memcontrol.c 185.8 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
57
#include "internal.h"
G
Glauber Costa 已提交
58
#include <net/sock.h>
M
Michal Hocko 已提交
59
#include <net/ip.h>
G
Glauber Costa 已提交
60
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
61

62 63
#include <asm/uaccess.h>

64 65
#include <trace/events/vmscan.h>

66
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 68
EXPORT_SYMBOL(mem_cgroup_subsys);

69
#define MEM_CGROUP_RECLAIM_RETRIES	5
70
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
71

A
Andrew Morton 已提交
72
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
73
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74
int do_swap_account __read_mostly;
75 76

/* for remember boot option*/
A
Andrew Morton 已提交
77
#ifdef CONFIG_MEMCG_SWAP_ENABLED
78 79 80 81 82
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

83
#else
84
#define do_swap_account		0
85 86 87
#endif


88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
95 96 97 98 99
	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
100 101 102
	MEM_CGROUP_STAT_NSTATS,
};

103 104 105
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
106
	"rss_huge",
107 108 109 110
	"mapped_file",
	"swap",
};

111 112 113
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
114 115
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
116 117
	MEM_CGROUP_EVENTS_NSTATS,
};
118 119 120 121 122 123 124 125

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

126 127 128 129 130 131 132 133
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

134 135 136 137 138 139 140 141 142
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
143
	MEM_CGROUP_TARGET_NUMAINFO,
144 145
	MEM_CGROUP_NTARGETS,
};
146 147 148
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
149

150
struct mem_cgroup_stat_cpu {
151
	long count[MEM_CGROUP_STAT_NSTATS];
152
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153
	unsigned long nr_page_events;
154
	unsigned long targets[MEM_CGROUP_NTARGETS];
155 156
};

157
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
158 159 160 161
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
162
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
163 164
	unsigned long last_dead_count;

165 166 167 168
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

169 170 171 172
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
173
	struct lruvec		lruvec;
174
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
175

176 177
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

178 179 180 181
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
182
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
183
						/* use container_of	   */
184 185 186 187 188 189 190
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
191
	struct mem_cgroup_per_node *nodeinfo[0];
192 193
};

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

214 215 216 217 218
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
219
/* For threshold */
220
struct mem_cgroup_threshold_ary {
221
	/* An array index points to threshold just below or equal to usage. */
222
	int current_threshold;
223 224 225 226 227
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
228 229 230 231 232 233 234 235 236 237 238 239

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
240 241 242 243 244
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
245

246 247
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
248

B
Balbir Singh 已提交
249 250 251 252 253 254 255
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
256 257 258
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
259 260 261 262 263 264 265
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
266

267 268 269
	/* vmpressure notifications */
	struct vmpressure vmpressure;

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
287 288
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
289 290 291 292
		 */
		struct work_struct work_freeing;
	};

293 294 295 296
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
297 298 299 300
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
301
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
302 303 304 305

	bool		oom_lock;
	atomic_t	under_oom;

306
	atomic_t	refcnt;
307

308
	int	swappiness;
309 310
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
311

312 313 314
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

315 316 317 318
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
319
	struct mem_cgroup_thresholds thresholds;
320

321
	/* thresholds for mem+swap usage. RCU-protected */
322
	struct mem_cgroup_thresholds memsw_thresholds;
323

K
KAMEZAWA Hiroyuki 已提交
324 325
	/* For oom notifier event fd */
	struct list_head oom_notify;
326

327 328 329 330 331
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
332 333 334 335
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
336 337
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
338
	/*
339
	 * percpu counter.
340
	 */
341
	struct mem_cgroup_stat_cpu __percpu *stat;
342 343 344 345 346 347
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
348

M
Michal Hocko 已提交
349
	atomic_t	dead_count;
M
Michal Hocko 已提交
350
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
351 352
	struct tcp_memcontrol tcp_mem;
#endif
353 354 355 356 357 358 359 360
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
361 362 363 364 365 366 367

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
368

369 370 371 372 373 374 375 376
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 *
	 * WARNING: This has to be the last element of the struct. Don't
	 * add new fields after this point.
	 */
	struct mem_cgroup_lru_info info;
B
Balbir Singh 已提交
377 378
};

379 380 381 382 383 384
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

385 386 387
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
388
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
389
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
390 391
};

392 393 394
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
395 396 397 398 399 400

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
401 402 403 404 405 406

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

407 408 409 410 411
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

412 413 414 415 416
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

417 418 419 420 421 422 423 424 425 426 427
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
428 429
#endif

430 431
/* Stuffs for move charges at task migration. */
/*
432 433
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
434 435
 */
enum move_type {
436
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
437
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
438 439 440
	NR_MOVE_TYPE,
};

441 442
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
443
	spinlock_t	  lock; /* for from, to */
444 445
	struct mem_cgroup *from;
	struct mem_cgroup *to;
446
	unsigned long immigrate_flags;
447
	unsigned long precharge;
448
	unsigned long moved_charge;
449
	unsigned long moved_swap;
450 451 452
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
453
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
454 455
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
456

D
Daisuke Nishimura 已提交
457 458
static bool move_anon(void)
{
459
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
460 461
}

462 463
static bool move_file(void)
{
464
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
465 466
}

467 468 469 470
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
471 472
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
473

474 475
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
476
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
477
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
478
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
479 480 481
	NR_CHARGE_TYPE,
};

482
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
483 484 485 486
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
487
	_KMEM,
G
Glauber Costa 已提交
488 489
};

490 491
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
492
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
493 494
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
495

496 497 498 499 500 501 502 503
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

504 505 506 507 508 509 510
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

511 512
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
513

514 515 516 517 518 519
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

538 539 540 541 542
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
543
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
544
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
545 546 547

void sock_update_memcg(struct sock *sk)
{
548
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
549
		struct mem_cgroup *memcg;
550
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
551 552 553

		BUG_ON(!sk->sk_prot->proto_cgroup);

554 555 556 557 558 559 560 561 562 563 564 565 566 567
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
568 569
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
570 571
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
572
			mem_cgroup_get(memcg);
573
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
574 575 576 577 578 579 580 581
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
582
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
583 584 585 586 587 588
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
589 590 591 592 593 594 595 596 597

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
598

599 600 601 602 603 604 605 606 607 608 609 610
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

611
#ifdef CONFIG_MEMCG_KMEM
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
630 631
int memcg_limited_groups_array_size;

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

647 648 649 650 651 652
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
653
struct static_key memcg_kmem_enabled_key;
654
EXPORT_SYMBOL(memcg_kmem_enabled_key);
655 656 657

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
658
	if (memcg_kmem_is_active(memcg)) {
659
		static_key_slow_dec(&memcg_kmem_enabled_key);
660 661
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
662 663 664 665 666
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
667 668 669 670 671 672 673 674 675 676 677 678 679
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

680
static void drain_all_stock_async(struct mem_cgroup *memcg);
681

682
static struct mem_cgroup_per_zone *
683
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
684
{
685
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
686
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
687 688
}

689
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
690
{
691
	return &memcg->css;
692 693
}

694
static struct mem_cgroup_per_zone *
695
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
696
{
697 698
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
699

700
	return mem_cgroup_zoneinfo(memcg, nid, zid);
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
719
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
720
				struct mem_cgroup_per_zone *mz,
721 722
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
723 724 725 726 727 728 729 730
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

731 732 733
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
750 751 752
}

static void
753
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
754 755 756 757 758 759 760 761 762
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

763
static void
764
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
765 766 767 768
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
769
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
770 771 772 773
	spin_unlock(&mctz->lock);
}


774
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
775
{
776
	unsigned long long excess;
777 778
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
779 780
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
781 782 783
	mctz = soft_limit_tree_from_page(page);

	/*
784 785
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
786
	 */
787 788 789
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
790 791 792 793
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
794
		if (excess || mz->on_tree) {
795 796 797
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
798
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
799
			/*
800 801
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
802
			 */
803
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
804 805
			spin_unlock(&mctz->lock);
		}
806 807 808
	}
}

809
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
810 811 812 813 814
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
815
	for_each_node(node) {
816
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
817
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
818
			mctz = soft_limit_tree_node_zone(node, zone);
819
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
820 821 822 823
		}
	}
}

824 825 826 827
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
828
	struct mem_cgroup_per_zone *mz;
829 830

retry:
831
	mz = NULL;
832 833 834 835 836 837 838 839 840 841
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
842 843 844
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
880
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
881
				 enum mem_cgroup_stat_index idx)
882
{
883
	long val = 0;
884 885
	int cpu;

886 887
	get_online_cpus();
	for_each_online_cpu(cpu)
888
		val += per_cpu(memcg->stat->count[idx], cpu);
889
#ifdef CONFIG_HOTPLUG_CPU
890 891 892
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
893 894
#endif
	put_online_cpus();
895 896 897
	return val;
}

898
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
899 900 901
					 bool charge)
{
	int val = (charge) ? 1 : -1;
902
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
903 904
}

905
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
906 907 908 909 910 911
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
912
		val += per_cpu(memcg->stat->events[idx], cpu);
913
#ifdef CONFIG_HOTPLUG_CPU
914 915 916
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
917 918 919 920
#endif
	return val;
}

921
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
922
					 struct page *page,
923
					 bool anon, int nr_pages)
924
{
925 926
	preempt_disable();

927 928 929 930 931 932
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
933
				nr_pages);
934
	else
935
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
936
				nr_pages);
937

938 939 940 941
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

942 943
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
944
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
945
	else {
946
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
947 948
		nr_pages = -nr_pages; /* for event */
	}
949

950
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
951

952
	preempt_enable();
953 954
}

955
unsigned long
956
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
957 958 959 960 961 962 963 964
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
965
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
966
			unsigned int lru_mask)
967 968
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
969
	enum lru_list lru;
970 971
	unsigned long ret = 0;

972
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
973

H
Hugh Dickins 已提交
974 975 976
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
977 978 979 980 981
	}
	return ret;
}

static unsigned long
982
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
983 984
			int nid, unsigned int lru_mask)
{
985 986 987
	u64 total = 0;
	int zid;

988
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
989 990
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
991

992 993
	return total;
}
994

995
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
996
			unsigned int lru_mask)
997
{
998
	int nid;
999 1000
	u64 total = 0;

1001
	for_each_node_state(nid, N_MEMORY)
1002
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
1003
	return total;
1004 1005
}

1006 1007
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
1008 1009 1010
{
	unsigned long val, next;

1011
	val = __this_cpu_read(memcg->stat->nr_page_events);
1012
	next = __this_cpu_read(memcg->stat->targets[target]);
1013
	/* from time_after() in jiffies.h */
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1030
	}
1031
	return false;
1032 1033 1034 1035 1036 1037
}

/*
 * Check events in order.
 *
 */
1038
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1039
{
1040
	preempt_disable();
1041
	/* threshold event is triggered in finer grain than soft limit */
1042 1043
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1044 1045
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
1046 1047 1048 1049 1050 1051 1052 1053 1054

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1055
		mem_cgroup_threshold(memcg);
1056
		if (unlikely(do_softlimit))
1057
			mem_cgroup_update_tree(memcg, page);
1058
#if MAX_NUMNODES > 1
1059
		if (unlikely(do_numainfo))
1060
			atomic_inc(&memcg->numainfo_events);
1061
#endif
1062 1063
	} else
		preempt_enable();
1064 1065
}

G
Glauber Costa 已提交
1066
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
1067
{
1068 1069
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
1070 1071
}

1072
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1073
{
1074 1075 1076 1077 1078 1079 1080 1081
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1082
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1083 1084
}

1085
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1086
{
1087
	struct mem_cgroup *memcg = NULL;
1088 1089 1090

	if (!mm)
		return NULL;
1091 1092 1093 1094 1095 1096 1097
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1098 1099
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1100
			break;
1101
	} while (!css_tryget(&memcg->css));
1102
	rcu_read_unlock();
1103
	return memcg;
1104 1105
}

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
		struct mem_cgroup *last_visited)
{
	struct cgroup *prev_cgroup, *next_cgroup;

	/*
	 * Root is not visited by cgroup iterators so it needs an
	 * explicit visit.
	 */
	if (!last_visited)
		return root;

	prev_cgroup = (last_visited == root) ? NULL
		: last_visited->css.cgroup;
skip_node:
	next_cgroup = cgroup_next_descendant_pre(
			prev_cgroup, root->css.cgroup);

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
	if (next_cgroup) {
		struct mem_cgroup *mem = mem_cgroup_from_cont(
				next_cgroup);
		if (css_tryget(&mem->css))
			return mem;
		else {
			prev_cgroup = next_cgroup;
			goto skip_node;
		}
	}

	return NULL;
}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1223
{
1224
	struct mem_cgroup *memcg = NULL;
1225
	struct mem_cgroup *last_visited = NULL;
1226

1227 1228 1229
	if (mem_cgroup_disabled())
		return NULL;

1230 1231
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1232

1233
	if (prev && !reclaim)
1234
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1235

1236 1237
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1238
			goto out_css_put;
1239 1240
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1241

1242
	rcu_read_lock();
1243
	while (!memcg) {
1244
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1245
		int uninitialized_var(seq);
1246

1247 1248 1249 1250 1251 1252 1253
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1254
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1255
				iter->last_visited = NULL;
1256 1257
				goto out_unlock;
			}
M
Michal Hocko 已提交
1258

1259
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1260
		}
K
KAMEZAWA Hiroyuki 已提交
1261

1262
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1263

1264
		if (reclaim) {
1265
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1266

M
Michal Hocko 已提交
1267
			if (!memcg)
1268 1269 1270 1271
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1272

M
Michal Hocko 已提交
1273
		if (prev && !memcg)
1274
			goto out_unlock;
1275
	}
1276 1277
out_unlock:
	rcu_read_unlock();
1278 1279 1280 1281
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1282
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1283
}
K
KAMEZAWA Hiroyuki 已提交
1284

1285 1286 1287 1288 1289 1290 1291
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1292 1293 1294 1295 1296 1297
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1298

1299 1300 1301 1302 1303 1304
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1305
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1306
	     iter != NULL;				\
1307
	     iter = mem_cgroup_iter(root, iter, NULL))
1308

1309
#define for_each_mem_cgroup(iter)			\
1310
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1311
	     iter != NULL;				\
1312
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1313

1314
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1315
{
1316
	struct mem_cgroup *memcg;
1317 1318

	rcu_read_lock();
1319 1320
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1321 1322 1323 1324
		goto out;

	switch (idx) {
	case PGFAULT:
1325 1326 1327 1328
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1329 1330 1331 1332 1333 1334 1335
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1336
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1337

1338 1339 1340
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1341
 * @memcg: memcg of the wanted lruvec
1342 1343 1344 1345 1346 1347 1348 1349 1350
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1351
	struct lruvec *lruvec;
1352

1353 1354 1355 1356
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1357 1358

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1369 1370
}

K
KAMEZAWA Hiroyuki 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1384

1385
/**
1386
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1387
 * @page: the page
1388
 * @zone: zone of the page
1389
 */
1390
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1391 1392
{
	struct mem_cgroup_per_zone *mz;
1393 1394
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1395
	struct lruvec *lruvec;
1396

1397 1398 1399 1400
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1401

K
KAMEZAWA Hiroyuki 已提交
1402
	pc = lookup_page_cgroup(page);
1403
	memcg = pc->mem_cgroup;
1404 1405

	/*
1406
	 * Surreptitiously switch any uncharged offlist page to root:
1407 1408 1409 1410 1411 1412 1413
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1414
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1415 1416
		pc->mem_cgroup = memcg = root_mem_cgroup;

1417
	mz = page_cgroup_zoneinfo(memcg, page);
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1428
}
1429

1430
/**
1431 1432 1433 1434
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1435
 *
1436 1437
 * This function must be called when a page is added to or removed from an
 * lru list.
1438
 */
1439 1440
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1441 1442
{
	struct mem_cgroup_per_zone *mz;
1443
	unsigned long *lru_size;
1444 1445 1446 1447

	if (mem_cgroup_disabled())
		return;

1448 1449 1450 1451
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1452
}
1453

1454
/*
1455
 * Checks whether given mem is same or in the root_mem_cgroup's
1456 1457
 * hierarchy subtree
 */
1458 1459
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1460
{
1461 1462
	if (root_memcg == memcg)
		return true;
1463
	if (!root_memcg->use_hierarchy || !memcg)
1464
		return false;
1465 1466 1467 1468 1469 1470 1471 1472
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1473
	rcu_read_lock();
1474
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1475 1476
	rcu_read_unlock();
	return ret;
1477 1478
}

1479 1480
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1481
{
1482
	struct mem_cgroup *curr = NULL;
1483
	struct task_struct *p;
1484
	bool ret;
1485

1486
	p = find_lock_task_mm(task);
1487 1488 1489 1490 1491 1492 1493 1494 1495
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1496
		rcu_read_lock();
1497 1498 1499
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1500
		rcu_read_unlock();
1501
	}
1502
	if (!curr)
1503
		return false;
1504
	/*
1505
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1506
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1507 1508
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1509
	 */
1510
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1511
	css_put(&curr->css);
1512 1513 1514
	return ret;
}

1515
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1516
{
1517
	unsigned long inactive_ratio;
1518
	unsigned long inactive;
1519
	unsigned long active;
1520
	unsigned long gb;
1521

1522 1523
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1524

1525 1526 1527 1528 1529 1530
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1531
	return inactive * inactive_ratio < active;
1532 1533
}

1534 1535 1536
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1537
/**
1538
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1539
 * @memcg: the memory cgroup
1540
 *
1541
 * Returns the maximum amount of memory @mem can be charged with, in
1542
 * pages.
1543
 */
1544
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1545
{
1546 1547
	unsigned long long margin;

1548
	margin = res_counter_margin(&memcg->res);
1549
	if (do_swap_account)
1550
		margin = min(margin, res_counter_margin(&memcg->memsw));
1551
	return margin >> PAGE_SHIFT;
1552 1553
}

1554
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1555 1556 1557 1558 1559 1560 1561
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1562
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1563 1564
}

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1579 1580 1581 1582

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1583
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1584
{
1585
	atomic_inc(&memcg_moving);
1586
	atomic_inc(&memcg->moving_account);
1587 1588 1589
	synchronize_rcu();
}

1590
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1591
{
1592 1593 1594 1595
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1596 1597
	if (memcg) {
		atomic_dec(&memcg_moving);
1598
		atomic_dec(&memcg->moving_account);
1599
	}
1600
}
1601

1602 1603 1604
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1605 1606
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1607 1608 1609 1610 1611 1612 1613
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1614
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1615 1616
{
	VM_BUG_ON(!rcu_read_lock_held());
1617
	return atomic_read(&memcg->moving_account) > 0;
1618
}
1619

1620
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1621
{
1622 1623
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1624
	bool ret = false;
1625 1626 1627 1628 1629 1630 1631 1632 1633
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1634

1635 1636
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1637 1638
unlock:
	spin_unlock(&mc.lock);
1639 1640 1641
	return ret;
}

1642
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1643 1644
{
	if (mc.moving_task && current != mc.moving_task) {
1645
		if (mem_cgroup_under_move(memcg)) {
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1658 1659 1660 1661
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1662
 * see mem_cgroup_stolen(), too.
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1676
#define K(x) ((x) << (PAGE_SHIFT-10))
1677
/**
1678
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1696 1697
	struct mem_cgroup *iter;
	unsigned int i;
1698

1699
	if (!p)
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1718
	pr_info("Task in %s killed", memcg_name);
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1731
	pr_cont(" as a result of limit of %s\n", memcg_name);
1732 1733
done:

1734
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1735 1736 1737
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1738
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1739 1740 1741
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1742
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1743 1744 1745
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1770 1771
}

1772 1773 1774 1775
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1776
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1777 1778
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1779 1780
	struct mem_cgroup *iter;

1781
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1782
		num++;
1783 1784 1785
	return num;
}

D
David Rientjes 已提交
1786 1787 1788
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1789
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1790 1791 1792
{
	u64 limit;

1793 1794
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1795
	/*
1796
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1797
	 */
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1812 1813
}

1814 1815
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1816 1817 1818 1819 1820 1821 1822
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1823
	/*
1824 1825 1826
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1827
	 */
1828
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1829 1830 1831 1832 1833
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1917 1918
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1919
 * @memcg: the target memcg
1920 1921 1922 1923 1924 1925 1926
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1927
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1928 1929
		int nid, bool noswap)
{
1930
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1931 1932 1933
		return true;
	if (noswap || !total_swap_pages)
		return false;
1934
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1935 1936 1937 1938
		return true;
	return false;

}
1939 1940 1941 1942 1943 1944 1945 1946
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1947
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1948 1949
{
	int nid;
1950 1951 1952 1953
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1954
	if (!atomic_read(&memcg->numainfo_events))
1955
		return;
1956
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1957 1958 1959
		return;

	/* make a nodemask where this memcg uses memory from */
1960
	memcg->scan_nodes = node_states[N_MEMORY];
1961

1962
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1963

1964 1965
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1966
	}
1967

1968 1969
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1984
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1985 1986 1987
{
	int node;

1988 1989
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1990

1991
	node = next_node(node, memcg->scan_nodes);
1992
	if (node == MAX_NUMNODES)
1993
		node = first_node(memcg->scan_nodes);
1994 1995 1996 1997 1998 1999 2000 2001 2002
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

2003
	memcg->last_scanned_node = node;
2004 2005 2006
	return node;
}

2007 2008 2009 2010 2011 2012
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
2013
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2014 2015 2016 2017 2018 2019 2020
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
2021 2022
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
2023
		     nid < MAX_NUMNODES;
2024
		     nid = next_node(nid, memcg->scan_nodes)) {
2025

2026
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2027 2028 2029 2030 2031 2032
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
2033
	for_each_node_state(nid, N_MEMORY) {
2034
		if (node_isset(nid, memcg->scan_nodes))
2035
			continue;
2036
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2037 2038 2039 2040 2041
			return true;
	}
	return false;
}

2042
#else
2043
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2044 2045 2046
{
	return 0;
}
2047

2048
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2049
{
2050
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2051
}
2052 2053
#endif

2054 2055 2056 2057
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
2058
{
2059
	struct mem_cgroup *victim = NULL;
2060
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
2061
	int loop = 0;
2062
	unsigned long excess;
2063
	unsigned long nr_scanned;
2064 2065 2066 2067
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
2068

2069
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
2070

2071
	while (1) {
2072
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2073
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
2074
			loop++;
2075 2076 2077 2078 2079 2080
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
2081
				if (!total)
2082 2083
					break;
				/*
L
Lucas De Marchi 已提交
2084
				 * We want to do more targeted reclaim.
2085 2086 2087 2088 2089
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
2090
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2091 2092
					break;
			}
2093
			continue;
2094
		}
2095
		if (!mem_cgroup_reclaimable(victim, false))
2096
			continue;
2097 2098 2099 2100
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
2101
			break;
2102
	}
2103
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
2104
	return total;
2105 2106
}

K
KAMEZAWA Hiroyuki 已提交
2107 2108 2109
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
2110
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
2111
 */
2112
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2113
{
2114
	struct mem_cgroup *iter, *failed = NULL;
2115

2116
	for_each_mem_cgroup_tree(iter, memcg) {
2117
		if (iter->oom_lock) {
2118 2119 2120 2121 2122
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2123 2124
			mem_cgroup_iter_break(memcg, iter);
			break;
2125 2126
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2127
	}
K
KAMEZAWA Hiroyuki 已提交
2128

2129
	if (!failed)
2130
		return true;
2131 2132 2133 2134 2135

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
2136
	for_each_mem_cgroup_tree(iter, memcg) {
2137
		if (iter == failed) {
2138 2139
			mem_cgroup_iter_break(memcg, iter);
			break;
2140 2141 2142
		}
		iter->oom_lock = false;
	}
2143
	return false;
2144
}
2145

2146
/*
2147
 * Has to be called with memcg_oom_lock
2148
 */
2149
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2150
{
K
KAMEZAWA Hiroyuki 已提交
2151 2152
	struct mem_cgroup *iter;

2153
	for_each_mem_cgroup_tree(iter, memcg)
2154 2155 2156 2157
		iter->oom_lock = false;
	return 0;
}

2158
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2159 2160 2161
{
	struct mem_cgroup *iter;

2162
	for_each_mem_cgroup_tree(iter, memcg)
2163 2164 2165
		atomic_inc(&iter->under_oom);
}

2166
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2167 2168 2169
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2170 2171 2172 2173 2174
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2175
	for_each_mem_cgroup_tree(iter, memcg)
2176
		atomic_add_unless(&iter->under_oom, -1, 0);
2177 2178
}

2179
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2180 2181
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2182
struct oom_wait_info {
2183
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2184 2185 2186 2187 2188 2189
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2190 2191
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2192 2193 2194
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2195
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2196 2197

	/*
2198
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2199 2200
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2201 2202
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2203 2204 2205 2206
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2207
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2208
{
2209 2210
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2211 2212
}

2213
static void memcg_oom_recover(struct mem_cgroup *memcg)
2214
{
2215 2216
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2217 2218
}

K
KAMEZAWA Hiroyuki 已提交
2219 2220 2221
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2222 2223
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2224
{
K
KAMEZAWA Hiroyuki 已提交
2225
	struct oom_wait_info owait;
2226
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2227

2228
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2229 2230 2231 2232
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2233
	need_to_kill = true;
2234
	mem_cgroup_mark_under_oom(memcg);
2235

2236
	/* At first, try to OOM lock hierarchy under memcg.*/
2237
	spin_lock(&memcg_oom_lock);
2238
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2239 2240 2241 2242 2243
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2244
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2245
	if (!locked || memcg->oom_kill_disable)
2246 2247
		need_to_kill = false;
	if (locked)
2248
		mem_cgroup_oom_notify(memcg);
2249
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2250

2251 2252
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2253
		mem_cgroup_out_of_memory(memcg, mask, order);
2254
	} else {
K
KAMEZAWA Hiroyuki 已提交
2255
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2256
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2257
	}
2258
	spin_lock(&memcg_oom_lock);
2259
	if (locked)
2260 2261
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2262
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2263

2264
	mem_cgroup_unmark_under_oom(memcg);
2265

K
KAMEZAWA Hiroyuki 已提交
2266 2267 2268
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2269
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2270
	return true;
2271 2272
}

2273 2274 2275
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2293 2294
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2295
 */
2296

2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2310
	 * need to take move_lock_mem_cgroup(). Because we already hold
2311
	 * rcu_read_lock(), any calls to move_account will be delayed until
2312
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2313
	 */
2314
	if (!mem_cgroup_stolen(memcg))
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2332
	 * should take move_lock_mem_cgroup().
2333 2334 2335 2336
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2337 2338
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2339
{
2340
	struct mem_cgroup *memcg;
2341
	struct page_cgroup *pc = lookup_page_cgroup(page);
2342
	unsigned long uninitialized_var(flags);
2343

2344
	if (mem_cgroup_disabled())
2345
		return;
2346

2347 2348
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2349
		return;
2350 2351

	switch (idx) {
2352 2353
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2354 2355 2356
		break;
	default:
		BUG();
2357
	}
2358

2359
	this_cpu_add(memcg->stat->count[idx], val);
2360
}
2361

2362 2363 2364 2365
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2366
#define CHARGE_BATCH	32U
2367 2368
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2369
	unsigned int nr_pages;
2370
	struct work_struct work;
2371
	unsigned long flags;
2372
#define FLUSHING_CACHED_CHARGE	0
2373 2374
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2375
static DEFINE_MUTEX(percpu_charge_mutex);
2376

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2387
 */
2388
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2389 2390 2391 2392
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2393 2394 2395
	if (nr_pages > CHARGE_BATCH)
		return false;

2396
	stock = &get_cpu_var(memcg_stock);
2397 2398
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2412 2413 2414 2415
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2416
		if (do_swap_account)
2417 2418
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2431
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2432 2433
}

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2445 2446
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2447
 * This will be consumed by consume_stock() function, later.
2448
 */
2449
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2450 2451 2452
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2453
	if (stock->cached != memcg) { /* reset if necessary */
2454
		drain_stock(stock);
2455
		stock->cached = memcg;
2456
	}
2457
	stock->nr_pages += nr_pages;
2458 2459 2460 2461
	put_cpu_var(memcg_stock);
}

/*
2462
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2463 2464
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2465
 */
2466
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2467
{
2468
	int cpu, curcpu;
2469

2470 2471
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2472
	curcpu = get_cpu();
2473 2474
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2475
		struct mem_cgroup *memcg;
2476

2477 2478
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2479
			continue;
2480
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2481
			continue;
2482 2483 2484 2485 2486 2487
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2488
	}
2489
	put_cpu();
2490 2491 2492 2493 2494 2495

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2496
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2497 2498 2499
			flush_work(&stock->work);
	}
out:
2500
 	put_online_cpus();
2501 2502 2503 2504 2505 2506 2507 2508
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2509
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2510
{
2511 2512 2513 2514 2515
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2516
	drain_all_stock(root_memcg, false);
2517
	mutex_unlock(&percpu_charge_mutex);
2518 2519 2520
}

/* This is a synchronous drain interface. */
2521
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2522 2523
{
	/* called when force_empty is called */
2524
	mutex_lock(&percpu_charge_mutex);
2525
	drain_all_stock(root_memcg, true);
2526
	mutex_unlock(&percpu_charge_mutex);
2527 2528
}

2529 2530 2531 2532
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2533
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2534 2535 2536
{
	int i;

2537
	spin_lock(&memcg->pcp_counter_lock);
2538
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2539
		long x = per_cpu(memcg->stat->count[i], cpu);
2540

2541 2542
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2543
	}
2544
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2545
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2546

2547 2548
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2549
	}
2550
	spin_unlock(&memcg->pcp_counter_lock);
2551 2552 2553
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2554 2555 2556 2557 2558
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2559
	struct mem_cgroup *iter;
2560

2561
	if (action == CPU_ONLINE)
2562 2563
		return NOTIFY_OK;

2564
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2565
		return NOTIFY_OK;
2566

2567
	for_each_mem_cgroup(iter)
2568 2569
		mem_cgroup_drain_pcp_counter(iter, cpu);

2570 2571 2572 2573 2574
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2575 2576 2577 2578 2579 2580 2581 2582 2583 2584

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2585
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2586 2587
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2588
{
2589
	unsigned long csize = nr_pages * PAGE_SIZE;
2590 2591 2592 2593 2594
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2595
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2596 2597 2598 2599

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2600
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2601 2602 2603
		if (likely(!ret))
			return CHARGE_OK;

2604
		res_counter_uncharge(&memcg->res, csize);
2605 2606 2607 2608
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2609 2610 2611 2612
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2613
	if (nr_pages > min_pages)
2614 2615 2616 2617 2618
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2619 2620 2621
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2622
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2623
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2624
		return CHARGE_RETRY;
2625
	/*
2626 2627 2628 2629 2630 2631 2632
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2633
	 */
2634
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2648
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2649 2650 2651 2652 2653
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2654
/*
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2674
 */
2675
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2676
				   gfp_t gfp_mask,
2677
				   unsigned int nr_pages,
2678
				   struct mem_cgroup **ptr,
2679
				   bool oom)
2680
{
2681
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2682
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2683
	struct mem_cgroup *memcg = NULL;
2684
	int ret;
2685

K
KAMEZAWA Hiroyuki 已提交
2686 2687 2688 2689 2690 2691 2692 2693
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2694

2695
	/*
2696 2697
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2698
	 * thread group leader migrates. It's possible that mm is not
2699
	 * set, if so charge the root memcg (happens for pagecache usage).
2700
	 */
2701
	if (!*ptr && !mm)
2702
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2703
again:
2704 2705 2706
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2707
			goto done;
2708
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2709
			goto done;
2710
		css_get(&memcg->css);
2711
	} else {
K
KAMEZAWA Hiroyuki 已提交
2712
		struct task_struct *p;
2713

K
KAMEZAWA Hiroyuki 已提交
2714 2715 2716
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2717
		 * Because we don't have task_lock(), "p" can exit.
2718
		 * In that case, "memcg" can point to root or p can be NULL with
2719 2720 2721 2722 2723 2724
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2725
		 */
2726
		memcg = mem_cgroup_from_task(p);
2727 2728 2729
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2730 2731 2732
			rcu_read_unlock();
			goto done;
		}
2733
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2746
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2747 2748 2749 2750 2751
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2752

2753 2754
	do {
		bool oom_check;
2755

2756
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2757
		if (fatal_signal_pending(current)) {
2758
			css_put(&memcg->css);
2759
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2760
		}
2761

2762 2763 2764 2765
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2766
		}
2767

2768 2769
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2770 2771 2772 2773
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2774
			batch = nr_pages;
2775 2776
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2777
			goto again;
2778
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2779
			css_put(&memcg->css);
2780 2781
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2782
			if (!oom) {
2783
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2784
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2785
			}
2786 2787 2788 2789
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2790
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2791
			goto bypass;
2792
		}
2793 2794
	} while (ret != CHARGE_OK);

2795
	if (batch > nr_pages)
2796 2797
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2798
done:
2799
	*ptr = memcg;
2800 2801
	return 0;
nomem:
2802
	*ptr = NULL;
2803
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2804
bypass:
2805 2806
	*ptr = root_mem_cgroup;
	return -EINTR;
2807
}
2808

2809 2810 2811 2812 2813
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2814
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2815
				       unsigned int nr_pages)
2816
{
2817
	if (!mem_cgroup_is_root(memcg)) {
2818 2819
		unsigned long bytes = nr_pages * PAGE_SIZE;

2820
		res_counter_uncharge(&memcg->res, bytes);
2821
		if (do_swap_account)
2822
			res_counter_uncharge(&memcg->memsw, bytes);
2823
	}
2824 2825
}

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2844 2845
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2846 2847 2848
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2860
	return mem_cgroup_from_css(css);
2861 2862
}

2863
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2864
{
2865
	struct mem_cgroup *memcg = NULL;
2866
	struct page_cgroup *pc;
2867
	unsigned short id;
2868 2869
	swp_entry_t ent;

2870 2871 2872
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2873
	lock_page_cgroup(pc);
2874
	if (PageCgroupUsed(pc)) {
2875 2876 2877
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2878
	} else if (PageSwapCache(page)) {
2879
		ent.val = page_private(page);
2880
		id = lookup_swap_cgroup_id(ent);
2881
		rcu_read_lock();
2882 2883 2884
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2885
		rcu_read_unlock();
2886
	}
2887
	unlock_page_cgroup(pc);
2888
	return memcg;
2889 2890
}

2891
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2892
				       struct page *page,
2893
				       unsigned int nr_pages,
2894 2895
				       enum charge_type ctype,
				       bool lrucare)
2896
{
2897
	struct page_cgroup *pc = lookup_page_cgroup(page);
2898
	struct zone *uninitialized_var(zone);
2899
	struct lruvec *lruvec;
2900
	bool was_on_lru = false;
2901
	bool anon;
2902

2903
	lock_page_cgroup(pc);
2904
	VM_BUG_ON(PageCgroupUsed(pc));
2905 2906 2907 2908
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2909 2910 2911 2912 2913 2914 2915 2916 2917

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2918
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2919
			ClearPageLRU(page);
2920
			del_page_from_lru_list(page, lruvec, page_lru(page));
2921 2922 2923 2924
			was_on_lru = true;
		}
	}

2925
	pc->mem_cgroup = memcg;
2926 2927 2928 2929 2930 2931 2932
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2933
	smp_wmb();
2934
	SetPageCgroupUsed(pc);
2935

2936 2937
	if (lrucare) {
		if (was_on_lru) {
2938
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2939 2940
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2941
			add_page_to_lru_list(page, lruvec, page_lru(page));
2942 2943 2944 2945
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2946
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2947 2948 2949 2950
		anon = true;
	else
		anon = false;

2951
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2952
	unlock_page_cgroup(pc);
2953

2954 2955 2956 2957 2958
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2959
	memcg_check_events(memcg, page);
2960
}
2961

2962 2963
static DEFINE_MUTEX(set_limit_mutex);

2964 2965 2966 2967 2968 2969 2970
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
#ifdef CONFIG_SLABINFO
static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
					struct seq_file *m)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3058 3059 3060 3061 3062 3063 3064

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
3065 3066
}

3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3150 3151
static void kmem_cache_destroy_work_func(struct work_struct *w);

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
		size += sizeof(struct memcg_cache_params);

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3203 3204
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3205 3206 3207 3208 3209 3210
{
	size_t size = sizeof(struct memcg_cache_params);

	if (!memcg_kmem_enabled())
		return 0;

3211 3212 3213
	if (!memcg)
		size += memcg_limited_groups_array_size * sizeof(void *);

3214 3215 3216 3217
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

3218 3219
	INIT_WORK(&s->memcg_params->destroy,
			kmem_cache_destroy_work_func);
G
Glauber Costa 已提交
3220
	if (memcg) {
3221
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3222
		s->memcg_params->root_cache = root_cache;
3223 3224 3225
	} else
		s->memcg_params->is_root_cache = true;

3226 3227 3228 3229 3230
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3255
	mem_cgroup_put(memcg);
3256
out:
3257 3258 3259
	kfree(s->memcg_params);
}

3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3291 3292 3293 3294 3295 3296 3297 3298 3299
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3321 3322 3323 3324 3325 3326 3327 3328
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3349 3350 3351 3352 3353 3354 3355
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3356 3357 3358 3359 3360 3361 3362 3363 3364
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3365

3366 3367 3368
/*
 * Called with memcg_cache_mutex held
 */
3369 3370 3371 3372
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3373
	static char *tmp_name = NULL;
3374

3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3393

3394
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3395
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3396

3397 3398 3399
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
	if (new_cachep)
		goto out;

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
		goto out;
	}

	mem_cgroup_get(memcg);
G
Glauber Costa 已提交
3425
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3477
		cancel_work_sync(&c->memcg_params->destroy);
3478 3479 3480 3481 3482
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3483 3484 3485 3486 3487 3488
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	/* Drop the reference gotten when we enqueued. */
	css_put(&cw->memcg->css);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3520 3521
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3522 3523 3524 3525
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3526 3527
	if (cw == NULL) {
		css_put(&memcg->css);
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3578 3579 3580
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3581 3582 3583 3584
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3585
		goto out;
3586 3587 3588 3589 3590 3591 3592 3593

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3594 3595 3596
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3597 3598
	}

3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3626 3627 3628
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3724 3725 3726 3727
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3728 3729
#endif /* CONFIG_MEMCG_KMEM */

3730 3731
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3732
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3733 3734
/*
 * Because tail pages are not marked as "used", set it. We're under
3735 3736 3737
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3738
 */
3739
void mem_cgroup_split_huge_fixup(struct page *head)
3740 3741
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3742
	struct page_cgroup *pc;
3743
	struct mem_cgroup *memcg;
3744
	int i;
3745

3746 3747
	if (mem_cgroup_disabled())
		return;
3748 3749

	memcg = head_pc->mem_cgroup;
3750 3751
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3752
		pc->mem_cgroup = memcg;
3753 3754 3755
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3756 3757
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3758
}
3759
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3760

3761
/**
3762
 * mem_cgroup_move_account - move account of the page
3763
 * @page: the page
3764
 * @nr_pages: number of regular pages (>1 for huge pages)
3765 3766 3767 3768 3769
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3770
 * - page is not on LRU (isolate_page() is useful.)
3771
 * - compound_lock is held when nr_pages > 1
3772
 *
3773 3774
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3775
 */
3776 3777 3778 3779
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3780
				   struct mem_cgroup *to)
3781
{
3782 3783
	unsigned long flags;
	int ret;
3784
	bool anon = PageAnon(page);
3785

3786
	VM_BUG_ON(from == to);
3787
	VM_BUG_ON(PageLRU(page));
3788 3789 3790 3791 3792 3793 3794
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3795
	if (nr_pages > 1 && !PageTransHuge(page))
3796 3797 3798 3799 3800 3801 3802 3803
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3804
	move_lock_mem_cgroup(from, &flags);
3805

3806
	if (!anon && page_mapped(page)) {
3807 3808 3809 3810 3811
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3812
	}
3813
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3814

3815
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3816
	pc->mem_cgroup = to;
3817
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3818
	move_unlock_mem_cgroup(from, &flags);
3819 3820
	ret = 0;
unlock:
3821
	unlock_page_cgroup(pc);
3822 3823 3824
	/*
	 * check events
	 */
3825 3826
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3827
out:
3828 3829 3830
	return ret;
}

3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3851
 */
3852 3853
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3854
				  struct mem_cgroup *child)
3855 3856
{
	struct mem_cgroup *parent;
3857
	unsigned int nr_pages;
3858
	unsigned long uninitialized_var(flags);
3859 3860
	int ret;

3861
	VM_BUG_ON(mem_cgroup_is_root(child));
3862

3863 3864 3865 3866 3867
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3868

3869
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3870

3871 3872 3873 3874 3875 3876
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3877

3878 3879
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3880
		flags = compound_lock_irqsave(page);
3881
	}
3882

3883
	ret = mem_cgroup_move_account(page, nr_pages,
3884
				pc, child, parent);
3885 3886
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3887

3888
	if (nr_pages > 1)
3889
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3890
	putback_lru_page(page);
3891
put:
3892
	put_page(page);
3893
out:
3894 3895 3896
	return ret;
}

3897 3898 3899 3900 3901 3902 3903
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3904
				gfp_t gfp_mask, enum charge_type ctype)
3905
{
3906
	struct mem_cgroup *memcg = NULL;
3907
	unsigned int nr_pages = 1;
3908
	bool oom = true;
3909
	int ret;
A
Andrea Arcangeli 已提交
3910

A
Andrea Arcangeli 已提交
3911
	if (PageTransHuge(page)) {
3912
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3913
		VM_BUG_ON(!PageTransHuge(page));
3914 3915 3916 3917 3918
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3919
	}
3920

3921
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3922
	if (ret == -ENOMEM)
3923
		return ret;
3924
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3925 3926 3927
	return 0;
}

3928 3929
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3930
{
3931
	if (mem_cgroup_disabled())
3932
		return 0;
3933 3934 3935
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3936
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3937
					MEM_CGROUP_CHARGE_TYPE_ANON);
3938 3939
}

3940 3941 3942
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3943
 * struct page_cgroup is acquired. This refcnt will be consumed by
3944 3945
 * "commit()" or removed by "cancel()"
 */
3946 3947 3948 3949
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3950
{
3951
	struct mem_cgroup *memcg;
3952
	struct page_cgroup *pc;
3953
	int ret;
3954

3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3965 3966
	if (!do_swap_account)
		goto charge_cur_mm;
3967 3968
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3969
		goto charge_cur_mm;
3970 3971
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3972
	css_put(&memcg->css);
3973 3974
	if (ret == -EINTR)
		ret = 0;
3975
	return ret;
3976
charge_cur_mm:
3977 3978 3979 3980
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3981 3982
}

3983 3984 3985 3986 3987 3988
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
4003 4004 4005
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

4006 4007 4008 4009 4010 4011 4012 4013 4014
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
4015
static void
4016
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
4017
					enum charge_type ctype)
4018
{
4019
	if (mem_cgroup_disabled())
4020
		return;
4021
	if (!memcg)
4022
		return;
4023

4024
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4025 4026 4027
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
4028 4029 4030
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
4031
	 */
4032
	if (do_swap_account && PageSwapCache(page)) {
4033
		swp_entry_t ent = {.val = page_private(page)};
4034
		mem_cgroup_uncharge_swap(ent);
4035
	}
4036 4037
}

4038 4039
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4040
{
4041
	__mem_cgroup_commit_charge_swapin(page, memcg,
4042
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4043 4044
}

4045 4046
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4047
{
4048 4049 4050 4051
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4052
	if (mem_cgroup_disabled())
4053 4054 4055 4056 4057 4058 4059
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4060 4061
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4062 4063 4064 4065
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4066 4067
}

4068
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4069 4070
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4071 4072 4073
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4074

4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4086
		batch->memcg = memcg;
4087 4088
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4089
	 * In those cases, all pages freed continuously can be expected to be in
4090 4091 4092 4093 4094 4095 4096 4097
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4098
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4099 4100
		goto direct_uncharge;

4101 4102 4103 4104 4105
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4106
	if (batch->memcg != memcg)
4107 4108
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4109
	batch->nr_pages++;
4110
	if (uncharge_memsw)
4111
		batch->memsw_nr_pages++;
4112 4113
	return;
direct_uncharge:
4114
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4115
	if (uncharge_memsw)
4116 4117 4118
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4119
}
4120

4121
/*
4122
 * uncharge if !page_mapped(page)
4123
 */
4124
static struct mem_cgroup *
4125 4126
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4127
{
4128
	struct mem_cgroup *memcg = NULL;
4129 4130
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4131
	bool anon;
4132

4133
	if (mem_cgroup_disabled())
4134
		return NULL;
4135

A
Andrea Arcangeli 已提交
4136
	if (PageTransHuge(page)) {
4137
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4138 4139
		VM_BUG_ON(!PageTransHuge(page));
	}
4140
	/*
4141
	 * Check if our page_cgroup is valid
4142
	 */
4143
	pc = lookup_page_cgroup(page);
4144
	if (unlikely(!PageCgroupUsed(pc)))
4145
		return NULL;
4146

4147
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4148

4149
	memcg = pc->mem_cgroup;
4150

K
KAMEZAWA Hiroyuki 已提交
4151 4152 4153
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4154 4155
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4156
	switch (ctype) {
4157
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4158 4159 4160 4161 4162
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4163 4164
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4165
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4166
		/* See mem_cgroup_prepare_migration() */
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4188
	}
K
KAMEZAWA Hiroyuki 已提交
4189

4190
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4191

4192
	ClearPageCgroupUsed(pc);
4193 4194 4195 4196 4197 4198
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4199

4200
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4201
	/*
4202
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
4203 4204
	 * will never be freed.
	 */
4205
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4206
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4207 4208
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
4209
	}
4210 4211 4212 4213 4214 4215
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4216
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4217

4218
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4219 4220 4221

unlock_out:
	unlock_page_cgroup(pc);
4222
	return NULL;
4223 4224
}

4225 4226
void mem_cgroup_uncharge_page(struct page *page)
{
4227 4228 4229
	/* early check. */
	if (page_mapped(page))
		return;
4230
	VM_BUG_ON(page->mapping && !PageAnon(page));
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4243 4244
	if (PageSwapCache(page))
		return;
4245
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4246 4247 4248 4249 4250
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4251
	VM_BUG_ON(page->mapping);
4252
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4253 4254
}

4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4269 4270
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4291 4292 4293 4294 4295 4296
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4297
	memcg_oom_recover(batch->memcg);
4298 4299 4300 4301
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4302
#ifdef CONFIG_SWAP
4303
/*
4304
 * called after __delete_from_swap_cache() and drop "page" account.
4305 4306
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4307 4308
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4309 4310
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4311 4312 4313 4314 4315
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4316
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4317

K
KAMEZAWA Hiroyuki 已提交
4318 4319 4320 4321 4322
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
4323
		swap_cgroup_record(ent, css_id(&memcg->css));
4324
}
4325
#endif
4326

A
Andrew Morton 已提交
4327
#ifdef CONFIG_MEMCG_SWAP
4328 4329 4330 4331 4332
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4333
{
4334
	struct mem_cgroup *memcg;
4335
	unsigned short id;
4336 4337 4338 4339

	if (!do_swap_account)
		return;

4340 4341 4342
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4343
	if (memcg) {
4344 4345 4346 4347
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4348
		if (!mem_cgroup_is_root(memcg))
4349
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4350
		mem_cgroup_swap_statistics(memcg, false);
4351 4352
		mem_cgroup_put(memcg);
	}
4353
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4354
}
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4371
				struct mem_cgroup *from, struct mem_cgroup *to)
4372 4373 4374 4375 4376 4377 4378 4379
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4380
		mem_cgroup_swap_statistics(to, true);
4381
		/*
4382 4383 4384 4385 4386 4387
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
4388 4389 4390 4391 4392 4393 4394 4395
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4396
				struct mem_cgroup *from, struct mem_cgroup *to)
4397 4398 4399
{
	return -EINVAL;
}
4400
#endif
K
KAMEZAWA Hiroyuki 已提交
4401

4402
/*
4403 4404
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4405
 */
4406 4407
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4408
{
4409
	struct mem_cgroup *memcg = NULL;
4410
	unsigned int nr_pages = 1;
4411
	struct page_cgroup *pc;
4412
	enum charge_type ctype;
4413

4414
	*memcgp = NULL;
4415

4416
	if (mem_cgroup_disabled())
4417
		return;
4418

4419 4420 4421
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4422 4423 4424
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4425 4426
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4458
	}
4459
	unlock_page_cgroup(pc);
4460 4461 4462 4463
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4464
	if (!memcg)
4465
		return;
4466

4467
	*memcgp = memcg;
4468 4469 4470 4471 4472 4473 4474
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4475
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4476
	else
4477
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4478 4479 4480 4481 4482
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4483
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4484
}
4485

4486
/* remove redundant charge if migration failed*/
4487
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4488
	struct page *oldpage, struct page *newpage, bool migration_ok)
4489
{
4490
	struct page *used, *unused;
4491
	struct page_cgroup *pc;
4492
	bool anon;
4493

4494
	if (!memcg)
4495
		return;
4496

4497
	if (!migration_ok) {
4498 4499
		used = oldpage;
		unused = newpage;
4500
	} else {
4501
		used = newpage;
4502 4503
		unused = oldpage;
	}
4504
	anon = PageAnon(used);
4505 4506 4507 4508
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4509
	css_put(&memcg->css);
4510
	/*
4511 4512 4513
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4514
	 */
4515 4516 4517 4518 4519
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4520
	/*
4521 4522 4523 4524 4525 4526
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4527
	 */
4528
	if (anon)
4529
		mem_cgroup_uncharge_page(used);
4530
}
4531

4532 4533 4534 4535 4536 4537 4538 4539
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4540
	struct mem_cgroup *memcg = NULL;
4541 4542 4543 4544 4545 4546 4547 4548 4549
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4550 4551
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4552
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4553 4554
		ClearPageCgroupUsed(pc);
	}
4555 4556
	unlock_page_cgroup(pc);

4557 4558 4559 4560 4561 4562
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4563 4564 4565 4566 4567
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4568
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4569 4570
}

4571 4572 4573 4574 4575 4576
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4577 4578 4579 4580 4581
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4601 4602
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4603 4604 4605 4606
	}
}
#endif

4607
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4608
				unsigned long long val)
4609
{
4610
	int retry_count;
4611
	u64 memswlimit, memlimit;
4612
	int ret = 0;
4613 4614
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4615
	int enlarge;
4616 4617 4618 4619 4620 4621 4622 4623 4624

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4625

4626
	enlarge = 0;
4627
	while (retry_count) {
4628 4629 4630 4631
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4632 4633 4634
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4635
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4636 4637 4638 4639 4640 4641
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4642 4643
			break;
		}
4644 4645 4646 4647 4648

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4649
		ret = res_counter_set_limit(&memcg->res, val);
4650 4651 4652 4653 4654 4655
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4656 4657 4658 4659 4660
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4661 4662
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4663 4664 4665 4666 4667 4668
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4669
	}
4670 4671
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4672

4673 4674 4675
	return ret;
}

L
Li Zefan 已提交
4676 4677
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4678
{
4679
	int retry_count;
4680
	u64 memlimit, memswlimit, oldusage, curusage;
4681 4682
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4683
	int enlarge = 0;
4684

4685 4686 4687
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4688 4689 4690 4691 4692 4693 4694 4695
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4696
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4697 4698 4699 4700 4701 4702 4703 4704
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4705 4706 4707
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4708
		ret = res_counter_set_limit(&memcg->memsw, val);
4709 4710 4711 4712 4713 4714
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4715 4716 4717 4718 4719
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4720 4721 4722
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4723
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4724
		/* Usage is reduced ? */
4725
		if (curusage >= oldusage)
4726
			retry_count--;
4727 4728
		else
			oldusage = curusage;
4729
	}
4730 4731
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4732 4733 4734
	return ret;
}

4735
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4736 4737
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
4738 4739 4740 4741 4742 4743
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
4744
	unsigned long long excess;
4745
	unsigned long nr_scanned;
4746 4747 4748 4749

	if (order > 0)
		return 0;

4750
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

4764
		nr_scanned = 0;
4765
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4766
						    gfp_mask, &nr_scanned);
4767
		nr_reclaimed += reclaimed;
4768
		*total_scanned += nr_scanned;
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
4791
				if (next_mz == mz)
4792
					css_put(&next_mz->memcg->css);
4793
				else /* next_mz == NULL or other memcg */
4794 4795 4796
					break;
			} while (1);
		}
4797 4798
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4799 4800 4801 4802 4803 4804 4805 4806
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
4807
		/* If excess == 0, no tree ops */
4808
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4809
		spin_unlock(&mctz->lock);
4810
		css_put(&mz->memcg->css);
4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
4823
		css_put(&next_mz->memcg->css);
4824 4825 4826
	return nr_reclaimed;
}

4827 4828 4829 4830 4831 4832 4833
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4834
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4835 4836
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4837
 */
4838
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4839
				int node, int zid, enum lru_list lru)
4840
{
4841
	struct lruvec *lruvec;
4842
	unsigned long flags;
4843
	struct list_head *list;
4844 4845
	struct page *busy;
	struct zone *zone;
4846

K
KAMEZAWA Hiroyuki 已提交
4847
	zone = &NODE_DATA(node)->node_zones[zid];
4848 4849
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4850

4851
	busy = NULL;
4852
	do {
4853
		struct page_cgroup *pc;
4854 4855
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4856
		spin_lock_irqsave(&zone->lru_lock, flags);
4857
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4858
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4859
			break;
4860
		}
4861 4862 4863
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4864
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4865
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4866 4867
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4868
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4869

4870
		pc = lookup_page_cgroup(page);
4871

4872
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4873
			/* found lock contention or "pc" is obsolete. */
4874
			busy = page;
4875 4876 4877
			cond_resched();
		} else
			busy = NULL;
4878
	} while (!list_empty(list));
4879 4880 4881
}

/*
4882 4883
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4884
 * This enables deleting this mem_cgroup.
4885 4886
 *
 * Caller is responsible for holding css reference on the memcg.
4887
 */
4888
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4889
{
4890
	int node, zid;
4891
	u64 usage;
4892

4893
	do {
4894 4895
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4896 4897
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4898
		for_each_node_state(node, N_MEMORY) {
4899
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4900 4901
				enum lru_list lru;
				for_each_lru(lru) {
4902
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4903
							node, zid, lru);
4904
				}
4905
			}
4906
		}
4907 4908
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4909
		cond_resched();
4910

4911
		/*
4912 4913 4914 4915 4916
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4917 4918 4919 4920 4921 4922
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4923 4924 4925
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4926 4927
}

4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
	struct cgroup *pos;

	/* bounce at first found */
	cgroup_for_each_child(pos, memcg->css.cgroup)
		return true;
	return false;
}

/*
4944 4945
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4946 4947 4948 4949 4950 4951 4952 4953 4954
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4955 4956 4957 4958 4959 4960 4961 4962 4963 4964
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4965

4966
	/* returns EBUSY if there is a task or if we come here twice. */
4967 4968 4969
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4970 4971
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4972
	/* try to free all pages in this cgroup */
4973
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4974
		int progress;
4975

4976 4977 4978
		if (signal_pending(current))
			return -EINTR;

4979
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4980
						false);
4981
		if (!progress) {
4982
			nr_retries--;
4983
			/* maybe some writeback is necessary */
4984
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4985
		}
4986 4987

	}
K
KAMEZAWA Hiroyuki 已提交
4988
	lru_add_drain();
4989 4990 4991
	mem_cgroup_reparent_charges(memcg);

	return 0;
4992 4993
}

4994
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4995
{
4996 4997 4998
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

4999 5000
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
5001 5002 5003 5004 5005
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
5006 5007 5008
}


5009 5010 5011 5012 5013 5014 5015 5016 5017
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
5018
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5019
	struct cgroup *parent = cont->parent;
5020
	struct mem_cgroup *parent_memcg = NULL;
5021 5022

	if (parent)
5023
		parent_memcg = mem_cgroup_from_cont(parent);
5024

5025
	mutex_lock(&memcg_create_mutex);
5026 5027 5028 5029

	if (memcg->use_hierarchy == val)
		goto out;

5030
	/*
5031
	 * If parent's use_hierarchy is set, we can't make any modifications
5032 5033 5034 5035 5036 5037
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
5038
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5039
				(val == 1 || val == 0)) {
5040
		if (!__memcg_has_children(memcg))
5041
			memcg->use_hierarchy = val;
5042 5043 5044 5045
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
5046 5047

out:
5048
	mutex_unlock(&memcg_create_mutex);
5049 5050 5051 5052

	return retval;
}

5053

5054
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5055
					       enum mem_cgroup_stat_index idx)
5056
{
K
KAMEZAWA Hiroyuki 已提交
5057
	struct mem_cgroup *iter;
5058
	long val = 0;
5059

5060
	/* Per-cpu values can be negative, use a signed accumulator */
5061
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5062 5063 5064 5065 5066
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
5067 5068
}

5069
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5070
{
K
KAMEZAWA Hiroyuki 已提交
5071
	u64 val;
5072

5073
	if (!mem_cgroup_is_root(memcg)) {
5074
		if (!swap)
5075
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5076
		else
5077
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5078 5079
	}

5080 5081 5082 5083
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
5084 5085
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5086

K
KAMEZAWA Hiroyuki 已提交
5087
	if (swap)
5088
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5089 5090 5091 5092

	return val << PAGE_SHIFT;
}

5093 5094 5095
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
5096
{
5097
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5098
	char str[64];
5099
	u64 val;
G
Glauber Costa 已提交
5100 5101
	int name, len;
	enum res_type type;
5102 5103 5104

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5105

5106 5107
	switch (type) {
	case _MEM:
5108
		if (name == RES_USAGE)
5109
			val = mem_cgroup_usage(memcg, false);
5110
		else
5111
			val = res_counter_read_u64(&memcg->res, name);
5112 5113
		break;
	case _MEMSWAP:
5114
		if (name == RES_USAGE)
5115
			val = mem_cgroup_usage(memcg, true);
5116
		else
5117
			val = res_counter_read_u64(&memcg->memsw, name);
5118
		break;
5119 5120 5121
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5122 5123 5124
	default:
		BUG();
	}
5125 5126 5127

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
5128
}
5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146

static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5147
	mutex_lock(&memcg_create_mutex);
5148 5149
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5150
		if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5151 5152 5153 5154 5155 5156
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5157 5158 5159 5160 5161
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
5162 5163 5164 5165 5166 5167 5168
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);

5169 5170 5171 5172 5173 5174 5175
		/*
		 * kmem charges can outlive the cgroup. In the case of slab
		 * pages, for instance, a page contain objects from various
		 * processes, so it is unfeasible to migrate them away. We
		 * need to reference count the memcg because of that.
		 */
		mem_cgroup_get(memcg);
5176 5177 5178 5179
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5180
	mutex_unlock(&memcg_create_mutex);
5181 5182 5183 5184
#endif
	return ret;
}

5185
#ifdef CONFIG_MEMCG_KMEM
5186
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5187
{
5188
	int ret = 0;
5189 5190
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5191 5192
		goto out;

5193
	memcg->kmem_account_flags = parent->kmem_account_flags;
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
	 * destroy(), called if we fail, will issue static_key_slow_inc() and
	 * mem_cgroup_put() if kmem is enabled. We have to either call them
	 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
	 * this more consistent, since it always leads to the same destroy path
	 */
	mem_cgroup_get(memcg);
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
	ret = memcg_update_cache_sizes(memcg);
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5221
}
5222
#endif /* CONFIG_MEMCG_KMEM */
5223

5224 5225 5226 5227
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5228 5229
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
5230
{
5231
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5232 5233
	enum res_type type;
	int name;
5234 5235 5236
	unsigned long long val;
	int ret;

5237 5238
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5239

5240
	switch (name) {
5241
	case RES_LIMIT:
5242 5243 5244 5245
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5246 5247
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5248 5249 5250
		if (ret)
			break;
		if (type == _MEM)
5251
			ret = mem_cgroup_resize_limit(memcg, val);
5252
		else if (type == _MEMSWAP)
5253
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5254 5255 5256 5257
		else if (type == _KMEM)
			ret = memcg_update_kmem_limit(cont, val);
		else
			return -EINVAL;
5258
		break;
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5273 5274 5275 5276 5277
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5278 5279
}

5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5307
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5308
{
5309
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5310 5311
	int name;
	enum res_type type;
5312

5313 5314
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5315

5316
	switch (name) {
5317
	case RES_MAX_USAGE:
5318
		if (type == _MEM)
5319
			res_counter_reset_max(&memcg->res);
5320
		else if (type == _MEMSWAP)
5321
			res_counter_reset_max(&memcg->memsw);
5322 5323 5324 5325
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5326 5327
		break;
	case RES_FAILCNT:
5328
		if (type == _MEM)
5329
			res_counter_reset_failcnt(&memcg->res);
5330
		else if (type == _MEMSWAP)
5331
			res_counter_reset_failcnt(&memcg->memsw);
5332 5333 5334 5335
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5336 5337
		break;
	}
5338

5339
	return 0;
5340 5341
}

5342 5343 5344 5345 5346 5347
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

5348
#ifdef CONFIG_MMU
5349 5350 5351
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
5352
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5353 5354 5355

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5356

5357
	/*
5358 5359 5360 5361
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5362
	 */
5363
	memcg->move_charge_at_immigrate = val;
5364 5365
	return 0;
}
5366 5367 5368 5369 5370 5371 5372
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5373

5374
#ifdef CONFIG_NUMA
5375
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5376
				      struct seq_file *m)
5377 5378 5379 5380
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5381
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5382

5383
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5384
	seq_printf(m, "total=%lu", total_nr);
5385
	for_each_node_state(nid, N_MEMORY) {
5386
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5387 5388 5389 5390
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5391
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5392
	seq_printf(m, "file=%lu", file_nr);
5393
	for_each_node_state(nid, N_MEMORY) {
5394
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5395
				LRU_ALL_FILE);
5396 5397 5398 5399
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5400
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5401
	seq_printf(m, "anon=%lu", anon_nr);
5402
	for_each_node_state(nid, N_MEMORY) {
5403
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5404
				LRU_ALL_ANON);
5405 5406 5407 5408
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5409
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5410
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5411
	for_each_node_state(nid, N_MEMORY) {
5412
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5413
				BIT(LRU_UNEVICTABLE));
5414 5415 5416 5417 5418 5419 5420
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5421 5422 5423 5424 5425
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5426
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5427
				 struct seq_file *m)
5428
{
5429
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5430 5431
	struct mem_cgroup *mi;
	unsigned int i;
5432

5433
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5434
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5435
			continue;
5436 5437
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5438
	}
L
Lee Schermerhorn 已提交
5439

5440 5441 5442 5443 5444 5445 5446 5447
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5448
	/* Hierarchical information */
5449 5450
	{
		unsigned long long limit, memsw_limit;
5451
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5452
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5453
		if (do_swap_account)
5454 5455
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5456
	}
K
KOSAKI Motohiro 已提交
5457

5458 5459 5460
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5461
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5462
			continue;
5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5483
	}
K
KAMEZAWA Hiroyuki 已提交
5484

K
KOSAKI Motohiro 已提交
5485 5486 5487 5488
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5489
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5490 5491 5492 5493 5494
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5495
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5496
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5497

5498 5499 5500 5501
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5502
			}
5503 5504 5505 5506
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5507 5508 5509
	}
#endif

5510 5511 5512
	return 0;
}

K
KOSAKI Motohiro 已提交
5513 5514 5515 5516
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

5517
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5518 5519 5520 5521 5522 5523 5524
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
5525

K
KOSAKI Motohiro 已提交
5526 5527 5528 5529 5530 5531 5532
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
5533

5534
	mutex_lock(&memcg_create_mutex);
5535

K
KOSAKI Motohiro 已提交
5536
	/* If under hierarchy, only empty-root can set this value */
5537
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5538
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5539
		return -EINVAL;
5540
	}
K
KOSAKI Motohiro 已提交
5541 5542 5543

	memcg->swappiness = val;

5544
	mutex_unlock(&memcg_create_mutex);
5545

K
KOSAKI Motohiro 已提交
5546 5547 5548
	return 0;
}

5549 5550 5551 5552 5553 5554 5555 5556
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5557
		t = rcu_dereference(memcg->thresholds.primary);
5558
	else
5559
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5560 5561 5562 5563 5564 5565 5566

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5567
	 * current_threshold points to threshold just below or equal to usage.
5568 5569 5570
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5571
	i = t->current_threshold;
5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5595
	t->current_threshold = i - 1;
5596 5597 5598 5599 5600 5601
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5602 5603 5604 5605 5606 5607 5608
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5609 5610 5611 5612 5613 5614 5615 5616 5617 5618
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

5619
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5620 5621 5622
{
	struct mem_cgroup_eventfd_list *ev;

5623
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5624 5625 5626 5627
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5628
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5629
{
K
KAMEZAWA Hiroyuki 已提交
5630 5631
	struct mem_cgroup *iter;

5632
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5633
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5634 5635 5636 5637
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5638 5639
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5640 5641
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5642
	enum res_type type = MEMFILE_TYPE(cft->private);
5643
	u64 threshold, usage;
5644
	int i, size, ret;
5645 5646 5647 5648 5649 5650

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5651

5652
	if (type == _MEM)
5653
		thresholds = &memcg->thresholds;
5654
	else if (type == _MEMSWAP)
5655
		thresholds = &memcg->memsw_thresholds;
5656 5657 5658 5659 5660 5661
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5662
	if (thresholds->primary)
5663 5664
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5665
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5666 5667

	/* Allocate memory for new array of thresholds */
5668
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5669
			GFP_KERNEL);
5670
	if (!new) {
5671 5672 5673
		ret = -ENOMEM;
		goto unlock;
	}
5674
	new->size = size;
5675 5676

	/* Copy thresholds (if any) to new array */
5677 5678
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5679
				sizeof(struct mem_cgroup_threshold));
5680 5681
	}

5682
	/* Add new threshold */
5683 5684
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5685 5686

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5687
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5688 5689 5690
			compare_thresholds, NULL);

	/* Find current threshold */
5691
	new->current_threshold = -1;
5692
	for (i = 0; i < size; i++) {
5693
		if (new->entries[i].threshold <= usage) {
5694
			/*
5695 5696
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5697 5698
			 * it here.
			 */
5699
			++new->current_threshold;
5700 5701
		} else
			break;
5702 5703
	}

5704 5705 5706 5707 5708
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5709

5710
	/* To be sure that nobody uses thresholds */
5711 5712 5713 5714 5715 5716 5717 5718
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5719
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5720
	struct cftype *cft, struct eventfd_ctx *eventfd)
5721 5722
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5723 5724
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5725
	enum res_type type = MEMFILE_TYPE(cft->private);
5726
	u64 usage;
5727
	int i, j, size;
5728 5729 5730

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5731
		thresholds = &memcg->thresholds;
5732
	else if (type == _MEMSWAP)
5733
		thresholds = &memcg->memsw_thresholds;
5734 5735 5736
	else
		BUG();

5737 5738 5739
	if (!thresholds->primary)
		goto unlock;

5740 5741 5742 5743 5744 5745
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5746 5747 5748
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5749 5750 5751
			size++;
	}

5752
	new = thresholds->spare;
5753

5754 5755
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5756 5757
		kfree(new);
		new = NULL;
5758
		goto swap_buffers;
5759 5760
	}

5761
	new->size = size;
5762 5763

	/* Copy thresholds and find current threshold */
5764 5765 5766
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5767 5768
			continue;

5769
		new->entries[j] = thresholds->primary->entries[i];
5770
		if (new->entries[j].threshold <= usage) {
5771
			/*
5772
			 * new->current_threshold will not be used
5773 5774 5775
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5776
			++new->current_threshold;
5777 5778 5779 5780
		}
		j++;
	}

5781
swap_buffers:
5782 5783
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5784 5785 5786 5787 5788 5789
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5790
	rcu_assign_pointer(thresholds->primary, new);
5791

5792
	/* To be sure that nobody uses thresholds */
5793
	synchronize_rcu();
5794
unlock:
5795 5796
	mutex_unlock(&memcg->thresholds_lock);
}
5797

K
KAMEZAWA Hiroyuki 已提交
5798 5799 5800 5801 5802
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5803
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5804 5805 5806 5807 5808 5809

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5810
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5811 5812 5813 5814 5815

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5816
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5817
		eventfd_signal(eventfd, 1);
5818
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5819 5820 5821 5822

	return 0;
}

5823
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5824 5825
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5826
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
5827
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5828
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5829 5830 5831

	BUG_ON(type != _OOM_TYPE);

5832
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5833

5834
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5835 5836 5837 5838 5839 5840
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5841
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5842 5843
}

5844 5845 5846
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5847
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5848

5849
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5850

5851
	if (atomic_read(&memcg->under_oom))
5852 5853 5854 5855 5856 5857 5858 5859 5860
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
5861
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5862 5863 5864 5865 5866 5867 5868 5869
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

5870
	mutex_lock(&memcg_create_mutex);
5871
	/* oom-kill-disable is a flag for subhierarchy. */
5872
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5873
		mutex_unlock(&memcg_create_mutex);
5874 5875
		return -EINVAL;
	}
5876
	memcg->oom_kill_disable = val;
5877
	if (!val)
5878
		memcg_oom_recover(memcg);
5879
	mutex_unlock(&memcg_create_mutex);
5880 5881 5882
	return 0;
}

A
Andrew Morton 已提交
5883
#ifdef CONFIG_MEMCG_KMEM
5884
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5885
{
5886 5887
	int ret;

5888
	memcg->kmemcg_id = -1;
5889 5890 5891
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5892

5893
	return mem_cgroup_sockets_init(memcg, ss);
5894
}
5895

5896
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5897
{
5898
	mem_cgroup_sockets_destroy(memcg);
5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	/*
	 * Charges already down to 0, undo mem_cgroup_get() done in the charge
	 * path here, being careful not to race with memcg_uncharge_kmem: it is
	 * possible that the charges went down to 0 between mark_dead and the
	 * res_counter read, so in that case, we don't need the put
	 */
	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
G
Glauber Costa 已提交
5913
}
5914
#else
5915
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5916 5917 5918
{
	return 0;
}
G
Glauber Costa 已提交
5919

5920
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5921 5922
{
}
5923 5924
#endif

B
Balbir Singh 已提交
5925 5926
static struct cftype mem_cgroup_files[] = {
	{
5927
		.name = "usage_in_bytes",
5928
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5929
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5930 5931
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5932
	},
5933 5934
	{
		.name = "max_usage_in_bytes",
5935
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5936
		.trigger = mem_cgroup_reset,
5937
		.read = mem_cgroup_read,
5938
	},
B
Balbir Singh 已提交
5939
	{
5940
		.name = "limit_in_bytes",
5941
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5942
		.write_string = mem_cgroup_write,
5943
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5944
	},
5945 5946 5947 5948
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5949
		.read = mem_cgroup_read,
5950
	},
B
Balbir Singh 已提交
5951 5952
	{
		.name = "failcnt",
5953
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5954
		.trigger = mem_cgroup_reset,
5955
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5956
	},
5957 5958
	{
		.name = "stat",
5959
		.read_seq_string = memcg_stat_show,
5960
	},
5961 5962 5963 5964
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5965 5966
	{
		.name = "use_hierarchy",
5967
		.flags = CFTYPE_INSANE,
5968 5969 5970
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5971 5972 5973 5974 5975
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5976 5977 5978 5979 5980
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5981 5982
	{
		.name = "oom_control",
5983 5984
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5985 5986 5987 5988
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5989 5990 5991 5992 5993
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
5994 5995 5996
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5997
		.read_seq_string = memcg_numa_stat_show,
5998 5999
	},
#endif
6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
6024 6025 6026 6027 6028 6029
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
6030
#endif
6031
	{ },	/* terminate */
6032
};
6033

6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
6064
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6065 6066
{
	struct mem_cgroup_per_node *pn;
6067
	struct mem_cgroup_per_zone *mz;
6068
	int zone, tmp = node;
6069 6070 6071 6072 6073 6074 6075 6076
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6077 6078
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6079
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6080 6081
	if (!pn)
		return 1;
6082 6083 6084

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6085
		lruvec_init(&mz->lruvec);
6086
		mz->usage_in_excess = 0;
6087
		mz->on_tree = false;
6088
		mz->memcg = memcg;
6089
	}
6090
	memcg->info.nodeinfo[node] = pn;
6091 6092 6093
	return 0;
}

6094
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6095
{
6096
	kfree(memcg->info.nodeinfo[node]);
6097 6098
}

6099 6100
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6101
	struct mem_cgroup *memcg;
6102
	size_t size = memcg_size();
6103

6104
	/* Can be very big if nr_node_ids is very big */
6105
	if (size < PAGE_SIZE)
6106
		memcg = kzalloc(size, GFP_KERNEL);
6107
	else
6108
		memcg = vzalloc(size);
6109

6110
	if (!memcg)
6111 6112
		return NULL;

6113 6114
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6115
		goto out_free;
6116 6117
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6118 6119 6120

out_free:
	if (size < PAGE_SIZE)
6121
		kfree(memcg);
6122
	else
6123
		vfree(memcg);
6124
	return NULL;
6125 6126
}

6127
/*
6128 6129 6130 6131 6132 6133 6134 6135
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6136
 */
6137 6138

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6139
{
6140
	int node;
6141
	size_t size = memcg_size();
6142

6143 6144 6145 6146 6147 6148 6149 6150
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6162
	disarm_static_keys(memcg);
6163 6164 6165 6166
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6167
}
6168

6169

6170
/*
6171 6172 6173
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
6174
 */
6175
static void free_work(struct work_struct *work)
6176
{
6177
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6178

6179 6180 6181
	memcg = container_of(work, struct mem_cgroup, work_freeing);
	__mem_cgroup_free(memcg);
}
K
KAMEZAWA Hiroyuki 已提交
6182

6183 6184 6185
static void free_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6186

6187 6188 6189
	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, free_work);
	schedule_work(&memcg->work_freeing);
6190 6191
}

6192
static void mem_cgroup_get(struct mem_cgroup *memcg)
6193
{
6194
	atomic_inc(&memcg->refcnt);
6195 6196
}

6197
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6198
{
6199 6200
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6201
		call_rcu(&memcg->rcu_freeing, free_rcu);
6202 6203 6204
		if (parent)
			mem_cgroup_put(parent);
	}
6205 6206
}

6207
static void mem_cgroup_put(struct mem_cgroup *memcg)
6208
{
6209
	__mem_cgroup_put(memcg, 1);
6210 6211
}

6212 6213 6214
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6215
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6216
{
6217
	if (!memcg->res.parent)
6218
		return NULL;
6219
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6220
}
G
Glauber Costa 已提交
6221
EXPORT_SYMBOL(parent_mem_cgroup);
6222

6223
static void __init mem_cgroup_soft_limit_tree_init(void)
6224 6225 6226 6227 6228
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
6229
	for_each_node(node) {
6230 6231 6232 6233
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6234
		BUG_ON(!rtpn);
6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6246
static struct cgroup_subsys_state * __ref
6247
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
6248
{
6249
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6250
	long error = -ENOMEM;
6251
	int node;
B
Balbir Singh 已提交
6252

6253 6254
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6255
		return ERR_PTR(error);
6256

B
Bob Liu 已提交
6257
	for_each_node(node)
6258
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6259
			goto free_out;
6260

6261
	/* root ? */
6262
	if (cont->parent == NULL) {
6263
		root_mem_cgroup = memcg;
6264 6265 6266
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6267
	}
6268

6269 6270 6271 6272 6273 6274
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6275
	vmpressure_init(&memcg->vmpressure);
6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
mem_cgroup_css_online(struct cgroup *cont)
{
	struct mem_cgroup *memcg, *parent;
	int error = 0;

	if (!cont->parent)
		return 0;

6293
	mutex_lock(&memcg_create_mutex);
6294 6295 6296 6297 6298 6299 6300 6301
	memcg = mem_cgroup_from_cont(cont);
	parent = mem_cgroup_from_cont(cont->parent);

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6302 6303
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6304
		res_counter_init(&memcg->kmem, &parent->kmem);
6305

6306 6307 6308 6309 6310 6311 6312
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
6313
	} else {
6314 6315
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6316
		res_counter_init(&memcg->kmem, NULL);
6317 6318 6319 6320 6321
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6322
		if (parent != root_mem_cgroup)
6323
			mem_cgroup_subsys.broken_hierarchy = true;
6324
	}
6325 6326

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6327
	mutex_unlock(&memcg_create_mutex);
6328 6329 6330 6331 6332 6333 6334
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
6335 6336
		if (parent->use_hierarchy)
			mem_cgroup_put(parent);
6337
	}
6338
	return error;
B
Balbir Singh 已提交
6339 6340
}

M
Michal Hocko 已提交
6341 6342 6343 6344 6345 6346 6347 6348
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6349
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6350 6351 6352 6353 6354 6355

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6356
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6357 6358
}

6359
static void mem_cgroup_css_offline(struct cgroup *cont)
6360
{
6361
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6362

M
Michal Hocko 已提交
6363
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6364
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6365
	mem_cgroup_destroy_all_caches(memcg);
6366 6367
}

6368
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
6369
{
6370
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6371

6372
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
6373

6374
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
6375 6376
}

6377
#ifdef CONFIG_MMU
6378
/* Handlers for move charge at task migration. */
6379 6380
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6381
{
6382 6383
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6384
	struct mem_cgroup *memcg = mc.to;
6385

6386
	if (mem_cgroup_is_root(memcg)) {
6387 6388 6389 6390 6391 6392 6393 6394
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6395
		 * "memcg" cannot be under rmdir() because we've already checked
6396 6397 6398 6399
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6400
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6401
			goto one_by_one;
6402
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6403
						PAGE_SIZE * count, &dummy)) {
6404
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6421 6422
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6423
		if (ret)
6424
			/* mem_cgroup_clear_mc() will do uncharge later */
6425
			return ret;
6426 6427
		mc.precharge++;
	}
6428 6429 6430 6431
	return ret;
}

/**
6432
 * get_mctgt_type - get target type of moving charge
6433 6434 6435
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6436
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6437 6438 6439 6440 6441 6442
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6443 6444 6445
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6446 6447 6448 6449 6450
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6451
	swp_entry_t	ent;
6452 6453 6454
};

enum mc_target_type {
6455
	MC_TARGET_NONE = 0,
6456
	MC_TARGET_PAGE,
6457
	MC_TARGET_SWAP,
6458 6459
};

D
Daisuke Nishimura 已提交
6460 6461
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6462
{
D
Daisuke Nishimura 已提交
6463
	struct page *page = vm_normal_page(vma, addr, ptent);
6464

D
Daisuke Nishimura 已提交
6465 6466 6467 6468
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6469
		if (!move_anon())
D
Daisuke Nishimura 已提交
6470
			return NULL;
6471 6472
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6473 6474 6475 6476 6477 6478 6479
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6480
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6481 6482 6483 6484 6485 6486 6487 6488
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6489 6490 6491 6492
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6493
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6494 6495 6496 6497 6498
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6499 6500 6501 6502 6503 6504 6505
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6506

6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6526 6527 6528 6529 6530 6531
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6532
		if (do_swap_account)
6533
			*entry = swap;
6534
		page = find_get_page(swap_address_space(swap), swap.val);
6535
	}
6536
#endif
6537 6538 6539
	return page;
}

6540
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6541 6542 6543 6544
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6545
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6546 6547 6548 6549 6550 6551
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6552 6553
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6554 6555

	if (!page && !ent.val)
6556
		return ret;
6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6572 6573
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6574
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6575 6576 6577
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6578 6579 6580 6581
	}
	return ret;
}

6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6617 6618 6619 6620 6621 6622 6623 6624
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6625 6626 6627 6628
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6629
		return 0;
6630
	}
6631

6632 6633
	if (pmd_trans_unstable(pmd))
		return 0;
6634 6635
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6636
		if (get_mctgt_type(vma, addr, *pte, NULL))
6637 6638 6639 6640
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6641 6642 6643
	return 0;
}

6644 6645 6646 6647 6648
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6649
	down_read(&mm->mmap_sem);
6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6661
	up_read(&mm->mmap_sem);
6662 6663 6664 6665 6666 6667 6668 6669 6670

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6671 6672 6673 6674 6675
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6676 6677
}

6678 6679
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6680
{
6681 6682 6683
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

6684
	/* we must uncharge all the leftover precharges from mc.to */
6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6696
	}
6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6731
	spin_lock(&mc.lock);
6732 6733
	mc.from = NULL;
	mc.to = NULL;
6734
	spin_unlock(&mc.lock);
6735
	mem_cgroup_end_move(from);
6736 6737
}

6738 6739
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6740
{
6741
	struct task_struct *p = cgroup_taskset_first(tset);
6742
	int ret = 0;
6743
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6744
	unsigned long move_charge_at_immigrate;
6745

6746 6747 6748 6749 6750 6751 6752
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6753 6754 6755
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6756
		VM_BUG_ON(from == memcg);
6757 6758 6759 6760 6761

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6762 6763 6764 6765
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6766
			VM_BUG_ON(mc.moved_charge);
6767
			VM_BUG_ON(mc.moved_swap);
6768
			mem_cgroup_start_move(from);
6769
			spin_lock(&mc.lock);
6770
			mc.from = from;
6771
			mc.to = memcg;
6772
			mc.immigrate_flags = move_charge_at_immigrate;
6773
			spin_unlock(&mc.lock);
6774
			/* We set mc.moving_task later */
6775 6776 6777 6778

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6779 6780
		}
		mmput(mm);
6781 6782 6783 6784
	}
	return ret;
}

6785 6786
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6787
{
6788
	mem_cgroup_clear_mc();
6789 6790
}

6791 6792 6793
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6794
{
6795 6796 6797 6798
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6799 6800 6801 6802
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6803

6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6815
		if (mc.precharge < HPAGE_PMD_NR) {
6816 6817 6818 6819 6820 6821 6822 6823 6824
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6825
							pc, mc.from, mc.to)) {
6826 6827 6828 6829 6830 6831 6832 6833
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6834
		return 0;
6835 6836
	}

6837 6838
	if (pmd_trans_unstable(pmd))
		return 0;
6839 6840 6841 6842
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6843
		swp_entry_t ent;
6844 6845 6846 6847

		if (!mc.precharge)
			break;

6848
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6849 6850 6851 6852 6853
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6854
			if (!mem_cgroup_move_account(page, 1, pc,
6855
						     mc.from, mc.to)) {
6856
				mc.precharge--;
6857 6858
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6859 6860
			}
			putback_lru_page(page);
6861
put:			/* get_mctgt_type() gets the page */
6862 6863
			put_page(page);
			break;
6864 6865
		case MC_TARGET_SWAP:
			ent = target.ent;
6866
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6867
				mc.precharge--;
6868 6869 6870
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6871
			break;
6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6886
		ret = mem_cgroup_do_precharge(1);
6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6930
	up_read(&mm->mmap_sem);
6931 6932
}

6933 6934
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6935
{
6936
	struct task_struct *p = cgroup_taskset_first(tset);
6937
	struct mm_struct *mm = get_task_mm(p);
6938 6939

	if (mm) {
6940 6941
		if (mc.to)
			mem_cgroup_move_charge(mm);
6942 6943
		mmput(mm);
	}
6944 6945
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6946
}
6947
#else	/* !CONFIG_MMU */
6948 6949
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6950 6951 6952
{
	return 0;
}
6953 6954
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6955 6956
{
}
6957 6958
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
6959 6960 6961
{
}
#endif
B
Balbir Singh 已提交
6962

6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
static void mem_cgroup_bind(struct cgroup *root)
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
	if (cgroup_sane_behavior(root))
		mem_cgroup_from_cont(root)->use_hierarchy = true;
}

B
Balbir Singh 已提交
6978 6979 6980
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6981
	.css_alloc = mem_cgroup_css_alloc,
6982
	.css_online = mem_cgroup_css_online,
6983 6984
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6985 6986
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6987
	.attach = mem_cgroup_move_task,
6988
	.bind = mem_cgroup_bind,
6989
	.base_cftypes = mem_cgroup_files,
6990
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6991
	.use_id = 1,
B
Balbir Singh 已提交
6992
};
6993

A
Andrew Morton 已提交
6994
#ifdef CONFIG_MEMCG_SWAP
6995 6996 6997
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
6998
	if (!strcmp(s, "1"))
6999
		really_do_swap_account = 1;
7000
	else if (!strcmp(s, "0"))
7001 7002 7003
		really_do_swap_account = 0;
	return 1;
}
7004
__setup("swapaccount=", enable_swap_account);
7005

7006 7007
static void __init memsw_file_init(void)
{
7008 7009 7010 7011 7012 7013 7014 7015 7016
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
7017
}
7018

7019
#else
7020
static void __init enable_swap_cgroup(void)
7021 7022
{
}
7023
#endif
7024 7025

/*
7026 7027 7028 7029 7030 7031
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
7032 7033 7034 7035
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7036
	enable_swap_cgroup();
7037
	mem_cgroup_soft_limit_tree_init();
7038
	memcg_stock_init();
7039 7040 7041
	return 0;
}
subsys_initcall(mem_cgroup_init);