memcontrol.c 100.2 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
24
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
25
#include <linux/pagemap.h>
26
#include <linux/smp.h>
27
#include <linux/page-flags.h>
28
#include <linux/backing-dev.h>
29 30
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
31
#include <linux/limits.h>
32
#include <linux/mutex.h>
33
#include <linux/rbtree.h>
34
#include <linux/slab.h>
35
#include <linux/swap.h>
36
#include <linux/swapops.h>
37 38
#include <linux/spinlock.h>
#include <linux/fs.h>
39
#include <linux/seq_file.h>
40
#include <linux/vmalloc.h>
41
#include <linux/mm_inline.h>
42
#include <linux/page_cgroup.h>
43
#include <linux/cpu.h>
K
KAMEZAWA Hiroyuki 已提交
44
#include "internal.h"
B
Balbir Singh 已提交
45

46 47
#include <asm/uaccess.h>

48 49
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
50
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
51

52
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
53
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
54 55 56 57 58 59
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

60
#define SOFTLIMIT_EVENTS_THRESH (1000)
61

62 63 64 65 66 67 68 69
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
70
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
71
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
72 73
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
74
	MEM_CGROUP_STAT_EVENTS,	/* sum of pagein + pageout for internal use */
75
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
76 77 78 79 80 81 82 83 84

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
85
	struct mem_cgroup_stat_cpu cpustat[0];
86 87
};

88 89 90 91 92 93 94 95 96 97 98 99 100 101
static inline void
__mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
				enum mem_cgroup_stat_index idx)
{
	stat->count[idx] = 0;
}

static inline s64
__mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
				enum mem_cgroup_stat_index idx)
{
	return stat->count[idx];
}

102 103 104
/*
 * For accounting under irq disable, no need for increment preempt count.
 */
105
static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
106 107
		enum mem_cgroup_stat_index idx, int val)
{
108
	stat->count[idx] += val;
109 110 111 112 113 114 115 116 117 118 119 120
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

K
KAMEZAWA Hiroyuki 已提交
121 122 123 124 125 126 127 128 129
static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
{
	s64 ret;

	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
	return ret;
}

130 131 132 133
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
134 135 136
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
137 138
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
139 140

	struct zone_reclaim_stat reclaim_stat;
141 142 143 144
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
145 146
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
147 148 149 150 151 152 153 154 155 156 157 158
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

B
Balbir Singh 已提交
179 180 181 182 183 184 185
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
186 187 188
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
189 190 191 192 193 194 195
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
196 197 198 199
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
200 201 202 203
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
204
	struct mem_cgroup_lru_info info;
205

K
KOSAKI Motohiro 已提交
206 207 208 209 210
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

211
	int	prev_priority;	/* for recording reclaim priority */
212 213

	/*
214
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
215
	 * reclaimed from.
216
	 */
K
KAMEZAWA Hiroyuki 已提交
217
	int last_scanned_child;
218 219 220 221
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
222
	unsigned long	last_oom_jiffies;
223
	atomic_t	refcnt;
224

K
KOSAKI Motohiro 已提交
225 226
	unsigned int	swappiness;

227 228 229
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

230 231 232 233 234 235
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;

236
	/*
237
	 * statistics. This must be placed at the end of memcg.
238 239
	 */
	struct mem_cgroup_stat stat;
B
Balbir Singh 已提交
240 241
};

242 243 244 245 246 247
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
248
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
249 250 251
	NR_MOVE_TYPE,
};

252 253 254 255 256
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
257
	unsigned long moved_charge;
258 259 260 261 262
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
263

264 265 266 267 268 269 270
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

271 272 273
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
274
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
275
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
276
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
277
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
278 279 280
	NR_CHARGE_TYPE,
};

281 282 283 284
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
285 286
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
287

288 289 290 291 292 293 294
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)

295 296 297 298 299 300 301
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
302 303
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
304

305 306
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
307
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
308
static void drain_all_stock_async(void);
309

310 311 312 313 314 315
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

316 317 318 319 320
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
350
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
351
				struct mem_cgroup_per_zone *mz,
352 353
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
354 355 356 357 358 359 360 361
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

362 363 364
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
381 382 383 384 385 386 387 388 389 390 391 392 393
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

394 395 396 397 398 399
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
400
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
	spin_unlock(&mctz->lock);
}

static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
{
	bool ret = false;
	int cpu;
	s64 val;
	struct mem_cgroup_stat_cpu *cpustat;

	cpu = get_cpu();
	cpustat = &mem->stat.cpustat[cpu];
	val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
	if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
		__mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
		ret = true;
	}
	put_cpu();
	return ret;
}

static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
424
	unsigned long long excess;
425 426
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
427 428
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
429 430 431
	mctz = soft_limit_tree_from_page(page);

	/*
432 433
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
434
	 */
435 436
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
437
		excess = res_counter_soft_limit_excess(&mem->res);
438 439 440 441
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
442
		if (excess || mz->on_tree) {
443 444 445 446 447
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
448 449
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
450
			 */
451
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
452 453
			spin_unlock(&mctz->lock);
		}
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

472 473 474 475 476 477 478 479 480
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
481
	struct mem_cgroup_per_zone *mz;
482 483

retry:
484
	mz = NULL;
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

514 515 516 517 518 519 520 521 522 523 524 525 526
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
	struct mem_cgroup_stat_cpu *cpustat;
	int cpu = get_cpu();

	cpustat = &stat->cpustat[cpu];
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val);
	put_cpu();
}

527 528 529
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
530
{
531
	int val = (charge) ? 1 : -1;
532
	struct mem_cgroup_stat *stat = &mem->stat;
533
	struct mem_cgroup_stat_cpu *cpustat;
K
KAMEZAWA Hiroyuki 已提交
534
	int cpu = get_cpu();
535

K
KAMEZAWA Hiroyuki 已提交
536
	cpustat = &stat->cpustat[cpu];
537
	if (PageCgroupCache(pc))
538
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
539
	else
540
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
541 542

	if (charge)
543
		__mem_cgroup_stat_add_safe(cpustat,
544 545
				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
	else
546
		__mem_cgroup_stat_add_safe(cpustat,
547
				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
548
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
K
KAMEZAWA Hiroyuki 已提交
549
	put_cpu();
550 551
}

K
KAMEZAWA Hiroyuki 已提交
552
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
553
					enum lru_list idx)
554 555 556 557 558 559 560 561 562 563 564
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
565 566
}

567
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
568 569 570 571 572 573
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

574
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
575
{
576 577 578 579 580 581 582 583
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

584 585 586 587
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

588 589 590
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
591 592 593

	if (!mm)
		return NULL;
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

644 645 646 647 648
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
662

K
KAMEZAWA Hiroyuki 已提交
663 664 665 666
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
667

668
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
669 670 671
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
672
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
673
		return;
674
	VM_BUG_ON(!pc->mem_cgroup);
675 676 677 678
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
679
	mz = page_cgroup_zoneinfo(pc);
680
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
681 682 683
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
684 685
	list_del_init(&pc->lru);
	return;
686 687
}

K
KAMEZAWA Hiroyuki 已提交
688
void mem_cgroup_del_lru(struct page *page)
689
{
K
KAMEZAWA Hiroyuki 已提交
690 691
	mem_cgroup_del_lru_list(page, page_lru(page));
}
692

K
KAMEZAWA Hiroyuki 已提交
693 694 695 696
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
697

698
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
699
		return;
700

K
KAMEZAWA Hiroyuki 已提交
701
	pc = lookup_page_cgroup(page);
702 703 704 705
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
706
	smp_rmb();
707 708
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
709 710 711
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
712 713
}

K
KAMEZAWA Hiroyuki 已提交
714
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
715
{
K
KAMEZAWA Hiroyuki 已提交
716 717
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
718

719
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
720 721
		return;
	pc = lookup_page_cgroup(page);
722
	VM_BUG_ON(PageCgroupAcctLRU(pc));
723 724 725 726
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
727 728
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
729
		return;
730

K
KAMEZAWA Hiroyuki 已提交
731
	mz = page_cgroup_zoneinfo(pc);
732
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
733 734 735
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
736 737
	list_add(&pc->lru, &mz->lists[lru]);
}
738

K
KAMEZAWA Hiroyuki 已提交
739
/*
740 741 742 743 744
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
745
 */
746
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
747
{
748 749 750 751 752 753 754 755 756 757 758 759
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
760 761
}

762 763 764 765 766 767 768 769
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
770
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
771 772 773 774 775
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
776 777 778
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
779
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
780 781 782
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
783 784
}

785 786 787
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
788
	struct mem_cgroup *curr = NULL;
789 790

	task_lock(task);
791 792 793
	rcu_read_lock();
	curr = try_get_mem_cgroup_from_mm(task->mm);
	rcu_read_unlock();
794
	task_unlock(task);
795 796
	if (!curr)
		return 0;
797 798 799 800 801 802 803
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
804 805 806 807
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
808 809 810
	return ret;
}

811 812 813 814 815
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
K
KOSAKI Motohiro 已提交
816 817 818 819 820 821 822
	int prev_priority;

	spin_lock(&mem->reclaim_param_lock);
	prev_priority = mem->prev_priority;
	spin_unlock(&mem->reclaim_param_lock);

	return prev_priority;
823 824 825 826
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
827
	spin_lock(&mem->reclaim_param_lock);
828 829
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
830
	spin_unlock(&mem->reclaim_param_lock);
831 832 833 834
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
835
	spin_lock(&mem->reclaim_param_lock);
836
	mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
837
	spin_unlock(&mem->reclaim_param_lock);
838 839
}

840
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
841 842 843
{
	unsigned long active;
	unsigned long inactive;
844 845
	unsigned long gb;
	unsigned long inactive_ratio;
846

K
KAMEZAWA Hiroyuki 已提交
847 848
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
849

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
877 878 879 880 881
		return 1;

	return 0;
}

882 883 884 885 886 887 888 889 890 891 892
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

893 894 895 896 897 898 899 900 901 902 903
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
924 925 926 927 928 929 930 931
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
932 933 934 935 936 937 938
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

939 940 941 942 943
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
944
					int active, int file)
945 946 947 948 949 950
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
951
	struct page_cgroup *pc, *tmp;
952 953 954
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
955
	int lru = LRU_FILE * file + active;
956
	int ret;
957

958
	BUG_ON(!mem_cont);
959
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
960
	src = &mz->lists[lru];
961

962 963
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
964
		if (scan >= nr_to_scan)
965
			break;
K
KAMEZAWA Hiroyuki 已提交
966 967

		page = pc->page;
968 969
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
970
		if (unlikely(!PageLRU(page)))
971 972
			continue;

H
Hugh Dickins 已提交
973
		scan++;
974 975 976
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
977
			list_move(&page->lru, dst);
978
			mem_cgroup_del_lru(page);
979
			nr_taken++;
980 981 982 983 984 985 986
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
987 988 989 990 991 992 993
		}
	}

	*scanned = scan;
	return nr_taken;
}

994 995 996
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1025 1026 1027 1028 1029 1030
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051

/**
 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1052
	if (!memcg || !p)
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

1110
/*
K
KAMEZAWA Hiroyuki 已提交
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1153 1154
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1155 1156 1157
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1158 1159
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1160 1161
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1162
						struct zone *zone,
1163 1164
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1165
{
K
KAMEZAWA Hiroyuki 已提交
1166 1167 1168
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1169 1170
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1171 1172
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1173

1174 1175 1176 1177
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1178
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1179
		victim = mem_cgroup_select_victim(root_mem);
1180
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1181
			loop++;
1182 1183
			if (loop >= 1)
				drain_all_stock_async();
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
K
KAMEZAWA Hiroyuki 已提交
1207 1208 1209
		if (!mem_cgroup_local_usage(&victim->stat)) {
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1210 1211
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1212
		/* we use swappiness of local cgroup */
1213 1214 1215 1216 1217 1218 1219
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
				noswap, get_swappiness(victim), zone,
				zone->zone_pgdat->node_id);
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1220
		css_put(&victim->css);
1221 1222 1223 1224 1225 1226 1227
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1228
		total += ret;
1229 1230 1231 1232
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1233
			return 1 + total;
1234
	}
K
KAMEZAWA Hiroyuki 已提交
1235
	return total;
1236 1237
}

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
bool mem_cgroup_oom_called(struct task_struct *task)
{
	bool ret = false;
	struct mem_cgroup *mem;
	struct mm_struct *mm;

	rcu_read_lock();
	mm = task->mm;
	if (!mm)
		mm = &init_mm;
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
		ret = true;
	rcu_read_unlock();
	return ret;
}
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265

static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
{
	mem->last_oom_jiffies = jiffies;
	return 0;
}

static void record_last_oom(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
}

1266 1267 1268 1269
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
 */
1270
void mem_cgroup_update_file_mapped(struct page *page, int val)
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
{
	struct mem_cgroup *mem;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
	int cpu;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (unlikely(!pc))
		return;

	lock_page_cgroup(pc);
	mem = pc->mem_cgroup;
	if (!mem)
		goto done;

	if (!PageCgroupUsed(pc))
		goto done;

	/*
	 * Preemption is already disabled, we don't need get_cpu()
	 */
	cpu = smp_processor_id();
	stat = &mem->stat;
	cpustat = &stat->cpustat[cpu];

1297
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED, val);
1298 1299 1300
done:
	unlock_page_cgroup(pc);
}
1301

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
 * This will be consumed by consumt_stock() function, later.
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

	if (action != CPU_DEAD)
		return NOTIFY_OK;
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1429 1430 1431
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1432
 */
1433
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1434
			gfp_t gfp_mask, struct mem_cgroup **memcg,
1435
			bool oom, struct page *page)
1436
{
1437
	struct mem_cgroup *mem, *mem_over_limit;
1438
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1439
	struct res_counter *fail_res;
1440
	int csize = CHARGE_SIZE;
1441 1442 1443 1444 1445 1446 1447

	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
		/* Don't account this! */
		*memcg = NULL;
		return 0;
	}

1448
	/*
1449 1450
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1451 1452 1453
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
1454 1455 1456
	mem = *memcg;
	if (likely(!mem)) {
		mem = try_get_mem_cgroup_from_mm(mm);
1457
		*memcg = mem;
1458
	} else {
1459
		css_get(&mem->css);
1460
	}
1461 1462 1463
	if (unlikely(!mem))
		return 0;

1464
	VM_BUG_ON(css_is_removed(&mem->css));
1465 1466
	if (mem_cgroup_is_root(mem))
		goto done;
1467

1468
	while (1) {
1469
		int ret = 0;
1470
		unsigned long flags = 0;
1471

1472 1473 1474 1475
		if (consume_stock(mem))
			goto charged;

		ret = res_counter_charge(&mem->res, csize, &fail_res);
1476 1477 1478
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
1479
			ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1480 1481 1482
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
1483
			res_counter_uncharge(&mem->res, csize);
1484
			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1485 1486 1487 1488 1489 1490 1491
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

1492 1493 1494 1495 1496
		/* reduce request size and retry */
		if (csize > PAGE_SIZE) {
			csize = PAGE_SIZE;
			continue;
		}
1497
		if (!(gfp_mask & __GFP_WAIT))
1498
			goto nomem;
1499

1500 1501
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
						gfp_mask, flags);
1502 1503
		if (ret)
			continue;
1504 1505

		/*
1506 1507 1508 1509 1510
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
1511
		 *
1512
		 */
1513 1514
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
1515

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
		/* try to avoid oom while someone is moving charge */
		if (mc.moving_task && current != mc.moving_task) {
			struct mem_cgroup *from, *to;
			bool do_continue = false;
			/*
			 * There is a small race that "from" or "to" can be
			 * freed by rmdir, so we use css_tryget().
			 */
			rcu_read_lock();
			from = mc.from;
			to = mc.to;
			if (from && css_tryget(&from->css)) {
				if (mem_over_limit->use_hierarchy)
					do_continue = css_is_ancestor(
							&from->css,
							&mem_over_limit->css);
				else
					do_continue = (from == mem_over_limit);
				css_put(&from->css);
			}
			if (!do_continue && to && css_tryget(&to->css)) {
				if (mem_over_limit->use_hierarchy)
					do_continue = css_is_ancestor(
							&to->css,
							&mem_over_limit->css);
				else
					do_continue = (to == mem_over_limit);
				css_put(&to->css);
			}
			rcu_read_unlock();
			if (do_continue) {
				DEFINE_WAIT(wait);
				prepare_to_wait(&mc.waitq, &wait,
							TASK_INTERRUPTIBLE);
				/* moving charge context might have finished. */
				if (mc.moving_task)
					schedule();
				finish_wait(&mc.waitq, &wait);
				continue;
			}
		}

1558
		if (!nr_retries--) {
1559
			if (oom) {
1560
				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1561
				record_last_oom(mem_over_limit);
1562
			}
1563
			goto nomem;
1564
		}
1565
	}
1566 1567 1568
	if (csize > PAGE_SIZE)
		refill_stock(mem, csize - PAGE_SIZE);
charged:
1569
	/*
1570 1571
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
1572
	 */
1573
	if (page && mem_cgroup_soft_limit_check(mem))
1574
		mem_cgroup_update_tree(mem, page);
1575
done:
1576 1577 1578 1579 1580
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
}
1581

1582 1583 1584 1585 1586
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
1587 1588
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
1589 1590
{
	if (!mem_cgroup_is_root(mem)) {
1591
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1592
		if (do_swap_account)
1593 1594 1595 1596
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_put(&mem->css, (int)count);
1597
	}
1598 1599 1600 1601 1602 1603
	/* we don't need css_put for root */
}

static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
{
	__mem_cgroup_cancel_charge(mem, 1);
1604 1605
}

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

1625
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1626
{
1627
	struct mem_cgroup *mem = NULL;
1628
	struct page_cgroup *pc;
1629
	unsigned short id;
1630 1631
	swp_entry_t ent;

1632 1633 1634
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
1635
	lock_page_cgroup(pc);
1636
	if (PageCgroupUsed(pc)) {
1637
		mem = pc->mem_cgroup;
1638 1639
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
1640
	} else if (PageSwapCache(page)) {
1641
		ent.val = page_private(page);
1642 1643 1644 1645 1646 1647
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
1648
	}
1649
	unlock_page_cgroup(pc);
1650 1651 1652
	return mem;
}

1653
/*
1654
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1665 1666 1667 1668

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
1669
		mem_cgroup_cancel_charge(mem);
1670
		return;
1671
	}
1672

1673
	pc->mem_cgroup = mem;
1674 1675 1676 1677 1678 1679 1680
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
1681
	smp_wmb();
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
1695

K
KAMEZAWA Hiroyuki 已提交
1696
	mem_cgroup_charge_statistics(mem, pc, true);
1697 1698

	unlock_page_cgroup(pc);
1699
}
1700

1701
/**
1702
 * __mem_cgroup_move_account - move account of the page
1703 1704 1705
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
1706
 * @uncharge: whether we should call uncharge and css_put against @from.
1707 1708
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
1709
 * - page is not on LRU (isolate_page() is useful.)
1710
 * - the pc is locked, used, and ->mem_cgroup points to @from.
1711
 *
1712 1713 1714 1715
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
1716 1717
 */

1718
static void __mem_cgroup_move_account(struct page_cgroup *pc,
1719
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1720
{
1721 1722 1723 1724
	struct page *page;
	int cpu;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
1725 1726

	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1727
	VM_BUG_ON(PageLRU(pc->page));
1728 1729 1730
	VM_BUG_ON(!PageCgroupLocked(pc));
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
1731

1732
	page = pc->page;
1733
	if (page_mapped(page) && !PageAnon(page)) {
1734 1735 1736 1737
		cpu = smp_processor_id();
		/* Update mapped_file data for mem_cgroup "from" */
		stat = &from->stat;
		cpustat = &stat->cpustat[cpu];
1738
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
1739 1740 1741 1742 1743
						-1);

		/* Update mapped_file data for mem_cgroup "to" */
		stat = &to->stat;
		cpustat = &stat->cpustat[cpu];
1744
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
1745 1746
						1);
	}
1747 1748 1749 1750
	mem_cgroup_charge_statistics(from, pc, false);
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
		mem_cgroup_cancel_charge(from);
1751

1752
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
1753 1754
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
1755 1756 1757
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
1758 1759 1760
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
1761
	 */
1762 1763 1764 1765 1766 1767 1768
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
1769
		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1770 1771 1772 1773
{
	int ret = -EINVAL;
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1774
		__mem_cgroup_move_account(pc, from, to, uncharge);
1775 1776 1777
		ret = 0;
	}
	unlock_page_cgroup(pc);
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1789
	struct page *page = pc->page;
1790 1791 1792 1793 1794 1795 1796 1797 1798
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

1799 1800 1801 1802 1803
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
K
KAMEZAWA Hiroyuki 已提交
1804

1805
	parent = mem_cgroup_from_cont(pcg);
1806
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
1807
	if (ret || !parent)
1808
		goto put_back;
1809

1810 1811 1812
	ret = mem_cgroup_move_account(pc, child, parent, true);
	if (ret)
		mem_cgroup_cancel_charge(parent);
1813
put_back:
K
KAMEZAWA Hiroyuki 已提交
1814
	putback_lru_page(page);
1815
put:
1816
	put_page(page);
1817
out:
1818 1819 1820
	return ret;
}

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
1842
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
1843
	if (ret || !mem)
1844 1845 1846
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
1847 1848 1849
	return 0;
}

1850 1851
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
1852
{
1853
	if (mem_cgroup_disabled())
1854
		return 0;
1855 1856
	if (PageCompound(page))
		return 0;
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
1868
	return mem_cgroup_charge_common(page, mm, gfp_mask,
1869
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1870 1871
}

D
Daisuke Nishimura 已提交
1872 1873 1874 1875
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

1876 1877
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
1878
{
1879 1880 1881
	struct mem_cgroup *mem = NULL;
	int ret;

1882
	if (mem_cgroup_disabled())
1883
		return 0;
1884 1885
	if (PageCompound(page))
		return 0;
1886 1887 1888 1889 1890 1891 1892 1893
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
1894 1895
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
1896 1897 1898 1899
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

1900 1901 1902 1903 1904 1905 1906

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
1907 1908
			return 0;
		}
1909
		unlock_page_cgroup(pc);
1910 1911
	}

1912
	if (unlikely(!mm && !mem))
1913
		mm = &init_mm;
1914

1915 1916
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
1917
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1918

D
Daisuke Nishimura 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1928 1929

	return ret;
1930 1931
}

1932 1933 1934
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
1935
 * struct page_cgroup is acquired. This refcnt will be consumed by
1936 1937
 * "commit()" or removed by "cancel()"
 */
1938 1939 1940 1941 1942
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
1943
	int ret;
1944

1945
	if (mem_cgroup_disabled())
1946 1947 1948 1949 1950 1951
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
1952 1953 1954
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
1955 1956
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
1957
		goto charge_cur_mm;
1958
	mem = try_get_mem_cgroup_from_page(page);
1959 1960
	if (!mem)
		goto charge_cur_mm;
1961
	*ptr = mem;
1962
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
1963 1964 1965
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
1966 1967 1968
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
1969
	return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
1970 1971
}

D
Daisuke Nishimura 已提交
1972 1973 1974
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
1975 1976 1977
{
	struct page_cgroup *pc;

1978
	if (mem_cgroup_disabled())
1979 1980 1981
		return;
	if (!ptr)
		return;
1982
	cgroup_exclude_rmdir(&ptr->css);
1983
	pc = lookup_page_cgroup(page);
1984
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
1985
	__mem_cgroup_commit_charge(ptr, pc, ctype);
1986
	mem_cgroup_lru_add_after_commit_swapcache(page);
1987 1988 1989
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
1990 1991 1992
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
1993
	 */
1994
	if (do_swap_account && PageSwapCache(page)) {
1995
		swp_entry_t ent = {.val = page_private(page)};
1996
		unsigned short id;
1997
		struct mem_cgroup *memcg;
1998 1999 2000 2001

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2002
		if (memcg) {
2003 2004 2005 2006
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2007
			if (!mem_cgroup_is_root(memcg))
2008
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2009
			mem_cgroup_swap_statistics(memcg, false);
2010 2011
			mem_cgroup_put(memcg);
		}
2012
		rcu_read_unlock();
2013
	}
2014 2015 2016 2017 2018 2019
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2020 2021
}

D
Daisuke Nishimura 已提交
2022 2023 2024 2025 2026 2027
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2028 2029
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2030
	if (mem_cgroup_disabled())
2031 2032 2033
		return;
	if (!mem)
		return;
2034
	mem_cgroup_cancel_charge(mem);
2035 2036
}

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
static void
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */
	if (!current->memcg_batch.do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (uncharge_memsw)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
	return;
}
2081

2082
/*
2083
 * uncharge if !page_mapped(page)
2084
 */
2085
static struct mem_cgroup *
2086
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2087
{
H
Hugh Dickins 已提交
2088
	struct page_cgroup *pc;
2089
	struct mem_cgroup *mem = NULL;
2090
	struct mem_cgroup_per_zone *mz;
2091

2092
	if (mem_cgroup_disabled())
2093
		return NULL;
2094

K
KAMEZAWA Hiroyuki 已提交
2095
	if (PageSwapCache(page))
2096
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2097

2098
	/*
2099
	 * Check if our page_cgroup is valid
2100
	 */
2101 2102
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2103
		return NULL;
2104

2105
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2106

2107 2108
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2109 2110 2111 2112 2113
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2114
	case MEM_CGROUP_CHARGE_TYPE_DROP:
K
KAMEZAWA Hiroyuki 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
		if (page_mapped(page))
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2127
	}
K
KAMEZAWA Hiroyuki 已提交
2128

2129 2130
	if (!mem_cgroup_is_root(mem))
		__do_uncharge(mem, ctype);
2131 2132
	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		mem_cgroup_swap_statistics(mem, true);
K
KAMEZAWA Hiroyuki 已提交
2133
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
2134

2135
	ClearPageCgroupUsed(pc);
2136 2137 2138 2139 2140 2141
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2142

2143
	mz = page_cgroup_zoneinfo(pc);
2144
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
2145

2146
	if (mem_cgroup_soft_limit_check(mem))
2147
		mem_cgroup_update_tree(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2148 2149 2150
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
2151

2152
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2153 2154 2155

unlock_out:
	unlock_page_cgroup(pc);
2156
	return NULL;
2157 2158
}

2159 2160
void mem_cgroup_uncharge_page(struct page *page)
{
2161 2162 2163 2164 2165
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2166 2167 2168 2169 2170 2171
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2172
	VM_BUG_ON(page->mapping);
2173 2174 2175
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2220
#ifdef CONFIG_SWAP
2221
/*
2222
 * called after __delete_from_swap_cache() and drop "page" account.
2223 2224
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2225 2226
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2227 2228
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2229 2230 2231 2232 2233 2234
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2235 2236

	/* record memcg information */
K
KAMEZAWA Hiroyuki 已提交
2237
	if (do_swap_account && swapout && memcg) {
2238
		swap_cgroup_record(ent, css_id(&memcg->css));
2239 2240
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
2241
	if (swapout && memcg)
K
KAMEZAWA Hiroyuki 已提交
2242
		css_put(&memcg->css);
2243
}
2244
#endif
2245 2246 2247 2248 2249 2250 2251

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2252
{
2253
	struct mem_cgroup *memcg;
2254
	unsigned short id;
2255 2256 2257 2258

	if (!do_swap_account)
		return;

2259 2260 2261
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2262
	if (memcg) {
2263 2264 2265 2266
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2267
		if (!mem_cgroup_is_root(memcg))
2268
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2269
		mem_cgroup_swap_statistics(memcg, false);
2270 2271
		mem_cgroup_put(memcg);
	}
2272
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2273
}
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
				struct mem_cgroup *from, struct mem_cgroup *to)
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		if (!mem_cgroup_is_root(from))
			res_counter_uncharge(&from->memsw, PAGE_SIZE);
		mem_cgroup_swap_statistics(from, false);
		mem_cgroup_put(from);
		/*
		 * we charged both to->res and to->memsw, so we should uncharge
		 * to->res.
		 */
		if (!mem_cgroup_is_root(to))
			res_counter_uncharge(&to->res, PAGE_SIZE);
		mem_cgroup_swap_statistics(to, true);
		mem_cgroup_get(to);
		css_put(&to->css);

		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
				struct mem_cgroup *from, struct mem_cgroup *to)
{
	return -EINVAL;
}
2322
#endif
K
KAMEZAWA Hiroyuki 已提交
2323

2324
/*
2325 2326
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2327
 */
2328
int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
2329 2330
{
	struct page_cgroup *pc;
2331 2332
	struct mem_cgroup *mem = NULL;
	int ret = 0;
2333

2334
	if (mem_cgroup_disabled())
2335 2336
		return 0;

2337 2338 2339
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2340 2341 2342
		mem = pc->mem_cgroup;
		css_get(&mem->css);
	}
2343
	unlock_page_cgroup(pc);
2344

2345
	if (mem) {
2346 2347
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
						page);
2348 2349
		css_put(&mem->css);
	}
2350
	*ptr = mem;
2351
	return ret;
2352
}
2353

2354
/* remove redundant charge if migration failed*/
2355 2356
void mem_cgroup_end_migration(struct mem_cgroup *mem,
		struct page *oldpage, struct page *newpage)
2357
{
2358 2359 2360 2361 2362 2363
	struct page *target, *unused;
	struct page_cgroup *pc;
	enum charge_type ctype;

	if (!mem)
		return;
2364
	cgroup_exclude_rmdir(&mem->css);
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
		target = oldpage;
		unused = NULL;
	} else {
		target = newpage;
		unused = oldpage;
	}

	if (PageAnon(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/* unused page is not on radix-tree now. */
K
KAMEZAWA Hiroyuki 已提交
2382
	if (unused)
2383 2384 2385
		__mem_cgroup_uncharge_common(unused, ctype);

	pc = lookup_page_cgroup(target);
2386
	/*
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
	 * So, double-counting is effectively avoided.
	 */
	__mem_cgroup_commit_charge(mem, pc, ctype);

	/*
	 * Both of oldpage and newpage are still under lock_page().
	 * Then, we don't have to care about race in radix-tree.
	 * But we have to be careful that this page is unmapped or not.
	 *
	 * There is a case for !page_mapped(). At the start of
	 * migration, oldpage was mapped. But now, it's zapped.
	 * But we know *target* page is not freed/reused under us.
	 * mem_cgroup_uncharge_page() does all necessary checks.
2401
	 */
2402 2403
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		mem_cgroup_uncharge_page(target);
2404 2405 2406 2407 2408 2409
	/*
	 * At migration, we may charge account against cgroup which has no tasks
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2410
}
2411

2412
/*
2413 2414 2415 2416 2417 2418
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2419
 */
2420
int mem_cgroup_shmem_charge_fallback(struct page *page,
2421 2422
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2423
{
2424
	struct mem_cgroup *mem = NULL;
2425
	int ret;
2426

2427
	if (mem_cgroup_disabled())
2428
		return 0;
2429

2430 2431 2432
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2433

2434
	return ret;
2435 2436
}

2437 2438
static DEFINE_MUTEX(set_limit_mutex);

2439
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2440
				unsigned long long val)
2441
{
2442
	int retry_count;
2443
	u64 memswlimit;
2444
	int ret = 0;
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2456

2457
	while (retry_count) {
2458 2459 2460 2461
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2472 2473
			break;
		}
2474
		ret = res_counter_set_limit(&memcg->res, val);
2475 2476 2477 2478 2479 2480
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2481 2482 2483 2484 2485
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2486
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2487
						MEM_CGROUP_RECLAIM_SHRINK);
2488 2489 2490 2491 2492 2493
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2494
	}
2495

2496 2497 2498
	return ret;
}

L
Li Zefan 已提交
2499 2500
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
2501
{
2502
	int retry_count;
2503
	u64 memlimit, oldusage, curusage;
2504 2505
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
2506

2507 2508 2509
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
		ret = res_counter_set_limit(&memcg->memsw, val);
2528 2529 2530 2531 2532 2533
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2534 2535 2536 2537 2538
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2539
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2540 2541
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
2542
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2543
		/* Usage is reduced ? */
2544
		if (curusage >= oldusage)
2545
			retry_count--;
2546 2547
		else
			oldusage = curusage;
2548 2549 2550 2551
	}
	return ret;
}

2552 2553 2554 2555 2556 2557 2558 2559 2560
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
						gfp_t gfp_mask, int nid,
						int zid)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2561
	unsigned long long excess;
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(nid, zid);
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2614
		excess = res_counter_soft_limit_excess(&mz->mem->res);
2615 2616 2617 2618 2619 2620 2621 2622
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
2623 2624
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

2643 2644 2645 2646
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
2647
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
2648
				int node, int zid, enum lru_list lru)
2649
{
K
KAMEZAWA Hiroyuki 已提交
2650 2651
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
2652
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
2653
	unsigned long flags, loop;
2654
	struct list_head *list;
2655
	int ret = 0;
2656

K
KAMEZAWA Hiroyuki 已提交
2657 2658
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
2659
	list = &mz->lists[lru];
2660

2661 2662 2663 2664 2665 2666
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
2667
		spin_lock_irqsave(&zone->lru_lock, flags);
2668
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
2669
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2670
			break;
2671 2672 2673 2674
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
2675
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
2676
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2677 2678
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
2679
		spin_unlock_irqrestore(&zone->lru_lock, flags);
2680

K
KAMEZAWA Hiroyuki 已提交
2681
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2682
		if (ret == -ENOMEM)
2683
			break;
2684 2685 2686 2687 2688 2689 2690

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
2691
	}
K
KAMEZAWA Hiroyuki 已提交
2692

2693 2694 2695
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
2696 2697 2698 2699 2700 2701
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
2702
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2703
{
2704 2705 2706
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2707
	struct cgroup *cgrp = mem->css.cgroup;
2708

2709
	css_get(&mem->css);
2710 2711

	shrink = 0;
2712 2713 2714
	/* should free all ? */
	if (free_all)
		goto try_to_free;
2715
move_account:
2716
	do {
2717
		ret = -EBUSY;
2718 2719 2720 2721
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
2722
			goto out;
2723 2724
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
2725
		drain_all_stock_sync();
2726
		ret = 0;
2727
		for_each_node_state(node, N_HIGH_MEMORY) {
2728
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2729
				enum lru_list l;
2730 2731
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
2732
							node, zid, l);
2733 2734 2735
					if (ret)
						break;
				}
2736
			}
2737 2738 2739 2740 2741 2742
			if (ret)
				break;
		}
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
2743
		cond_resched();
2744 2745
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
2746 2747 2748
out:
	css_put(&mem->css);
	return ret;
2749 2750

try_to_free:
2751 2752
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2753 2754 2755
		ret = -EBUSY;
		goto out;
	}
2756 2757
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2758 2759 2760 2761
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
2762 2763 2764 2765 2766

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
2767 2768
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
2769
		if (!progress) {
2770
			nr_retries--;
2771
			/* maybe some writeback is necessary */
2772
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2773
		}
2774 2775

	}
K
KAMEZAWA Hiroyuki 已提交
2776
	lru_add_drain();
2777
	/* try move_account...there may be some *locked* pages. */
2778
	goto move_account;
2779 2780
}

2781 2782 2783 2784 2785 2786
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
2805
	 * If parent's use_hierarchy is set, we can't make any modifications
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
struct mem_cgroup_idx_data {
	s64 val;
	enum mem_cgroup_stat_index idx;
};

static int
mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_idx_data *d = data;
	d->val += mem_cgroup_read_stat(&mem->stat, d->idx);
	return 0;
}

static void
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx, s64 *val)
{
	struct mem_cgroup_idx_data d;
	d.idx = idx;
	d.val = 0;
	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
	*val = d.val;
}

2849
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
2850
{
2851
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2852
	u64 idx_val, val;
2853 2854 2855 2856 2857 2858
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_CACHE, &idx_val);
			val = idx_val;
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_RSS, &idx_val);
			val += idx_val;
			val <<= PAGE_SHIFT;
		} else
			val = res_counter_read_u64(&mem->res, name);
2869 2870
		break;
	case _MEMSWAP:
2871 2872 2873 2874 2875 2876 2877 2878 2879
		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_CACHE, &idx_val);
			val = idx_val;
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_RSS, &idx_val);
			val += idx_val;
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
2880
			val += idx_val;
2881 2882 2883
			val <<= PAGE_SHIFT;
		} else
			val = res_counter_read_u64(&mem->memsw, name);
2884 2885 2886 2887 2888 2889
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
2890
}
2891 2892 2893 2894
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2895 2896
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
2897
{
2898
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2899
	int type, name;
2900 2901 2902
	unsigned long long val;
	int ret;

2903 2904 2905
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
2906
	case RES_LIMIT:
2907 2908 2909 2910
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2911 2912
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
2913 2914 2915
		if (ret)
			break;
		if (type == _MEM)
2916
			ret = mem_cgroup_resize_limit(memcg, val);
2917 2918
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
2919
		break;
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
2934 2935 2936 2937 2938
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
2939 2940
}

2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

2969
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2970 2971
{
	struct mem_cgroup *mem;
2972
	int type, name;
2973 2974

	mem = mem_cgroup_from_cont(cont);
2975 2976 2977
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
2978
	case RES_MAX_USAGE:
2979 2980 2981 2982
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
2983 2984
		break;
	case RES_FAILCNT:
2985 2986 2987 2988
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
2989 2990
		break;
	}
2991

2992
	return 0;
2993 2994
}

2995 2996 2997 2998 2999 3000
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3001
#ifdef CONFIG_MMU
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3020 3021 3022 3023 3024 3025 3026
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3027

K
KAMEZAWA Hiroyuki 已提交
3028 3029 3030 3031 3032

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3033
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3034 3035
	MCS_PGPGIN,
	MCS_PGPGOUT,
3036
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3047 3048
};

K
KAMEZAWA Hiroyuki 已提交
3049 3050 3051 3052 3053 3054
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3055
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3056 3057
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3058
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3077 3078
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_FILE_MAPPED);
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
K
KAMEZAWA Hiroyuki 已提交
3079 3080 3081 3082
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
	s->stat[MCS_PGPGIN] += val;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
	s->stat[MCS_PGPGOUT] += val;
3083 3084 3085 3086
	if (do_swap_account) {
		val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_SWAPOUT);
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

3108 3109
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3110 3111
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3112
	struct mcs_total_stat mystat;
3113 3114
	int i;

K
KAMEZAWA Hiroyuki 已提交
3115 3116
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3117

3118 3119 3120
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3121
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3122
	}
L
Lee Schermerhorn 已提交
3123

K
KAMEZAWA Hiroyuki 已提交
3124
	/* Hierarchical information */
3125 3126 3127 3128 3129 3130 3131
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3132

K
KAMEZAWA Hiroyuki 已提交
3133 3134
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3135 3136 3137
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3138
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3139
	}
K
KAMEZAWA Hiroyuki 已提交
3140

K
KOSAKI Motohiro 已提交
3141
#ifdef CONFIG_DEBUG_VM
3142
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3170 3171 3172
	return 0;
}

K
KOSAKI Motohiro 已提交
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3185

K
KOSAKI Motohiro 已提交
3186 3187 3188 3189 3190 3191 3192
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3193 3194 3195

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3196 3197
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3198 3199
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3200
		return -EINVAL;
3201
	}
K
KOSAKI Motohiro 已提交
3202 3203 3204 3205 3206

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3207 3208
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3209 3210 3211
	return 0;
}

3212

B
Balbir Singh 已提交
3213 3214
static struct cftype mem_cgroup_files[] = {
	{
3215
		.name = "usage_in_bytes",
3216
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3217
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3218
	},
3219 3220
	{
		.name = "max_usage_in_bytes",
3221
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3222
		.trigger = mem_cgroup_reset,
3223 3224
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3225
	{
3226
		.name = "limit_in_bytes",
3227
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3228
		.write_string = mem_cgroup_write,
3229
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3230
	},
3231 3232 3233 3234 3235 3236
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3237 3238
	{
		.name = "failcnt",
3239
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3240
		.trigger = mem_cgroup_reset,
3241
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3242
	},
3243 3244
	{
		.name = "stat",
3245
		.read_map = mem_control_stat_show,
3246
	},
3247 3248 3249 3250
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
3251 3252 3253 3254 3255
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
3256 3257 3258 3259 3260
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3261 3262 3263 3264 3265
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
B
Balbir Singh 已提交
3266 3267
};

3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

3309 3310 3311
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
3312
	struct mem_cgroup_per_zone *mz;
3313
	enum lru_list l;
3314
	int zone, tmp = node;
3315 3316 3317 3318 3319 3320 3321 3322
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
3323 3324 3325
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3326 3327
	if (!pn)
		return 1;
3328

3329 3330
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
3331 3332 3333

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
3334 3335
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
3336
		mz->usage_in_excess = 0;
3337 3338
		mz->on_tree = false;
		mz->mem = mem;
3339
	}
3340 3341 3342
	return 0;
}

3343 3344 3345 3346 3347
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

3348 3349 3350 3351 3352 3353
static int mem_cgroup_size(void)
{
	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
	return sizeof(struct mem_cgroup) + cpustat_size;
}

3354 3355 3356
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
3357
	int size = mem_cgroup_size();
3358

3359 3360
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
3361
	else
3362
		mem = vmalloc(size);
3363 3364

	if (mem)
3365
		memset(mem, 0, size);
3366 3367 3368
	return mem;
}

3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

3380
static void __mem_cgroup_free(struct mem_cgroup *mem)
3381
{
K
KAMEZAWA Hiroyuki 已提交
3382 3383
	int node;

3384
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
3385 3386
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
3387 3388 3389
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

3390
	if (mem_cgroup_size() < PAGE_SIZE)
3391 3392 3393 3394 3395
		kfree(mem);
	else
		vfree(mem);
}

3396 3397 3398 3399 3400 3401 3402
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

static void mem_cgroup_put(struct mem_cgroup *mem)
{
3403 3404
	if (atomic_dec_and_test(&mem->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
3405
		__mem_cgroup_free(mem);
3406 3407 3408
		if (parent)
			mem_cgroup_put(parent);
	}
3409 3410
}

3411 3412 3413 3414 3415 3416 3417 3418 3419
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
3420

3421 3422 3423
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
3424
	if (!mem_cgroup_disabled() && really_do_swap_account)
3425 3426 3427 3428 3429 3430 3431 3432
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
3458
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
3459 3460
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
3461
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
3462
	long error = -ENOMEM;
3463
	int node;
B
Balbir Singh 已提交
3464

3465 3466
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
3467
		return ERR_PTR(error);
3468

3469 3470 3471
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
3472

3473
	/* root ? */
3474
	if (cont->parent == NULL) {
3475
		int cpu;
3476
		enable_swap_cgroup();
3477
		parent = NULL;
3478
		root_mem_cgroup = mem;
3479 3480
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
3481 3482 3483 3484 3485 3486
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
		hotcpu_notifier(memcg_stock_cpu_callback, 0);
3487
	} else {
3488
		parent = mem_cgroup_from_cont(cont->parent);
3489 3490
		mem->use_hierarchy = parent->use_hierarchy;
	}
3491

3492 3493 3494
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
3495 3496 3497 3498 3499 3500 3501
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
3502 3503 3504 3505
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
3506
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
3507
	spin_lock_init(&mem->reclaim_param_lock);
3508

K
KOSAKI Motohiro 已提交
3509 3510
	if (parent)
		mem->swappiness = get_swappiness(parent);
3511
	atomic_set(&mem->refcnt, 1);
3512
	mem->move_charge_at_immigrate = 0;
B
Balbir Singh 已提交
3513
	return &mem->css;
3514
free_out:
3515
	__mem_cgroup_free(mem);
3516
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
3517
	return ERR_PTR(error);
B
Balbir Singh 已提交
3518 3519
}

3520
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
3521 3522 3523
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3524 3525

	return mem_cgroup_force_empty(mem, false);
3526 3527
}

B
Balbir Singh 已提交
3528 3529 3530
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3531 3532 3533
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
3534 3535 3536 3537 3538
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3539 3540 3541 3542 3543 3544 3545 3546
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
3547 3548
}

3549
#ifdef CONFIG_MMU
3550
/* Handlers for move charge at task migration. */
3551 3552
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
3553
{
3554 3555
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
3556 3557
	struct mem_cgroup *mem = mc.to;

3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_get(&mem->css, (int)count);
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem,
								false, NULL);
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
3603 3604
	return ret;
}
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
3627 3628 3629 3630 3631 3632

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
3633
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
3634 3635 3636 3637 3638 3639
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
3640 3641 3642
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
3643 3644 3645 3646 3647
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
3648
	swp_entry_t	ent;
3649 3650 3651 3652 3653
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
3654
	MC_TARGET_SWAP,
3655 3656 3657 3658 3659
};

static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
3660
	struct page *page = NULL;
3661 3662
	struct page_cgroup *pc;
	int ret = 0;
3663 3664
	swp_entry_t ent = { .val = 0 };
	int usage_count = 0;
3665 3666 3667
	bool move_anon = test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);

3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
	if (!pte_present(ptent)) {
		/* TODO: handle swap of shmes/tmpfs */
		if (pte_none(ptent) || pte_file(ptent))
			return 0;
		else if (is_swap_pte(ptent)) {
			ent = pte_to_swp_entry(ptent);
			if (!move_anon || non_swap_entry(ent))
				return 0;
			usage_count = mem_cgroup_count_swap_user(ent, &page);
		}
	} else {
		page = vm_normal_page(vma, addr, ptent);
		if (!page || !page_mapped(page))
			return 0;
		/*
		 * TODO: We don't move charges of file(including shmem/tmpfs)
		 * pages for now.
		 */
		if (!move_anon || !PageAnon(page))
			return 0;
		if (!get_page_unless_zero(page))
			return 0;
		usage_count = page_mapcount(page);
	}
	if (usage_count > 1) {
		/*
		 * TODO: We don't move charges of shared(used by multiple
		 * processes) pages for now.
		 */
		if (page)
			put_page(page);
3699
		return 0;
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
	}
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
	/* throught */
	if (ent.val && do_swap_account && !ret &&
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
3720
		if (target)
3721
			target->ent = ent;
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

3741 3742 3743
	return 0;
}

3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		/* TODO: We don't move charges of shmem/tmpfs pages for now. */
		if (vma->vm_flags & VM_SHARED)
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
	up_read(&mm->mmap_sem);

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
3774
	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
3775 3776 3777 3778 3779
}

static void mem_cgroup_clear_mc(void)
{
	/* we must uncharge all the leftover precharges from mc.to */
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
3791 3792 3793
	}
	mc.from = NULL;
	mc.to = NULL;
3794 3795
	mc.moving_task = NULL;
	wake_up_all(&mc.waitq);
3796 3797
}

3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
3816 3817 3818 3819
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
3820
			VM_BUG_ON(mc.moved_charge);
3821
			VM_BUG_ON(mc.moving_task);
3822 3823 3824
			mc.from = from;
			mc.to = mem;
			mc.precharge = 0;
3825
			mc.moved_charge = 0;
3826
			mc.moving_task = current;
3827 3828 3829 3830 3831

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
		}
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
		mmput(mm);
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
3842
	mem_cgroup_clear_mc();
3843 3844
}

3845 3846 3847
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
3848
{
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
3862
		swp_entry_t ent;
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
3874 3875
			if (!mem_cgroup_move_account(pc,
						mc.from, mc.to, false)) {
3876
				mc.precharge--;
3877 3878
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
3879 3880 3881 3882 3883
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
3884 3885 3886 3887 3888
		case MC_TARGET_SWAP:
			ent = target.ent;
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to))
				mc.precharge--;
			break;
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
3903
		ret = mem_cgroup_do_precharge(1);
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		/* TODO: We don't move charges of shmem/tmpfs pages for now. */
		if (vma->vm_flags & VM_SHARED)
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
	up_read(&mm->mmap_sem);
3939 3940
}

B
Balbir Singh 已提交
3941 3942 3943
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
3944 3945
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
3946
{
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
	struct mm_struct *mm;

	if (!mc.to)
		/* no need to move charge */
		return;

	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
3959 3960
}

B
Balbir Singh 已提交
3961 3962 3963 3964
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
3965
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
3966 3967
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
3968 3969
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
3970
	.attach = mem_cgroup_move_task,
3971
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
3972
	.use_id = 1,
B
Balbir Singh 已提交
3973
};
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif