memcontrol.c 168.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82
static int really_do_swap_account __initdata = 1;
#else
83
static int really_do_swap_account __initdata;
84 85
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146 147
struct reclaim_iter {
	struct mem_cgroup *position;
148 149 150 151
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

152 153 154 155
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
156
	struct lruvec		lruvec;
157
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
158

159
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
160

161
	struct rb_node		tree_node;	/* RB tree node */
162
	unsigned long		usage_in_excess;/* Set to the value by which */
163 164
						/* the soft limit is exceeded*/
	bool			on_tree;
165
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
166
						/* use container_of	   */
167 168 169 170 171 172
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

193 194
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
195
	unsigned long threshold;
196 197
};

K
KAMEZAWA Hiroyuki 已提交
198
/* For threshold */
199
struct mem_cgroup_threshold_ary {
200
	/* An array index points to threshold just below or equal to usage. */
201
	int current_threshold;
202 203 204 205 206
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
207 208 209 210 211 212 213 214 215 216 217 218

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
219 220 221 222 223
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
224

225 226 227
/*
 * cgroup_event represents events which userspace want to receive.
 */
228
struct mem_cgroup_event {
229
	/*
230
	 * memcg which the event belongs to.
231
	 */
232
	struct mem_cgroup *memcg;
233 234 235 236 237 238 239 240
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
241 242 243 244 245
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
246
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
247
			      struct eventfd_ctx *eventfd, const char *args);
248 249 250 251 252
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
253
	void (*unregister_event)(struct mem_cgroup *memcg,
254
				 struct eventfd_ctx *eventfd);
255 256 257 258 259 260 261 262 263 264
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

265 266
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
267

B
Balbir Singh 已提交
268 269 270 271 272 273 274
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
275 276 277
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
278 279 280
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
281 282 283 284 285 286 287

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

	unsigned long soft_limit;
288

289 290 291
	/* vmpressure notifications */
	struct vmpressure vmpressure;

292 293 294
	/* css_online() has been completed */
	int initialized;

295 296 297 298
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
299
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
300 301 302

	bool		oom_lock;
	atomic_t	under_oom;
303
	atomic_t	oom_wakeups;
304

305
	int	swappiness;
306 307
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
308

309 310 311 312
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
313
	struct mem_cgroup_thresholds thresholds;
314

315
	/* thresholds for mem+swap usage. RCU-protected */
316
	struct mem_cgroup_thresholds memsw_thresholds;
317

K
KAMEZAWA Hiroyuki 已提交
318 319
	/* For oom notifier event fd */
	struct list_head oom_notify;
320

321 322 323 324
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
325
	unsigned long move_charge_at_immigrate;
326 327 328 329
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
330 331
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
332
	/*
333
	 * percpu counter.
334
	 */
335
	struct mem_cgroup_stat_cpu __percpu *stat;
336 337 338 339 340 341
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
342

M
Michal Hocko 已提交
343
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
344
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
345
#endif
346
#if defined(CONFIG_MEMCG_KMEM)
347 348
	/* analogous to slab_common's slab_caches list, but per-memcg;
	 * protected by memcg_slab_mutex */
349 350 351 352
	struct list_head memcg_slab_caches;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
353 354 355 356 357 358 359

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
360

361 362 363 364
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

365 366
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
367 368
};

369 370
/* internal only representation about the status of kmem accounting. */
enum {
371
	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
372
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
373 374 375 376 377 378 379
};

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
380 381 382 383 384 385 386 387

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
388 389 390 391 392
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
393 394 395 396 397 398 399 400 401
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
402 403
#endif

404 405
/* Stuffs for move charges at task migration. */
/*
406 407
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
408 409
 */
enum move_type {
410
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
411
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
412 413 414
	NR_MOVE_TYPE,
};

415 416
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
417
	spinlock_t	  lock; /* for from, to */
418 419
	struct mem_cgroup *from;
	struct mem_cgroup *to;
420
	unsigned long immigrate_flags;
421
	unsigned long precharge;
422
	unsigned long moved_charge;
423
	unsigned long moved_swap;
424 425 426
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
427
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
428 429
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
430

D
Daisuke Nishimura 已提交
431 432
static bool move_anon(void)
{
433
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
434 435
}

436 437
static bool move_file(void)
{
438
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
439 440
}

441 442 443 444
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
445
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
446
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
447

448 449
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
450
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
451
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
452
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
453 454 455
	NR_CHARGE_TYPE,
};

456
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
457 458 459 460
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
461
	_KMEM,
G
Glauber Costa 已提交
462 463
};

464 465
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
466
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
467 468
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
469

470 471 472 473 474 475 476
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

477 478
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
479
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
480 481
}

482 483 484 485 486 487 488 489 490 491 492 493 494
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

495 496 497 498 499
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

500 501 502 503 504 505
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
506 507
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
508
	return memcg->css.id;
L
Li Zefan 已提交
509 510 511 512 513 514
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

515
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
516 517 518
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
519
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
520
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
521 522 523

void sock_update_memcg(struct sock *sk)
{
524
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
525
		struct mem_cgroup *memcg;
526
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
527 528 529

		BUG_ON(!sk->sk_prot->proto_cgroup);

530 531 532 533 534 535 536 537 538 539
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
540
			css_get(&sk->sk_cgrp->memcg->css);
541 542 543
			return;
		}

G
Glauber Costa 已提交
544 545
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
546
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
547
		if (!mem_cgroup_is_root(memcg) &&
548 549
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
550
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
551 552 553 554 555 556 557 558
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
559
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
560 561 562
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
563
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
564 565
	}
}
G
Glauber Costa 已提交
566 567 568 569 570 571

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

572
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
573 574
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
575

576 577
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
578
	if (!memcg_proto_activated(&memcg->tcp_mem))
579 580 581 582 583 584 585 586 587
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

588
#ifdef CONFIG_MEMCG_KMEM
589 590
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
591 592 593 594 595
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
596 597 598 599 600 601
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
602 603
int memcg_limited_groups_array_size;

604 605 606 607 608 609
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
610
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
611 612
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
613
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
614 615 616
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
617
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
618

619 620 621 622 623 624
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
625
struct static_key memcg_kmem_enabled_key;
626
EXPORT_SYMBOL(memcg_kmem_enabled_key);
627

628 629
static void memcg_free_cache_id(int id);

630 631
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
632
	if (memcg_kmem_is_active(memcg)) {
633
		static_key_slow_dec(&memcg_kmem_enabled_key);
634
		memcg_free_cache_id(memcg->kmemcg_id);
635
	}
636 637 638 639
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
640
	WARN_ON(page_counter_read(&memcg->kmem));
641 642 643 644 645 646 647 648 649 650 651 652 653
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

654
static void drain_all_stock_async(struct mem_cgroup *memcg);
655

656
static struct mem_cgroup_per_zone *
657
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
658
{
659 660 661
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

662
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
663 664
}

665
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
666
{
667
	return &memcg->css;
668 669
}

670
static struct mem_cgroup_per_zone *
671
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
672
{
673 674
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
675

676
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
677 678
}

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

694 695
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
696
					 unsigned long new_usage_in_excess)
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

726 727
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
728 729 730 731 732 733 734
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

735 736
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
737
{
738 739 740
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
741
	__mem_cgroup_remove_exceeded(mz, mctz);
742
	spin_unlock_irqrestore(&mctz->lock, flags);
743 744
}

745 746 747 748 749 750 751 752 753 754 755
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
	unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
756 757 758

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
759
	unsigned long excess;
760 761 762
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

763
	mctz = soft_limit_tree_from_page(page);
764 765 766 767 768
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
769
		mz = mem_cgroup_page_zoneinfo(memcg, page);
770
		excess = soft_limit_excess(memcg);
771 772 773 774 775
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
776 777 778
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
779 780
			/* if on-tree, remove it */
			if (mz->on_tree)
781
				__mem_cgroup_remove_exceeded(mz, mctz);
782 783 784 785
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
786
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
787
			spin_unlock_irqrestore(&mctz->lock, flags);
788 789 790 791 792 793 794
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
795 796
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
797

798 799 800 801
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
802
			mem_cgroup_remove_exceeded(mz, mctz);
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
825
	__mem_cgroup_remove_exceeded(mz, mctz);
826
	if (!soft_limit_excess(mz->memcg) ||
827
	    !css_tryget_online(&mz->memcg->css))
828 829 830 831 832 833 834 835 836 837
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

838
	spin_lock_irq(&mctz->lock);
839
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
840
	spin_unlock_irq(&mctz->lock);
841 842 843
	return mz;
}

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
863
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
864
				 enum mem_cgroup_stat_index idx)
865
{
866
	long val = 0;
867 868
	int cpu;

869 870
	get_online_cpus();
	for_each_online_cpu(cpu)
871
		val += per_cpu(memcg->stat->count[idx], cpu);
872
#ifdef CONFIG_HOTPLUG_CPU
873 874 875
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
876 877
#endif
	put_online_cpus();
878 879 880
	return val;
}

881
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
882 883 884 885 886
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

887
	get_online_cpus();
888
	for_each_online_cpu(cpu)
889
		val += per_cpu(memcg->stat->events[idx], cpu);
890
#ifdef CONFIG_HOTPLUG_CPU
891 892 893
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
894
#endif
895
	put_online_cpus();
896 897 898
	return val;
}

899
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
900
					 struct page *page,
901
					 int nr_pages)
902
{
903 904 905 906
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
907
	if (PageAnon(page))
908
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
909
				nr_pages);
910
	else
911
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
912
				nr_pages);
913

914 915 916 917
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

918 919
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
920
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
921
	else {
922
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
923 924
		nr_pages = -nr_pages; /* for event */
	}
925

926
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
927 928
}

929
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
930 931 932 933 934 935 936
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

937 938 939
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
940
{
941
	unsigned long nr = 0;
942 943
	int zid;

944
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
945

946 947 948 949 950 951 952 953 954 955 956 957
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
958
}
959

960
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
961
			unsigned int lru_mask)
962
{
963
	unsigned long nr = 0;
964
	int nid;
965

966
	for_each_node_state(nid, N_MEMORY)
967 968
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
969 970
}

971 972
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
973 974 975
{
	unsigned long val, next;

976
	val = __this_cpu_read(memcg->stat->nr_page_events);
977
	next = __this_cpu_read(memcg->stat->targets[target]);
978
	/* from time_after() in jiffies.h */
979 980 981 982 983
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
984 985 986
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
987 988 989 990 991 992 993 994
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
995
	}
996
	return false;
997 998 999 1000 1001 1002
}

/*
 * Check events in order.
 *
 */
1003
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1004 1005
{
	/* threshold event is triggered in finer grain than soft limit */
1006 1007
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1008
		bool do_softlimit;
1009
		bool do_numainfo __maybe_unused;
1010

1011 1012
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1013 1014 1015 1016
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
1017
		mem_cgroup_threshold(memcg);
1018 1019
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1020
#if MAX_NUMNODES > 1
1021
		if (unlikely(do_numainfo))
1022
			atomic_inc(&memcg->numainfo_events);
1023
#endif
1024
	}
1025 1026
}

1027
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1028
{
1029 1030 1031 1032 1033 1034 1035 1036
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1037
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1038 1039
}

1040
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1041
{
1042
	struct mem_cgroup *memcg = NULL;
1043

1044 1045
	rcu_read_lock();
	do {
1046 1047 1048 1049 1050 1051
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1052
			memcg = root_mem_cgroup;
1053 1054 1055 1056 1057
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1058
	} while (!css_tryget_online(&memcg->css));
1059
	rcu_read_unlock();
1060
	return memcg;
1061 1062
}

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1080
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1081
				   struct mem_cgroup *prev,
1082
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1083
{
1084 1085
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1086
	struct mem_cgroup *memcg = NULL;
1087
	struct mem_cgroup *pos = NULL;
1088

1089 1090
	if (mem_cgroup_disabled())
		return NULL;
1091

1092 1093
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1094

1095
	if (prev && !reclaim)
1096
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1097

1098 1099
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1100
			goto out;
1101
		return root;
1102
	}
K
KAMEZAWA Hiroyuki 已提交
1103

1104
	rcu_read_lock();
M
Michal Hocko 已提交
1105

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
			pos = ACCESS_ONCE(iter->position);
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1140
		}
K
KAMEZAWA Hiroyuki 已提交
1141

1142 1143 1144 1145 1146 1147
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1148

1149 1150
		if (css == &root->css)
			break;
1151

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
		if (css_tryget_online(css)) {
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;

			css_put(css);
1162
		}
1163

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
		memcg = NULL;
	}

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1186
	}
1187

1188 1189
out_unlock:
	rcu_read_unlock();
1190
out:
1191 1192 1193
	if (prev && prev != root)
		css_put(&prev->css);

1194
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1195
}
K
KAMEZAWA Hiroyuki 已提交
1196

1197 1198 1199 1200 1201 1202 1203
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1204 1205 1206 1207 1208 1209
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1210

1211 1212 1213 1214 1215 1216
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1217
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1218
	     iter != NULL;				\
1219
	     iter = mem_cgroup_iter(root, iter, NULL))
1220

1221
#define for_each_mem_cgroup(iter)			\
1222
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1223
	     iter != NULL;				\
1224
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1225

1226
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1227
{
1228
	struct mem_cgroup *memcg;
1229 1230

	rcu_read_lock();
1231 1232
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1233 1234 1235 1236
		goto out;

	switch (idx) {
	case PGFAULT:
1237 1238 1239 1240
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1241 1242 1243 1244 1245 1246 1247
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1248
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1249

1250 1251 1252
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1253
 * @memcg: memcg of the wanted lruvec
1254 1255 1256 1257 1258 1259 1260 1261 1262
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1263
	struct lruvec *lruvec;
1264

1265 1266 1267 1268
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1269

1270
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1281 1282 1283
}

/**
1284
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1285
 * @page: the page
1286
 * @zone: zone of the page
1287
 */
1288
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1289 1290
{
	struct mem_cgroup_per_zone *mz;
1291 1292
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1293
	struct lruvec *lruvec;
1294

1295 1296 1297 1298
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1299

K
KAMEZAWA Hiroyuki 已提交
1300
	pc = lookup_page_cgroup(page);
1301
	memcg = pc->mem_cgroup;
1302 1303

	/*
1304
	 * Surreptitiously switch any uncharged offlist page to root:
1305 1306 1307 1308 1309 1310 1311
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1312
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1313 1314
		pc->mem_cgroup = memcg = root_mem_cgroup;

1315
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1326
}
1327

1328
/**
1329 1330 1331 1332
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1333
 *
1334 1335
 * This function must be called when a page is added to or removed from an
 * lru list.
1336
 */
1337 1338
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1339 1340
{
	struct mem_cgroup_per_zone *mz;
1341
	unsigned long *lru_size;
1342 1343 1344 1345

	if (mem_cgroup_disabled())
		return;

1346 1347 1348 1349
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1350
}
1351

1352
/*
1353
 * Checks whether given mem is same or in the root_mem_cgroup's
1354 1355
 * hierarchy subtree
 */
1356 1357
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1358
{
1359 1360
	if (root_memcg == memcg)
		return true;
1361
	if (!root_memcg->use_hierarchy || !memcg)
1362
		return false;
1363
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1364 1365 1366 1367 1368 1369 1370
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1371
	rcu_read_lock();
1372
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1373 1374
	rcu_read_unlock();
	return ret;
1375 1376
}

1377 1378
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1379
{
1380
	struct mem_cgroup *curr = NULL;
1381
	struct task_struct *p;
1382
	bool ret;
1383

1384
	p = find_lock_task_mm(task);
1385
	if (p) {
1386
		curr = get_mem_cgroup_from_mm(p->mm);
1387 1388 1389 1390 1391 1392 1393
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1394
		rcu_read_lock();
1395 1396 1397
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1398
		rcu_read_unlock();
1399
	}
1400
	/*
1401
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1402
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1403 1404
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1405
	 */
1406
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1407
	css_put(&curr->css);
1408 1409 1410
	return ret;
}

1411
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1412
{
1413
	unsigned long inactive_ratio;
1414
	unsigned long inactive;
1415
	unsigned long active;
1416
	unsigned long gb;
1417

1418 1419
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1420

1421 1422 1423 1424 1425 1426
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1427
	return inactive * inactive_ratio < active;
1428 1429
}

1430
#define mem_cgroup_from_counter(counter, member)	\
1431 1432
	container_of(counter, struct mem_cgroup, member)

1433
/**
1434
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1435
 * @memcg: the memory cgroup
1436
 *
1437
 * Returns the maximum amount of memory @mem can be charged with, in
1438
 * pages.
1439
 */
1440
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1441
{
1442 1443 1444
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1445

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
	count = page_counter_read(&memcg->memory);
	limit = ACCESS_ONCE(memcg->memory.limit);
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
		limit = ACCESS_ONCE(memcg->memsw.limit);
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1459 1460
}

1461
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1462 1463
{
	/* root ? */
1464
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1465 1466
		return vm_swappiness;

1467
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1468 1469
}

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1484

1485
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1486
{
1487
	atomic_inc(&memcg->moving_account);
1488 1489 1490
	synchronize_rcu();
}

1491
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1492
{
1493 1494 1495 1496
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1497
	if (memcg)
1498
		atomic_dec(&memcg->moving_account);
1499
}
1500

1501
/*
Q
Qiang Huang 已提交
1502
 * A routine for checking "mem" is under move_account() or not.
1503
 *
Q
Qiang Huang 已提交
1504 1505 1506
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1507
 */
1508
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1509
{
1510 1511
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1512
	bool ret = false;
1513 1514 1515 1516 1517 1518 1519 1520 1521
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1522

1523 1524
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1525 1526
unlock:
	spin_unlock(&mc.lock);
1527 1528 1529
	return ret;
}

1530
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1531 1532
{
	if (mc.moving_task && current != mc.moving_task) {
1533
		if (mem_cgroup_under_move(memcg)) {
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1563
#define K(x) ((x) << (PAGE_SHIFT-10))
1564
/**
1565
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1566 1567 1568 1569 1570 1571 1572 1573
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1574
	/* oom_info_lock ensures that parallel ooms do not interleave */
1575
	static DEFINE_MUTEX(oom_info_lock);
1576 1577
	struct mem_cgroup *iter;
	unsigned int i;
1578

1579
	if (!p)
1580 1581
		return;

1582
	mutex_lock(&oom_info_lock);
1583 1584
	rcu_read_lock();

T
Tejun Heo 已提交
1585 1586 1587 1588 1589
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	pr_info(" killed as a result of limit of ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_info("\n");
1590 1591 1592

	rcu_read_unlock();

1593 1594 1595 1596 1597 1598 1599 1600 1601
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1602 1603

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1604 1605
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1621
	mutex_unlock(&oom_info_lock);
1622 1623
}

1624 1625 1626 1627
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1628
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1629 1630
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1631 1632
	struct mem_cgroup *iter;

1633
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1634
		num++;
1635 1636 1637
	return num;
}

D
David Rientjes 已提交
1638 1639 1640
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1641
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1642
{
1643
	unsigned long limit;
D
David Rientjes 已提交
1644

1645
	limit = memcg->memory.limit;
1646
	if (mem_cgroup_swappiness(memcg)) {
1647
		unsigned long memsw_limit;
1648

1649 1650
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1651 1652
	}
	return limit;
D
David Rientjes 已提交
1653 1654
}

1655 1656
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1657 1658 1659 1660 1661 1662 1663
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1664
	/*
1665 1666 1667
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1668
	 */
1669
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1670 1671 1672 1673 1674
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1675
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1676
	for_each_mem_cgroup_tree(iter, memcg) {
1677
		struct css_task_iter it;
1678 1679
		struct task_struct *task;

1680 1681
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1694
				css_task_iter_end(&it);
1695 1696 1697 1698 1699 1700 1701 1702
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1715
		}
1716
		css_task_iter_end(&it);
1717 1718 1719 1720 1721 1722 1723 1724 1725
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1726 1727
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1728
 * @memcg: the target memcg
1729 1730 1731 1732 1733 1734 1735
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1736
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1737 1738
		int nid, bool noswap)
{
1739
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1740 1741 1742
		return true;
	if (noswap || !total_swap_pages)
		return false;
1743
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1744 1745 1746 1747
		return true;
	return false;

}
1748
#if MAX_NUMNODES > 1
1749 1750 1751 1752 1753 1754 1755

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1756
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1757 1758
{
	int nid;
1759 1760 1761 1762
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1763
	if (!atomic_read(&memcg->numainfo_events))
1764
		return;
1765
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1766 1767 1768
		return;

	/* make a nodemask where this memcg uses memory from */
1769
	memcg->scan_nodes = node_states[N_MEMORY];
1770

1771
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1772

1773 1774
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1775
	}
1776

1777 1778
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1793
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1794 1795 1796
{
	int node;

1797 1798
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1799

1800
	node = next_node(node, memcg->scan_nodes);
1801
	if (node == MAX_NUMNODES)
1802
		node = first_node(memcg->scan_nodes);
1803 1804 1805 1806 1807 1808 1809 1810 1811
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1812
	memcg->last_scanned_node = node;
1813 1814 1815
	return node;
}

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

1851
#else
1852
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1853 1854 1855
{
	return 0;
}
1856

1857 1858 1859 1860
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
1861 1862
#endif

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1878
	excess = soft_limit_excess(root_memcg);
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1909
		if (!soft_limit_excess(root_memcg))
1910
			break;
1911
	}
1912 1913
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1914 1915
}

1916 1917 1918 1919 1920 1921
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1922 1923
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1924 1925 1926 1927
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1928
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1929
{
1930
	struct mem_cgroup *iter, *failed = NULL;
1931

1932 1933
	spin_lock(&memcg_oom_lock);

1934
	for_each_mem_cgroup_tree(iter, memcg) {
1935
		if (iter->oom_lock) {
1936 1937 1938 1939 1940
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1941 1942
			mem_cgroup_iter_break(memcg, iter);
			break;
1943 1944
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1945
	}
K
KAMEZAWA Hiroyuki 已提交
1946

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1958
		}
1959 1960
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1961 1962 1963 1964

	spin_unlock(&memcg_oom_lock);

	return !failed;
1965
}
1966

1967
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1968
{
K
KAMEZAWA Hiroyuki 已提交
1969 1970
	struct mem_cgroup *iter;

1971
	spin_lock(&memcg_oom_lock);
1972
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1973
	for_each_mem_cgroup_tree(iter, memcg)
1974
		iter->oom_lock = false;
1975
	spin_unlock(&memcg_oom_lock);
1976 1977
}

1978
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1979 1980 1981
{
	struct mem_cgroup *iter;

1982
	for_each_mem_cgroup_tree(iter, memcg)
1983 1984 1985
		atomic_inc(&iter->under_oom);
}

1986
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1987 1988 1989
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1990 1991 1992 1993 1994
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1995
	for_each_mem_cgroup_tree(iter, memcg)
1996
		atomic_add_unless(&iter->under_oom, -1, 0);
1997 1998
}

K
KAMEZAWA Hiroyuki 已提交
1999 2000
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2001
struct oom_wait_info {
2002
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2003 2004 2005 2006 2007 2008
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2009 2010
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2011 2012 2013
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2014
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2015 2016

	/*
2017
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2018 2019
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2020 2021
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2022 2023 2024 2025
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2026
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2027
{
2028
	atomic_inc(&memcg->oom_wakeups);
2029 2030
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2031 2032
}

2033
static void memcg_oom_recover(struct mem_cgroup *memcg)
2034
{
2035 2036
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2037 2038
}

2039
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2040
{
2041 2042
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2043
	/*
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2056
	 */
2057 2058 2059 2060
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2061 2062 2063 2064
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2065
 * @handle: actually kill/wait or just clean up the OOM state
2066
 *
2067 2068
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2069
 *
2070
 * Memcg supports userspace OOM handling where failed allocations must
2071 2072 2073 2074
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2075
 * the end of the page fault to complete the OOM handling.
2076 2077
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2078
 * completed, %false otherwise.
2079
 */
2080
bool mem_cgroup_oom_synchronize(bool handle)
2081
{
2082
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2083
	struct oom_wait_info owait;
2084
	bool locked;
2085 2086 2087

	/* OOM is global, do not handle */
	if (!memcg)
2088
		return false;
2089

2090 2091
	if (!handle)
		goto cleanup;
2092 2093 2094 2095 2096 2097

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2098

2099
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2113
		schedule();
2114 2115 2116 2117 2118
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2119 2120 2121 2122 2123 2124 2125 2126
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2127 2128
cleanup:
	current->memcg_oom.memcg = NULL;
2129
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2130
	return true;
2131 2132
}

2133 2134 2135 2136 2137
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
 * @locked: &memcg->move_lock slowpath was taken
 * @flags: IRQ-state flags for &memcg->move_lock
2138
 *
2139 2140 2141
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
2142
 *
2143 2144 2145 2146
 *   memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
 *   mem_cgroup_end_page_stat(memcg, locked, flags);
2147
 *
2148 2149 2150
 * The RCU lock is held throughout the transaction.  The fast path can
 * get away without acquiring the memcg->move_lock (@locked is false)
 * because page moving starts with an RCU grace period.
2151
 *
2152 2153 2154 2155 2156
 * The RCU lock also protects the memcg from being freed when the page
 * state that is going to change is the only thing preventing the page
 * from being uncharged.  E.g. end-writeback clearing PageWriteback(),
 * which allows migration to go ahead and uncharge the page before the
 * account transaction might be complete.
2157
 */
2158 2159 2160
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
					      bool *locked,
					      unsigned long *flags)
2161 2162 2163 2164
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

2165 2166 2167 2168 2169
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;

2170 2171 2172 2173
	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2174 2175 2176
		return NULL;

	*locked = false;
Q
Qiang Huang 已提交
2177
	if (atomic_read(&memcg->moving_account) <= 0)
2178
		return memcg;
2179 2180 2181 2182 2183 2184 2185

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
2186 2187

	return memcg;
2188 2189
}

2190 2191 2192 2193 2194 2195 2196 2197
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 * @locked: value received from mem_cgroup_begin_page_stat()
 * @flags: value received from mem_cgroup_begin_page_stat()
 */
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
			      unsigned long flags)
2198
{
2199 2200
	if (memcg && locked)
		move_unlock_mem_cgroup(memcg, &flags);
2201

2202
	rcu_read_unlock();
2203 2204
}

2205 2206 2207 2208 2209 2210 2211 2212 2213
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2214
				 enum mem_cgroup_stat_index idx, int val)
2215
{
2216
	VM_BUG_ON(!rcu_read_lock_held());
2217

2218 2219
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2220
}
2221

2222 2223 2224 2225
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2226
#define CHARGE_BATCH	32U
2227 2228
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2229
	unsigned int nr_pages;
2230
	struct work_struct work;
2231
	unsigned long flags;
2232
#define FLUSHING_CACHED_CHARGE	0
2233 2234
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2235
static DEFINE_MUTEX(percpu_charge_mutex);
2236

2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2247
 */
2248
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2249 2250
{
	struct memcg_stock_pcp *stock;
2251
	bool ret = false;
2252

2253
	if (nr_pages > CHARGE_BATCH)
2254
		return ret;
2255

2256
	stock = &get_cpu_var(memcg_stock);
2257
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2258
		stock->nr_pages -= nr_pages;
2259 2260
		ret = true;
	}
2261 2262 2263 2264 2265
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2266
 * Returns stocks cached in percpu and reset cached information.
2267 2268 2269 2270 2271
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2272
	if (stock->nr_pages) {
2273
		page_counter_uncharge(&old->memory, stock->nr_pages);
2274
		if (do_swap_account)
2275
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2276
		stock->nr_pages = 0;
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2287
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2288
	drain_stock(stock);
2289
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2290 2291
}

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2303
/*
2304
 * Cache charges(val) to local per_cpu area.
2305
 * This will be consumed by consume_stock() function, later.
2306
 */
2307
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2308 2309 2310
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2311
	if (stock->cached != memcg) { /* reset if necessary */
2312
		drain_stock(stock);
2313
		stock->cached = memcg;
2314
	}
2315
	stock->nr_pages += nr_pages;
2316 2317 2318 2319
	put_cpu_var(memcg_stock);
}

/*
2320
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2321 2322
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2323
 */
2324
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2325
{
2326
	int cpu, curcpu;
2327

2328 2329
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2330
	curcpu = get_cpu();
2331 2332
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2333
		struct mem_cgroup *memcg;
2334

2335 2336
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2337
			continue;
2338
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2339
			continue;
2340 2341 2342 2343 2344 2345
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2346
	}
2347
	put_cpu();
2348 2349 2350 2351 2352 2353

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2354
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2355 2356 2357
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2358
	put_online_cpus();
2359 2360 2361 2362 2363
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
2364
 * expects some charges will be back later but cannot wait for it.
2365
 */
2366
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2367
{
2368 2369 2370 2371 2372
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2373
	drain_all_stock(root_memcg, false);
2374
	mutex_unlock(&percpu_charge_mutex);
2375 2376 2377
}

/* This is a synchronous drain interface. */
2378
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2379 2380
{
	/* called when force_empty is called */
2381
	mutex_lock(&percpu_charge_mutex);
2382
	drain_all_stock(root_memcg, true);
2383
	mutex_unlock(&percpu_charge_mutex);
2384 2385
}

2386 2387 2388 2389
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2390
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2391 2392 2393
{
	int i;

2394
	spin_lock(&memcg->pcp_counter_lock);
2395
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2396
		long x = per_cpu(memcg->stat->count[i], cpu);
2397

2398 2399
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2400
	}
2401
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2402
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2403

2404 2405
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2406
	}
2407
	spin_unlock(&memcg->pcp_counter_lock);
2408 2409
}

2410
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2411 2412 2413 2414 2415
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2416
	struct mem_cgroup *iter;
2417

2418
	if (action == CPU_ONLINE)
2419 2420
		return NOTIFY_OK;

2421
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2422
		return NOTIFY_OK;
2423

2424
	for_each_mem_cgroup(iter)
2425 2426
		mem_cgroup_drain_pcp_counter(iter, cpu);

2427 2428 2429 2430 2431
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2432 2433
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2434
{
2435
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2436
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2437
	struct mem_cgroup *mem_over_limit;
2438
	struct page_counter *counter;
2439
	unsigned long nr_reclaimed;
2440 2441
	bool may_swap = true;
	bool drained = false;
2442
	int ret = 0;
2443

2444 2445
	if (mem_cgroup_is_root(memcg))
		goto done;
2446
retry:
2447 2448
	if (consume_stock(memcg, nr_pages))
		goto done;
2449

2450
	if (!do_swap_account ||
2451 2452
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2453
			goto done_restock;
2454
		if (do_swap_account)
2455 2456
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2457
	} else {
2458
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2459
		may_swap = false;
2460
	}
2461

2462 2463 2464 2465
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2466

2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2481 2482
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2483

2484 2485
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2486

2487
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2488
		goto retry;
2489

2490 2491 2492 2493 2494 2495
	if (!drained) {
		drain_all_stock_async(mem_over_limit);
		drained = true;
		goto retry;
	}

2496 2497
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2498 2499 2500 2501 2502 2503 2504 2505 2506
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2507
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2508 2509 2510 2511 2512 2513 2514 2515
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2516 2517 2518
	if (nr_retries--)
		goto retry;

2519 2520 2521
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2522 2523 2524
	if (fatal_signal_pending(current))
		goto bypass;

2525
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2526
nomem:
2527
	if (!(gfp_mask & __GFP_NOFAIL))
2528
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2529
bypass:
2530
	return -EINTR;
2531 2532 2533 2534 2535

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
done:
2536
	return ret;
2537
}
2538

2539
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2540
{
2541 2542 2543
	if (mem_cgroup_is_root(memcg))
		return;

2544
	page_counter_uncharge(&memcg->memory, nr_pages);
2545
	if (do_swap_account)
2546
		page_counter_uncharge(&memcg->memsw, nr_pages);
2547 2548
}

2549 2550
/*
 * A helper function to get mem_cgroup from ID. must be called under
2551 2552 2553
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2554 2555 2556 2557 2558 2559
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2560
	return mem_cgroup_from_id(id);
2561 2562
}

2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2573
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2574
{
2575
	struct mem_cgroup *memcg = NULL;
2576
	struct page_cgroup *pc;
2577
	unsigned short id;
2578 2579
	swp_entry_t ent;

2580
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2581 2582

	pc = lookup_page_cgroup(page);
2583
	if (PageCgroupUsed(pc)) {
2584
		memcg = pc->mem_cgroup;
2585
		if (memcg && !css_tryget_online(&memcg->css))
2586
			memcg = NULL;
2587
	} else if (PageSwapCache(page)) {
2588
		ent.val = page_private(page);
2589
		id = lookup_swap_cgroup_id(ent);
2590
		rcu_read_lock();
2591
		memcg = mem_cgroup_lookup(id);
2592
		if (memcg && !css_tryget_online(&memcg->css))
2593
			memcg = NULL;
2594
		rcu_read_unlock();
2595
	}
2596
	return memcg;
2597 2598
}

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2630
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2631
			  bool lrucare)
2632
{
2633
	struct page_cgroup *pc = lookup_page_cgroup(page);
2634
	int isolated;
2635

2636
	VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2637 2638 2639 2640
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2641 2642 2643 2644 2645

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2646 2647
	if (lrucare)
		lock_page_lru(page, &isolated);
2648

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
	/*
	 * Nobody should be changing or seriously looking at
	 * pc->mem_cgroup and pc->flags at this point:
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2663
	pc->mem_cgroup = memcg;
2664
	pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
2665

2666 2667
	if (lrucare)
		unlock_page_lru(page, isolated);
2668
}
2669

2670
#ifdef CONFIG_MEMCG_KMEM
2671 2672 2673 2674 2675 2676
/*
 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
 */
static DEFINE_MUTEX(memcg_slab_mutex);

2677 2678
static DEFINE_MUTEX(activate_kmem_mutex);

G
Glauber Costa 已提交
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
2689
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
2690 2691
}

2692
#ifdef CONFIG_SLABINFO
2693
static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2694
{
2695
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2696 2697
	struct memcg_cache_params *params;

2698
	if (!memcg_kmem_is_active(memcg))
2699 2700 2701 2702
		return -EIO;

	print_slabinfo_header(m);

2703
	mutex_lock(&memcg_slab_mutex);
2704 2705
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
2706
	mutex_unlock(&memcg_slab_mutex);
2707 2708 2709 2710 2711

	return 0;
}
#endif

2712 2713
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
			     unsigned long nr_pages)
2714
{
2715
	struct page_counter *counter;
2716 2717
	int ret = 0;

2718 2719
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2720 2721
		return ret;

2722
	ret = try_charge(memcg, gfp, nr_pages);
2723 2724
	if (ret == -EINTR)  {
		/*
2725 2726 2727 2728 2729 2730
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2731 2732 2733
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2734 2735 2736
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2737 2738
		 * directed to the root cgroup in memcontrol.h
		 */
2739
		page_counter_charge(&memcg->memory, nr_pages);
2740
		if (do_swap_account)
2741
			page_counter_charge(&memcg->memsw, nr_pages);
2742 2743
		ret = 0;
	} else if (ret)
2744
		page_counter_uncharge(&memcg->kmem, nr_pages);
2745 2746 2747 2748

	return ret;
}

2749 2750
static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
				unsigned long nr_pages)
2751
{
2752
	page_counter_uncharge(&memcg->memory, nr_pages);
2753
	if (do_swap_account)
2754
		page_counter_uncharge(&memcg->memsw, nr_pages);
2755 2756

	/* Not down to 0 */
2757
	if (page_counter_uncharge(&memcg->kmem, nr_pages))
2758 2759
		return;

2760 2761 2762 2763 2764 2765 2766 2767
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
2768
	if (memcg_kmem_test_and_clear_dead(memcg))
2769
		css_put(&memcg->css);
2770 2771
}

2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2782
static int memcg_alloc_cache_id(void)
2783
{
2784 2785 2786 2787 2788 2789 2790
	int id, size;
	int err;

	id = ida_simple_get(&kmem_limited_groups,
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2791

2792 2793 2794 2795 2796 2797 2798 2799 2800
	if (id < memcg_limited_groups_array_size)
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */

	size = 2 * (id + 1);
2801 2802 2803 2804 2805
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
	mutex_lock(&memcg_slab_mutex);
	err = memcg_update_all_caches(size);
	mutex_unlock(&memcg_slab_mutex);

	if (err) {
		ida_simple_remove(&kmem_limited_groups, id);
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
	ida_simple_remove(&kmem_limited_groups, id);
2820 2821 2822 2823 2824 2825 2826 2827 2828
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
2829
	memcg_limited_groups_array_size = num;
2830 2831
}

2832 2833
static void memcg_register_cache(struct mem_cgroup *memcg,
				 struct kmem_cache *root_cache)
2834
{
2835 2836
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by
						     memcg_slab_mutex */
2837
	struct kmem_cache *cachep;
2838 2839
	int id;

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
	lockdep_assert_held(&memcg_slab_mutex);

	id = memcg_cache_id(memcg);

	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
	if (cache_from_memcg_idx(root_cache, id))
2850 2851
		return;

2852
	cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
2853
	cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2854
	/*
2855 2856 2857
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
2858
	 */
2859 2860
	if (!cachep)
		return;
2861

2862
	css_get(&memcg->css);
2863
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2864

2865
	/*
2866 2867 2868
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
2869
	 */
2870 2871
	smp_wmb();

2872 2873
	BUG_ON(root_cache->memcg_params->memcg_caches[id]);
	root_cache->memcg_params->memcg_caches[id] = cachep;
2874
}
2875

2876
static void memcg_unregister_cache(struct kmem_cache *cachep)
2877
{
2878
	struct kmem_cache *root_cache;
2879 2880 2881
	struct mem_cgroup *memcg;
	int id;

2882
	lockdep_assert_held(&memcg_slab_mutex);
2883

2884
	BUG_ON(is_root_cache(cachep));
2885

2886 2887
	root_cache = cachep->memcg_params->root_cache;
	memcg = cachep->memcg_params->memcg;
2888
	id = memcg_cache_id(memcg);
2889

2890 2891
	BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
	root_cache->memcg_params->memcg_caches[id] = NULL;
2892

2893 2894 2895
	list_del(&cachep->memcg_params->list);

	kmem_cache_destroy(cachep);
2896 2897 2898

	/* drop the reference taken in memcg_register_cache */
	css_put(&memcg->css);
2899 2900
}

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

2932
int __memcg_cleanup_cache_params(struct kmem_cache *s)
2933 2934
{
	struct kmem_cache *c;
2935
	int i, failed = 0;
2936

2937
	mutex_lock(&memcg_slab_mutex);
2938 2939
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
2940 2941 2942
		if (!c)
			continue;

2943
		memcg_unregister_cache(c);
2944 2945 2946

		if (cache_from_memcg_idx(s, i))
			failed++;
2947
	}
2948
	mutex_unlock(&memcg_slab_mutex);
2949
	return failed;
2950 2951
}

2952
static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
2953 2954
{
	struct kmem_cache *cachep;
2955
	struct memcg_cache_params *params, *tmp;
G
Glauber Costa 已提交
2956 2957 2958 2959

	if (!memcg_kmem_is_active(memcg))
		return;

2960 2961
	mutex_lock(&memcg_slab_mutex);
	list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
G
Glauber Costa 已提交
2962
		cachep = memcg_params_to_cache(params);
2963 2964
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
2965
			memcg_unregister_cache(cachep);
G
Glauber Costa 已提交
2966
	}
2967
	mutex_unlock(&memcg_slab_mutex);
G
Glauber Costa 已提交
2968 2969
}

2970
struct memcg_register_cache_work {
2971 2972 2973 2974 2975
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2976
static void memcg_register_cache_func(struct work_struct *w)
2977
{
2978 2979
	struct memcg_register_cache_work *cw =
		container_of(w, struct memcg_register_cache_work, work);
2980 2981
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2982

2983
	mutex_lock(&memcg_slab_mutex);
2984
	memcg_register_cache(memcg, cachep);
2985 2986
	mutex_unlock(&memcg_slab_mutex);

2987
	css_put(&memcg->css);
2988 2989 2990 2991 2992 2993
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2994 2995
static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
					    struct kmem_cache *cachep)
2996
{
2997
	struct memcg_register_cache_work *cw;
2998

2999
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
3000 3001
	if (cw == NULL) {
		css_put(&memcg->css);
3002 3003 3004 3005 3006 3007
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

3008
	INIT_WORK(&cw->work, memcg_register_cache_func);
3009 3010 3011
	schedule_work(&cw->work);
}

3012 3013
static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
					  struct kmem_cache *cachep)
3014 3015 3016 3017
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
3018
	 * in __memcg_schedule_register_cache will recurse.
3019 3020 3021 3022 3023 3024 3025 3026
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
3027
	__memcg_schedule_register_cache(memcg, cachep);
3028 3029
	memcg_resume_kmem_account();
}
3030 3031 3032

int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
{
3033
	unsigned int nr_pages = 1 << order;
3034 3035
	int res;

3036
	res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
3037
	if (!res)
3038
		atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
3039 3040 3041 3042 3043
	return res;
}

void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
{
3044 3045 3046 3047
	unsigned int nr_pages = 1 << order;

	memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
	atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
3048 3049
}

3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
3067
	struct kmem_cache *memcg_cachep;
3068 3069 3070 3071

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3072 3073 3074
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3075 3076 3077
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

3078
	if (!memcg_kmem_is_active(memcg))
3079
		goto out;
3080

3081 3082 3083
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
	if (likely(memcg_cachep)) {
		cachep = memcg_cachep;
3084
		goto out;
3085 3086
	}

3087
	/* The corresponding put will be done in the workqueue. */
3088
	if (!css_tryget_online(&memcg->css))
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
3100 3101 3102
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
3103
	 */
3104
	memcg_schedule_register_cache(memcg, cachep);
3105 3106 3107 3108
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3109 3110
}

3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3132 3133 3134 3135

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
V
Vladimir Davydov 已提交
3136 3137 3138 3139 3140 3141
	 * check here, since direct calls to the page allocator that are
	 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
	 * outside memcg core. We are mostly concerned with cache allocations,
	 * and by having this test at memcg_kmem_get_cache, we are already able
	 * to relay the allocation to the root cache and bypass the memcg cache
	 * altogether.
3142 3143 3144 3145 3146 3147
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3148 3149 3150
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3161
	memcg = get_mem_cgroup_from_mm(current->mm);
3162

3163
	if (!memcg_kmem_is_active(memcg)) {
3164 3165 3166 3167
		css_put(&memcg->css);
		return true;
	}

3168
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
3185
		memcg_uncharge_kmem(memcg, 1 << order);
3186 3187
		return;
	}
3188 3189 3190 3191
	/*
	 * The page is freshly allocated and not visible to any
	 * outside callers yet.  Set up pc non-atomically.
	 */
3192 3193
	pc = lookup_page_cgroup(page);
	pc->mem_cgroup = memcg;
3194
	pc->flags = PCG_USED;
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	if (!PageCgroupUsed(pc))
		return;

3207 3208
	memcg = pc->mem_cgroup;
	pc->flags = 0;
3209 3210 3211 3212 3213 3214 3215 3216

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

3217
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3218
	memcg_uncharge_kmem(memcg, 1 << order);
3219
}
G
Glauber Costa 已提交
3220
#else
3221
static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3222 3223
{
}
3224 3225
#endif /* CONFIG_MEMCG_KMEM */

3226 3227 3228 3229
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
3230 3231 3232
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3233
 */
3234
void mem_cgroup_split_huge_fixup(struct page *head)
3235 3236
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3237
	struct page_cgroup *pc;
3238
	struct mem_cgroup *memcg;
3239
	int i;
3240

3241 3242
	if (mem_cgroup_disabled())
		return;
3243 3244

	memcg = head_pc->mem_cgroup;
3245 3246
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3247
		pc->mem_cgroup = memcg;
3248
		pc->flags = head_pc->flags;
3249
	}
3250 3251
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3252
}
3253
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3254

3255
/**
3256
 * mem_cgroup_move_account - move account of the page
3257
 * @page: the page
3258
 * @nr_pages: number of regular pages (>1 for huge pages)
3259 3260 3261 3262 3263
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3264
 * - page is not on LRU (isolate_page() is useful.)
3265
 * - compound_lock is held when nr_pages > 1
3266
 *
3267 3268
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3269
 */
3270 3271 3272 3273
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3274
				   struct mem_cgroup *to)
3275
{
3276 3277
	unsigned long flags;
	int ret;
3278

3279
	VM_BUG_ON(from == to);
3280
	VM_BUG_ON_PAGE(PageLRU(page), page);
3281 3282 3283 3284 3285 3286 3287
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3288
	if (nr_pages > 1 && !PageTransHuge(page))
3289 3290
		goto out;

3291 3292 3293 3294 3295 3296 3297
	/*
	 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;
3298 3299 3300

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3301
		goto out_unlock;
3302

3303
	move_lock_mem_cgroup(from, &flags);
3304

3305
	if (!PageAnon(page) && page_mapped(page)) {
3306 3307 3308 3309 3310
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
3311

3312 3313 3314 3315 3316 3317
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
3318

3319 3320 3321 3322 3323
	/*
	 * It is safe to change pc->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */
3324

3325
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3326
	pc->mem_cgroup = to;
3327
	move_unlock_mem_cgroup(from, &flags);
3328
	ret = 0;
3329 3330 3331

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
3332
	memcg_check_events(to, page);
3333
	mem_cgroup_charge_statistics(from, page, -nr_pages);
3334
	memcg_check_events(from, page);
3335 3336 3337
	local_irq_enable();
out_unlock:
	unlock_page(page);
3338
out:
3339 3340 3341
	return ret;
}

3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3362
 */
3363 3364
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3365
				  struct mem_cgroup *child)
3366 3367
{
	struct mem_cgroup *parent;
3368
	unsigned int nr_pages;
3369
	unsigned long uninitialized_var(flags);
3370 3371
	int ret;

3372
	VM_BUG_ON(mem_cgroup_is_root(child));
3373

3374 3375 3376 3377 3378
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3379

3380
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3381

3382 3383 3384 3385 3386 3387
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3388

3389
	if (nr_pages > 1) {
3390
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3391
		flags = compound_lock_irqsave(page);
3392
	}
3393

3394
	ret = mem_cgroup_move_account(page, nr_pages,
3395
				pc, child, parent);
3396 3397 3398 3399 3400 3401
	if (!ret) {
		/* Take charge off the local counters */
		page_counter_cancel(&child->memory, nr_pages);
		if (do_swap_account)
			page_counter_cancel(&child->memsw, nr_pages);
	}
3402

3403
	if (nr_pages > 1)
3404
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3405
	putback_lru_page(page);
3406
put:
3407
	put_page(page);
3408
out:
3409 3410 3411
	return ret;
}

A
Andrew Morton 已提交
3412
#ifdef CONFIG_MEMCG_SWAP
3413 3414
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
3415
{
3416 3417
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
3418
}
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3431
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3432 3433 3434
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3435
				struct mem_cgroup *from, struct mem_cgroup *to)
3436 3437 3438
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3439 3440
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3441 3442 3443

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3444
		mem_cgroup_swap_statistics(to, true);
3445
		/*
3446
		 * This function is only called from task migration context now.
3447
		 * It postpones page_counter and refcount handling till the end
3448
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
3449 3450 3451 3452 3453 3454
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
3455
		 */
L
Li Zefan 已提交
3456
		css_get(&to->css);
3457 3458 3459 3460 3461 3462
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3463
				struct mem_cgroup *from, struct mem_cgroup *to)
3464 3465 3466
{
	return -EINVAL;
}
3467
#endif
K
KAMEZAWA Hiroyuki 已提交
3468

3469 3470 3471 3472 3473 3474
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3475 3476 3477 3478 3479
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3499 3500
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
3501 3502 3503 3504
	}
}
#endif

3505 3506
static DEFINE_MUTEX(memcg_limit_mutex);

3507
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3508
				   unsigned long limit)
3509
{
3510 3511 3512
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
3513
	int retry_count;
3514
	int ret;
3515 3516 3517 3518 3519 3520

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
3521 3522
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
3523

3524
	oldusage = page_counter_read(&memcg->memory);
3525

3526
	do {
3527 3528 3529 3530
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3531 3532 3533 3534

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
3535
			ret = -EINVAL;
3536 3537
			break;
		}
3538 3539 3540 3541
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
3542 3543 3544 3545

		if (!ret)
			break;

3546 3547
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

3548
		curusage = page_counter_read(&memcg->memory);
3549
		/* Usage is reduced ? */
A
Andrew Morton 已提交
3550
		if (curusage >= oldusage)
3551 3552 3553
			retry_count--;
		else
			oldusage = curusage;
3554 3555
	} while (retry_count);

3556 3557
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3558

3559 3560 3561
	return ret;
}

L
Li Zefan 已提交
3562
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3563
					 unsigned long limit)
3564
{
3565 3566 3567
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
3568
	int retry_count;
3569
	int ret;
3570

3571
	/* see mem_cgroup_resize_res_limit */
3572 3573 3574 3575 3576 3577
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
3578 3579 3580 3581
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3582 3583 3584 3585

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
3586 3587 3588
			ret = -EINVAL;
			break;
		}
3589 3590 3591 3592
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
3593 3594 3595 3596

		if (!ret)
			break;

3597 3598
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

3599
		curusage = page_counter_read(&memcg->memsw);
3600
		/* Usage is reduced ? */
3601
		if (curusage >= oldusage)
3602
			retry_count--;
3603 3604
		else
			oldusage = curusage;
3605 3606
	} while (retry_count);

3607 3608
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3609

3610 3611 3612
	return ret;
}

3613 3614 3615 3616 3617 3618 3619 3620 3621
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3622
	unsigned long excess;
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3647
		spin_lock_irq(&mctz->lock);
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
3675
		__mem_cgroup_remove_exceeded(mz, mctz);
3676
		excess = soft_limit_excess(mz->memcg);
3677 3678 3679 3680 3681 3682 3683 3684 3685
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3686
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3687
		spin_unlock_irq(&mctz->lock);
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3705 3706 3707 3708 3709 3710 3711
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
3712
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
3713 3714
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
3715
 */
3716
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3717
				int node, int zid, enum lru_list lru)
3718
{
3719
	struct lruvec *lruvec;
3720
	unsigned long flags;
3721
	struct list_head *list;
3722 3723
	struct page *busy;
	struct zone *zone;
3724

K
KAMEZAWA Hiroyuki 已提交
3725
	zone = &NODE_DATA(node)->node_zones[zid];
3726 3727
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
3728

3729
	busy = NULL;
3730
	do {
3731
		struct page_cgroup *pc;
3732 3733
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
3734
		spin_lock_irqsave(&zone->lru_lock, flags);
3735
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3736
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3737
			break;
3738
		}
3739 3740 3741
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3742
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3743
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3744 3745
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3746
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3747

3748
		pc = lookup_page_cgroup(page);
3749

3750
		if (mem_cgroup_move_parent(page, pc, memcg)) {
3751
			/* found lock contention or "pc" is obsolete. */
3752
			busy = page;
3753 3754
		} else
			busy = NULL;
3755
		cond_resched();
3756
	} while (!list_empty(list));
3757 3758 3759
}

/*
3760 3761
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
3762
 * This enables deleting this mem_cgroup.
3763 3764
 *
 * Caller is responsible for holding css reference on the memcg.
3765
 */
3766
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
3767
{
3768
	int node, zid;
3769

3770
	do {
3771 3772
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3773 3774
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
3775
		for_each_node_state(node, N_MEMORY) {
3776
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3777 3778
				enum lru_list lru;
				for_each_lru(lru) {
3779
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3780
							node, zid, lru);
3781
				}
3782
			}
3783
		}
3784 3785
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3786
		cond_resched();
3787

3788
		/*
3789 3790 3791 3792 3793
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
3794 3795 3796 3797 3798 3799
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
3800 3801
	} while (page_counter_read(&memcg->memory) -
		 page_counter_read(&memcg->kmem) > 0);
3802 3803
}

3804 3805 3806 3807 3808 3809
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3810 3811
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3812 3813
	bool ret;

3814
	/*
3815 3816 3817 3818
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3819
	 */
3820 3821 3822 3823 3824 3825
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3826 3827
}

3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3838 3839
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3840
	/* try to free all pages in this cgroup */
3841
	while (nr_retries && page_counter_read(&memcg->memory)) {
3842
		int progress;
3843

3844 3845 3846
		if (signal_pending(current))
			return -EINTR;

3847 3848
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3849
		if (!progress) {
3850
			nr_retries--;
3851
			/* maybe some writeback is necessary */
3852
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3853
		}
3854 3855

	}
3856 3857

	return 0;
3858 3859
}

3860 3861 3862
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3863
{
3864
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3865

3866 3867
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3868
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3869 3870
}

3871 3872
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3873
{
3874
	return mem_cgroup_from_css(css)->use_hierarchy;
3875 3876
}

3877 3878
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3879 3880
{
	int retval = 0;
3881
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3882
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3883

3884
	mutex_lock(&memcg_create_mutex);
3885 3886 3887 3888

	if (memcg->use_hierarchy == val)
		goto out;

3889
	/*
3890
	 * If parent's use_hierarchy is set, we can't make any modifications
3891 3892 3893 3894 3895 3896
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3897
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3898
				(val == 1 || val == 0)) {
3899
		if (!memcg_has_children(memcg))
3900
			memcg->use_hierarchy = val;
3901 3902 3903 3904
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3905 3906

out:
3907
	mutex_unlock(&memcg_create_mutex);
3908 3909 3910 3911

	return retval;
}

3912 3913
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3931 3932 3933 3934 3935 3936
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3937
		if (!swap)
3938
			val = page_counter_read(&memcg->memory);
3939
		else
3940
			val = page_counter_read(&memcg->memsw);
3941 3942 3943 3944
	}
	return val << PAGE_SHIFT;
}

3945 3946 3947 3948 3949 3950 3951
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3952

3953
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3954
			       struct cftype *cft)
B
Balbir Singh 已提交
3955
{
3956
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3957
	struct page_counter *counter;
3958

3959
	switch (MEMFILE_TYPE(cft->private)) {
3960
	case _MEM:
3961 3962
		counter = &memcg->memory;
		break;
3963
	case _MEMSWAP:
3964 3965
		counter = &memcg->memsw;
		break;
3966
	case _KMEM:
3967
		counter = &memcg->kmem;
3968
		break;
3969 3970 3971
	default:
		BUG();
	}
3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3991
}
3992 3993

#ifdef CONFIG_MEMCG_KMEM
3994 3995
/* should be called with activate_kmem_mutex held */
static int __memcg_activate_kmem(struct mem_cgroup *memcg,
3996
				 unsigned long nr_pages)
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

	/*
	 * We are going to allocate memory for data shared by all memory
	 * cgroups so let's stop accounting here.
	 */
	memcg_stop_kmem_account();

4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
4022
	mutex_lock(&memcg_create_mutex);
4023 4024
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
4025 4026 4027 4028
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
4029

4030
	memcg_id = memcg_alloc_cache_id();
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	memcg->kmemcg_id = memcg_id;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);

	/*
	 * We couldn't have accounted to this cgroup, because it hasn't got the
	 * active bit set yet, so this should succeed.
	 */
4043
	err = page_counter_limit(&memcg->kmem, nr_pages);
4044 4045 4046 4047 4048 4049 4050 4051 4052
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
	 * Setting the active bit after enabling static branching will
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
	memcg_kmem_set_active(memcg);
4053
out:
4054 4055 4056 4057 4058
	memcg_resume_kmem_account();
	return err;
}

static int memcg_activate_kmem(struct mem_cgroup *memcg,
4059
			       unsigned long nr_pages)
4060 4061 4062 4063
{
	int ret;

	mutex_lock(&activate_kmem_mutex);
4064
	ret = __memcg_activate_kmem(memcg, nr_pages);
4065 4066 4067 4068 4069
	mutex_unlock(&activate_kmem_mutex);
	return ret;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4070
				   unsigned long limit)
4071 4072 4073
{
	int ret;

4074
	mutex_lock(&memcg_limit_mutex);
4075
	if (!memcg_kmem_is_active(memcg))
4076
		ret = memcg_activate_kmem(memcg, limit);
4077
	else
4078 4079
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
4080 4081 4082
	return ret;
}

4083
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4084
{
4085
	int ret = 0;
4086
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4087

4088 4089
	if (!parent)
		return 0;
4090

4091
	mutex_lock(&activate_kmem_mutex);
4092
	/*
4093 4094
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
4095
	 */
4096
	if (memcg_kmem_is_active(parent))
4097
		ret = __memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
4098
	mutex_unlock(&activate_kmem_mutex);
4099
	return ret;
4100
}
4101 4102
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4103
				   unsigned long limit)
4104 4105 4106
{
	return -EINVAL;
}
4107
#endif /* CONFIG_MEMCG_KMEM */
4108

4109 4110 4111 4112
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4113 4114
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
4115
{
4116
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4117
	unsigned long nr_pages;
4118 4119
	int ret;

4120
	buf = strstrip(buf);
4121 4122 4123
	ret = page_counter_memparse(buf, &nr_pages);
	if (ret)
		return ret;
4124

4125
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
4126
	case RES_LIMIT:
4127 4128 4129 4130
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4131 4132 4133
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
4134
			break;
4135 4136
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
4137
			break;
4138 4139 4140 4141
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
4142
		break;
4143 4144 4145
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
4146 4147
		break;
	}
4148
	return ret ?: nbytes;
B
Balbir Singh 已提交
4149 4150
}

4151 4152
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
4153
{
4154
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4155
	struct page_counter *counter;
4156

4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
4170

4171
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
4172
	case RES_MAX_USAGE:
4173
		page_counter_reset_watermark(counter);
4174 4175
		break;
	case RES_FAILCNT:
4176
		counter->failcnt = 0;
4177
		break;
4178 4179
	default:
		BUG();
4180
	}
4181

4182
	return nbytes;
4183 4184
}

4185
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
4186 4187
					struct cftype *cft)
{
4188
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
4189 4190
}

4191
#ifdef CONFIG_MMU
4192
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4193 4194
					struct cftype *cft, u64 val)
{
4195
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4196 4197 4198

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
4199

4200
	/*
4201 4202 4203 4204
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
4205
	 */
4206
	memcg->move_charge_at_immigrate = val;
4207 4208
	return 0;
}
4209
#else
4210
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4211 4212 4213 4214 4215
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4216

4217
#ifdef CONFIG_NUMA
4218
static int memcg_numa_stat_show(struct seq_file *m, void *v)
4219
{
4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
4232
	int nid;
4233
	unsigned long nr;
4234
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4235

4236 4237 4238 4239 4240 4241 4242 4243 4244
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
4245 4246
	}

4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
4262 4263 4264 4265 4266 4267
	}

	return 0;
}
#endif /* CONFIG_NUMA */

4268 4269 4270 4271 4272
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4273
static int memcg_stat_show(struct seq_file *m, void *v)
4274
{
4275
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4276
	unsigned long memory, memsw;
4277 4278
	struct mem_cgroup *mi;
	unsigned int i;
4279

4280
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4281
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4282
			continue;
4283 4284
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4285
	}
L
Lee Schermerhorn 已提交
4286

4287 4288 4289 4290 4291 4292 4293 4294
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4295
	/* Hierarchical information */
4296 4297 4298 4299
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
4300
	}
4301 4302 4303 4304 4305
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
4306

4307 4308 4309
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4310
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4311
			continue;
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4332
	}
K
KAMEZAWA Hiroyuki 已提交
4333

K
KOSAKI Motohiro 已提交
4334 4335 4336 4337
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4338
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4339 4340 4341 4342 4343
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4344
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
4345
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4346

4347 4348 4349 4350
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4351
			}
4352 4353 4354 4355
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4356 4357 4358
	}
#endif

4359 4360 4361
	return 0;
}

4362 4363
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4364
{
4365
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4366

4367
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4368 4369
}

4370 4371
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4372
{
4373
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4374

4375
	if (val > 100)
K
KOSAKI Motohiro 已提交
4376 4377
		return -EINVAL;

4378
	if (css->parent)
4379 4380 4381
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4382

K
KOSAKI Motohiro 已提交
4383 4384 4385
	return 0;
}

4386 4387 4388
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4389
	unsigned long usage;
4390 4391 4392 4393
	int i;

	rcu_read_lock();
	if (!swap)
4394
		t = rcu_dereference(memcg->thresholds.primary);
4395
	else
4396
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4397 4398 4399 4400

	if (!t)
		goto unlock;

4401
	usage = mem_cgroup_usage(memcg, swap);
4402 4403

	/*
4404
	 * current_threshold points to threshold just below or equal to usage.
4405 4406 4407
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4408
	i = t->current_threshold;
4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4432
	t->current_threshold = i - 1;
4433 4434 4435 4436 4437 4438
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4439 4440 4441 4442 4443 4444 4445
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4446 4447 4448 4449 4450 4451 4452
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4453 4454 4455 4456 4457 4458 4459
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4460 4461
}

4462
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4463 4464 4465
{
	struct mem_cgroup_eventfd_list *ev;

4466 4467
	spin_lock(&memcg_oom_lock);

4468
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4469
		eventfd_signal(ev->eventfd, 1);
4470 4471

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4472 4473 4474
	return 0;
}

4475
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4476
{
K
KAMEZAWA Hiroyuki 已提交
4477 4478
	struct mem_cgroup *iter;

4479
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4480
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4481 4482
}

4483
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4484
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4485
{
4486 4487
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4488 4489
	unsigned long threshold;
	unsigned long usage;
4490
	int i, size, ret;
4491

4492
	ret = page_counter_memparse(args, &threshold);
4493 4494 4495 4496
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4497

4498
	if (type == _MEM) {
4499
		thresholds = &memcg->thresholds;
4500
		usage = mem_cgroup_usage(memcg, false);
4501
	} else if (type == _MEMSWAP) {
4502
		thresholds = &memcg->memsw_thresholds;
4503
		usage = mem_cgroup_usage(memcg, true);
4504
	} else
4505 4506 4507
		BUG();

	/* Check if a threshold crossed before adding a new one */
4508
	if (thresholds->primary)
4509 4510
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4511
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4512 4513

	/* Allocate memory for new array of thresholds */
4514
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4515
			GFP_KERNEL);
4516
	if (!new) {
4517 4518 4519
		ret = -ENOMEM;
		goto unlock;
	}
4520
	new->size = size;
4521 4522

	/* Copy thresholds (if any) to new array */
4523 4524
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4525
				sizeof(struct mem_cgroup_threshold));
4526 4527
	}

4528
	/* Add new threshold */
4529 4530
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4531 4532

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4533
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4534 4535 4536
			compare_thresholds, NULL);

	/* Find current threshold */
4537
	new->current_threshold = -1;
4538
	for (i = 0; i < size; i++) {
4539
		if (new->entries[i].threshold <= usage) {
4540
			/*
4541 4542
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4543 4544
			 * it here.
			 */
4545
			++new->current_threshold;
4546 4547
		} else
			break;
4548 4549
	}

4550 4551 4552 4553 4554
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4555

4556
	/* To be sure that nobody uses thresholds */
4557 4558 4559 4560 4561 4562 4563 4564
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4565
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4566 4567
	struct eventfd_ctx *eventfd, const char *args)
{
4568
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4569 4570
}

4571
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4572 4573
	struct eventfd_ctx *eventfd, const char *args)
{
4574
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4575 4576
}

4577
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4578
	struct eventfd_ctx *eventfd, enum res_type type)
4579
{
4580 4581
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4582
	unsigned long usage;
4583
	int i, j, size;
4584 4585

	mutex_lock(&memcg->thresholds_lock);
4586 4587

	if (type == _MEM) {
4588
		thresholds = &memcg->thresholds;
4589
		usage = mem_cgroup_usage(memcg, false);
4590
	} else if (type == _MEMSWAP) {
4591
		thresholds = &memcg->memsw_thresholds;
4592
		usage = mem_cgroup_usage(memcg, true);
4593
	} else
4594 4595
		BUG();

4596 4597 4598
	if (!thresholds->primary)
		goto unlock;

4599 4600 4601 4602
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4603 4604 4605
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4606 4607 4608
			size++;
	}

4609
	new = thresholds->spare;
4610

4611 4612
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4613 4614
		kfree(new);
		new = NULL;
4615
		goto swap_buffers;
4616 4617
	}

4618
	new->size = size;
4619 4620

	/* Copy thresholds and find current threshold */
4621 4622 4623
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4624 4625
			continue;

4626
		new->entries[j] = thresholds->primary->entries[i];
4627
		if (new->entries[j].threshold <= usage) {
4628
			/*
4629
			 * new->current_threshold will not be used
4630 4631 4632
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4633
			++new->current_threshold;
4634 4635 4636 4637
		}
		j++;
	}

4638
swap_buffers:
4639 4640
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4641 4642 4643 4644 4645 4646
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4647
	rcu_assign_pointer(thresholds->primary, new);
4648

4649
	/* To be sure that nobody uses thresholds */
4650
	synchronize_rcu();
4651
unlock:
4652 4653
	mutex_unlock(&memcg->thresholds_lock);
}
4654

4655
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4656 4657
	struct eventfd_ctx *eventfd)
{
4658
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4659 4660
}

4661
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4662 4663
	struct eventfd_ctx *eventfd)
{
4664
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4665 4666
}

4667
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4668
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4669 4670 4671 4672 4673 4674 4675
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4676
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4677 4678 4679 4680 4681

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4682
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4683
		eventfd_signal(eventfd, 1);
4684
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4685 4686 4687 4688

	return 0;
}

4689
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4690
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4691 4692 4693
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4694
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4695

4696
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4697 4698 4699 4700 4701 4702
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4703
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4704 4705
}

4706
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4707
{
4708
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4709

4710 4711
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4712 4713 4714
	return 0;
}

4715
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4716 4717
	struct cftype *cft, u64 val)
{
4718
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4719 4720

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4721
	if (!css->parent || !((val == 0) || (val == 1)))
4722 4723
		return -EINVAL;

4724
	memcg->oom_kill_disable = val;
4725
	if (!val)
4726
		memcg_oom_recover(memcg);
4727

4728 4729 4730
	return 0;
}

A
Andrew Morton 已提交
4731
#ifdef CONFIG_MEMCG_KMEM
4732
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4733
{
4734 4735
	int ret;

4736
	memcg->kmemcg_id = -1;
4737 4738 4739
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
4740

4741
	return mem_cgroup_sockets_init(memcg, ss);
4742
}
4743

4744
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4745
{
4746
	mem_cgroup_sockets_destroy(memcg);
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
4767 4768 4769 4770
	 * css_offline() when the referencemight have dropped down to 0 and
	 * shouldn't be incremented anymore (css_tryget_online() would
	 * fail) we do not have other options because of the kmem
	 * allocations lifetime.
4771 4772
	 */
	css_get(&memcg->css);
4773 4774 4775

	memcg_kmem_mark_dead(memcg);

4776
	if (page_counter_read(&memcg->kmem))
4777 4778 4779
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
4780
		css_put(&memcg->css);
G
Glauber Costa 已提交
4781
}
4782
#else
4783
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4784 4785 4786
{
	return 0;
}
G
Glauber Costa 已提交
4787

4788 4789 4790 4791 4792
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4793 4794
{
}
4795 4796
#endif

4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4810 4811 4812 4813 4814
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4815
static void memcg_event_remove(struct work_struct *work)
4816
{
4817 4818
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4819
	struct mem_cgroup *memcg = event->memcg;
4820 4821 4822

	remove_wait_queue(event->wqh, &event->wait);

4823
	event->unregister_event(memcg, event->eventfd);
4824 4825 4826 4827 4828 4829

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4830
	css_put(&memcg->css);
4831 4832 4833 4834 4835 4836 4837
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4838 4839
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4840
{
4841 4842
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4843
	struct mem_cgroup *memcg = event->memcg;
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4856
		spin_lock(&memcg->event_list_lock);
4857 4858 4859 4860 4861 4862 4863 4864
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4865
		spin_unlock(&memcg->event_list_lock);
4866 4867 4868 4869 4870
	}

	return 0;
}

4871
static void memcg_event_ptable_queue_proc(struct file *file,
4872 4873
		wait_queue_head_t *wqh, poll_table *pt)
{
4874 4875
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4876 4877 4878 4879 4880 4881

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4882 4883
 * DO NOT USE IN NEW FILES.
 *
4884 4885 4886 4887 4888
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4889 4890
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4891
{
4892
	struct cgroup_subsys_state *css = of_css(of);
4893
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4894
	struct mem_cgroup_event *event;
4895 4896 4897 4898
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4899
	const char *name;
4900 4901 4902
	char *endp;
	int ret;

4903 4904 4905
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4906 4907
	if (*endp != ' ')
		return -EINVAL;
4908
	buf = endp + 1;
4909

4910
	cfd = simple_strtoul(buf, &endp, 10);
4911 4912
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4913
	buf = endp + 1;
4914 4915 4916 4917 4918

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4919
	event->memcg = memcg;
4920
	INIT_LIST_HEAD(&event->list);
4921 4922 4923
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4949 4950 4951 4952 4953
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4954 4955
	 *
	 * DO NOT ADD NEW FILES.
4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968
	 */
	name = cfile.file->f_dentry->d_name.name;

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4969 4970
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4971 4972 4973 4974 4975
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4976
	/*
4977 4978 4979
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4980
	 */
4981 4982
	cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
					       &memory_cgrp_subsys);
4983
	ret = -EINVAL;
4984
	if (IS_ERR(cfile_css))
4985
		goto out_put_cfile;
4986 4987
	if (cfile_css != css) {
		css_put(cfile_css);
4988
		goto out_put_cfile;
4989
	}
4990

4991
	ret = event->register_event(memcg, event->eventfd, buf);
4992 4993 4994 4995 4996
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4997 4998 4999
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
5000 5001 5002 5003

	fdput(cfile);
	fdput(efile);

5004
	return nbytes;
5005 5006

out_put_css:
5007
	css_put(css);
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
5020 5021
static struct cftype mem_cgroup_files[] = {
	{
5022
		.name = "usage_in_bytes",
5023
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5024
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5025
	},
5026 5027
	{
		.name = "max_usage_in_bytes",
5028
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5029
		.write = mem_cgroup_reset,
5030
		.read_u64 = mem_cgroup_read_u64,
5031
	},
B
Balbir Singh 已提交
5032
	{
5033
		.name = "limit_in_bytes",
5034
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5035
		.write = mem_cgroup_write,
5036
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5037
	},
5038 5039 5040
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5041
		.write = mem_cgroup_write,
5042
		.read_u64 = mem_cgroup_read_u64,
5043
	},
B
Balbir Singh 已提交
5044 5045
	{
		.name = "failcnt",
5046
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5047
		.write = mem_cgroup_reset,
5048
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5049
	},
5050 5051
	{
		.name = "stat",
5052
		.seq_show = memcg_stat_show,
5053
	},
5054 5055
	{
		.name = "force_empty",
5056
		.write = mem_cgroup_force_empty_write,
5057
	},
5058 5059 5060 5061 5062
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
5063
	{
5064
		.name = "cgroup.event_control",		/* XXX: for compat */
5065
		.write = memcg_write_event_control,
5066 5067 5068
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
5069 5070 5071 5072 5073
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5074 5075 5076 5077 5078
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5079 5080
	{
		.name = "oom_control",
5081
		.seq_show = mem_cgroup_oom_control_read,
5082
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5083 5084
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5085 5086 5087
	{
		.name = "pressure_level",
	},
5088 5089 5090
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5091
		.seq_show = memcg_numa_stat_show,
5092 5093
	},
#endif
5094 5095 5096 5097
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5098
		.write = mem_cgroup_write,
5099
		.read_u64 = mem_cgroup_read_u64,
5100 5101 5102 5103
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5104
		.read_u64 = mem_cgroup_read_u64,
5105 5106 5107 5108
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5109
		.write = mem_cgroup_reset,
5110
		.read_u64 = mem_cgroup_read_u64,
5111 5112 5113 5114
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5115
		.write = mem_cgroup_reset,
5116
		.read_u64 = mem_cgroup_read_u64,
5117
	},
5118 5119 5120
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
5121
		.seq_show = mem_cgroup_slabinfo_read,
5122 5123
	},
#endif
5124
#endif
5125
	{ },	/* terminate */
5126
};
5127

5128 5129 5130 5131 5132
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5133
		.read_u64 = mem_cgroup_read_u64,
5134 5135 5136 5137
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5138
		.write = mem_cgroup_reset,
5139
		.read_u64 = mem_cgroup_read_u64,
5140 5141 5142 5143
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5144
		.write = mem_cgroup_write,
5145
		.read_u64 = mem_cgroup_read_u64,
5146 5147 5148 5149
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5150
		.write = mem_cgroup_reset,
5151
		.read_u64 = mem_cgroup_read_u64,
5152 5153 5154 5155
	},
	{ },	/* terminate */
};
#endif
5156
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5157 5158
{
	struct mem_cgroup_per_node *pn;
5159
	struct mem_cgroup_per_zone *mz;
5160
	int zone, tmp = node;
5161 5162 5163 5164 5165 5166 5167 5168
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5169 5170
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5171
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5172 5173
	if (!pn)
		return 1;
5174 5175 5176

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5177
		lruvec_init(&mz->lruvec);
5178 5179
		mz->usage_in_excess = 0;
		mz->on_tree = false;
5180
		mz->memcg = memcg;
5181
	}
5182
	memcg->nodeinfo[node] = pn;
5183 5184 5185
	return 0;
}

5186
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5187
{
5188
	kfree(memcg->nodeinfo[node]);
5189 5190
}

5191 5192
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5193
	struct mem_cgroup *memcg;
5194
	size_t size;
5195

5196 5197
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5198

5199
	memcg = kzalloc(size, GFP_KERNEL);
5200
	if (!memcg)
5201 5202
		return NULL;

5203 5204
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5205
		goto out_free;
5206 5207
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5208 5209

out_free:
5210
	kfree(memcg);
5211
	return NULL;
5212 5213
}

5214
/*
5215 5216 5217 5218 5219 5220 5221 5222
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
5223
 */
5224 5225

static void __mem_cgroup_free(struct mem_cgroup *memcg)
5226
{
5227
	int node;
5228

5229
	mem_cgroup_remove_from_trees(memcg);
5230 5231 5232 5233 5234 5235

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5247
	disarm_static_keys(memcg);
5248
	kfree(memcg);
5249
}
5250

5251 5252 5253
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
5254
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5255
{
5256
	if (!memcg->memory.parent)
5257
		return NULL;
5258
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
5259
}
G
Glauber Costa 已提交
5260
EXPORT_SYMBOL(parent_mem_cgroup);
5261

5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
5285
static struct cgroup_subsys_state * __ref
5286
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
5287
{
5288
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
5289
	long error = -ENOMEM;
5290
	int node;
B
Balbir Singh 已提交
5291

5292 5293
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5294
		return ERR_PTR(error);
5295

B
Bob Liu 已提交
5296
	for_each_node(node)
5297
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5298
			goto free_out;
5299

5300
	/* root ? */
5301
	if (parent_css == NULL) {
5302
		root_mem_cgroup = memcg;
5303 5304 5305
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
5306
	}
5307

5308 5309 5310 5311 5312
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5313
	vmpressure_init(&memcg->vmpressure);
5314 5315
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5316 5317 5318 5319 5320 5321 5322 5323 5324

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
5325
mem_cgroup_css_online(struct cgroup_subsys_state *css)
5326
{
5327
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5328
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
5329
	int ret;
5330

5331
	if (css->id > MEM_CGROUP_ID_MAX)
5332 5333
		return -ENOSPC;

T
Tejun Heo 已提交
5334
	if (!parent)
5335 5336
		return 0;

5337
	mutex_lock(&memcg_create_mutex);
5338 5339 5340 5341 5342 5343

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
5344 5345 5346
		page_counter_init(&memcg->memory, &parent->memory);
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
5347

5348
		/*
5349 5350
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
5351
		 */
5352
	} else {
5353 5354 5355
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
5356 5357 5358 5359 5360
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5361
		if (parent != root_mem_cgroup)
5362
			memory_cgrp_subsys.broken_hierarchy = true;
5363
	}
5364
	mutex_unlock(&memcg_create_mutex);
5365

5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
5378 5379
}

5380
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5381
{
5382
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5383
	struct mem_cgroup_event *event, *tmp;
5384
	struct cgroup_subsys_state *iter;
5385 5386 5387 5388 5389 5390

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5391 5392
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5393 5394 5395
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5396
	spin_unlock(&memcg->event_list_lock);
5397

5398 5399
	kmem_cgroup_css_offline(memcg);

5400 5401 5402 5403 5404 5405 5406
	/*
	 * This requires that offlining is serialized.  Right now that is
	 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
	 */
	css_for_each_descendant_post(iter, css)
		mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));

5407
	memcg_unregister_all_caches(memcg);
5408
	vmpressure_cleanup(&memcg->vmpressure);
5409 5410
}

5411
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5412
{
5413
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5414 5415 5416
	/*
	 * XXX: css_offline() would be where we should reparent all
	 * memory to prepare the cgroup for destruction.  However,
5417
	 * memcg does not do css_tryget_online() and page_counter charging
5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430
	 * under the same RCU lock region, which means that charging
	 * could race with offlining.  Offlining only happens to
	 * cgroups with no tasks in them but charges can show up
	 * without any tasks from the swapin path when the target
	 * memcg is looked up from the swapout record and not from the
	 * current task as it usually is.  A race like this can leak
	 * charges and put pages with stale cgroup pointers into
	 * circulation:
	 *
	 * #0                        #1
	 *                           lookup_swap_cgroup_id()
	 *                           rcu_read_lock()
	 *                           mem_cgroup_lookup()
5431
	 *                           css_tryget_online()
5432
	 *                           rcu_read_unlock()
5433
	 * disable css_tryget_online()
5434 5435 5436
	 * call_rcu()
	 *   offline_css()
	 *     reparent_charges()
5437
	 *                           page_counter_try_charge()
5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449
	 *                           css_put()
	 *                             css_free()
	 *                           pc->mem_cgroup = dead memcg
	 *                           add page to lru
	 *
	 * The bulk of the charges are still moved in offline_css() to
	 * avoid pinning a lot of pages in case a long-term reference
	 * like a swapout record is deferring the css_free() to long
	 * after offlining.  But this makes sure we catch any charges
	 * made after offlining:
	 */
	mem_cgroup_reparent_charges(memcg);
5450

5451
	memcg_destroy_kmem(memcg);
5452
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5453 5454
}

5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5472 5473 5474 5475
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
	memcg->soft_limit = 0;
5476 5477
}

5478
#ifdef CONFIG_MMU
5479
/* Handlers for move charge at task migration. */
5480
static int mem_cgroup_do_precharge(unsigned long count)
5481
{
5482
	int ret;
5483 5484

	/* Try a single bulk charge without reclaim first */
5485
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
5486
	if (!ret) {
5487 5488 5489
		mc.precharge += count;
		return ret;
	}
5490
	if (ret == -EINTR) {
5491
		cancel_charge(root_mem_cgroup, count);
5492 5493
		return ret;
	}
5494 5495

	/* Try charges one by one with reclaim */
5496
	while (count--) {
5497
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
5498 5499 5500
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
5501 5502
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
5503
		 */
5504
		if (ret == -EINTR)
5505
			cancel_charge(root_mem_cgroup, 1);
5506 5507
		if (ret)
			return ret;
5508
		mc.precharge++;
5509
		cond_resched();
5510
	}
5511
	return 0;
5512 5513 5514
}

/**
5515
 * get_mctgt_type - get target type of moving charge
5516 5517 5518
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5519
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5520 5521 5522 5523 5524 5525
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5526 5527 5528
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5529 5530 5531 5532 5533
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5534
	swp_entry_t	ent;
5535 5536 5537
};

enum mc_target_type {
5538
	MC_TARGET_NONE = 0,
5539
	MC_TARGET_PAGE,
5540
	MC_TARGET_SWAP,
5541 5542
};

D
Daisuke Nishimura 已提交
5543 5544
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5545
{
D
Daisuke Nishimura 已提交
5546
	struct page *page = vm_normal_page(vma, addr, ptent);
5547

D
Daisuke Nishimura 已提交
5548 5549 5550 5551
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5552
		if (!move_anon())
D
Daisuke Nishimura 已提交
5553
			return NULL;
5554 5555
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5556 5557 5558 5559 5560 5561 5562
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5563
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5564 5565 5566 5567 5568 5569 5570 5571
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5572 5573 5574 5575
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5576
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
5577 5578 5579 5580 5581
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5582 5583 5584 5585 5586 5587 5588
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5589

5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5609 5610
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
5623
#endif
5624 5625 5626
	return page;
}

5627
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5628 5629 5630 5631
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5632
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5633 5634 5635 5636 5637 5638
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5639 5640
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5641 5642

	if (!page && !ent.val)
5643
		return ret;
5644 5645 5646
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
5647 5648 5649
		 * Do only loose check w/o serialization.
		 * mem_cgroup_move_account() checks the pc is valid or
		 * not under LRU exclusion.
5650 5651 5652 5653 5654 5655 5656 5657 5658
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5659 5660
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
5661
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5662 5663 5664
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5665 5666 5667 5668
	}
	return ret;
}

5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
5683
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5704 5705 5706 5707 5708 5709 5710 5711
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5712
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5713 5714
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5715
		spin_unlock(ptl);
5716
		return 0;
5717
	}
5718

5719 5720
	if (pmd_trans_unstable(pmd))
		return 0;
5721 5722
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5723
		if (get_mctgt_type(vma, addr, *pte, NULL))
5724 5725 5726 5727
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5728 5729 5730
	return 0;
}

5731 5732 5733 5734 5735
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5736
	down_read(&mm->mmap_sem);
5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5748
	up_read(&mm->mmap_sem);
5749 5750 5751 5752 5753 5754 5755 5756 5757

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5758 5759 5760 5761 5762
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5763 5764
}

5765 5766
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5767
{
5768 5769
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
5770
	int i;
5771

5772
	/* we must uncharge all the leftover precharges from mc.to */
5773
	if (mc.precharge) {
5774
		cancel_charge(mc.to, mc.precharge);
5775 5776 5777 5778 5779 5780 5781
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5782
		cancel_charge(mc.from, mc.moved_charge);
5783
		mc.moved_charge = 0;
5784
	}
5785 5786 5787
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5788
		if (!mem_cgroup_is_root(mc.from))
5789
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5790

5791
		/*
5792 5793
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5794
		 */
5795
		if (!mem_cgroup_is_root(mc.to))
5796 5797 5798 5799 5800
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);

L
Li Zefan 已提交
5801
		/* we've already done css_get(mc.to) */
5802 5803
		mc.moved_swap = 0;
	}
5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5819
	spin_lock(&mc.lock);
5820 5821
	mc.from = NULL;
	mc.to = NULL;
5822
	spin_unlock(&mc.lock);
5823
	mem_cgroup_end_move(from);
5824 5825
}

5826
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5827
				 struct cgroup_taskset *tset)
5828
{
5829
	struct task_struct *p = cgroup_taskset_first(tset);
5830
	int ret = 0;
5831
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5832
	unsigned long move_charge_at_immigrate;
5833

5834 5835 5836 5837 5838 5839 5840
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
5841 5842 5843
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5844
		VM_BUG_ON(from == memcg);
5845 5846 5847 5848 5849

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5850 5851 5852 5853
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5854
			VM_BUG_ON(mc.moved_charge);
5855
			VM_BUG_ON(mc.moved_swap);
5856
			mem_cgroup_start_move(from);
5857
			spin_lock(&mc.lock);
5858
			mc.from = from;
5859
			mc.to = memcg;
5860
			mc.immigrate_flags = move_charge_at_immigrate;
5861
			spin_unlock(&mc.lock);
5862
			/* We set mc.moving_task later */
5863 5864 5865 5866

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5867 5868
		}
		mmput(mm);
5869 5870 5871 5872
	}
	return ret;
}

5873
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5874
				     struct cgroup_taskset *tset)
5875
{
5876
	mem_cgroup_clear_mc();
5877 5878
}

5879 5880 5881
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5882
{
5883 5884 5885 5886
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5887 5888 5889 5890
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5891

5892 5893 5894 5895 5896 5897 5898 5899 5900 5901
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5902
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5903
		if (mc.precharge < HPAGE_PMD_NR) {
5904
			spin_unlock(ptl);
5905 5906 5907 5908 5909 5910 5911 5912
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5913
							pc, mc.from, mc.to)) {
5914 5915 5916 5917 5918 5919 5920
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5921
		spin_unlock(ptl);
5922
		return 0;
5923 5924
	}

5925 5926
	if (pmd_trans_unstable(pmd))
		return 0;
5927 5928 5929 5930
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5931
		swp_entry_t ent;
5932 5933 5934 5935

		if (!mc.precharge)
			break;

5936
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5937 5938 5939 5940 5941
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5942
			if (!mem_cgroup_move_account(page, 1, pc,
5943
						     mc.from, mc.to)) {
5944
				mc.precharge--;
5945 5946
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5947 5948
			}
			putback_lru_page(page);
5949
put:			/* get_mctgt_type() gets the page */
5950 5951
			put_page(page);
			break;
5952 5953
		case MC_TARGET_SWAP:
			ent = target.ent;
5954
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5955
				mc.precharge--;
5956 5957 5958
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5959
			break;
5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5974
		ret = mem_cgroup_do_precharge(1);
5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6018
	up_read(&mm->mmap_sem);
6019 6020
}

6021
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6022
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6023
{
6024
	struct task_struct *p = cgroup_taskset_first(tset);
6025
	struct mm_struct *mm = get_task_mm(p);
6026 6027

	if (mm) {
6028 6029
		if (mc.to)
			mem_cgroup_move_charge(mm);
6030 6031
		mmput(mm);
	}
6032 6033
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6034
}
6035
#else	/* !CONFIG_MMU */
6036
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6037
				 struct cgroup_taskset *tset)
6038 6039 6040
{
	return 0;
}
6041
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6042
				     struct cgroup_taskset *tset)
6043 6044
{
}
6045
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6046
				 struct cgroup_taskset *tset)
6047 6048 6049
{
}
#endif
B
Balbir Singh 已提交
6050

6051 6052
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6053 6054
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
6055
 */
6056
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6057 6058
{
	/*
6059
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6060 6061 6062
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6063
	if (cgroup_on_dfl(root_css->cgroup))
6064
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6065 6066
}

6067
struct cgroup_subsys memory_cgrp_subsys = {
6068
	.css_alloc = mem_cgroup_css_alloc,
6069
	.css_online = mem_cgroup_css_online,
6070 6071
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6072
	.css_reset = mem_cgroup_css_reset,
6073 6074
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6075
	.attach = mem_cgroup_move_task,
6076
	.bind = mem_cgroup_bind,
6077
	.legacy_cftypes = mem_cgroup_files,
6078
	.early_init = 0,
B
Balbir Singh 已提交
6079
};
6080

A
Andrew Morton 已提交
6081
#ifdef CONFIG_MEMCG_SWAP
6082 6083
static int __init enable_swap_account(char *s)
{
6084
	if (!strcmp(s, "1"))
6085
		really_do_swap_account = 1;
6086
	else if (!strcmp(s, "0"))
6087 6088 6089
		really_do_swap_account = 0;
	return 1;
}
6090
__setup("swapaccount=", enable_swap_account);
6091

6092 6093
static void __init memsw_file_init(void)
{
6094 6095
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
					  memsw_cgroup_files));
6096 6097 6098 6099 6100 6101 6102 6103
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6104
}
6105

6106
#else
6107
static void __init enable_swap_cgroup(void)
6108 6109
{
}
6110
#endif
6111

6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164
#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct page_cgroup *pc;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	pc = lookup_page_cgroup(page);

	/* Readahead page, never charged */
	if (!PageCgroupUsed(pc))
		return;

	VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);

	oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
	VM_BUG_ON_PAGE(oldid, page);

	pc->flags &= ~PCG_MEMSW;
	css_get(&pc->mem_cgroup->css);
	mem_cgroup_swap_statistics(pc->mem_cgroup, true);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
6165
		if (!mem_cgroup_is_root(memcg))
6166
			page_counter_uncharge(&memcg->memsw, 1);
6167 6168 6169 6170 6171 6172 6173
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}
#endif

6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		struct page_cgroup *pc = lookup_page_cgroup(page);
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
		if (PageCgroupUsed(pc))
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

6271 6272
	commit_charge(page, memcg, lrucare);

6273 6274 6275 6276 6277
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

6278 6279 6280 6281
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

6323 6324 6325 6326 6327 6328 6329
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_mem, unsigned long nr_memsw,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
	unsigned long flags;

6330 6331
	if (!mem_cgroup_is_root(memcg)) {
		if (nr_mem)
6332
			page_counter_uncharge(&memcg->memory, nr_mem);
6333
		if (nr_memsw)
6334
			page_counter_uncharge(&memcg->memsw, nr_memsw);
6335 6336
		memcg_oom_recover(memcg);
	}
6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
	__this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file);
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_memsw = 0;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	unsigned long nr_mem = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;
		struct page_cgroup *pc;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

		pc = lookup_page_cgroup(page);
		if (!PageCgroupUsed(pc))
			continue;

		/*
		 * Nobody should be changing or seriously looking at
		 * pc->mem_cgroup and pc->flags at this point, we have
		 * fully exclusive access to the page.
		 */

		if (memcg != pc->mem_cgroup) {
			if (memcg) {
				uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
					       nr_anon, nr_file, nr_huge, page);
				pgpgout = nr_mem = nr_memsw = 0;
				nr_anon = nr_file = nr_huge = 0;
			}
			memcg = pc->mem_cgroup;
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

		if (pc->flags & PCG_MEM)
			nr_mem += nr_pages;
		if (pc->flags & PCG_MEMSW)
			nr_memsw += nr_pages;
		pc->flags = 0;

		pgpgout++;
	} while (next != page_list);

	if (memcg)
		uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
			       nr_anon, nr_file, nr_huge, page);
}

6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

6430
	/* Don't touch page->lru of any random page, pre-check: */
6431 6432 6433 6434
	pc = lookup_page_cgroup(page);
	if (!PageCgroupUsed(pc))
		return;

6435 6436 6437
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
6438

6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6450

6451 6452
	if (!list_empty(page_list))
		uncharge_list(page_list);
6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
 * @lrucare: both pages might be on the LRU already
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
	struct page_cgroup *pc;
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6476 6477
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
	pc = lookup_page_cgroup(newpage);
	if (PageCgroupUsed(pc))
		return;

	/* Re-entrant migration: old page already uncharged? */
	pc = lookup_page_cgroup(oldpage);
	if (!PageCgroupUsed(pc))
		return;

	VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
	VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

	pc->flags = 0;

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

6503
	commit_charge(newpage, pc->mem_cgroup, lrucare);
6504 6505
}

6506
/*
6507 6508 6509 6510 6511 6512
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6513 6514 6515 6516
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6517
	enable_swap_cgroup();
6518
	mem_cgroup_soft_limit_tree_init();
6519
	memcg_stock_init();
6520 6521 6522
	return 0;
}
subsys_initcall(mem_cgroup_init);