memcontrol.c 122.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
50
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include "internal.h"
B
Balbir Singh 已提交
52

53 54
#include <asm/uaccess.h>

55 56
#include <trace/events/vmscan.h>

57 58
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
59
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
60

61
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
62
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 64 65 66 67 68
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

69 70 71 72 73 74 75 76 77
/*
 * Per memcg event counter is incremented at every pagein/pageout. This counter
 * is used for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 *
 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 */
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
78

79 80 81 82 83 84 85 86
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
87
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
88
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
89 90
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
91
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
92
	MEM_CGROUP_EVENTS,	/* incremented at every  pagein/pageout */
93
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
94 95 96 97 98 99 100 101

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
};

102 103 104 105
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
106 107 108
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
109 110
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
111 112

	struct zone_reclaim_stat reclaim_stat;
113 114 115 116
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
117 118
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
119 120 121 122 123 124 125 126 127 128 129 130
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

151 152 153 154 155
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
156
/* For threshold */
157 158
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
159
	int current_threshold;
160 161 162 163 164
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
165 166 167 168 169 170 171 172 173 174 175 176

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
177 178 179 180 181
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
182 183

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
184
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
185

B
Balbir Singh 已提交
186 187 188 189 190 191 192
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
193 194 195
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
196 197 198 199 200 201 202
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
203 204 205 206
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
207 208 209 210
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
211
	struct mem_cgroup_lru_info info;
212

K
KOSAKI Motohiro 已提交
213 214 215 216 217
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

218
	/*
219
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
220
	 * reclaimed from.
221
	 */
K
KAMEZAWA Hiroyuki 已提交
222
	int last_scanned_child;
223 224 225 226
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
227
	atomic_t	oom_lock;
228
	atomic_t	refcnt;
229

K
KOSAKI Motohiro 已提交
230
	unsigned int	swappiness;
231 232
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
233

234 235 236
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

237 238 239 240
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
241
	struct mem_cgroup_thresholds thresholds;
242

243
	/* thresholds for mem+swap usage. RCU-protected */
244
	struct mem_cgroup_thresholds memsw_thresholds;
245

K
KAMEZAWA Hiroyuki 已提交
246 247 248
	/* For oom notifier event fd */
	struct list_head oom_notify;

249 250 251 252 253
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
254
	/*
255
	 * percpu counter.
256
	 */
257
	struct mem_cgroup_stat_cpu *stat;
B
Balbir Singh 已提交
258 259
};

260 261 262 263 264 265
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
266
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
267
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
268 269 270
	NR_MOVE_TYPE,
};

271 272
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
273
	spinlock_t	  lock; /* for from, to, moving_task */
274 275 276
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
277
	unsigned long moved_charge;
278
	unsigned long moved_swap;
279 280 281
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
282
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
283 284
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
285

D
Daisuke Nishimura 已提交
286 287 288 289 290 291
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

292 293 294 295 296 297
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

298 299 300 301 302 303 304
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

305 306 307
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
308
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
309
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
310
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
311
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
312 313 314
	NR_CHARGE_TYPE,
};

315 316 317 318
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
319 320
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
321

322 323 324
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
325
#define _OOM_TYPE		(2)
326 327 328
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
329 330
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
331

332 333 334 335 336 337 338
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
339 340
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
341

342 343
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
344
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
345
static void drain_all_stock_async(void);
346

347 348 349 350 351 352
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

353 354 355 356 357
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
387
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
388
				struct mem_cgroup_per_zone *mz,
389 390
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
391 392 393 394 395 396 397 398
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

399 400 401
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
418 419 420 421 422 423 424 425 426 427 428 429 430
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

431 432 433 434 435 436
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
437
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
438 439 440 441 442 443
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
444
	unsigned long long excess;
445 446
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
447 448
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
449 450 451
	mctz = soft_limit_tree_from_page(page);

	/*
452 453
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
454
	 */
455 456
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
457
		excess = res_counter_soft_limit_excess(&mem->res);
458 459 460 461
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
462
		if (excess || mz->on_tree) {
463 464 465 466 467
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
468 469
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
470
			 */
471
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
472 473
			spin_unlock(&mctz->lock);
		}
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

492 493 494 495 496 497 498 499 500
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
501
	struct mem_cgroup_per_zone *mz;
502 503

retry:
504
	mz = NULL;
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

	for_each_possible_cpu(cpu)
		val += per_cpu(mem->stat->count[idx], cpu);
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

554 555 556 557
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
558
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
559 560
}

561 562 563
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
564
{
565
	int val = (charge) ? 1 : -1;
566

567 568
	preempt_disable();

569
	if (PageCgroupCache(pc))
570
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
571
	else
572
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
573 574

	if (charge)
575
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
576
	else
577
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
578
	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
579

580
	preempt_enable();
581 582
}

K
KAMEZAWA Hiroyuki 已提交
583
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
584
					enum lru_list idx)
585 586 587 588 589 590 591 592 593 594 595
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
596 597
}

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
	s64 val;

	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);

	return !(val & ((1 << event_mask_shift) - 1));
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
		mem_cgroup_threshold(mem);
		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
			mem_cgroup_update_tree(mem, page);
	}
}

621
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
622 623 624 625 626 627
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

628
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
629
{
630 631 632 633 634 635 636 637
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

638 639 640 641
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

642 643 644
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
645 646 647

	if (!mm)
		return NULL;
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

698 699 700 701 702
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
716

K
KAMEZAWA Hiroyuki 已提交
717 718 719 720
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
721

722
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
723 724 725
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
726
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
727
		return;
728
	VM_BUG_ON(!pc->mem_cgroup);
729 730 731 732
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
733
	mz = page_cgroup_zoneinfo(pc);
734
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
735 736 737
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
738 739
	list_del_init(&pc->lru);
	return;
740 741
}

K
KAMEZAWA Hiroyuki 已提交
742
void mem_cgroup_del_lru(struct page *page)
743
{
K
KAMEZAWA Hiroyuki 已提交
744 745
	mem_cgroup_del_lru_list(page, page_lru(page));
}
746

K
KAMEZAWA Hiroyuki 已提交
747 748 749 750
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
751

752
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
753
		return;
754

K
KAMEZAWA Hiroyuki 已提交
755
	pc = lookup_page_cgroup(page);
756 757 758 759
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
760
	smp_rmb();
761 762
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
763 764 765
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
766 767
}

K
KAMEZAWA Hiroyuki 已提交
768
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
769
{
K
KAMEZAWA Hiroyuki 已提交
770 771
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
772

773
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
774 775
		return;
	pc = lookup_page_cgroup(page);
776
	VM_BUG_ON(PageCgroupAcctLRU(pc));
777 778 779 780
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
781 782
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
783
		return;
784

K
KAMEZAWA Hiroyuki 已提交
785
	mz = page_cgroup_zoneinfo(pc);
786
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
787 788 789
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
790 791
	list_add(&pc->lru, &mz->lists[lru]);
}
792

K
KAMEZAWA Hiroyuki 已提交
793
/*
794 795 796 797 798
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
799
 */
800
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
801
{
802 803 804 805 806 807 808 809 810 811 812 813
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
814 815
}

816 817 818 819 820 821 822 823
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
824
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
825 826 827 828 829
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
830 831 832
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
833
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
834 835 836
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
837 838
}

839 840 841
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
842
	struct mem_cgroup *curr = NULL;
843
	struct task_struct *p;
844

845 846 847 848 849
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
850 851
	if (!curr)
		return 0;
852 853 854 855 856 857 858
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
859 860 861 862
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
863 864 865
	return ret;
}

866
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
867 868 869
{
	unsigned long active;
	unsigned long inactive;
870 871
	unsigned long gb;
	unsigned long inactive_ratio;
872

K
KAMEZAWA Hiroyuki 已提交
873 874
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
875

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
903 904 905 906 907
		return 1;

	return 0;
}

908 909 910 911 912 913 914 915 916 917 918
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

919 920 921 922
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
923
	int nid = zone_to_nid(zone);
924 925 926 927 928 929
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
930 931 932
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
933
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
950 951 952 953 954 955 956 957
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
958 959 960 961 962 963 964
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

965 966 967 968 969
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
970
					int active, int file)
971 972 973 974 975 976
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
977
	struct page_cgroup *pc, *tmp;
978
	int nid = zone_to_nid(z);
979 980
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
981
	int lru = LRU_FILE * file + active;
982
	int ret;
983

984
	BUG_ON(!mem_cont);
985
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
986
	src = &mz->lists[lru];
987

988 989
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
990
		if (scan >= nr_to_scan)
991
			break;
K
KAMEZAWA Hiroyuki 已提交
992 993

		page = pc->page;
994 995
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
996
		if (unlikely(!PageLRU(page)))
997 998
			continue;

H
Hugh Dickins 已提交
999
		scan++;
1000 1001 1002
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1003
			list_move(&page->lru, dst);
1004
			mem_cgroup_del_lru(page);
1005
			nr_taken++;
1006 1007 1008 1009 1010 1011 1012
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1013 1014 1015 1016
		}
	}

	*scanned = scan;
1017 1018 1019 1020

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1021 1022 1023
	return nr_taken;
}

1024 1025 1026
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
	/* Because this is for moving account, reuse mc.lock */
	spin_lock(&mc.lock);
	for_each_possible_cpu(cpu)
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
	spin_unlock(&mc.lock);

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
	spin_lock(&mc.lock);
	for_each_possible_cpu(cpu)
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
	spin_unlock(&mc.lock);
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1095 1096 1097

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1098 1099
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1100
	bool ret = false;
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1135 1136 1137 1138 1139 1140
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
1141 1142

/**
1143
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1162
	if (!memcg || !p)
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

D
David Rientjes 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

	limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
			total_swap_pages;
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1238
/*
K
KAMEZAWA Hiroyuki 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1281 1282
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1283 1284 1285
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1286 1287
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1288 1289
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1290
						struct zone *zone,
1291 1292
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1293
{
K
KAMEZAWA Hiroyuki 已提交
1294 1295 1296
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1297 1298
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1299 1300
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1301

1302 1303 1304 1305
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1306
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1307
		victim = mem_cgroup_select_victim(root_mem);
1308
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1309
			loop++;
1310 1311
			if (loop >= 1)
				drain_all_stock_async();
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1335
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1336 1337
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1338 1339
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1340
		/* we use swappiness of local cgroup */
1341 1342
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1343
				noswap, get_swappiness(victim), zone);
1344 1345 1346
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1347
		css_put(&victim->css);
1348 1349 1350 1351 1352 1353 1354
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1355
		total += ret;
1356 1357 1358 1359
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1360
			return 1 + total;
1361
	}
K
KAMEZAWA Hiroyuki 已提交
1362
	return total;
1363 1364
}

K
KAMEZAWA Hiroyuki 已提交
1365
static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1366
{
K
KAMEZAWA Hiroyuki 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	int *val = (int *)data;
	int x;
	/*
	 * Logically, we can stop scanning immediately when we find
	 * a memcg is already locked. But condidering unlock ops and
	 * creation/removal of memcg, scan-all is simple operation.
	 */
	x = atomic_inc_return(&mem->oom_lock);
	*val = max(x, *val);
	return 0;
}
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
	int lock_count = 0;
1385

K
KAMEZAWA Hiroyuki 已提交
1386 1387 1388 1389 1390
	mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);

	if (lock_count == 1)
		return true;
	return false;
1391
}
1392

K
KAMEZAWA Hiroyuki 已提交
1393
static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1394
{
K
KAMEZAWA Hiroyuki 已提交
1395 1396 1397 1398 1399 1400
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
	atomic_add_unless(&mem->oom_lock, -1, 0);
1401 1402 1403
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1404 1405 1406 1407 1408 1409 1410 1411
static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL,	mem_cgroup_oom_unlock_cb);
}

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1448 1449
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1450
	if (mem && atomic_read(&mem->oom_lock))
1451 1452 1453
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1454 1455 1456 1457
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1458
{
K
KAMEZAWA Hiroyuki 已提交
1459
	struct oom_wait_info owait;
1460
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1461

K
KAMEZAWA Hiroyuki 已提交
1462 1463 1464 1465 1466
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1467
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1468 1469 1470 1471 1472 1473 1474 1475
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1476 1477 1478 1479
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1480
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1481 1482
	mutex_unlock(&memcg_oom_mutex);

1483 1484
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1485
		mem_cgroup_out_of_memory(mem, mask);
1486
	} else {
K
KAMEZAWA Hiroyuki 已提交
1487
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1488
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1489 1490 1491
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1492
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1493 1494 1495 1496 1497 1498 1499
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1500 1501
}

1502 1503 1504
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1524
 */
1525
void mem_cgroup_update_file_mapped(struct page *page, int val)
1526 1527
{
	struct mem_cgroup *mem;
1528 1529
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1530 1531 1532 1533

	if (unlikely(!pc))
		return;

1534
	rcu_read_lock();
1535
	mem = pc->mem_cgroup;
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
	if (unlikely(mem_cgroup_stealed(mem))) {
		/* take a lock against to access pc->mem_cgroup */
		lock_page_cgroup(pc);
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
1547
	if (val > 0) {
1548
		this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1549 1550
		SetPageCgroupFileMapped(pc);
	} else {
1551
		this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1552 1553
		if (!page_mapped(page)) /* for race between dec->inc counter */
			ClearPageCgroupFileMapped(pc);
1554
	}
1555

1556 1557 1558 1559 1560
out:
	if (unlikely(need_unlock))
		unlock_page_cgroup(pc);
	rcu_read_unlock();
	return;
1561
}
1562

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1624
 * This will be consumed by consume_stock() function, later.
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

	if (action != CPU_DEAD)
		return NOTIFY_OK;
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				int csize, bool oom_check)
{
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);

	if (csize > PAGE_SIZE) /* change csize and retry */
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
					gfp_mask, flags);
	/*
	 * try_to_free_mem_cgroup_pages() might not give us a full
	 * picture of reclaim. Some pages are reclaimed and might be
	 * moved to swap cache or just unmapped from the cgroup.
	 * Check the limit again to see if the reclaim reduced the
	 * current usage of the cgroup before giving up
	 */
	if (ret || mem_cgroup_check_under_limit(mem_over_limit))
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

1757 1758 1759
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1760
 */
1761
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1762
		gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1763
{
1764 1765 1766
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
1767
	int csize = CHARGE_SIZE;
1768

K
KAMEZAWA Hiroyuki 已提交
1769 1770 1771 1772 1773 1774 1775 1776
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
1777

1778
	/*
1779 1780
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1781 1782 1783
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
1784 1785 1786 1787
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
1788
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
1789 1790 1791 1792 1793
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
		if (consume_stock(mem))
			goto done;
1794 1795
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
1796
		struct task_struct *p;
1797

K
KAMEZAWA Hiroyuki 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		VM_BUG_ON(!p);
		/*
		 * because we don't have task_lock(), "p" can exit while
		 * we're here. In that case, "mem" can point to root
		 * cgroup but never be NULL. (and task_struct itself is freed
		 * by RCU, cgroup itself is RCU safe.) Then, we have small
		 * risk here to get wrong cgroup. But such kind of mis-account
		 * by race always happens because we don't have cgroup_mutex().
		 * It's overkill and we allow that small race, here.
		 */
		mem = mem_cgroup_from_task(p);
		VM_BUG_ON(!mem);
		if (mem_cgroup_is_root(mem)) {
			rcu_read_unlock();
			goto done;
		}
		if (consume_stock(mem)) {
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
1835

1836 1837
	do {
		bool oom_check;
1838

1839
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
1840 1841
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
1842
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
1843
		}
1844

1845 1846 1847 1848
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1849
		}
1850

1851
		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1852

1853 1854 1855 1856 1857
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
			csize = PAGE_SIZE;
K
KAMEZAWA Hiroyuki 已提交
1858 1859 1860
			css_put(&mem->css);
			mem = NULL;
			goto again;
1861
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
1862
			css_put(&mem->css);
1863 1864
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
1865 1866
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
1867
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
1868
			}
1869 1870 1871 1872
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
1873
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
1874
			goto bypass;
1875
		}
1876 1877
	} while (ret != CHARGE_OK);

1878 1879
	if (csize > PAGE_SIZE)
		refill_stock(mem, csize - PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
1880
	css_put(&mem->css);
1881
done:
K
KAMEZAWA Hiroyuki 已提交
1882
	*memcg = mem;
1883 1884
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
1885
	*memcg = NULL;
1886
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
1887 1888 1889
bypass:
	*memcg = NULL;
	return 0;
1890
}
1891

1892 1893 1894 1895 1896
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
1897 1898
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
1899 1900
{
	if (!mem_cgroup_is_root(mem)) {
1901
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1902
		if (do_swap_account)
1903
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
1904
	}
1905 1906 1907 1908 1909
}

static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
{
	__mem_cgroup_cancel_charge(mem, 1);
1910 1911
}

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

1931
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1932
{
1933
	struct mem_cgroup *mem = NULL;
1934
	struct page_cgroup *pc;
1935
	unsigned short id;
1936 1937
	swp_entry_t ent;

1938 1939 1940
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
1941
	lock_page_cgroup(pc);
1942
	if (PageCgroupUsed(pc)) {
1943
		mem = pc->mem_cgroup;
1944 1945
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
1946
	} else if (PageSwapCache(page)) {
1947
		ent.val = page_private(page);
1948 1949 1950 1951 1952 1953
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
1954
	}
1955
	unlock_page_cgroup(pc);
1956 1957 1958
	return mem;
}

1959
/*
1960
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1971 1972 1973 1974

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
1975
		mem_cgroup_cancel_charge(mem);
1976
		return;
1977
	}
1978

1979
	pc->mem_cgroup = mem;
1980 1981 1982 1983 1984 1985 1986
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
1987
	smp_wmb();
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2001

K
KAMEZAWA Hiroyuki 已提交
2002
	mem_cgroup_charge_statistics(mem, pc, true);
2003 2004

	unlock_page_cgroup(pc);
2005 2006 2007 2008 2009
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2010
	memcg_check_events(mem, pc->page);
2011
}
2012

2013
/**
2014
 * __mem_cgroup_move_account - move account of the page
2015 2016 2017
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2018
 * @uncharge: whether we should call uncharge and css_put against @from.
2019 2020
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2021
 * - page is not on LRU (isolate_page() is useful.)
2022
 * - the pc is locked, used, and ->mem_cgroup points to @from.
2023
 *
2024 2025 2026 2027
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2028 2029
 */

2030
static void __mem_cgroup_move_account(struct page_cgroup *pc,
2031
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2032 2033
{
	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
2034
	VM_BUG_ON(PageLRU(pc->page));
2035 2036 2037
	VM_BUG_ON(!PageCgroupLocked(pc));
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
2038

2039
	if (PageCgroupFileMapped(pc)) {
2040 2041 2042 2043 2044
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2045
	}
2046 2047 2048 2049
	mem_cgroup_charge_statistics(from, pc, false);
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
		mem_cgroup_cancel_charge(from);
2050

2051
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2052 2053
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
2054 2055 2056
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2057 2058 2059
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
2060
	 */
2061 2062 2063 2064 2065 2066 2067
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
2068
		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2069 2070 2071 2072
{
	int ret = -EINVAL;
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2073
		__mem_cgroup_move_account(pc, from, to, uncharge);
2074 2075 2076
		ret = 0;
	}
	unlock_page_cgroup(pc);
2077 2078 2079 2080 2081
	/*
	 * check events
	 */
	memcg_check_events(to, pc->page);
	memcg_check_events(from, pc->page);
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
2093
	struct page *page = pc->page;
2094 2095 2096 2097 2098 2099 2100 2101 2102
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2103 2104 2105 2106 2107
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
K
KAMEZAWA Hiroyuki 已提交
2108

2109
	parent = mem_cgroup_from_cont(pcg);
2110
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
2111
	if (ret || !parent)
2112
		goto put_back;
2113

2114 2115 2116
	ret = mem_cgroup_move_account(pc, child, parent, true);
	if (ret)
		mem_cgroup_cancel_charge(parent);
2117
put_back:
K
KAMEZAWA Hiroyuki 已提交
2118
	putback_lru_page(page);
2119
put:
2120
	put_page(page);
2121
out:
2122 2123 2124
	return ret;
}

2125 2126 2127 2128 2129 2130 2131
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2132
				gfp_t gfp_mask, enum charge_type ctype)
2133
{
2134
	struct mem_cgroup *mem = NULL;
2135 2136 2137 2138 2139 2140 2141 2142 2143
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

2144
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
2145
	if (ret || !mem)
2146 2147 2148
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
2149 2150 2151
	return 0;
}

2152 2153
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2154
{
2155
	if (mem_cgroup_disabled())
2156
		return 0;
2157 2158
	if (PageCompound(page))
		return 0;
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2170
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2171
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2172 2173
}

D
Daisuke Nishimura 已提交
2174 2175 2176 2177
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2178 2179
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2180
{
2181 2182
	int ret;

2183
	if (mem_cgroup_disabled())
2184
		return 0;
2185 2186
	if (PageCompound(page))
		return 0;
2187 2188 2189 2190 2191 2192 2193 2194
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2195 2196
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2197 2198 2199 2200
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2201 2202 2203 2204 2205 2206
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2207 2208
			return 0;
		}
2209
		unlock_page_cgroup(pc);
2210 2211
	}

2212
	if (unlikely(!mm))
2213
		mm = &init_mm;
2214

2215 2216
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
2217
				MEM_CGROUP_CHARGE_TYPE_CACHE);
2218

D
Daisuke Nishimura 已提交
2219 2220
	/* shmem */
	if (PageSwapCache(page)) {
2221 2222
		struct mem_cgroup *mem = NULL;

D
Daisuke Nishimura 已提交
2223 2224 2225 2226 2227 2228
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2229
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2230 2231

	return ret;
2232 2233
}

2234 2235 2236
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2237
 * struct page_cgroup is acquired. This refcnt will be consumed by
2238 2239
 * "commit()" or removed by "cancel()"
 */
2240 2241 2242 2243 2244
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2245
	int ret;
2246

2247
	if (mem_cgroup_disabled())
2248 2249 2250 2251 2252 2253
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2254 2255 2256
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2257 2258
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2259
		goto charge_cur_mm;
2260
	mem = try_get_mem_cgroup_from_page(page);
2261 2262
	if (!mem)
		goto charge_cur_mm;
2263
	*ptr = mem;
2264
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2265 2266
	css_put(&mem->css);
	return ret;
2267 2268 2269
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2270
	return __mem_cgroup_try_charge(mm, mask, ptr, true);
2271 2272
}

D
Daisuke Nishimura 已提交
2273 2274 2275
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2276 2277 2278
{
	struct page_cgroup *pc;

2279
	if (mem_cgroup_disabled())
2280 2281 2282
		return;
	if (!ptr)
		return;
2283
	cgroup_exclude_rmdir(&ptr->css);
2284
	pc = lookup_page_cgroup(page);
2285
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
2286
	__mem_cgroup_commit_charge(ptr, pc, ctype);
2287
	mem_cgroup_lru_add_after_commit_swapcache(page);
2288 2289 2290
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2291 2292 2293
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2294
	 */
2295
	if (do_swap_account && PageSwapCache(page)) {
2296
		swp_entry_t ent = {.val = page_private(page)};
2297
		unsigned short id;
2298
		struct mem_cgroup *memcg;
2299 2300 2301 2302

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2303
		if (memcg) {
2304 2305 2306 2307
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2308
			if (!mem_cgroup_is_root(memcg))
2309
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2310
			mem_cgroup_swap_statistics(memcg, false);
2311 2312
			mem_cgroup_put(memcg);
		}
2313
		rcu_read_unlock();
2314
	}
2315 2316 2317 2318 2319 2320
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2321 2322
}

D
Daisuke Nishimura 已提交
2323 2324 2325 2326 2327 2328
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2329 2330
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2331
	if (mem_cgroup_disabled())
2332 2333 2334
		return;
	if (!mem)
		return;
2335
	mem_cgroup_cancel_charge(mem);
2336 2337
}

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
static void
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (uncharge_memsw)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2382 2383
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2384 2385
	return;
}
2386

2387
/*
2388
 * uncharge if !page_mapped(page)
2389
 */
2390
static struct mem_cgroup *
2391
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2392
{
H
Hugh Dickins 已提交
2393
	struct page_cgroup *pc;
2394
	struct mem_cgroup *mem = NULL;
2395

2396
	if (mem_cgroup_disabled())
2397
		return NULL;
2398

K
KAMEZAWA Hiroyuki 已提交
2399
	if (PageSwapCache(page))
2400
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2401

2402
	/*
2403
	 * Check if our page_cgroup is valid
2404
	 */
2405 2406
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2407
		return NULL;
2408

2409
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2410

2411 2412
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2413 2414 2415 2416 2417
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2418
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2419 2420
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2432
	}
K
KAMEZAWA Hiroyuki 已提交
2433

K
KAMEZAWA Hiroyuki 已提交
2434
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
2435

2436
	ClearPageCgroupUsed(pc);
2437 2438 2439 2440 2441 2442
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2443

2444
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2445 2446 2447 2448
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
2449
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2450 2451 2452 2453 2454 2455
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
		__do_uncharge(mem, ctype);
2456

2457
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2458 2459 2460

unlock_out:
	unlock_page_cgroup(pc);
2461
	return NULL;
2462 2463
}

2464 2465
void mem_cgroup_uncharge_page(struct page *page)
{
2466 2467 2468 2469 2470
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2471 2472 2473 2474 2475 2476
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2477
	VM_BUG_ON(page->mapping);
2478 2479 2480
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2521
	memcg_oom_recover(batch->memcg);
2522 2523 2524 2525
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2526
#ifdef CONFIG_SWAP
2527
/*
2528
 * called after __delete_from_swap_cache() and drop "page" account.
2529 2530
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2531 2532
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2533 2534
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2535 2536 2537 2538 2539 2540
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2541

K
KAMEZAWA Hiroyuki 已提交
2542 2543 2544 2545 2546
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
2547
		swap_cgroup_record(ent, css_id(&memcg->css));
2548
}
2549
#endif
2550 2551 2552 2553 2554 2555 2556

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2557
{
2558
	struct mem_cgroup *memcg;
2559
	unsigned short id;
2560 2561 2562 2563

	if (!do_swap_account)
		return;

2564 2565 2566
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2567
	if (memcg) {
2568 2569 2570 2571
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2572
		if (!mem_cgroup_is_root(memcg))
2573
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2574
		mem_cgroup_swap_statistics(memcg, false);
2575 2576
		mem_cgroup_put(memcg);
	}
2577
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2578
}
2579 2580 2581 2582 2583 2584

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2585
 * @need_fixup: whether we should fixup res_counters and refcounts.
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2596
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2597 2598 2599 2600 2601 2602 2603 2604
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2605
		mem_cgroup_swap_statistics(to, true);
2606
		/*
2607 2608 2609 2610 2611 2612
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2613 2614
		 */
		mem_cgroup_get(to);
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
2626 2627 2628 2629 2630 2631
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2632
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2633 2634 2635
{
	return -EINVAL;
}
2636
#endif
K
KAMEZAWA Hiroyuki 已提交
2637

2638
/*
2639 2640
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2641
 */
2642 2643
int mem_cgroup_prepare_migration(struct page *page,
	struct page *newpage, struct mem_cgroup **ptr)
2644 2645
{
	struct page_cgroup *pc;
2646
	struct mem_cgroup *mem = NULL;
2647
	enum charge_type ctype;
2648
	int ret = 0;
2649

2650
	if (mem_cgroup_disabled())
2651 2652
		return 0;

2653 2654 2655
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2656 2657
		mem = pc->mem_cgroup;
		css_get(&mem->css);
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
2689
	}
2690
	unlock_page_cgroup(pc);
2691 2692 2693 2694 2695 2696
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
2697

A
Andrea Arcangeli 已提交
2698
	*ptr = mem;
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
2712
	}
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
	__mem_cgroup_commit_charge(mem, pc, ctype);
2727
	return ret;
2728
}
2729

2730
/* remove redundant charge if migration failed*/
2731
void mem_cgroup_end_migration(struct mem_cgroup *mem,
2732
	struct page *oldpage, struct page *newpage)
2733
{
2734
	struct page *used, *unused;
2735 2736 2737 2738
	struct page_cgroup *pc;

	if (!mem)
		return;
2739
	/* blocks rmdir() */
2740
	cgroup_exclude_rmdir(&mem->css);
2741 2742
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
2743 2744
		used = oldpage;
		unused = newpage;
2745
	} else {
2746
		used = newpage;
2747 2748
		unused = oldpage;
	}
2749
	/*
2750 2751 2752
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
2753
	 */
2754 2755 2756 2757
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
2758

2759 2760
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

2761
	/*
2762 2763 2764 2765 2766 2767
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
2768
	 */
2769 2770
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
2771
	/*
2772 2773
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
2774 2775 2776 2777
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2778
}
2779

2780
/*
2781 2782 2783 2784 2785 2786
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2787
 */
2788
int mem_cgroup_shmem_charge_fallback(struct page *page,
2789 2790
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2791
{
2792
	struct mem_cgroup *mem = NULL;
2793
	int ret;
2794

2795
	if (mem_cgroup_disabled())
2796
		return 0;
2797

2798 2799 2800
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2801

2802
	return ret;
2803 2804
}

2805 2806
static DEFINE_MUTEX(set_limit_mutex);

2807
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2808
				unsigned long long val)
2809
{
2810
	int retry_count;
2811
	u64 memswlimit, memlimit;
2812
	int ret = 0;
2813 2814
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
2815
	int enlarge;
2816 2817 2818 2819 2820 2821 2822 2823 2824

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2825

2826
	enlarge = 0;
2827
	while (retry_count) {
2828 2829 2830 2831
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2842 2843
			break;
		}
2844 2845 2846 2847 2848

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

2849
		ret = res_counter_set_limit(&memcg->res, val);
2850 2851 2852 2853 2854 2855
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2856 2857 2858 2859 2860
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2861
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2862
						MEM_CGROUP_RECLAIM_SHRINK);
2863 2864 2865 2866 2867 2868
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2869
	}
2870 2871
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2872

2873 2874 2875
	return ret;
}

L
Li Zefan 已提交
2876 2877
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
2878
{
2879
	int retry_count;
2880
	u64 memlimit, memswlimit, oldusage, curusage;
2881 2882
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
2883
	int enlarge = 0;
2884

2885 2886 2887
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
2905 2906 2907
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
2908
		ret = res_counter_set_limit(&memcg->memsw, val);
2909 2910 2911 2912 2913 2914
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2915 2916 2917 2918 2919
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2920
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2921 2922
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
2923
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2924
		/* Usage is reduced ? */
2925
		if (curusage >= oldusage)
2926
			retry_count--;
2927 2928
		else
			oldusage = curusage;
2929
	}
2930 2931
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2932 2933 2934
	return ret;
}

2935
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2936
					    gfp_t gfp_mask)
2937 2938 2939 2940 2941 2942
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2943
	unsigned long long excess;
2944 2945 2946 2947

	if (order > 0)
		return 0;

2948
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2996
		excess = res_counter_soft_limit_excess(&mz->mem->res);
2997 2998 2999 3000 3001 3002 3003 3004
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3005 3006
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3025 3026 3027 3028
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3029
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3030
				int node, int zid, enum lru_list lru)
3031
{
K
KAMEZAWA Hiroyuki 已提交
3032 3033
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3034
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3035
	unsigned long flags, loop;
3036
	struct list_head *list;
3037
	int ret = 0;
3038

K
KAMEZAWA Hiroyuki 已提交
3039 3040
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3041
	list = &mz->lists[lru];
3042

3043 3044 3045 3046 3047 3048
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3049
		spin_lock_irqsave(&zone->lru_lock, flags);
3050
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3051
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3052
			break;
3053 3054 3055 3056
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3057
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3058
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3059 3060
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3061
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3062

K
KAMEZAWA Hiroyuki 已提交
3063
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3064
		if (ret == -ENOMEM)
3065
			break;
3066 3067 3068 3069 3070 3071 3072

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3073
	}
K
KAMEZAWA Hiroyuki 已提交
3074

3075 3076 3077
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3078 3079 3080 3081 3082 3083
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3084
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3085
{
3086 3087 3088
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3089
	struct cgroup *cgrp = mem->css.cgroup;
3090

3091
	css_get(&mem->css);
3092 3093

	shrink = 0;
3094 3095 3096
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3097
move_account:
3098
	do {
3099
		ret = -EBUSY;
3100 3101 3102 3103
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3104
			goto out;
3105 3106
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3107
		drain_all_stock_sync();
3108
		ret = 0;
3109
		mem_cgroup_start_move(mem);
3110
		for_each_node_state(node, N_HIGH_MEMORY) {
3111
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3112
				enum lru_list l;
3113 3114
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3115
							node, zid, l);
3116 3117 3118
					if (ret)
						break;
				}
3119
			}
3120 3121 3122
			if (ret)
				break;
		}
3123
		mem_cgroup_end_move(mem);
3124
		memcg_oom_recover(mem);
3125 3126 3127
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3128
		cond_resched();
3129 3130
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3131 3132 3133
out:
	css_put(&mem->css);
	return ret;
3134 3135

try_to_free:
3136 3137
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3138 3139 3140
		ret = -EBUSY;
		goto out;
	}
3141 3142
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3143 3144 3145 3146
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3147 3148 3149 3150 3151

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3152 3153
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3154
		if (!progress) {
3155
			nr_retries--;
3156
			/* maybe some writeback is necessary */
3157
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3158
		}
3159 3160

	}
K
KAMEZAWA Hiroyuki 已提交
3161
	lru_add_drain();
3162
	/* try move_account...there may be some *locked* pages. */
3163
	goto move_account;
3164 3165
}

3166 3167 3168 3169 3170 3171
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3190
	 * If parent's use_hierarchy is set, we can't make any modifications
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3210 3211 3212 3213 3214 3215 3216 3217 3218
struct mem_cgroup_idx_data {
	s64 val;
	enum mem_cgroup_stat_index idx;
};

static int
mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_idx_data *d = data;
3219
	d->val += mem_cgroup_read_stat(mem, d->idx);
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
	return 0;
}

static void
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx, s64 *val)
{
	struct mem_cgroup_idx_data d;
	d.idx = idx;
	d.val = 0;
	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
	*val = d.val;
}

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
	u64 idx_val, val;

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
	val = idx_val;
	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
	val += idx_val;

	if (swap) {
		mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
		val += idx_val;
	}

	return val << PAGE_SHIFT;
}

3259
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3260
{
3261
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3262
	u64 val;
3263 3264 3265 3266 3267 3268
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3269 3270 3271
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3272
			val = res_counter_read_u64(&mem->res, name);
3273 3274
		break;
	case _MEMSWAP:
3275 3276 3277
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3278
			val = res_counter_read_u64(&mem->memsw, name);
3279 3280 3281 3282 3283 3284
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3285
}
3286 3287 3288 3289
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3290 3291
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3292
{
3293
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3294
	int type, name;
3295 3296 3297
	unsigned long long val;
	int ret;

3298 3299 3300
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3301
	case RES_LIMIT:
3302 3303 3304 3305
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3306 3307
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3308 3309 3310
		if (ret)
			break;
		if (type == _MEM)
3311
			ret = mem_cgroup_resize_limit(memcg, val);
3312 3313
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3314
		break;
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3329 3330 3331 3332 3333
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3334 3335
}

3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3364
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3365 3366
{
	struct mem_cgroup *mem;
3367
	int type, name;
3368 3369

	mem = mem_cgroup_from_cont(cont);
3370 3371 3372
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3373
	case RES_MAX_USAGE:
3374 3375 3376 3377
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3378 3379
		break;
	case RES_FAILCNT:
3380 3381 3382 3383
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3384 3385
		break;
	}
3386

3387
	return 0;
3388 3389
}

3390 3391 3392 3393 3394 3395
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3396
#ifdef CONFIG_MMU
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3415 3416 3417 3418 3419 3420 3421
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3422

K
KAMEZAWA Hiroyuki 已提交
3423 3424 3425 3426 3427

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3428
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3429 3430
	MCS_PGPGIN,
	MCS_PGPGOUT,
3431
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3442 3443
};

K
KAMEZAWA Hiroyuki 已提交
3444 3445 3446 3447 3448 3449
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3450
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3451 3452
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3453
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
3468
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3469
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3470
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3471
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3472
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3473
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3474
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3475
	s->stat[MCS_PGPGIN] += val;
3476
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3477
	s->stat[MCS_PGPGOUT] += val;
3478
	if (do_swap_account) {
3479
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3480 3481
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

3503 3504
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3505 3506
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3507
	struct mcs_total_stat mystat;
3508 3509
	int i;

K
KAMEZAWA Hiroyuki 已提交
3510 3511
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3512

3513 3514 3515
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3516
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3517
	}
L
Lee Schermerhorn 已提交
3518

K
KAMEZAWA Hiroyuki 已提交
3519
	/* Hierarchical information */
3520 3521 3522 3523 3524 3525 3526
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3527

K
KAMEZAWA Hiroyuki 已提交
3528 3529
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3530 3531 3532
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3533
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3534
	}
K
KAMEZAWA Hiroyuki 已提交
3535

K
KOSAKI Motohiro 已提交
3536
#ifdef CONFIG_DEBUG_VM
3537
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3565 3566 3567
	return 0;
}

K
KOSAKI Motohiro 已提交
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3580

K
KOSAKI Motohiro 已提交
3581 3582 3583 3584 3585 3586 3587
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3588 3589 3590

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3591 3592
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3593 3594
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3595
		return -EINVAL;
3596
	}
K
KOSAKI Motohiro 已提交
3597 3598 3599 3600 3601

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3602 3603
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3604 3605 3606
	return 0;
}

3607 3608 3609 3610 3611 3612 3613 3614
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
3615
		t = rcu_dereference(memcg->thresholds.primary);
3616
	else
3617
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3629
	i = t->current_threshold;
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3653
	t->current_threshold = i - 1;
3654 3655 3656 3657 3658 3659
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3660 3661 3662 3663 3664 3665 3666
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3693 3694
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3695 3696
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3697 3698
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
3699
	int i, size, ret;
3700 3701 3702 3703 3704 3705

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3706

3707
	if (type == _MEM)
3708
		thresholds = &memcg->thresholds;
3709
	else if (type == _MEMSWAP)
3710
		thresholds = &memcg->memsw_thresholds;
3711 3712 3713 3714 3715 3716
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
3717
	if (thresholds->primary)
3718 3719
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3720
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3721 3722

	/* Allocate memory for new array of thresholds */
3723
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3724
			GFP_KERNEL);
3725
	if (!new) {
3726 3727 3728
		ret = -ENOMEM;
		goto unlock;
	}
3729
	new->size = size;
3730 3731

	/* Copy thresholds (if any) to new array */
3732 3733
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3734
				sizeof(struct mem_cgroup_threshold));
3735 3736
	}

3737
	/* Add new threshold */
3738 3739
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3740 3741

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3742
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3743 3744 3745
			compare_thresholds, NULL);

	/* Find current threshold */
3746
	new->current_threshold = -1;
3747
	for (i = 0; i < size; i++) {
3748
		if (new->entries[i].threshold < usage) {
3749
			/*
3750 3751
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3752 3753
			 * it here.
			 */
3754
			++new->current_threshold;
3755 3756 3757
		}
	}

3758 3759 3760 3761 3762
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3763

3764
	/* To be sure that nobody uses thresholds */
3765 3766 3767 3768 3769 3770 3771 3772
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3773
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3774
	struct cftype *cft, struct eventfd_ctx *eventfd)
3775 3776
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3777 3778
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3779 3780
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
3781
	int i, j, size;
3782 3783 3784

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
3785
		thresholds = &memcg->thresholds;
3786
	else if (type == _MEMSWAP)
3787
		thresholds = &memcg->memsw_thresholds;
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3803 3804 3805
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3806 3807 3808
			size++;
	}

3809
	new = thresholds->spare;
3810

3811 3812
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3813 3814
		kfree(new);
		new = NULL;
3815
		goto swap_buffers;
3816 3817
	}

3818
	new->size = size;
3819 3820

	/* Copy thresholds and find current threshold */
3821 3822 3823
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3824 3825
			continue;

3826 3827
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
3828
			/*
3829
			 * new->current_threshold will not be used
3830 3831 3832
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3833
			++new->current_threshold;
3834 3835 3836 3837
		}
		j++;
	}

3838
swap_buffers:
3839 3840 3841
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
3842

3843
	/* To be sure that nobody uses thresholds */
3844 3845 3846 3847
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
3848

K
KAMEZAWA Hiroyuki 已提交
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

3874
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
3929 3930
	if (!val)
		memcg_oom_recover(mem);
3931 3932 3933 3934
	cgroup_unlock();
	return 0;
}

B
Balbir Singh 已提交
3935 3936
static struct cftype mem_cgroup_files[] = {
	{
3937
		.name = "usage_in_bytes",
3938
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3939
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
3940 3941
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
3942
	},
3943 3944
	{
		.name = "max_usage_in_bytes",
3945
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3946
		.trigger = mem_cgroup_reset,
3947 3948
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3949
	{
3950
		.name = "limit_in_bytes",
3951
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3952
		.write_string = mem_cgroup_write,
3953
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3954
	},
3955 3956 3957 3958 3959 3960
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3961 3962
	{
		.name = "failcnt",
3963
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3964
		.trigger = mem_cgroup_reset,
3965
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3966
	},
3967 3968
	{
		.name = "stat",
3969
		.read_map = mem_control_stat_show,
3970
	},
3971 3972 3973 3974
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
3975 3976 3977 3978 3979
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
3980 3981 3982 3983 3984
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3985 3986 3987 3988 3989
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3990 3991
	{
		.name = "oom_control",
3992 3993
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3994 3995 3996 3997
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
B
Balbir Singh 已提交
3998 3999
};

4000 4001 4002 4003 4004 4005
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4006 4007
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4043 4044 4045
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4046
	struct mem_cgroup_per_zone *mz;
4047
	enum lru_list l;
4048
	int zone, tmp = node;
4049 4050 4051 4052 4053 4054 4055 4056
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4057 4058 4059
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4060 4061
	if (!pn)
		return 1;
4062

4063 4064
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
4065 4066 4067

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4068 4069
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4070
		mz->usage_in_excess = 0;
4071 4072
		mz->on_tree = false;
		mz->mem = mem;
4073
	}
4074 4075 4076
	return 0;
}

4077 4078 4079 4080 4081
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4082 4083 4084
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4085
	int size = sizeof(struct mem_cgroup);
4086

4087
	/* Can be very big if MAX_NUMNODES is very big */
4088 4089
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
4090
	else
4091
		mem = vmalloc(size);
4092

4093 4094 4095 4096
	if (!mem)
		return NULL;

	memset(mem, 0, size);
4097 4098 4099 4100 4101 4102 4103 4104
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!mem->stat) {
		if (size < PAGE_SIZE)
			kfree(mem);
		else
			vfree(mem);
		mem = NULL;
	}
4105 4106 4107
	return mem;
}

4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4119
static void __mem_cgroup_free(struct mem_cgroup *mem)
4120
{
K
KAMEZAWA Hiroyuki 已提交
4121 4122
	int node;

4123
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4124 4125
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4126 4127 4128
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4129 4130
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4131 4132 4133 4134 4135
		kfree(mem);
	else
		vfree(mem);
}

4136 4137 4138 4139 4140
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4141
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4142
{
4143
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4144
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4145
		__mem_cgroup_free(mem);
4146 4147 4148
		if (parent)
			mem_cgroup_put(parent);
	}
4149 4150
}

4151 4152 4153 4154 4155
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4156 4157 4158 4159 4160 4161 4162 4163 4164
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4165

4166 4167 4168
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4169
	if (!mem_cgroup_disabled() && really_do_swap_account)
4170 4171 4172 4173 4174 4175 4176 4177
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4203
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4204 4205
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4206
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4207
	long error = -ENOMEM;
4208
	int node;
B
Balbir Singh 已提交
4209

4210 4211
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4212
		return ERR_PTR(error);
4213

4214 4215 4216
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4217

4218
	/* root ? */
4219
	if (cont->parent == NULL) {
4220
		int cpu;
4221
		enable_swap_cgroup();
4222
		parent = NULL;
4223
		root_mem_cgroup = mem;
4224 4225
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4226 4227 4228 4229 4230 4231
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
		hotcpu_notifier(memcg_stock_cpu_callback, 0);
4232
	} else {
4233
		parent = mem_cgroup_from_cont(cont->parent);
4234
		mem->use_hierarchy = parent->use_hierarchy;
4235
		mem->oom_kill_disable = parent->oom_kill_disable;
4236
	}
4237

4238 4239 4240
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4241 4242 4243 4244 4245 4246 4247
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4248 4249 4250 4251
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4252
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
4253
	spin_lock_init(&mem->reclaim_param_lock);
K
KAMEZAWA Hiroyuki 已提交
4254
	INIT_LIST_HEAD(&mem->oom_notify);
4255

K
KOSAKI Motohiro 已提交
4256 4257
	if (parent)
		mem->swappiness = get_swappiness(parent);
4258
	atomic_set(&mem->refcnt, 1);
4259
	mem->move_charge_at_immigrate = 0;
4260
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4261
	return &mem->css;
4262
free_out:
4263
	__mem_cgroup_free(mem);
4264
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4265
	return ERR_PTR(error);
B
Balbir Singh 已提交
4266 4267
}

4268
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4269 4270 4271
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4272 4273

	return mem_cgroup_force_empty(mem, false);
4274 4275
}

B
Balbir Singh 已提交
4276 4277 4278
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4279 4280 4281
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4282 4283 4284 4285 4286
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4287 4288 4289 4290 4291 4292 4293 4294
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4295 4296
}

4297
#ifdef CONFIG_MMU
4298
/* Handlers for move charge at task migration. */
4299 4300
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4301
{
4302 4303
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4304 4305
	struct mem_cgroup *mem = mc.to;

4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
4341
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4342 4343 4344 4345 4346
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4347 4348 4349 4350 4351 4352 4353 4354
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4355
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4356 4357 4358 4359 4360 4361
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4362 4363 4364
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4365 4366 4367 4368 4369
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4370
	swp_entry_t	ent;
4371 4372 4373 4374 4375
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4376
	MC_TARGET_SWAP,
4377 4378
};

D
Daisuke Nishimura 已提交
4379 4380
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4381
{
D
Daisuke Nishimura 已提交
4382
	struct page *page = vm_normal_page(vma, addr, ptent);
4383

D
Daisuke Nishimura 已提交
4384 4385 4386 4387 4388 4389
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
4390 4391
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
4410 4411
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
4412
		return NULL;
4413
	}
D
Daisuke Nishimura 已提交
4414 4415 4416 4417 4418 4419
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4465 4466
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4467 4468 4469

	if (!page && !ent.val)
		return 0;
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4485 4486
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
4487 4488 4489 4490
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4510 4511 4512
	return 0;
}

4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
	up_read(&mm->mmap_sem);

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4540
	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4541 4542 4543 4544
}

static void mem_cgroup_clear_mc(void)
{
4545 4546 4547
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4548
	/* we must uncharge all the leftover precharges from mc.to */
4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4560
	}
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */

		mc.moved_swap = 0;
	}
4581
	spin_lock(&mc.lock);
4582 4583
	mc.from = NULL;
	mc.to = NULL;
4584
	mc.moving_task = NULL;
4585
	spin_unlock(&mc.lock);
4586
	mem_cgroup_end_move(from);
4587 4588
	memcg_oom_recover(from);
	memcg_oom_recover(to);
4589
	wake_up_all(&mc.waitq);
4590 4591
}

4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4610 4611 4612 4613
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4614
			VM_BUG_ON(mc.moved_charge);
4615
			VM_BUG_ON(mc.moved_swap);
4616
			VM_BUG_ON(mc.moving_task);
4617
			mem_cgroup_start_move(from);
4618
			spin_lock(&mc.lock);
4619 4620 4621
			mc.from = from;
			mc.to = mem;
			mc.precharge = 0;
4622
			mc.moved_charge = 0;
4623
			mc.moved_swap = 0;
4624
			mc.moving_task = current;
4625
			spin_unlock(&mc.lock);
4626 4627 4628 4629 4630

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
		}
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
		mmput(mm);
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4641
	mem_cgroup_clear_mc();
4642 4643
}

4644 4645 4646
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4647
{
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4661
		swp_entry_t ent;
4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4673 4674
			if (!mem_cgroup_move_account(pc,
						mc.from, mc.to, false)) {
4675
				mc.precharge--;
4676 4677
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4678 4679 4680 4681 4682
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4683 4684
		case MC_TARGET_SWAP:
			ent = target.ent;
4685 4686
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4687
				mc.precharge--;
4688 4689 4690
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4691
			break;
4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4706
		ret = mem_cgroup_do_precharge(1);
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
	up_read(&mm->mmap_sem);
4739 4740
}

B
Balbir Singh 已提交
4741 4742 4743
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
4744 4745
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
4746
{
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
	struct mm_struct *mm;

	if (!mc.to)
		/* no need to move charge */
		return;

	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4759
}
4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
B
Balbir Singh 已提交
4782

B
Balbir Singh 已提交
4783 4784 4785 4786
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
4787
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
4788 4789
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
4790 4791
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
4792
	.attach = mem_cgroup_move_task,
4793
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
4794
	.use_id = 1,
B
Balbir Singh 已提交
4795
};
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif