pages)
917
{
918 919
	preempt_disable();

920 921 922 923 924 925
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
926
				nr_pages);
927
	else
928
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
929
				nr_pages);
930

931 932 933 934
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

935 936
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
937
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
938
	else {
939
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
940 941
		nr_pages = -nr_pages; /* for event */
	}
942

943
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
944

945
	preempt_enable();
946 947
}

948
unsigned long
949
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
950 951 952 953 954 955 956 957
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
958
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
959
			unsigned int lru_mask)
960 961
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
962
	enum lru_list lru;
963 964
	unsigned long ret = 0;

965
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
966

H
Hugh Dickins 已提交
967 968 969
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
970 971 972 973 974
	}
	return ret;
}

static unsigned long
975
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
976 977
			int nid, unsigned int lru_mask)
{
978 979 980
	u64 total = 0;
	int zid;

981
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
982 983
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
984

985 986
	return total;
}
987

988
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
989
			unsigned int lru_mask)
990
{
991
	int nid;
992 993
	u64 total = 0;

994
	for_each_node_state(nid, N_MEMORY)
995
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
996
	return total;
997 998
}

999 1000
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
1001 1002 1003
{
	unsigned long val, next;

1004
	val = __this_cpu_read(memcg->stat->nr_page_events);
1005
	next = __this_cpu_read(memcg->stat->targets[target]);
1006
	/* from time_after() in jiffies.h */
1007 1008 1009 1010 1011
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
1012 1013 1014
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
1015 1016 1017 1018 1019 1020 1021 1022
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1023
	}
1024
	return false;
1025 1026 1027 1028 1029 1030
}

/*
 * Check events in order.
 *
 */
1031
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1032
{
1033
	preempt_disable();
1034
	/* threshold event is triggered in finer grain than soft limit */
1035 1036
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1037
		bool do_softlimit;
1038
		bool do_numainfo __maybe_unused;
1039

1040 1041
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1042 1043 1044 1045 1046 1047
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1048
		mem_cgroup_threshold(memcg);
1049 1050
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1051
#if MAX_NUMNODES > 1
1052
		if (unlikely(do_numainfo))
1053
			atomic_inc(&memcg->numainfo_events);
1054
#endif
1055 1056
	} else
		preempt_enable();
1057 1058
}

1059
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1060
{
1061 1062 1063 1064 1065 1066 1067 1068
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1069
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1070 1071
}

1072
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1073
{
1074
	struct mem_cgroup *memcg = NULL;
1075 1076 1077

	if (!mm)
		return NULL;
1078 1079 1080 1081 1082 1083 1084
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1085 1086
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1087
			break;
1088
	} while (!css_tryget(&memcg->css));
1089
	rcu_read_unlock();
1090
	return memcg;
1091 1092
}

1093 1094 1095 1096 1097 1098 1099
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1100
		struct mem_cgroup *last_visited)
1101
{
1102
	struct cgroup_subsys_state *prev_css, *next_css;
1103

1104
	prev_css = last_visited ? &last_visited->css : NULL;
1105
skip_node:
1106
	next_css = css_next_descendant_pre(prev_css, &root->css);
1107 1108 1109 1110 1111 1112 1113 1114

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
1115 1116 1117
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

1118 1119 1120
		if (css_tryget(&mem->css))
			return mem;
		else {
1121
			prev_css = next_css;
1122 1123 1124 1125 1126 1127 1128
			goto skip_node;
		}
	}

	return NULL;
}

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1198
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1199
				   struct mem_cgroup *prev,
1200
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1201
{
1202
	struct mem_cgroup *memcg = NULL;
1203
	struct mem_cgroup *last_visited = NULL;
1204

1205 1206
	if (mem_cgroup_disabled())
		return NULL;
1207

1208 1209
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1210

1211
	if (prev && !reclaim)
1212
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1213

1214 1215
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1216
			goto out_css_put;
1217
		return root;
1218
	}
K
KAMEZAWA Hiroyuki 已提交
1219

1220
	rcu_read_lock();
1221
	while (!memcg) {
1222
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1223
		int uninitialized_var(seq);
1224

1225 1226 1227 1228 1229 1230 1231
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1232
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1233
				iter->last_visited = NULL;
1234 1235
				goto out_unlock;
			}
M
Michal Hocko 已提交
1236

1237
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1238
		}
K
KAMEZAWA Hiroyuki 已提交
1239

1240
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1241

1242
		if (reclaim) {
1243
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1244

M
Michal Hocko 已提交
1245
			if (!memcg)
1246 1247 1248 1249
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1250

1251
		if (prev && !memcg)
1252
			goto out_unlock;
1253
	}
1254 1255
out_unlock:
	rcu_read_unlock();
1256 1257 1258 1259
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1260
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1261
}
K
KAMEZAWA Hiroyuki 已提交
1262

1263 1264 1265 1266 1267 1268 1269
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1270 1271 1272 1273 1274 1275
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1276

1277 1278 1279 1280 1281 1282
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1283
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1284
	     iter != NULL;				\
1285
	     iter = mem_cgroup_iter(root, iter, NULL))
1286

1287
#define for_each_mem_cgroup(iter)			\
1288
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1289
	     iter != NULL;				\
1290
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1291

1292
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1293
{
1294
	struct mem_cgroup *memcg;
1295 1296

	rcu_read_lock();
1297 1298
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1299 1300 1301 1302
		goto out;

	switch (idx) {
	case PGFAULT:
1303 1304 1305 1306
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1307 1308 1309 1310 1311 1312 1313
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1314
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1315

1316 1317 1318
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1319
 * @memcg: memcg of the wanted lruvec
1320 1321 1322 1323 1324 1325 1326 1327 1328
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1329
	struct lruvec *lruvec;
1330

1331 1332 1333 1334
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1335 1336

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1347 1348
}

K
KAMEZAWA Hiroyuki 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1362

1363
/**
1364
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1365
 * @page: the page
1366
 * @zone: zone of the page
1367
 */
1368
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1369 1370
{
	struct mem_cgroup_per_zone *mz;
1371 1372
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1373
	struct lruvec *lruvec;
1374

1375 1376 1377 1378
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1379

K
KAMEZAWA Hiroyuki 已提交
1380
	pc = lookup_page_cgroup(page);
1381
	memcg = pc->mem_cgroup;
1382 1383

	/*
1384
	 * Surreptitiously switch any uncharged offlist page to root:
1385 1386 1387 1388 1389 1390 1391
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1392
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1393 1394
		pc->mem_cgroup = memcg = root_mem_cgroup;

1395
	mz = page_cgroup_zoneinfo(memcg, page);
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1406
}
1407

1408
/**
1409 1410 1411 1412
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1413
 *
1414 1415
 * This function must be called when a page is added to or removed from an
 * lru list.
1416
 */
1417 1418
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1419 1420
{
	struct mem_cgroup_per_zone *mz;
1421
	unsigned long *lru_size;
1422 1423 1424 1425

	if (mem_cgroup_disabled())
		return;

1426 1427 1428 1429
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1430
}
1431

1432
/*
1433
 * Checks whether given mem is same or in the root_mem_cgroup's
1434 1435
 * hierarchy subtree
 */
1436 1437
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1438
{
1439 1440
	if (root_memcg == memcg)
		return true;
1441
	if (!root_memcg->use_hierarchy || !memcg)
1442
		return false;
1443 1444 1445 1446 1447 1448 1449 1450
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1451
	rcu_read_lock();
1452
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1453 1454
	rcu_read_unlock();
	return ret;
1455 1456
}

1457 1458
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1459
{
1460
	struct mem_cgroup *curr = NULL;
1461
	struct task_struct *p;
1462
	bool ret;
1463

1464
	p = find_lock_task_mm(task);
1465 1466 1467 1468 1469 1470 1471 1472 1473
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1474
		rcu_read_lock();
1475 1476 1477
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1478
		rcu_read_unlock();
1479
	}
1480
	if (!curr)
1481
		return false;
1482
	/*
1483
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1484
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1485 1486
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1487
	 */
1488
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1489
	css_put(&curr->css);
1490 1491 1492
	return ret;
}

1493
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1494
{
1495
	unsigned long inactive_ratio;
1496
	unsigned long inactive;
1497
	unsigned long active;
1498
	unsigned long gb;
1499

1500 1501
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1502

1503 1504 1505 1506 1507 1508
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1509
	return inactive * inactive_ratio < active;
1510 1511
}

1512 1513 1514
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1515
/**
1516
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1517
 * @memcg: the memory cgroup
1518
 *
1519
 * Returns the maximum amount of memory @mem can be charged with, in
1520
 * pages.
1521
 */
1522
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1523
{
1524 1525
	unsigned long long margin;

1526
	margin = res_counter_margin(&memcg->res);
1527
	if (do_swap_account)
1528
		margin = min(margin, res_counter_margin(&memcg->memsw));
1529
	return margin >> PAGE_SHIFT;
1530 1531
}

1532
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1533 1534
{
	/* root ? */
T
Tejun Heo 已提交
1535
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1536 1537
		return vm_swappiness;

1538
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1539 1540
}

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1555 1556 1557 1558

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1559
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1560
{
1561
	atomic_inc(&memcg_moving);
1562
	atomic_inc(&memcg->moving_account);
1563 1564 1565
	synchronize_rcu();
}

1566
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1567
{
1568 1569 1570 1571
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1572 1573
	if (memcg) {
		atomic_dec(&memcg_moving);
1574
		atomic_dec(&memcg->moving_account);
1575
	}
1576
}
1577

1578 1579 1580
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1581 1582
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1583 1584 1585 1586 1587 1588 1589
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1590
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1591 1592
{
	VM_BUG_ON(!rcu_read_lock_held());
1593
	return atomic_read(&memcg->moving_account) > 0;
1594
}
1595

1596
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1597
{
1598 1599
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1600
	bool ret = false;
1601 1602 1603 1604 1605 1606 1607 1608 1609
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1610

1611 1612
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1613 1614
unlock:
	spin_unlock(&mc.lock);
1615 1616 1617
	return ret;
}

1618
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1619 1620
{
	if (mc.moving_task && current != mc.moving_task) {
1621
		if (mem_cgroup_under_move(memcg)) {
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1634 1635 1636 1637
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1638
 * see mem_cgroup_stolen(), too.
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1652
#define K(x) ((x) << (PAGE_SHIFT-10))
1653
/**
1654
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1672 1673
	struct mem_cgroup *iter;
	unsigned int i;
1674

1675
	if (!p)
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1694
	pr_info("Task in %s killed", memcg_name);
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1707
	pr_cont(" as a result of limit of %s\n", memcg_name);
1708 1709
done:

1710
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1711 1712 1713
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1714
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1715 1716 1717
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1718
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1719 1720 1721
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1746 1747
}

1748 1749 1750 1751
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1752
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1753 1754
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1755 1756
	struct mem_cgroup *iter;

1757
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1758
		num++;
1759 1760 1761
	return num;
}

D
David Rientjes 已提交
1762 1763 1764
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1765
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1766 1767 1768
{
	u64 limit;

1769 1770
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1771
	/*
1772
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1773
	 */
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1788 1789
}

1790 1791
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1792 1793 1794 1795 1796 1797 1798
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1799
	/*
1800 1801 1802
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1803
	 */
1804
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1805 1806 1807 1808 1809
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1810 1811
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1812
		struct css_task_iter it;
1813 1814
		struct task_struct *task;

1815 1816
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1829
				css_task_iter_end(&it);
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1846
		css_task_iter_end(&it);
1847 1848 1849 1850 1851 1852 1853 1854 1855
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1892 1893
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1894
 * @memcg: the target memcg
1895 1896 1897 1898 1899 1900 1901
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1902
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1903 1904
		int nid, bool noswap)
{
1905
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1906 1907 1908
		return true;
	if (noswap || !total_swap_pages)
		return false;
1909
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1910 1911 1912 1913
		return true;
	return false;

}
1914
#if MAX_NUMNODES > 1
1915 1916 1917 1918 1919 1920 1921

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1922
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1923 1924
{
	int nid;
1925 1926 1927 1928
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1929
	if (!atomic_read(&memcg->numainfo_events))
1930
		return;
1931
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1932 1933 1934
		return;

	/* make a nodemask where this memcg uses memory from */
1935
	memcg->scan_nodes = node_states[N_MEMORY];
1936

1937
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1938

1939 1940
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1941
	}
1942

1943 1944
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1959
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1960 1961 1962
{
	int node;

1963 1964
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1965

1966
	node = next_node(node, memcg->scan_nodes);
1967
	if (node == MAX_NUMNODES)
1968
		node = first_node(memcg->scan_nodes);
1969 1970 1971 1972 1973 1974 1975 1976 1977
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1978
	memcg->last_scanned_node = node;
1979 1980 1981
	return node;
}

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

2017
#else
2018
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2019 2020 2021
{
	return 0;
}
2022

2023 2024 2025 2026
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
2027 2028
#endif

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
			break;
2077
	}
2078 2079
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
2080 2081
}

2082 2083 2084 2085 2086 2087
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

2088 2089
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
2090 2091 2092 2093
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
2094
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2095
{
2096
	struct mem_cgroup *iter, *failed = NULL;
2097

2098 2099
	spin_lock(&memcg_oom_lock);

2100
	for_each_mem_cgroup_tree(iter, memcg) {
2101
		if (iter->oom_lock) {
2102 2103 2104 2105 2106
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2107 2108
			mem_cgroup_iter_break(memcg, iter);
			break;
2109 2110
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2111
	}
K
KAMEZAWA Hiroyuki 已提交
2112

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
2124
		}
2125 2126
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2127 2128 2129 2130

	spin_unlock(&memcg_oom_lock);

	return !failed;
2131
}
2132

2133
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2134
{
K
KAMEZAWA Hiroyuki 已提交
2135 2136
	struct mem_cgroup *iter;

2137
	spin_lock(&memcg_oom_lock);
2138
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2139
	for_each_mem_cgroup_tree(iter, memcg)
2140
		iter->oom_lock = false;
2141
	spin_unlock(&memcg_oom_lock);
2142 2143
}

2144
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2145 2146 2147
{
	struct mem_cgroup *iter;

2148
	for_each_mem_cgroup_tree(iter, memcg)
2149 2150 2151
		atomic_inc(&iter->under_oom);
}

2152
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2153 2154 2155
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2156 2157 2158 2159 2160
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2161
	for_each_mem_cgroup_tree(iter, memcg)
2162
		atomic_add_unless(&iter->under_oom, -1, 0);
2163 2164
}

K
KAMEZAWA Hiroyuki 已提交
2165 2166
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2167
struct oom_wait_info {
2168
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2169 2170 2171 2172 2173 2174
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2175 2176
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2177 2178 2179
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2180
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2181 2182

	/*
2183
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2184 2185
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2186 2187
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2188 2189 2190 2191
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2192
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2193
{
2194
	atomic_inc(&memcg->oom_wakeups);
2195 2196
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2197 2198
}

2199
static void memcg_oom_recover(struct mem_cgroup *memcg)
2200
{
2201 2202
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2203 2204
}

2205
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2206
{
2207 2208
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2209
	/*
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2222
	 */
2223 2224 2225 2226
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2227 2228 2229 2230
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2231
 * @handle: actually kill/wait or just clean up the OOM state
2232
 *
2233 2234
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2235
 *
2236
 * Memcg supports userspace OOM handling where failed allocations must
2237 2238 2239 2240
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2241
 * the end of the page fault to complete the OOM handling.
2242 2243
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2244
 * completed, %false otherwise.
2245
 */
2246
bool mem_cgroup_oom_synchronize(bool handle)
2247
{
2248
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2249
	struct oom_wait_info owait;
2250
	bool locked;
2251 2252 2253

	/* OOM is global, do not handle */
	if (!memcg)
2254
		return false;
2255

2256 2257
	if (!handle)
		goto cleanup;
2258 2259 2260 2261 2262 2263

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2264

2265
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2279
		schedule();
2280 2281 2282 2283 2284
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2285 2286 2287 2288 2289 2290 2291 2292
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2293 2294
cleanup:
	current->memcg_oom.memcg = NULL;
2295
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2296
	return true;
2297 2298
}

2299 2300 2301
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2319 2320
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2321
 */
2322

2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2336
	 * need to take move_lock_mem_cgroup(). Because we already hold
2337
	 * rcu_read_lock(), any calls to move_account will be delayed until
2338
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2339
	 */
2340
	if (!mem_cgroup_stolen(memcg))
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2358
	 * should take move_lock_mem_cgroup().
2359 2360 2361 2362
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2363
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2364
				 enum mem_cgroup_stat_index idx, int val)
2365
{
2366
	struct mem_cgroup *memcg;
2367
	struct page_cgroup *pc = lookup_page_cgroup(page);
2368
	unsigned long uninitialized_var(flags);
2369

2370
	if (mem_cgroup_disabled())
2371
		return;
2372

2373
	VM_BUG_ON(!rcu_read_lock_held());
2374 2375
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2376
		return;
2377

2378
	this_cpu_add(memcg->stat->count[idx], val);
2379
}
2380

2381 2382 2383 2384
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2385
#define CHARGE_BATCH	32U
2386 2387
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2388
	unsigned int nr_pages;
2389
	struct work_struct work;
2390
	unsigned long flags;
2391
#define FLUSHING_CACHED_CHARGE	0
2392 2393
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2394
static DEFINE_MUTEX(percpu_charge_mutex);
2395

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2406
 */
2407
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2408 2409 2410 2411
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2412 2413 2414
	if (nr_pages > CHARGE_BATCH)
		return false;

2415
	stock = &get_cpu_var(memcg_stock);
2416 2417
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2431 2432 2433 2434
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2435
		if (do_swap_account)
2436 2437
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2450
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2451 2452
}

2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2464 2465
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2466
 * This will be consumed by consume_stock() function, later.
2467
 */
2468
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2469 2470 2471
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2472
	if (stock->cached != memcg) { /* reset if necessary */
2473
		drain_stock(stock);
2474
		stock->cached = memcg;
2475
	}
2476
	stock->nr_pages += nr_pages;
2477 2478 2479 2480
	put_cpu_var(memcg_stock);
}

/*
2481
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2482 2483
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2484
 */
2485
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2486
{
2487
	int cpu, curcpu;
2488

2489 2490
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2491
	curcpu = get_cpu();
2492 2493
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2494
		struct mem_cgroup *memcg;
2495

2496 2497
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2498
			continue;
2499
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2500
			continue;
2501 2502 2503 2504 2505 2506
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2507
	}
2508
	put_cpu();
2509 2510 2511 2512 2513 2514

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2515
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2516 2517 2518
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2519
	put_online_cpus();
2520 2521 2522 2523 2524 2525 2526 2527
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2528
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2529
{
2530 2531 2532 2533 2534
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2535
	drain_all_stock(root_memcg, false);
2536
	mutex_unlock(&percpu_charge_mutex);
2537 2538 2539
}

/* This is a synchronous drain interface. */
2540
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2541 2542
{
	/* called when force_empty is called */
2543
	mutex_lock(&percpu_charge_mutex);
2544
	drain_all_stock(root_memcg, true);
2545
	mutex_unlock(&percpu_charge_mutex);
2546 2547
}

2548 2549 2550 2551
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2552
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2553 2554 2555
{
	int i;

2556
	spin_lock(&memcg->pcp_counter_lock);
2557
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2558
		long x = per_cpu(memcg->stat->count[i], cpu);
2559

2560 2561
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2562
	}
2563
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2564
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2565

2566 2567
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2568
	}
2569
	spin_unlock(&memcg->pcp_counter_lock);
2570 2571
}

2572
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2573 2574 2575 2576 2577
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2578
	struct mem_cgroup *iter;
2579

2580
	if (action == CPU_ONLINE)
2581 2582
		return NOTIFY_OK;

2583
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2584
		return NOTIFY_OK;
2585

2586
	for_each_mem_cgroup(iter)
2587 2588
		mem_cgroup_drain_pcp_counter(iter, cpu);

2589 2590 2591 2592 2593
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2594 2595 2596 2597 2598 2599 2600 2601 2602

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
};

2603
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2604
				unsigned int nr_pages, unsigned int min_pages,
2605
				bool invoke_oom)
2606
{
2607
	unsigned long csize = nr_pages * PAGE_SIZE;
2608 2609 2610 2611 2612
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2613
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2614 2615 2616 2617

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2618
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2619 2620 2621
		if (likely(!ret))
			return CHARGE_OK;

2622
		res_counter_uncharge(&memcg->res, csize);
2623 2624 2625 2626
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2627 2628 2629 2630
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2631
	if (nr_pages > min_pages)
2632 2633 2634 2635 2636
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2637 2638 2639
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2640
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2641
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2642
		return CHARGE_RETRY;
2643
	/*
2644 2645 2646 2647 2648 2649 2650
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2651
	 */
2652
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2653 2654 2655 2656 2657 2658 2659 2660 2661
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

2662 2663
	if (invoke_oom)
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2664

2665
	return CHARGE_NOMEM;
2666 2667
}

2668
/*
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2688
 */
2689
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2690
				   gfp_t gfp_mask,
2691
				   unsigned int nr_pages,
2692
				   struct mem_cgroup **ptr,
2693
				   bool oom)
2694
{
2695
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2696
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2697
	struct mem_cgroup *memcg = NULL;
2698
	int ret;
2699

K
KAMEZAWA Hiroyuki 已提交
2700 2701 2702 2703 2704 2705 2706 2707
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2708

2709 2710 2711
	if (unlikely(task_in_memcg_oom(current)))
		goto bypass;

2712
	/*
2713 2714
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2715
	 * thread group leader migrates. It's possible that mm is not
2716
	 * set, if so charge the root memcg (happens for pagecache usage).
2717
	 */
2718
	if (!*ptr && !mm)
2719
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2720
again:
2721 2722 2723
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2724
			goto done;
2725
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2726
			goto done;
2727
		css_get(&memcg->css);
2728
	} else {
K
KAMEZAWA Hiroyuki 已提交
2729
		struct task_struct *p;
2730

K
KAMEZAWA Hiroyuki 已提交
2731 2732 2733
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2734
		 * Because we don't have task_lock(), "p" can exit.
2735
		 * In that case, "memcg" can point to root or p can be NULL with
2736 2737 2738 2739 2740 2741
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2742
		 */
2743
		memcg = mem_cgroup_from_task(p);
2744 2745 2746
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2747 2748 2749
			rcu_read_unlock();
			goto done;
		}
2750
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2763
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2764 2765 2766 2767 2768
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2769

2770
	do {
2771
		bool invoke_oom = oom && !nr_oom_retries;
2772

2773
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2774
		if (fatal_signal_pending(current)) {
2775
			css_put(&memcg->css);
2776
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2777
		}
2778

2779 2780
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
					   nr_pages, invoke_oom);
2781 2782 2783 2784
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2785
			batch = nr_pages;
2786 2787
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2788
			goto again;
2789
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2790
			css_put(&memcg->css);
2791 2792
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
2793
			if (!oom || invoke_oom) {
2794
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2795
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2796
			}
2797 2798
			nr_oom_retries--;
			break;
2799
		}
2800 2801
	} while (ret != CHARGE_OK);

2802
	if (batch > nr_pages)
2803 2804
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2805
done:
2806
	*ptr = memcg;
2807 2808
	return 0;
nomem:
2809 2810 2811 2812
	if (!(gfp_mask & __GFP_NOFAIL)) {
		*ptr = NULL;
		return -ENOMEM;
	}
K
KAMEZAWA Hiroyuki 已提交
2813
bypass:
2814 2815
	*ptr = root_mem_cgroup;
	return -EINTR;
2816
}
2817

2818 2819 2820 2821 2822
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2823
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2824
				       unsigned int nr_pages)
2825
{
2826
	if (!mem_cgroup_is_root(memcg)) {
2827 2828
		unsigned long bytes = nr_pages * PAGE_SIZE;

2829
		res_counter_uncharge(&memcg->res, bytes);
2830
		if (do_swap_account)
2831
			res_counter_uncharge(&memcg->memsw, bytes);
2832
	}
2833 2834
}

2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2853 2854
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2855 2856 2857
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2869
	return mem_cgroup_from_css(css);
2870 2871
}

2872
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2873
{
2874
	struct mem_cgroup *memcg = NULL;
2875
	struct page_cgroup *pc;
2876
	unsigned short id;
2877 2878
	swp_entry_t ent;

2879 2880 2881
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2882
	lock_page_cgroup(pc);
2883
	if (PageCgroupUsed(pc)) {
2884 2885 2886
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2887
	} else if (PageSwapCache(page)) {
2888
		ent.val = page_private(page);
2889
		id = lookup_swap_cgroup_id(ent);
2890
		rcu_read_lock();
2891 2892 2893
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2894
		rcu_read_unlock();
2895
	}
2896
	unlock_page_cgroup(pc);
2897
	return memcg;
2898 2899
}

2900
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2901
				       struct page *page,
2902
				       unsigned int nr_pages,
2903 2904
				       enum charge_type ctype,
				       bool lrucare)
2905
{
2906
	struct page_cgroup *pc = lookup_page_cgroup(page);
2907
	struct zone *uninitialized_var(zone);
2908
	struct lruvec *lruvec;
2909
	bool was_on_lru = false;
2910
	bool anon;
2911

2912
	lock_page_cgroup(pc);
2913
	VM_BUG_ON(PageCgroupUsed(pc));
2914 2915 2916 2917
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2918 2919 2920 2921 2922 2923 2924 2925 2926

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2927
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2928
			ClearPageLRU(page);
2929
			del_page_from_lru_list(page, lruvec, page_lru(page));
2930 2931 2932 2933
			was_on_lru = true;
		}
	}

2934
	pc->mem_cgroup = memcg;
2935 2936 2937 2938 2939 2940
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2941
	 */
K
KAMEZAWA Hiroyuki 已提交
2942
	smp_wmb();
2943
	SetPageCgroupUsed(pc);
2944

2945 2946
	if (lrucare) {
		if (was_on_lru) {
2947
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2948 2949
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2950
			add_page_to_lru_list(page, lruvec, page_lru(page));
2951 2952 2953 2954
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2955
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2956 2957 2958 2959
		anon = true;
	else
		anon = false;

2960
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2961
	unlock_page_cgroup(pc);
2962

2963
	/*
2964 2965 2966
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
2967
	 */
2968
	memcg_check_events(memcg, page);
2969
}
2970

2971 2972
static DEFINE_MUTEX(set_limit_mutex);

2973 2974 2975 2976 2977 2978 2979
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2993
#ifdef CONFIG_SLABINFO
2994 2995
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
				    struct cftype *cft, struct seq_file *m)
2996
{
2997
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3067 3068 3069 3070 3071

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

3072 3073 3074 3075 3076 3077 3078 3079
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
3080
	if (memcg_kmem_test_and_clear_dead(memcg))
3081
		css_put(&memcg->css);
3082 3083
}

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3167 3168
static void kmem_cache_destroy_work_func(struct work_struct *w);

3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3180
		size += offsetof(struct memcg_cache_params, memcg_caches);
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3220 3221
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3222
{
3223
	size_t size;
3224 3225 3226 3227

	if (!memcg_kmem_enabled())
		return 0;

3228 3229
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3230
		size += memcg_limited_groups_array_size * sizeof(void *);
3231 3232
	} else
		size = sizeof(struct memcg_cache_params);
3233

3234 3235 3236 3237
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3238
	if (memcg) {
3239
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3240
		s->memcg_params->root_cache = root_cache;
3241 3242
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3243 3244 3245
	} else
		s->memcg_params->is_root_cache = true;

3246 3247 3248 3249 3250
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3275
	css_put(&memcg->css);
3276
out:
3277 3278 3279
	kfree(s->memcg_params);
}

3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3311 3312 3313 3314 3315 3316 3317 3318 3319
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3341 3342 3343 3344 3345 3346 3347 3348
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3369 3370 3371 3372 3373 3374 3375
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3376 3377 3378 3379 3380 3381 3382 3383 3384
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3385

3386 3387 3388
/*
 * Called with memcg_cache_mutex held
 */
3389 3390 3391 3392
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3393
	static char *tmp_name = NULL;
3394

3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3413

3414
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3415
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3416

3417 3418 3419
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
3435 3436
	if (new_cachep) {
		css_put(&memcg->css);
3437
		goto out;
3438
	}
3439 3440 3441 3442

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3443
		css_put(&memcg->css);
3444 3445 3446
		goto out;
	}

G
Glauber Costa 已提交
3447
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3499
		cancel_work_sync(&c->memcg_params->destroy);
3500 3501 3502 3503 3504
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3505 3506 3507 3508 3509 3510
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3540 3541
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3542 3543 3544 3545
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3546 3547
	if (cw == NULL) {
		css_put(&memcg->css);
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3598 3599 3600
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3601 3602 3603 3604
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3605
		goto out;
3606 3607 3608 3609 3610 3611 3612 3613

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3614 3615 3616
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3617 3618
	}

3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3646 3647 3648
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3685 3686 3687
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3772 3773 3774 3775
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3776 3777
#endif /* CONFIG_MEMCG_KMEM */

3778 3779
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3780
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3781 3782
/*
 * Because tail pages are not marked as "used", set it. We're under
3783 3784 3785
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3786
 */
3787
void mem_cgroup_split_huge_fixup(struct page *head)
3788 3789
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3790
	struct page_cgroup *pc;
3791
	struct mem_cgroup *memcg;
3792
	int i;
3793

3794 3795
	if (mem_cgroup_disabled())
		return;
3796 3797

	memcg = head_pc->mem_cgroup;
3798 3799
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3800
		pc->mem_cgroup = memcg;
3801 3802 3803
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3804 3805
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3806
}
3807
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3808

3809 3810 3811 3812 3813 3814 3815 3816
static inline
void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
					struct mem_cgroup *to,
					unsigned int nr_pages,
					enum mem_cgroup_stat_index idx)
{
	/* Update stat data for mem_cgroup */
	preempt_disable();
3817
	__this_cpu_sub(from->stat->count[idx], nr_pages);
3818 3819 3820 3821
	__this_cpu_add(to->stat->count[idx], nr_pages);
	preempt_enable();
}

3822
/**
3823
 * mem_cgroup_move_account - move account of the page
3824
 * @page: the page
3825
 * @nr_pages: number of regular pages (>1 for huge pages)
3826 3827 3828 3829 3830
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3831
 * - page is not on LRU (isolate_page() is useful.)
3832
 * - compound_lock is held when nr_pages > 1
3833
 *
3834 3835
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3836
 */
3837 3838 3839 3840
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3841
				   struct mem_cgroup *to)
3842
{
3843 3844
	unsigned long flags;
	int ret;
3845
	bool anon = PageAnon(page);
3846

3847
	VM_BUG_ON(from == to);
3848
	VM_BUG_ON(PageLRU(page));
3849 3850 3851 3852 3853 3854 3855
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3856
	if (nr_pages > 1 && !PageTransHuge(page))
3857 3858 3859 3860 3861 3862 3863 3864
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3865
	move_lock_mem_cgroup(from, &flags);
3866

3867 3868 3869 3870 3871 3872 3873 3874
	if (!anon && page_mapped(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_FILE_MAPPED);

	if (PageWriteback(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_WRITEBACK);

3875
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3876

3877
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3878
	pc->mem_cgroup = to;
3879
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3880
	move_unlock_mem_cgroup(from, &flags);
3881 3882
	ret = 0;
unlock:
3883
	unlock_page_cgroup(pc);
3884 3885 3886
	/*
	 * check events
	 */
3887 3888
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3889
out:
3890 3891 3892
	return ret;
}

3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3913
 */
3914 3915
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3916
				  struct mem_cgroup *child)
3917 3918
{
	struct mem_cgroup *parent;
3919
	unsigned int nr_pages;
3920
	unsigned long uninitialized_var(flags);
3921 3922
	int ret;

3923
	VM_BUG_ON(mem_cgroup_is_root(child));
3924

3925 3926 3927 3928 3929
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3930

3931
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3932

3933 3934 3935 3936 3937 3938
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3939

3940 3941
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3942
		flags = compound_lock_irqsave(page);
3943
	}
3944

3945
	ret = mem_cgroup_move_account(page, nr_pages,
3946
				pc, child, parent);
3947 3948
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3949

3950
	if (nr_pages > 1)
3951
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3952
	putback_lru_page(page);
3953
put:
3954
	put_page(page);
3955
out:
3956 3957 3958
	return ret;
}

3959 3960 3961 3962 3963 3964 3965
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3966
				gfp_t gfp_mask, enum charge_type ctype)
3967
{
3968
	struct mem_cgroup *memcg = NULL;
3969
	unsigned int nr_pages = 1;
3970
	bool oom = true;
3971
	int ret;
A
Andrea Arcangeli 已提交
3972

A
Andrea Arcangeli 已提交
3973
	if (PageTransHuge(page)) {
3974
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3975
		VM_BUG_ON(!PageTransHuge(page));
3976 3977 3978 3979 3980
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3981
	}
3982

3983
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3984
	if (ret == -ENOMEM)
3985
		return ret;
3986
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3987 3988 3989
	return 0;
}

3990 3991
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3992
{
3993
	if (mem_cgroup_disabled())
3994
		return 0;
3995 3996 3997
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3998
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3999
					MEM_CGROUP_CHARGE_TYPE_ANON);
4000 4001
}

4002 4003 4004
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
4005
 * struct page_cgroup is acquired. This refcnt will be consumed by
4006 4007
 * "commit()" or removed by "cancel()"
 */
4008 4009 4010 4011
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
4012
{
4013
	struct mem_cgroup *memcg;
4014
	struct page_cgroup *pc;
4015
	int ret;
4016

4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
4027 4028
	if (!do_swap_account)
		goto charge_cur_mm;
4029 4030
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
4031
		goto charge_cur_mm;
4032 4033
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4034
	css_put(&memcg->css);
4035 4036
	if (ret == -EINTR)
		ret = 0;
4037
	return ret;
4038
charge_cur_mm:
4039 4040 4041 4042
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
4043 4044
}

4045 4046 4047 4048 4049 4050
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
4065 4066 4067
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

4068 4069 4070 4071 4072 4073 4074 4075 4076
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
4077
static void
4078
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
4079
					enum charge_type ctype)
4080
{
4081
	if (mem_cgroup_disabled())
4082
		return;
4083
	if (!memcg)
4084
		return;
4085

4086
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4087 4088 4089
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
4090 4091 4092
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
4093
	 */
4094
	if (do_swap_account && PageSwapCache(page)) {
4095
		swp_entry_t ent = {.val = page_private(page)};
4096
		mem_cgroup_uncharge_swap(ent);
4097
	}
4098 4099
}

4100 4101
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4102
{
4103
	__mem_cgroup_commit_charge_swapin(page, memcg,
4104
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4105 4106
}

4107 4108
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4109
{
4110 4111 4112 4113
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4114
	if (mem_cgroup_disabled())
4115 4116 4117 4118 4119 4120 4121
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4122 4123
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4124 4125 4126 4127
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4128 4129
}

4130
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4131 4132
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4133 4134 4135
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4136

4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4148
		batch->memcg = memcg;
4149 4150
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4151
	 * In those cases, all pages freed continuously can be expected to be in
4152 4153 4154 4155 4156 4157 4158 4159
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4160
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4161 4162
		goto direct_uncharge;

4163 4164 4165 4166 4167
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4168
	if (batch->memcg != memcg)
4169 4170
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4171
	batch->nr_pages++;
4172
	if (uncharge_memsw)
4173
		batch->memsw_nr_pages++;
4174 4175
	return;
direct_uncharge:
4176
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4177
	if (uncharge_memsw)
4178 4179 4180
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4181
}
4182

4183
/*
4184
 * uncharge if !page_mapped(page)
4185
 */
4186
static struct mem_cgroup *
4187 4188
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4189
{
4190
	struct mem_cgroup *memcg = NULL;
4191 4192
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4193
	bool anon;
4194

4195
	if (mem_cgroup_disabled())
4196
		return NULL;
4197

A
Andrea Arcangeli 已提交
4198
	if (PageTransHuge(page)) {
4199
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4200 4201
		VM_BUG_ON(!PageTransHuge(page));
	}
4202
	/*
4203
	 * Check if our page_cgroup is valid
4204
	 */
4205
	pc = lookup_page_cgroup(page);
4206
	if (unlikely(!PageCgroupUsed(pc)))
4207
		return NULL;
4208

4209
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4210

4211
	memcg = pc->mem_cgroup;
4212

K
KAMEZAWA Hiroyuki 已提交
4213 4214 4215
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4216 4217
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4218
	switch (ctype) {
4219
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4220 4221 4222 4223 4224
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4225 4226
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4227
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4228
		/* See mem_cgroup_prepare_migration() */
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4250
	}
K
KAMEZAWA Hiroyuki 已提交
4251

4252
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4253

4254
	ClearPageCgroupUsed(pc);
4255 4256 4257 4258 4259 4260
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4261

4262
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4263
	/*
4264
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4265
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4266
	 */
4267
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4268
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4269
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4270
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4271
	}
4272 4273 4274 4275 4276 4277
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4278
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4279

4280
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4281 4282 4283

unlock_out:
	unlock_page_cgroup(pc);
4284
	return NULL;
4285 4286
}

4287 4288
void mem_cgroup_uncharge_page(struct page *page)
{
4289 4290 4291
	/* early check. */
	if (page_mapped(page))
		return;
4292
	VM_BUG_ON(page->mapping && !PageAnon(page));
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4305 4306
	if (PageSwapCache(page))
		return;
4307
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4308 4309 4310 4311 4312
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4313
	VM_BUG_ON(page->mapping);
4314
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4315 4316
}

4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4331 4332
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4353 4354 4355 4356 4357 4358
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4359
	memcg_oom_recover(batch->memcg);
4360 4361 4362 4363
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4364
#ifdef CONFIG_SWAP
4365
/*
4366
 * called after __delete_from_swap_cache() and drop "page" account.
4367 4368
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4369 4370
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4371 4372
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4373 4374 4375 4376 4377
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4378
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4379

K
KAMEZAWA Hiroyuki 已提交
4380 4381
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4382
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4383 4384
	 */
	if (do_swap_account && swapout && memcg)
4385
		swap_cgroup_record(ent, css_id(&memcg->css));
4386
}
4387
#endif
4388

A
Andrew Morton 已提交
4389
#ifdef CONFIG_MEMCG_SWAP
4390 4391 4392 4393 4394
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4395
{
4396
	struct mem_cgroup *memcg;
4397
	unsigned short id;
4398 4399 4400 4401

	if (!do_swap_account)
		return;

4402 4403 4404
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4405
	if (memcg) {
4406 4407 4408 4409
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4410
		if (!mem_cgroup_is_root(memcg))
4411
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4412
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4413
		css_put(&memcg->css);
4414
	}
4415
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4416
}
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4433
				struct mem_cgroup *from, struct mem_cgroup *to)
4434 4435 4436 4437 4438 4439 4440 4441
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4442
		mem_cgroup_swap_statistics(to, true);
4443
		/*
4444 4445 4446
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4447 4448 4449 4450 4451 4452
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4453
		 */
L
Li Zefan 已提交
4454
		css_get(&to->css);
4455 4456 4457 4458 4459 4460
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4461
				struct mem_cgroup *from, struct mem_cgroup *to)
4462 4463 4464
{
	return -EINVAL;
}
4465
#endif
K
KAMEZAWA Hiroyuki 已提交
4466

4467
/*
4468 4469
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4470
 */
4471 4472
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4473
{
4474
	struct mem_cgroup *memcg = NULL;
4475
	unsigned int nr_pages = 1;
4476
	struct page_cgroup *pc;
4477
	enum charge_type ctype;
4478

4479
	*memcgp = NULL;
4480

4481
	if (mem_cgroup_disabled())
4482
		return;
4483

4484 4485 4486
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4487 4488 4489
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4490 4491
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4523
	}
4524
	unlock_page_cgroup(pc);
4525 4526 4527 4528
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4529
	if (!memcg)
4530
		return;
4531

4532
	*memcgp = memcg;
4533 4534 4535 4536 4537 4538 4539
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4540
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4541
	else
4542
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4543 4544 4545 4546 4547
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4548
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4549
}
4550

4551
/* remove redundant charge if migration failed*/
4552
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4553
	struct page *oldpage, struct page *newpage, bool migration_ok)
4554
{
4555
	struct page *used, *unused;
4556
	struct page_cgroup *pc;
4557
	bool anon;
4558

4559
	if (!memcg)
4560
		return;
4561

4562
	if (!migration_ok) {
4563 4564
		used = oldpage;
		unused = newpage;
4565
	} else {
4566
		used = newpage;
4567 4568
		unused = oldpage;
	}
4569
	anon = PageAnon(used);
4570 4571 4572 4573
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4574
	css_put(&memcg->css);
4575
	/*
4576 4577 4578
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4579
	 */
4580 4581 4582 4583 4584
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4585
	/*
4586 4587 4588 4589 4590 4591
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4592
	 */
4593
	if (anon)
4594
		mem_cgroup_uncharge_page(used);
4595
}
4596

4597 4598 4599 4600 4601 4602 4603 4604
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4605
	struct mem_cgroup *memcg = NULL;
4606 4607 4608 4609 4610 4611 4612 4613 4614
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4615 4616
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4617
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4618 4619
		ClearPageCgroupUsed(pc);
	}
4620 4621
	unlock_page_cgroup(pc);

4622 4623 4624 4625 4626 4627
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4628 4629 4630 4631 4632
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4633
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4634 4635
}

4636 4637 4638 4639 4640 4641
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4642 4643 4644 4645 4646
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4666 4667
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4668 4669 4670 4671
	}
}
#endif

4672
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4673
				unsigned long long val)
4674
{
4675
	int retry_count;
4676
	u64 memswlimit, memlimit;
4677
	int ret = 0;
4678 4679
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4680
	int enlarge;
4681 4682 4683 4684 4685 4686 4687 4688 4689

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4690

4691
	enlarge = 0;
4692
	while (retry_count) {
4693 4694 4695 4696
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4697 4698 4699
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4700
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4701 4702 4703 4704 4705 4706
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4707 4708
			break;
		}
4709 4710 4711 4712 4713

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4714
		ret = res_counter_set_limit(&memcg->res, val);
4715 4716 4717 4718 4719 4720
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4721 4722 4723 4724 4725
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4726 4727
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4728 4729
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4730
		if (curusage >= oldusage)
4731 4732 4733
			retry_count--;
		else
			oldusage = curusage;
4734
	}
4735 4736
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4737

4738 4739 4740
	return ret;
}

L
Li Zefan 已提交
4741 4742
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4743
{
4744
	int retry_count;
4745
	u64 memlimit, memswlimit, oldusage, curusage;
4746 4747
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4748
	int enlarge = 0;
4749

4750
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4751
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4752
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4753 4754 4755 4756 4757 4758 4759 4760
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4761
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4762 4763 4764 4765 4766 4767 4768 4769
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4770 4771 4772
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4773
		ret = res_counter_set_limit(&memcg->memsw, val);
4774 4775 4776 4777 4778 4779
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4780 4781 4782 4783 4784
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4785 4786 4787
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4788
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4789
		/* Usage is reduced ? */
4790
		if (curusage >= oldusage)
4791
			retry_count--;
4792 4793
		else
			oldusage = curusage;
4794
	}
4795 4796
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4797 4798 4799
	return ret;
}

4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
	unsigned long long excess;
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
		spin_unlock(&mctz->lock);
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

4892 4893 4894 4895 4896 4897 4898
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4899
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4900 4901
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4902
 */
4903
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4904
				int node, int zid, enum lru_list lru)
4905
{
4906
	struct lruvec *lruvec;
4907
	unsigned long flags;
4908
	struct list_head *list;
4909 4910
	struct page *busy;
	struct zone *zone;
4911

K
KAMEZAWA Hiroyuki 已提交
4912
	zone = &NODE_DATA(node)->node_zones[zid];
4913 4914
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4915

4916
	busy = NULL;
4917
	do {
4918
		struct page_cgroup *pc;
4919 4920
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4921
		spin_lock_irqsave(&zone->lru_lock, flags);
4922
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4923
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4924
			break;
4925
		}
4926 4927 4928
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4929
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4930
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4931 4932
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4933
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4934

4935
		pc = lookup_page_cgroup(page);
4936

4937
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4938
			/* found lock contention or "pc" is obsolete. */
4939
			busy = page;
4940 4941 4942
			cond_resched();
		} else
			busy = NULL;
4943
	} while (!list_empty(list));
4944 4945 4946
}

/*
4947 4948
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4949
 * This enables deleting this mem_cgroup.
4950 4951
 *
 * Caller is responsible for holding css reference on the memcg.
4952
 */
4953
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4954
{
4955
	int node, zid;
4956
	u64 usage;
4957

4958
	do {
4959 4960
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4961 4962
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4963
		for_each_node_state(node, N_MEMORY) {
4964
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4965 4966
				enum lru_list lru;
				for_each_lru(lru) {
4967
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4968
							node, zid, lru);
4969
				}
4970
			}
4971
		}
4972 4973
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4974
		cond_resched();
4975

4976
		/*
4977 4978 4979 4980 4981
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4982 4983 4984 4985 4986 4987
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4988 4989 4990
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4991 4992
}

4993 4994
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
4995 4996 4997 4998 4999 5000 5001 5002 5003 5004
	lockdep_assert_held(&memcg_create_mutex);
	/*
	 * The lock does not prevent addition or deletion to the list
	 * of children, but it prevents a new child from being
	 * initialized based on this parent in css_online(), so it's
	 * enough to decide whether hierarchically inherited
	 * attributes can still be changed or not.
	 */
	return memcg->use_hierarchy &&
		!list_empty(&memcg->css.cgroup->children);
5005 5006
}

5007 5008 5009 5010 5011 5012 5013 5014 5015 5016
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
5017

5018
	/* returns EBUSY if there is a task or if we come here twice. */
5019 5020 5021
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

5022 5023
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
5024
	/* try to free all pages in this cgroup */
5025
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5026
		int progress;
5027

5028 5029 5030
		if (signal_pending(current))
			return -EINTR;

5031
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5032
						false);
5033
		if (!progress) {
5034
			nr_retries--;
5035
			/* maybe some writeback is necessary */
5036
			congestion_wait(BLK_RW_ASYNC, HZ/10);
5037
		}
5038 5039

	}
K
KAMEZAWA Hiroyuki 已提交
5040
	lru_add_drain();
5041 5042 5043
	mem_cgroup_reparent_charges(memcg);

	return 0;
5044 5045
}

5046 5047
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
5048
{
5049
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5050

5051 5052
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
5053
	return mem_cgroup_force_empty(memcg);
5054 5055
}

5056 5057
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
5058
{
5059
	return mem_cgroup_from_css(css)->use_hierarchy;
5060 5061
}

5062 5063
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
5064 5065
{
	int retval = 0;
5066
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5067
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5068

5069
	mutex_lock(&memcg_create_mutex);
5070 5071 5072 5073

	if (memcg->use_hierarchy == val)
		goto out;

5074
	/*
5075
	 * If parent's use_hierarchy is set, we can't make any modifications
5076 5077 5078 5079 5080 5081
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
5082
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5083
				(val == 1 || val == 0)) {
5084
		if (list_empty(&memcg->css.cgroup->children))
5085
			memcg->use_hierarchy = val;
5086 5087 5088 5089
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
5090 5091

out:
5092
	mutex_unlock(&memcg_create_mutex);
5093 5094 5095 5096

	return retval;
}

5097

5098
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5099
					       enum mem_cgroup_stat_index idx)
5100
{
K
KAMEZAWA Hiroyuki 已提交
5101
	struct mem_cgroup *iter;
5102
	long val = 0;
5103

5104
	/* Per-cpu values can be negative, use a signed accumulator */
5105
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5106 5107 5108 5109 5110
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
5111 5112
}

5113
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5114
{
K
KAMEZAWA Hiroyuki 已提交
5115
	u64 val;
5116

5117
	if (!mem_cgroup_is_root(memcg)) {
5118
		if (!swap)
5119
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5120
		else
5121
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5122 5123
	}

5124 5125 5126 5127
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
5128 5129
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5130

K
KAMEZAWA Hiroyuki 已提交
5131
	if (swap)
5132
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5133 5134 5135 5136

	return val << PAGE_SHIFT;
}

5137 5138 5139
static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
5140
{
5141
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5142
	char str[64];
5143
	u64 val;
G
Glauber Costa 已提交
5144 5145
	int name, len;
	enum res_type type;
5146 5147 5148

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5149

5150 5151
	switch (type) {
	case _MEM:
5152
		if (name == RES_USAGE)
5153
			val = mem_cgroup_usage(memcg, false);
5154
		else
5155
			val = res_counter_read_u64(&memcg->res, name);
5156 5157
		break;
	case _MEMSWAP:
5158
		if (name == RES_USAGE)
5159
			val = mem_cgroup_usage(memcg, true);
5160
		else
5161
			val = res_counter_read_u64(&memcg->memsw, name);
5162
		break;
5163 5164 5165
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5166 5167 5168
	default:
		BUG();
	}
5169 5170 5171

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
5172
}
5173

5174
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5175 5176 5177
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
5178
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5191
	mutex_lock(&memcg_create_mutex);
5192
	mutex_lock(&set_limit_mutex);
5193
	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5194
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5195 5196 5197 5198 5199 5200
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5201 5202
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
5203
			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5204 5205
			goto out;
		}
5206 5207 5208 5209 5210 5211
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
5212 5213 5214 5215
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5216
	mutex_unlock(&memcg_create_mutex);
5217 5218 5219 5220
#endif
	return ret;
}

5221
#ifdef CONFIG_MEMCG_KMEM
5222
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5223
{
5224
	int ret = 0;
5225 5226
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5227 5228
		goto out;

5229
	memcg->kmem_account_flags = parent->kmem_account_flags;
5230 5231 5232 5233 5234 5235 5236 5237 5238 5239
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5240 5241 5242 5243
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
5244 5245 5246
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
5247 5248 5249 5250
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
5251
	memcg_stop_kmem_account();
5252
	ret = memcg_update_cache_sizes(memcg);
5253
	memcg_resume_kmem_account();
5254 5255 5256
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5257
}
5258
#endif /* CONFIG_MEMCG_KMEM */
5259

5260 5261 5262 5263
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5264
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5265
			    const char *buffer)
B
Balbir Singh 已提交
5266
{
5267
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5268 5269
	enum res_type type;
	int name;
5270 5271 5272
	unsigned long long val;
	int ret;

5273 5274
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5275

5276
	switch (name) {
5277
	case RES_LIMIT:
5278 5279 5280 5281
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5282 5283
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5284 5285 5286
		if (ret)
			break;
		if (type == _MEM)
5287
			ret = mem_cgroup_resize_limit(memcg, val);
5288
		else if (type == _MEMSWAP)
5289
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5290
		else if (type == _KMEM)
5291
			ret = memcg_update_kmem_limit(css, val);
5292 5293
		else
			return -EINVAL;
5294
		break;
5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5309 5310 5311 5312 5313
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5314 5315
}

5316 5317 5318 5319 5320 5321 5322 5323 5324 5325
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5326 5327
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5340
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5341
{
5342
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5343 5344
	int name;
	enum res_type type;
5345

5346 5347
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5348

5349
	switch (name) {
5350
	case RES_MAX_USAGE:
5351
		if (type == _MEM)
5352
			res_counter_reset_max(&memcg->res);
5353
		else if (type == _MEMSWAP)
5354
			res_counter_reset_max(&memcg->memsw);
5355 5356 5357 5358
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5359 5360
		break;
	case RES_FAILCNT:
5361
		if (type == _MEM)
5362
			res_counter_reset_failcnt(&memcg->res);
5363
		else if (type == _MEMSWAP)
5364
			res_counter_reset_failcnt(&memcg->memsw);
5365 5366 5367 5368
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5369 5370
		break;
	}
5371

5372
	return 0;
5373 5374
}

5375
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5376 5377
					struct cftype *cft)
{
5378
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5379 5380
}

5381
#ifdef CONFIG_MMU
5382
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5383 5384
					struct cftype *cft, u64 val)
{
5385
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5386 5387 5388

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5389

5390
	/*
5391 5392 5393 5394
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5395
	 */
5396
	memcg->move_charge_at_immigrate = val;
5397 5398
	return 0;
}
5399
#else
5400
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5401 5402 5403 5404 5405
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5406

5407
#ifdef CONFIG_NUMA
5408 5409
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
				struct cftype *cft, struct seq_file *m)
5410 5411 5412 5413
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5414
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5415

5416
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5417
	seq_printf(m, "total=%lu", total_nr);
5418
	for_each_node_state(nid, N_MEMORY) {
5419
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5420 5421 5422 5423
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5424
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5425
	seq_printf(m, "file=%lu", file_nr);
5426
	for_each_node_state(nid, N_MEMORY) {
5427
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5428
				LRU_ALL_FILE);
5429 5430 5431 5432
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5433
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5434
	seq_printf(m, "anon=%lu", anon_nr);
5435
	for_each_node_state(nid, N_MEMORY) {
5436
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5437
				LRU_ALL_ANON);
5438 5439 5440 5441
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5442
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5443
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5444
	for_each_node_state(nid, N_MEMORY) {
5445
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5446
				BIT(LRU_UNEVICTABLE));
5447 5448 5449 5450 5451 5452 5453
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5454 5455 5456 5457 5458
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5459
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5460
				 struct seq_file *m)
5461
{
5462
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5463 5464
	struct mem_cgroup *mi;
	unsigned int i;
5465

5466
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5467
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5468
			continue;
5469 5470
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5471
	}
L
Lee Schermerhorn 已提交
5472

5473 5474 5475 5476 5477 5478 5479 5480
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5481
	/* Hierarchical information */
5482 5483
	{
		unsigned long long limit, memsw_limit;
5484
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5485
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5486
		if (do_swap_account)
5487 5488
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5489
	}
K
KOSAKI Motohiro 已提交
5490

5491 5492 5493
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5494
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5495
			continue;
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5516
	}
K
KAMEZAWA Hiroyuki 已提交
5517

K
KOSAKI Motohiro 已提交
5518 5519 5520 5521
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5522
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5523 5524 5525 5526 5527
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5528
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5529
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5530

5531 5532 5533 5534
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5535
			}
5536 5537 5538 5539
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5540 5541 5542
	}
#endif

5543 5544 5545
	return 0;
}

5546 5547
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5548
{
5549
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5550

5551
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5552 5553
}

5554 5555
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5556
{
5557
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5558
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5559

T
Tejun Heo 已提交
5560
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5561 5562
		return -EINVAL;

5563
	mutex_lock(&memcg_create_mutex);
5564

K
KOSAKI Motohiro 已提交
5565
	/* If under hierarchy, only empty-root can set this value */
5566
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5567
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5568
		return -EINVAL;
5569
	}
K
KOSAKI Motohiro 已提交
5570 5571 5572

	memcg->swappiness = val;

5573
	mutex_unlock(&memcg_create_mutex);
5574

K
KOSAKI Motohiro 已提交
5575 5576 5577
	return 0;
}

5578 5579 5580 5581 5582 5583 5584 5585
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5586
		t = rcu_dereference(memcg->thresholds.primary);
5587
	else
5588
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5589 5590 5591 5592 5593 5594 5595

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5596
	 * current_threshold points to threshold just below or equal to usage.
5597 5598 5599
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5600
	i = t->current_threshold;
5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5624
	t->current_threshold = i - 1;
5625 5626 5627 5628 5629 5630
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5631 5632 5633 5634 5635 5636 5637
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5638 5639 5640 5641 5642 5643 5644
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5645 5646 5647 5648 5649 5650 5651
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5652 5653
}

5654
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5655 5656 5657
{
	struct mem_cgroup_eventfd_list *ev;

5658
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5659 5660 5661 5662
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5663
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5664
{
K
KAMEZAWA Hiroyuki 已提交
5665 5666
	struct mem_cgroup *iter;

5667
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5668
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5669 5670
}

5671
static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5672
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5673
{
5674
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5675 5676
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5677
	enum res_type type = MEMFILE_TYPE(cft->private);
5678
	u64 threshold, usage;
5679
	int i, size, ret;
5680 5681 5682 5683 5684 5685

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5686

5687
	if (type == _MEM)
5688
		thresholds = &memcg->thresholds;
5689
	else if (type == _MEMSWAP)
5690
		thresholds = &memcg->memsw_thresholds;
5691 5692 5693 5694 5695 5696
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5697
	if (thresholds->primary)
5698 5699
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5700
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5701 5702

	/* Allocate memory for new array of thresholds */
5703
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5704
			GFP_KERNEL);
5705
	if (!new) {
5706 5707 5708
		ret = -ENOMEM;
		goto unlock;
	}
5709
	new->size = size;
5710 5711

	/* Copy thresholds (if any) to new array */
5712 5713
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5714
				sizeof(struct mem_cgroup_threshold));
5715 5716
	}

5717
	/* Add new threshold */
5718 5719
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5720 5721

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5722
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5723 5724 5725
			compare_thresholds, NULL);

	/* Find current threshold */
5726
	new->current_threshold = -1;
5727
	for (i = 0; i < size; i++) {
5728
		if (new->entries[i].threshold <= usage) {
5729
			/*
5730 5731
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5732 5733
			 * it here.
			 */
5734
			++new->current_threshold;
5735 5736
		} else
			break;
5737 5738
	}

5739 5740 5741 5742 5743
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5744

5745
	/* To be sure that nobody uses thresholds */
5746 5747 5748 5749 5750 5751 5752 5753
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5754
static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5755
	struct cftype *cft, struct eventfd_ctx *eventfd)
5756
{
5757
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5758 5759
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5760
	enum res_type type = MEMFILE_TYPE(cft->private);
5761
	u64 usage;
5762
	int i, j, size;
5763 5764 5765

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5766
		thresholds = &memcg->thresholds;
5767
	else if (type == _MEMSWAP)
5768
		thresholds = &memcg->memsw_thresholds;
5769 5770 5771
	else
		BUG();

5772 5773 5774
	if (!thresholds->primary)
		goto unlock;

5775 5776 5777 5778 5779 5780
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5781 5782 5783
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5784 5785 5786
			size++;
	}

5787
	new = thresholds->spare;
5788

5789 5790
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5791 5792
		kfree(new);
		new = NULL;
5793
		goto swap_buffers;
5794 5795
	}

5796
	new->size = size;
5797 5798

	/* Copy thresholds and find current threshold */
5799 5800 5801
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5802 5803
			continue;

5804
		new->entries[j] = thresholds->primary->entries[i];
5805
		if (new->entries[j].threshold <= usage) {
5806
			/*
5807
			 * new->current_threshold will not be used
5808 5809 5810
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5811
			++new->current_threshold;
5812 5813 5814 5815
		}
		j++;
	}

5816
swap_buffers:
5817 5818
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5819 5820 5821 5822 5823 5824
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5825
	rcu_assign_pointer(thresholds->primary, new);
5826

5827
	/* To be sure that nobody uses thresholds */
5828
	synchronize_rcu();
5829
unlock:
5830 5831
	mutex_unlock(&memcg->thresholds_lock);
}
5832

5833
static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5834 5835
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
5836
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5837
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5838
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5839 5840 5841 5842 5843 5844

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5845
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5846 5847 5848 5849 5850

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5851
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5852
		eventfd_signal(eventfd, 1);
5853
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5854 5855 5856 5857

	return 0;
}

5858
static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5859 5860
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5861
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5862
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5863
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5864 5865 5866

	BUG_ON(type != _OOM_TYPE);

5867
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5868

5869
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5870 5871 5872 5873 5874 5875
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5876
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5877 5878
}

5879
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5880 5881
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5882
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5883

5884
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5885

5886
	if (atomic_read(&memcg->under_oom))
5887 5888 5889 5890 5891 5892
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

5893
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5894 5895
	struct cftype *cft, u64 val)
{
5896
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5897
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5898 5899

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5900
	if (!parent || !((val == 0) || (val == 1)))
5901 5902
		return -EINVAL;

5903
	mutex_lock(&memcg_create_mutex);
5904
	/* oom-kill-disable is a flag for subhierarchy. */
5905
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5906
		mutex_unlock(&memcg_create_mutex);
5907 5908
		return -EINVAL;
	}
5909
	memcg->oom_kill_disable = val;
5910
	if (!val)
5911
		memcg_oom_recover(memcg);
5912
	mutex_unlock(&memcg_create_mutex);
5913 5914 5915
	return 0;
}

A
Andrew Morton 已提交
5916
#ifdef CONFIG_MEMCG_KMEM
5917
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5918
{
5919 5920
	int ret;

5921
	memcg->kmemcg_id = -1;
5922 5923 5924
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5925

5926
	return mem_cgroup_sockets_init(memcg, ss);
5927
}
5928

5929
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5930
{
5931
	mem_cgroup_sockets_destroy(memcg);
5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5958 5959 5960 5961 5962 5963 5964

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5965
		css_put(&memcg->css);
G
Glauber Costa 已提交
5966
}
5967
#else
5968
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5969 5970 5971
{
	return 0;
}
G
Glauber Costa 已提交
5972

5973 5974 5975 5976 5977
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5978 5979
{
}
5980 5981
#endif

5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
static void cgroup_event_remove(struct work_struct *work)
{
	struct cgroup_event *event = container_of(work, struct cgroup_event,
			remove);
	struct cgroup_subsys_state *css = event->css;

	remove_wait_queue(event->wqh, &event->wait);

	event->cft->unregister_event(css, event->cft, event->eventfd);

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
	css_put(css);
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
		int sync, void *key)
{
	struct cgroup_event *event = container_of(wait,
			struct cgroup_event, wait);
	struct cgroup *cgrp = event->css->cgroup;
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
		spin_lock(&cgrp->event_list_lock);
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
		spin_unlock(&cgrp->event_list_lock);
	}

	return 0;
}

static void cgroup_event_ptable_queue_proc(struct file *file,
		wait_queue_head_t *wqh, poll_table *pt)
{
	struct cgroup_event *event = container_of(pt,
			struct cgroup_event, pt);

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
6059
static int cgroup_write_event_control(struct cgroup_subsys_state *css,
6060 6061
				      struct cftype *cft, const char *buffer)
{
6062
	struct cgroup *cgrp = css->cgroup;
6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084
	struct cgroup_event *event;
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
	char *endp;
	int ret;

	efd = simple_strtoul(buffer, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buffer = endp + 1;

	cfd = simple_strtoul(buffer, &endp, 10);
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
	buffer = endp + 1;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

6085
	event->css = css;
6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121
	INIT_LIST_HEAD(&event->list);
	init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
	INIT_WORK(&event->remove, cgroup_event_remove);

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

	event->cft = __file_cft(cfile.file);
	if (IS_ERR(event->cft)) {
		ret = PTR_ERR(event->cft);
		goto out_put_cfile;
	}

	/*
6122 6123 6124
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
6125 6126 6127 6128
	 */
	rcu_read_lock();

	ret = -EINVAL;
6129 6130 6131
	cfile_css = css_from_dir(cfile.file->f_dentry->d_parent,
				 &mem_cgroup_subsys);
	if (cfile_css == css && css_tryget(css))
6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142
		ret = 0;

	rcu_read_unlock();
	if (ret)
		goto out_put_cfile;

	if (!event->cft->register_event || !event->cft->unregister_event) {
		ret = -EINVAL;
		goto out_put_css;
	}

6143
	ret = event->cft->register_event(css, event->cft,
6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159
			event->eventfd, buffer);
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

	spin_lock(&cgrp->event_list_lock);
	list_add(&event->list, &cgrp->event_list);
	spin_unlock(&cgrp->event_list_lock);

	fdput(cfile);
	fdput(efile);

	return 0;

out_put_css:
6160
	css_put(css);
6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
6173 6174
static struct cftype mem_cgroup_files[] = {
	{
6175
		.name = "usage_in_bytes",
6176
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6177
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
6178 6179
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
6180
	},
6181 6182
	{
		.name = "max_usage_in_bytes",
6183
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6184
		.trigger = mem_cgroup_reset,
6185
		.read = mem_cgroup_read,
6186
	},
B
Balbir Singh 已提交
6187
	{
6188
		.name = "limit_in_bytes",
6189
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6190
		.write_string = mem_cgroup_write,
6191
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
6192
	},
6193 6194 6195 6196
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
6197
		.read = mem_cgroup_read,
6198
	},
B
Balbir Singh 已提交
6199 6200
	{
		.name = "failcnt",
6201
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6202
		.trigger = mem_cgroup_reset,
6203
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
6204
	},
6205 6206
	{
		.name = "stat",
6207
		.read_seq_string = memcg_stat_show,
6208
	},
6209 6210 6211 6212
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
6213 6214
	{
		.name = "use_hierarchy",
6215
		.flags = CFTYPE_INSANE,
6216 6217 6218
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
6219 6220 6221 6222 6223 6224
	{
		.name = "cgroup.event_control",
		.write_string = cgroup_write_event_control,
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
6225 6226 6227 6228 6229
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
6230 6231 6232 6233 6234
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
6235 6236
	{
		.name = "oom_control",
6237 6238
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
6239 6240 6241 6242
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
6243 6244 6245 6246 6247
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
6248 6249 6250
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
6251
		.read_seq_string = memcg_numa_stat_show,
6252 6253
	},
#endif
6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
6278 6279 6280 6281 6282 6283
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
6284
#endif
6285
	{ },	/* terminate */
6286
};
6287

6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
6318
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6319 6320
{
	struct mem_cgroup_per_node *pn;
6321
	struct mem_cgroup_per_zone *mz;
6322
	int zone, tmp = node;
6323 6324 6325 6326 6327 6328 6329 6330
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6331 6332
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6333
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6334 6335
	if (!pn)
		return 1;
6336 6337 6338

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6339
		lruvec_init(&mz->lruvec);
6340 6341
		mz->usage_in_excess = 0;
		mz->on_tree = false;
6342
		mz->memcg = memcg;
6343
	}
6344
	memcg->nodeinfo[node] = pn;
6345 6346 6347
	return 0;
}

6348
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6349
{
6350
	kfree(memcg->nodeinfo[node]);
6351 6352
}

6353 6354
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6355
	struct mem_cgroup *memcg;
6356
	size_t size = memcg_size();
6357

6358
	/* Can be very big if nr_node_ids is very big */
6359
	if (size < PAGE_SIZE)
6360
		memcg = kzalloc(size, GFP_KERNEL);
6361
	else
6362
		memcg = vzalloc(size);
6363

6364
	if (!memcg)
6365 6366
		return NULL;

6367 6368
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6369
		goto out_free;
6370 6371
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6372 6373 6374

out_free:
	if (size < PAGE_SIZE)
6375
		kfree(memcg);
6376
	else
6377
		vfree(memcg);
6378
	return NULL;
6379 6380
}

6381
/*
6382 6383 6384 6385 6386 6387 6388 6389
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6390
 */
6391 6392

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6393
{
6394
	int node;
6395
	size_t size = memcg_size();
6396

6397
	mem_cgroup_remove_from_trees(memcg);
6398 6399 6400 6401 6402 6403 6404
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6416
	disarm_static_keys(memcg);
6417 6418 6419 6420
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6421
}
6422

6423 6424 6425
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6426
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6427
{
6428
	if (!memcg->res.parent)
6429
		return NULL;
6430
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6431
}
G
Glauber Costa 已提交
6432
EXPORT_SYMBOL(parent_mem_cgroup);
6433

6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6457
static struct cgroup_subsys_state * __ref
6458
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6459
{
6460
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6461
	long error = -ENOMEM;
6462
	int node;
B
Balbir Singh 已提交
6463

6464 6465
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6466
		return ERR_PTR(error);
6467

B
Bob Liu 已提交
6468
	for_each_node(node)
6469
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6470
			goto free_out;
6471

6472
	/* root ? */
6473
	if (parent_css == NULL) {
6474
		root_mem_cgroup = memcg;
6475 6476 6477
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6478
	}
6479

6480 6481 6482 6483 6484
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6485
	vmpressure_init(&memcg->vmpressure);
6486 6487 6488 6489 6490 6491 6492 6493 6494

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6495
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6496
{
6497 6498
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6499 6500
	int error = 0;

T
Tejun Heo 已提交
6501
	if (!parent)
6502 6503
		return 0;

6504
	mutex_lock(&memcg_create_mutex);
6505 6506 6507 6508 6509 6510

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6511 6512
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6513
		res_counter_init(&memcg->kmem, &parent->kmem);
6514

6515
		/*
6516 6517
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6518
		 */
6519
	} else {
6520 6521
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6522
		res_counter_init(&memcg->kmem, NULL);
6523 6524 6525 6526 6527
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6528
		if (parent != root_mem_cgroup)
6529
			mem_cgroup_subsys.broken_hierarchy = true;
6530
	}
6531 6532

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6533
	mutex_unlock(&memcg_create_mutex);
6534
	return error;
B
Balbir Singh 已提交
6535 6536
}

M
Michal Hocko 已提交
6537 6538 6539 6540 6541 6542 6543 6544
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6545
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6546 6547 6548 6549 6550 6551

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6552
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6553 6554
}

6555
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6556
{
6557
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571
	struct cgroup *cgrp = css->cgroup;
	struct cgroup_event *event, *tmp;

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
	spin_lock(&cgrp->event_list_lock);
	list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
	spin_unlock(&cgrp->event_list_lock);
6572

6573 6574
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6575
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6576
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6577
	mem_cgroup_destroy_all_caches(memcg);
6578
	vmpressure_cleanup(&memcg->vmpressure);
6579 6580
}

6581
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6582
{
6583
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6584

6585
	memcg_destroy_kmem(memcg);
6586
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6587 6588
}

6589
#ifdef CONFIG_MMU
6590
/* Handlers for move charge at task migration. */
6591 6592
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6593
{
6594 6595
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6596
	struct mem_cgroup *memcg = mc.to;
6597

6598
	if (mem_cgroup_is_root(memcg)) {
6599 6600 6601 6602 6603 6604 6605 6606
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6607
		 * "memcg" cannot be under rmdir() because we've already checked
6608 6609 6610 6611
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6612
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6613
			goto one_by_one;
6614
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6615
						PAGE_SIZE * count, &dummy)) {
6616
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6633 6634
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6635
		if (ret)
6636
			/* mem_cgroup_clear_mc() will do uncharge later */
6637
			return ret;
6638 6639
		mc.precharge++;
	}
6640 6641 6642 6643
	return ret;
}

/**
6644
 * get_mctgt_type - get target type of moving charge
6645 6646 6647
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6648
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6649 6650 6651 6652 6653 6654
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6655 6656 6657
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6658 6659 6660 6661 6662
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6663
	swp_entry_t	ent;
6664 6665 6666
};

enum mc_target_type {
6667
	MC_TARGET_NONE = 0,
6668
	MC_TARGET_PAGE,
6669
	MC_TARGET_SWAP,
6670 6671
};

D
Daisuke Nishimura 已提交
6672 6673
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6674
{
D
Daisuke Nishimura 已提交
6675
	struct page *page = vm_normal_page(vma, addr, ptent);
6676

D
Daisuke Nishimura 已提交
6677 6678 6679 6680
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6681
		if (!move_anon())
D
Daisuke Nishimura 已提交
6682
			return NULL;
6683 6684
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6685 6686 6687 6688 6689 6690 6691
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6692
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6693 6694 6695 6696 6697 6698 6699 6700
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6701 6702 6703 6704
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6705
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6706 6707 6708 6709 6710
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6711 6712 6713 6714 6715 6716 6717
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6718

6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6738 6739 6740 6741 6742 6743
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6744
		if (do_swap_account)
6745
			*entry = swap;
6746
		page = find_get_page(swap_address_space(swap), swap.val);
6747
	}
6748
#endif
6749 6750 6751
	return page;
}

6752
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6753 6754 6755 6756
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6757
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6758 6759 6760 6761 6762 6763
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6764 6765
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6766 6767

	if (!page && !ent.val)
6768
		return ret;
6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6784 6785
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6786
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6787 6788 6789
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6790 6791 6792 6793
	}
	return ret;
}

6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6829 6830 6831 6832 6833 6834 6835 6836
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6837 6838 6839 6840
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6841
		return 0;
6842
	}
6843

6844 6845
	if (pmd_trans_unstable(pmd))
		return 0;
6846 6847
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6848
		if (get_mctgt_type(vma, addr, *pte, NULL))
6849 6850 6851 6852
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6853 6854 6855
	return 0;
}

6856 6857 6858 6859 6860
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6861
	down_read(&mm->mmap_sem);
6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6873
	up_read(&mm->mmap_sem);
6874 6875 6876 6877 6878 6879 6880 6881 6882

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6883 6884 6885 6886 6887
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6888 6889
}

6890 6891
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6892
{
6893 6894
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6895
	int i;
6896

6897
	/* we must uncharge all the leftover precharges from mc.to */
6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6909
	}
6910 6911 6912 6913 6914 6915
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6916 6917 6918

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6919 6920 6921 6922 6923 6924 6925 6926 6927

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6928
		/* we've already done css_get(mc.to) */
6929 6930
		mc.moved_swap = 0;
	}
6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6946
	spin_lock(&mc.lock);
6947 6948
	mc.from = NULL;
	mc.to = NULL;
6949
	spin_unlock(&mc.lock);
6950
	mem_cgroup_end_move(from);
6951 6952
}

6953
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6954
				 struct cgroup_taskset *tset)
6955
{
6956
	struct task_struct *p = cgroup_taskset_first(tset);
6957
	int ret = 0;
6958
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6959
	unsigned long move_charge_at_immigrate;
6960

6961 6962 6963 6964 6965 6966 6967
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6968 6969 6970
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6971
		VM_BUG_ON(from == memcg);
6972 6973 6974 6975 6976

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6977 6978 6979 6980
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6981
			VM_BUG_ON(mc.moved_charge);
6982
			VM_BUG_ON(mc.moved_swap);
6983
			mem_cgroup_start_move(from);
6984
			spin_lock(&mc.lock);
6985
			mc.from = from;
6986
			mc.to = memcg;
6987
			mc.immigrate_flags = move_charge_at_immigrate;
6988
			spin_unlock(&mc.lock);
6989
			/* We set mc.moving_task later */
6990 6991 6992 6993

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6994 6995
		}
		mmput(mm);
6996 6997 6998 6999
	}
	return ret;
}

7000
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7001
				     struct cgroup_taskset *tset)
7002
{
7003
	mem_cgroup_clear_mc();
7004 7005
}

7006 7007 7008
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
7009
{
7010 7011 7012 7013
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
7014 7015 7016 7017
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
7018

7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
7030
		if (mc.precharge < HPAGE_PMD_NR) {
7031 7032 7033 7034 7035 7036 7037 7038 7039
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
7040
							pc, mc.from, mc.to)) {
7041 7042 7043 7044 7045 7046 7047 7048
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
7049
		return 0;
7050 7051
	}

7052 7053
	if (pmd_trans_unstable(pmd))
		return 0;
7054 7055 7056 7057
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
7058
		swp_entry_t ent;
7059 7060 7061 7062

		if (!mc.precharge)
			break;

7063
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
7064 7065 7066 7067 7068
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
7069
			if (!mem_cgroup_move_account(page, 1, pc,
7070
						     mc.from, mc.to)) {
7071
				mc.precharge--;
7072 7073
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
7074 7075
			}
			putback_lru_page(page);
7076
put:			/* get_mctgt_type() gets the page */
7077 7078
			put_page(page);
			break;
7079 7080
		case MC_TARGET_SWAP:
			ent = target.ent;
7081
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
7082
				mc.precharge--;
7083 7084 7085
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
7086
			break;
7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
7101
		ret = mem_cgroup_do_precharge(1);
7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
7145
	up_read(&mm->mmap_sem);
7146 7147
}

7148
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7149
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
7150
{
7151
	struct task_struct *p = cgroup_taskset_first(tset);
7152
	struct mm_struct *mm = get_task_mm(p);
7153 7154

	if (mm) {
7155 7156
		if (mc.to)
			mem_cgroup_move_charge(mm);
7157 7158
		mmput(mm);
	}
7159 7160
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
7161
}
7162
#else	/* !CONFIG_MMU */
7163
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7164
				 struct cgroup_taskset *tset)
7165 7166 7167
{
	return 0;
}
7168
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7169
				     struct cgroup_taskset *tset)
7170 7171
{
}
7172
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7173
				 struct cgroup_taskset *tset)
7174 7175 7176
{
}
#endif
B
Balbir Singh 已提交
7177

7178 7179 7180 7181
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
7182
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7183 7184 7185 7186 7187 7188
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
7189 7190
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
7191 7192
}

B
Balbir Singh 已提交
7193 7194 7195
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
7196
	.css_alloc = mem_cgroup_css_alloc,
7197
	.css_online = mem_cgroup_css_online,
7198 7199
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
7200 7201
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
7202
	.attach = mem_cgroup_move_task,
7203
	.bind = mem_cgroup_bind,
7204
	.base_cftypes = mem_cgroup_files,
7205
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
7206
	.use_id = 1,
B
Balbir Singh 已提交
7207
};
7208

A
Andrew Morton 已提交
7209
#ifdef CONFIG_MEMCG_SWAP
7210 7211
static int __init enable_swap_account(char *s)
{
7212
	if (!strcmp(s, "1"))
7213
		really_do_swap_account = 1;
7214
	else if (!strcmp(s, "0"))
7215 7216 7217
		really_do_swap_account = 0;
	return 1;
}
7218
__setup("swapaccount=", enable_swap_account);
7219

7220 7221
static void __init memsw_file_init(void)
{
7222 7223 7224 7225 7226 7227 7228 7229 7230
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
7231
}
7232

7233
#else
7234
static void __init enable_swap_cgroup(void)
7235 7236
{
}
7237
#endif
7238 7239

/*
7240 7241 7242 7243 7244 7245
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
7246 7247 7248 7249
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7250
	enable_swap_cgroup();
7251
	mem_cgroup_soft_limit_tree_init();
7252
	memcg_stock_init();
7253 7254 7255
	return 0;
}
subsys_initcall(mem_cgroup_init);