memcontrol.c 153.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78 79
struct mem_cgroup *root_mem_cgroup __read_mostly;

80
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
81

82 83 84
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

85 86 87
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

88
/* Whether the swap controller is active */
A
Andrew Morton 已提交
89
#ifdef CONFIG_MEMCG_SWAP
90 91
int do_swap_account __read_mostly;
#else
92
#define do_swap_account		0
93 94
#endif

95 96 97 98 99 100
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

101 102 103
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
104
	"rss_huge",
105
	"mapped_file",
106
	"dirty",
107
	"writeback",
108 109 110 111 112 113 114 115 116 117
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

118 119 120 121 122 123 124 125
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

126 127 128
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
150 151 152 153 154
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
155

156 157 158
/*
 * cgroup_event represents events which userspace want to receive.
 */
159
struct mem_cgroup_event {
160
	/*
161
	 * memcg which the event belongs to.
162
	 */
163
	struct mem_cgroup *memcg;
164 165 166 167 168 169 170 171
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
172 173 174 175 176
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
177
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
178
			      struct eventfd_ctx *eventfd, const char *args);
179 180 181 182 183
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
184
	void (*unregister_event)(struct mem_cgroup *memcg,
185
				 struct eventfd_ctx *eventfd);
186 187 188 189 190 191 192 193 194 195
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

196 197
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198

199 200
/* Stuffs for move charges at task migration. */
/*
201
 * Types of charges to be moved.
202
 */
203 204 205
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
206

207 208
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
209
	spinlock_t	  lock; /* for from, to */
210
	struct mm_struct  *mm;
211 212
	struct mem_cgroup *from;
	struct mem_cgroup *to;
213
	unsigned long flags;
214
	unsigned long precharge;
215
	unsigned long moved_charge;
216
	unsigned long moved_swap;
217 218 219
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
220
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 222
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
223

224 225 226 227
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
228
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
229
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
230

231 232
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
234
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
235
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
236 237 238
	NR_CHARGE_TYPE,
};

239
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
240 241 242 243
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
244
	_KMEM,
V
Vladimir Davydov 已提交
245
	_TCP,
G
Glauber Costa 已提交
246 247
};

248 249
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
250
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
251 252
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
253

254 255 256 257 258 259 260 261 262 263 264 265 266
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

267 268 269 270 271
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

272
#ifndef CONFIG_SLOB
273
/*
274
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
275 276 277 278 279
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
280
 *
281 282
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
283
 */
284 285
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
286

287 288 289 290 291 292 293 294 295 296 297 298 299
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

300 301 302 303 304 305
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
306
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307 308
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
309
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
310 311 312
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
313
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314

315 316 317 318 319 320
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
321
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322
EXPORT_SYMBOL(memcg_kmem_enabled_key);
323

324
#endif /* !CONFIG_SLOB */
325

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

343
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
344 345 346 347 348
		memcg = root_mem_cgroup;

	return &memcg->css;
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

377
static struct mem_cgroup_per_zone *
378
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
379
{
380 381
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
382

383
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
384 385
}

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

401 402
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
403
					 unsigned long new_usage_in_excess)
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

433 434
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
435 436 437 438 439 440 441
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

442 443
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
444
{
445 446 447
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
448
	__mem_cgroup_remove_exceeded(mz, mctz);
449
	spin_unlock_irqrestore(&mctz->lock, flags);
450 451
}

452 453 454
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
455
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
456 457 458 459 460 461 462
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
463 464 465

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
466
	unsigned long excess;
467 468 469
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

470
	mctz = soft_limit_tree_from_page(page);
471 472 473 474 475
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
476
		mz = mem_cgroup_page_zoneinfo(memcg, page);
477
		excess = soft_limit_excess(memcg);
478 479 480 481 482
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
483 484 485
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
486 487
			/* if on-tree, remove it */
			if (mz->on_tree)
488
				__mem_cgroup_remove_exceeded(mz, mctz);
489 490 491 492
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
493
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
494
			spin_unlock_irqrestore(&mctz->lock, flags);
495 496 497 498 499 500 501
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
502 503
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
504

505 506 507 508
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
509
			mem_cgroup_remove_exceeded(mz, mctz);
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
532
	__mem_cgroup_remove_exceeded(mz, mctz);
533
	if (!soft_limit_excess(mz->memcg) ||
534
	    !css_tryget_online(&mz->memcg->css))
535 536 537 538 539 540 541 542 543 544
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

545
	spin_lock_irq(&mctz->lock);
546
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
547
	spin_unlock_irq(&mctz->lock);
548 549 550
	return mz;
}

551
/*
552 553
 * Return page count for single (non recursive) @memcg.
 *
554 555 556 557 558
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
559
 * a periodic synchronization of counter in memcg's counter.
560 561 562 563 564 565 566 567 568
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
569
 * common workload, threshold and synchronization as vmstat[] should be
570 571
 * implemented.
 */
572 573
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
574
{
575
	long val = 0;
576 577
	int cpu;

578
	/* Per-cpu values can be negative, use a signed accumulator */
579
	for_each_possible_cpu(cpu)
580
		val += per_cpu(memcg->stat->count[idx], cpu);
581 582 583 584 585 586
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
587 588 589
	return val;
}

590
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
591 592 593 594 595
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

596
	for_each_possible_cpu(cpu)
597
		val += per_cpu(memcg->stat->events[idx], cpu);
598 599 600
	return val;
}

601
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
602
					 struct page *page,
603
					 bool compound, int nr_pages)
604
{
605 606 607 608
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
609
	if (PageAnon(page))
610
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
611
				nr_pages);
612
	else
613
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
614
				nr_pages);
615

616 617
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
618 619
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);
620
	}
621

622 623
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
624
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
625
	else {
626
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
627 628
		nr_pages = -nr_pages; /* for event */
	}
629

630
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
631 632
}

633 634
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
635
{
636
	unsigned long nr = 0;
637 638
	int zid;

639
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
640

641 642 643 644 645 646 647 648 649 650 651 652
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
653
}
654

655
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
656
			unsigned int lru_mask)
657
{
658
	unsigned long nr = 0;
659
	int nid;
660

661
	for_each_node_state(nid, N_MEMORY)
662 663
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
664 665
}

666 667
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
668 669 670
{
	unsigned long val, next;

671
	val = __this_cpu_read(memcg->stat->nr_page_events);
672
	next = __this_cpu_read(memcg->stat->targets[target]);
673
	/* from time_after() in jiffies.h */
674 675 676 677 678
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
679 680 681
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
682 683 684 685 686 687 688 689
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
690
	}
691
	return false;
692 693 694 695 696 697
}

/*
 * Check events in order.
 *
 */
698
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
699 700
{
	/* threshold event is triggered in finer grain than soft limit */
701 702
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
703
		bool do_softlimit;
704
		bool do_numainfo __maybe_unused;
705

706 707
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
708 709 710 711
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
712
		mem_cgroup_threshold(memcg);
713 714
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
715
#if MAX_NUMNODES > 1
716
		if (unlikely(do_numainfo))
717
			atomic_inc(&memcg->numainfo_events);
718
#endif
719
	}
720 721
}

722
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
723
{
724 725 726 727 728 729 730 731
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

732
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
733
}
M
Michal Hocko 已提交
734
EXPORT_SYMBOL(mem_cgroup_from_task);
735

736
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
737
{
738
	struct mem_cgroup *memcg = NULL;
739

740 741
	rcu_read_lock();
	do {
742 743 744 745 746 747
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
748
			memcg = root_mem_cgroup;
749 750 751 752 753
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
754
	} while (!css_tryget_online(&memcg->css));
755
	rcu_read_unlock();
756
	return memcg;
757 758
}

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
776
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
777
				   struct mem_cgroup *prev,
778
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
779
{
M
Michal Hocko 已提交
780
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
781
	struct cgroup_subsys_state *css = NULL;
782
	struct mem_cgroup *memcg = NULL;
783
	struct mem_cgroup *pos = NULL;
784

785 786
	if (mem_cgroup_disabled())
		return NULL;
787

788 789
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
790

791
	if (prev && !reclaim)
792
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
793

794 795
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
796
			goto out;
797
		return root;
798
	}
K
KAMEZAWA Hiroyuki 已提交
799

800
	rcu_read_lock();
M
Michal Hocko 已提交
801

802 803 804 805 806 807 808 809 810
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

811
		while (1) {
812
			pos = READ_ONCE(iter->position);
813 814
			if (!pos || css_tryget(&pos->css))
				break;
815
			/*
816 817 818 819 820 821
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
822
			 */
823 824
			(void)cmpxchg(&iter->position, pos, NULL);
		}
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
842
		}
K
KAMEZAWA Hiroyuki 已提交
843

844 845 846 847 848 849
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
850

851 852
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
853

854 855
		if (css_tryget(css))
			break;
856

857
		memcg = NULL;
858
	}
859 860 861

	if (reclaim) {
		/*
862 863 864
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
865
		 */
866 867
		(void)cmpxchg(&iter->position, pos, memcg);

868 869 870 871 872 873 874
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
875
	}
876

877 878
out_unlock:
	rcu_read_unlock();
879
out:
880 881 882
	if (prev && prev != root)
		css_put(&prev->css);

883
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
884
}
K
KAMEZAWA Hiroyuki 已提交
885

886 887 888 889 890 891 892
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
893 894 895 896 897 898
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
899

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
				for (i = 0; i <= DEF_PRIORITY; i++) {
					iter = &mz->iter[i];
					cmpxchg(&iter->position,
						dead_memcg, NULL);
				}
			}
		}
	}
}

922 923 924 925 926 927
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
928
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
929
	     iter != NULL;				\
930
	     iter = mem_cgroup_iter(root, iter, NULL))
931

932
#define for_each_mem_cgroup(iter)			\
933
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
934
	     iter != NULL;				\
935
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
936

937
/**
938
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
939
 * @page: the page
940
 * @zone: zone of the page
941 942 943 944
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
945
 */
946
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
947 948
{
	struct mem_cgroup_per_zone *mz;
949
	struct mem_cgroup *memcg;
950
	struct lruvec *lruvec;
951

952 953 954 955
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
956

957
	memcg = page->mem_cgroup;
958
	/*
959
	 * Swapcache readahead pages are added to the LRU - and
960
	 * possibly migrated - before they are charged.
961
	 */
962 963
	if (!memcg)
		memcg = root_mem_cgroup;
964

965
	mz = mem_cgroup_page_zoneinfo(memcg, page);
966 967 968 969 970 971 972 973 974 975
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
976
}
977

978
/**
979 980 981 982
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
983
 *
984 985 986
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
987
 */
988 989
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
990 991
{
	struct mem_cgroup_per_zone *mz;
992
	unsigned long *lru_size;
993 994
	long size;
	bool empty;
995

996 997
	__update_lru_size(lruvec, lru, nr_pages);

998 999 1000
	if (mem_cgroup_disabled())
		return;

1001 1002
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	empty = list_empty(lruvec->lists + lru);

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
	if (WARN_ONCE(size < 0 || empty != !size,
		"%s(%p, %d, %d): lru_size %ld but %sempty\n",
		__func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1018
}
1019

1020
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1021
{
1022
	struct mem_cgroup *task_memcg;
1023
	struct task_struct *p;
1024
	bool ret;
1025

1026
	p = find_lock_task_mm(task);
1027
	if (p) {
1028
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1029 1030 1031 1032 1033 1034 1035
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1036
		rcu_read_lock();
1037 1038
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1039
		rcu_read_unlock();
1040
	}
1041 1042
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1043 1044 1045
	return ret;
}

1046
/**
1047
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1048
 * @memcg: the memory cgroup
1049
 *
1050
 * Returns the maximum amount of memory @mem can be charged with, in
1051
 * pages.
1052
 */
1053
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1054
{
1055 1056 1057
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1058

1059
	count = page_counter_read(&memcg->memory);
1060
	limit = READ_ONCE(memcg->memory.limit);
1061 1062 1063
	if (count < limit)
		margin = limit - count;

1064
	if (do_memsw_account()) {
1065
		count = page_counter_read(&memcg->memsw);
1066
		limit = READ_ONCE(memcg->memsw.limit);
1067 1068
		if (count <= limit)
			margin = min(margin, limit - count);
1069 1070
		else
			margin = 0;
1071 1072 1073
	}

	return margin;
1074 1075
}

1076
/*
Q
Qiang Huang 已提交
1077
 * A routine for checking "mem" is under move_account() or not.
1078
 *
Q
Qiang Huang 已提交
1079 1080 1081
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1082
 */
1083
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1084
{
1085 1086
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1087
	bool ret = false;
1088 1089 1090 1091 1092 1093 1094 1095 1096
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1097

1098 1099
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1100 1101
unlock:
	spin_unlock(&mc.lock);
1102 1103 1104
	return ret;
}

1105
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1106 1107
{
	if (mc.moving_task && current != mc.moving_task) {
1108
		if (mem_cgroup_under_move(memcg)) {
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1121
#define K(x) ((x) << (PAGE_SHIFT-10))
1122
/**
1123
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1124 1125 1126 1127 1128 1129 1130 1131
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1132 1133
	struct mem_cgroup *iter;
	unsigned int i;
1134 1135 1136

	rcu_read_lock();

1137 1138 1139 1140 1141 1142 1143 1144
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1145
	pr_cont_cgroup_path(memcg->css.cgroup);
1146
	pr_cont("\n");
1147 1148 1149

	rcu_read_unlock();

1150 1151 1152 1153 1154 1155 1156 1157 1158
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1159 1160

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1161 1162
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1163 1164 1165
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1166
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1167
				continue;
1168
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1169 1170 1171 1172 1173 1174 1175 1176 1177
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1178 1179
}

1180 1181 1182 1183
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1184
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1185 1186
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1187 1188
	struct mem_cgroup *iter;

1189
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1190
		num++;
1191 1192 1193
	return num;
}

D
David Rientjes 已提交
1194 1195 1196
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1197
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1198
{
1199
	unsigned long limit;
1200

1201
	limit = memcg->memory.limit;
1202
	if (mem_cgroup_swappiness(memcg)) {
1203
		unsigned long memsw_limit;
1204
		unsigned long swap_limit;
1205

1206
		memsw_limit = memcg->memsw.limit;
1207 1208 1209
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1210 1211
	}
	return limit;
D
David Rientjes 已提交
1212 1213
}

1214
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1215
				     int order)
1216
{
1217 1218 1219
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1220
		.memcg = memcg,
1221 1222 1223
		.gfp_mask = gfp_mask,
		.order = order,
	};
1224 1225 1226 1227 1228 1229
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1230 1231
	mutex_lock(&oom_lock);

1232
	/*
1233 1234 1235
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1236
	 */
1237
	if (task_will_free_mem(current)) {
1238
		mark_oom_victim(current);
1239
		wake_oom_reaper(current);
1240
		goto unlock;
1241 1242
	}

1243
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
1244
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1245
	for_each_mem_cgroup_tree(iter, memcg) {
1246
		struct css_task_iter it;
1247 1248
		struct task_struct *task;

1249 1250
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1251
			switch (oom_scan_process_thread(&oc, task)) {
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1262
				css_task_iter_end(&it);
1263 1264 1265
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1266 1267
				/* Set a dummy value to return "true". */
				chosen = (void *) 1;
1268
				goto unlock;
1269 1270 1271 1272
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1285
		}
1286
		css_task_iter_end(&it);
1287 1288
	}

1289 1290
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1291
		oom_kill_process(&oc, chosen, points, totalpages,
1292
				 "Memory cgroup out of memory");
1293 1294 1295
	}
unlock:
	mutex_unlock(&oom_lock);
1296
	return chosen;
1297 1298
}

1299 1300
#if MAX_NUMNODES > 1

1301 1302
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1303
 * @memcg: the target memcg
1304 1305 1306 1307 1308 1309 1310
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1311
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1312 1313
		int nid, bool noswap)
{
1314
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1315 1316 1317
		return true;
	if (noswap || !total_swap_pages)
		return false;
1318
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1319 1320 1321 1322
		return true;
	return false;

}
1323 1324 1325 1326 1327 1328 1329

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1330
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1331 1332
{
	int nid;
1333 1334 1335 1336
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1337
	if (!atomic_read(&memcg->numainfo_events))
1338
		return;
1339
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1340 1341 1342
		return;

	/* make a nodemask where this memcg uses memory from */
1343
	memcg->scan_nodes = node_states[N_MEMORY];
1344

1345
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1346

1347 1348
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1349
	}
1350

1351 1352
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1367
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1368 1369 1370
{
	int node;

1371 1372
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1373

1374
	node = next_node_in(node, memcg->scan_nodes);
1375
	/*
1376 1377 1378
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1379 1380 1381 1382
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1383
	memcg->last_scanned_node = node;
1384 1385 1386
	return node;
}
#else
1387
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1388 1389 1390 1391 1392
{
	return 0;
}
#endif

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1408
	excess = soft_limit_excess(root_memcg);
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1437
		if (!soft_limit_excess(root_memcg))
1438
			break;
1439
	}
1440 1441
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1442 1443
}

1444 1445 1446 1447 1448 1449
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1450 1451
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1452 1453 1454 1455
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1456
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1457
{
1458
	struct mem_cgroup *iter, *failed = NULL;
1459

1460 1461
	spin_lock(&memcg_oom_lock);

1462
	for_each_mem_cgroup_tree(iter, memcg) {
1463
		if (iter->oom_lock) {
1464 1465 1466 1467 1468
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1469 1470
			mem_cgroup_iter_break(memcg, iter);
			break;
1471 1472
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1473
	}
K
KAMEZAWA Hiroyuki 已提交
1474

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1486
		}
1487 1488
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1489 1490 1491 1492

	spin_unlock(&memcg_oom_lock);

	return !failed;
1493
}
1494

1495
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1496
{
K
KAMEZAWA Hiroyuki 已提交
1497 1498
	struct mem_cgroup *iter;

1499
	spin_lock(&memcg_oom_lock);
1500
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1501
	for_each_mem_cgroup_tree(iter, memcg)
1502
		iter->oom_lock = false;
1503
	spin_unlock(&memcg_oom_lock);
1504 1505
}

1506
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1507 1508 1509
{
	struct mem_cgroup *iter;

1510
	spin_lock(&memcg_oom_lock);
1511
	for_each_mem_cgroup_tree(iter, memcg)
1512 1513
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1514 1515
}

1516
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1517 1518 1519
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1520 1521
	/*
	 * When a new child is created while the hierarchy is under oom,
1522
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1523
	 */
1524
	spin_lock(&memcg_oom_lock);
1525
	for_each_mem_cgroup_tree(iter, memcg)
1526 1527 1528
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1529 1530
}

K
KAMEZAWA Hiroyuki 已提交
1531 1532
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1533
struct oom_wait_info {
1534
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1535 1536 1537 1538 1539 1540
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1541 1542
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1543 1544 1545
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1546
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1547

1548 1549
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1550 1551 1552 1553
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1554
static void memcg_oom_recover(struct mem_cgroup *memcg)
1555
{
1556 1557 1558 1559 1560 1561 1562 1563 1564
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1565
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1566 1567
}

1568
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1569
{
1570
	if (!current->memcg_may_oom)
1571
		return;
K
KAMEZAWA Hiroyuki 已提交
1572
	/*
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1585
	 */
1586
	css_get(&memcg->css);
T
Tejun Heo 已提交
1587 1588 1589
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1590 1591 1592 1593
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1594
 * @handle: actually kill/wait or just clean up the OOM state
1595
 *
1596 1597
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1598
 *
1599
 * Memcg supports userspace OOM handling where failed allocations must
1600 1601 1602 1603
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1604
 * the end of the page fault to complete the OOM handling.
1605 1606
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1607
 * completed, %false otherwise.
1608
 */
1609
bool mem_cgroup_oom_synchronize(bool handle)
1610
{
T
Tejun Heo 已提交
1611
	struct mem_cgroup *memcg = current->memcg_in_oom;
1612
	struct oom_wait_info owait;
1613
	bool locked;
1614 1615 1616

	/* OOM is global, do not handle */
	if (!memcg)
1617
		return false;
1618

1619
	if (!handle || oom_killer_disabled)
1620
		goto cleanup;
1621 1622 1623 1624 1625 1626

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1627

1628
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1639 1640
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1641
	} else {
1642
		schedule();
1643 1644 1645 1646 1647
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1648 1649 1650 1651 1652 1653 1654 1655
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1656
cleanup:
T
Tejun Heo 已提交
1657
	current->memcg_in_oom = NULL;
1658
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1659
	return true;
1660 1661
}

1662
/**
1663 1664
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1665
 *
1666 1667
 * This function protects unlocked LRU pages from being moved to
 * another cgroup and stabilizes their page->mem_cgroup binding.
1668
 */
J
Johannes Weiner 已提交
1669
void lock_page_memcg(struct page *page)
1670 1671
{
	struct mem_cgroup *memcg;
1672
	unsigned long flags;
1673

1674 1675 1676 1677 1678
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 */
1679 1680 1681
	rcu_read_lock();

	if (mem_cgroup_disabled())
J
Johannes Weiner 已提交
1682
		return;
1683
again:
1684
	memcg = page->mem_cgroup;
1685
	if (unlikely(!memcg))
J
Johannes Weiner 已提交
1686
		return;
1687

Q
Qiang Huang 已提交
1688
	if (atomic_read(&memcg->moving_account) <= 0)
J
Johannes Weiner 已提交
1689
		return;
1690

1691
	spin_lock_irqsave(&memcg->move_lock, flags);
1692
	if (memcg != page->mem_cgroup) {
1693
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1694 1695
		goto again;
	}
1696 1697 1698 1699

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1700
	 * the task who has the lock for unlock_page_memcg().
1701 1702 1703
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1704

J
Johannes Weiner 已提交
1705
	return;
1706
}
1707
EXPORT_SYMBOL(lock_page_memcg);
1708

1709
/**
1710
 * unlock_page_memcg - unlock a page->mem_cgroup binding
J
Johannes Weiner 已提交
1711
 * @page: the page
1712
 */
J
Johannes Weiner 已提交
1713
void unlock_page_memcg(struct page *page)
1714
{
J
Johannes Weiner 已提交
1715 1716
	struct mem_cgroup *memcg = page->mem_cgroup;

1717 1718 1719 1720 1721 1722 1723 1724
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1725

1726
	rcu_read_unlock();
1727
}
1728
EXPORT_SYMBOL(unlock_page_memcg);
1729

1730 1731 1732 1733
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1734
#define CHARGE_BATCH	32U
1735 1736
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1737
	unsigned int nr_pages;
1738
	struct work_struct work;
1739
	unsigned long flags;
1740
#define FLUSHING_CACHED_CHARGE	0
1741 1742
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1743
static DEFINE_MUTEX(percpu_charge_mutex);
1744

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1755
 */
1756
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1757 1758
{
	struct memcg_stock_pcp *stock;
1759
	bool ret = false;
1760

1761
	if (nr_pages > CHARGE_BATCH)
1762
		return ret;
1763

1764
	stock = &get_cpu_var(memcg_stock);
1765
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1766
		stock->nr_pages -= nr_pages;
1767 1768
		ret = true;
	}
1769 1770 1771 1772 1773
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1774
 * Returns stocks cached in percpu and reset cached information.
1775 1776 1777 1778 1779
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1780
	if (stock->nr_pages) {
1781
		page_counter_uncharge(&old->memory, stock->nr_pages);
1782
		if (do_memsw_account())
1783
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1784
		css_put_many(&old->css, stock->nr_pages);
1785
		stock->nr_pages = 0;
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1796
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1797
	drain_stock(stock);
1798
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1799 1800 1801
}

/*
1802
 * Cache charges(val) to local per_cpu area.
1803
 * This will be consumed by consume_stock() function, later.
1804
 */
1805
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1806 1807 1808
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1809
	if (stock->cached != memcg) { /* reset if necessary */
1810
		drain_stock(stock);
1811
		stock->cached = memcg;
1812
	}
1813
	stock->nr_pages += nr_pages;
1814 1815 1816 1817
	put_cpu_var(memcg_stock);
}

/*
1818
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1819
 * of the hierarchy under it.
1820
 */
1821
static void drain_all_stock(struct mem_cgroup *root_memcg)
1822
{
1823
	int cpu, curcpu;
1824

1825 1826 1827
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1828 1829
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1830
	curcpu = get_cpu();
1831 1832
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1833
		struct mem_cgroup *memcg;
1834

1835 1836
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1837
			continue;
1838
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1839
			continue;
1840 1841 1842 1843 1844 1845
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1846
	}
1847
	put_cpu();
A
Andrew Morton 已提交
1848
	put_online_cpus();
1849
	mutex_unlock(&percpu_charge_mutex);
1850 1851
}

1852
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1853 1854 1855 1856 1857 1858
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1859
	if (action == CPU_ONLINE)
1860 1861
		return NOTIFY_OK;

1862
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1863
		return NOTIFY_OK;
1864

1865 1866 1867 1868 1869
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1890 1891 1892 1893 1894 1895 1896
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1897
	struct mem_cgroup *memcg;
1898 1899 1900 1901

	if (likely(!nr_pages))
		return;

1902 1903
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1904 1905 1906 1907
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1908 1909
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1910
{
1911
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1912
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1913
	struct mem_cgroup *mem_over_limit;
1914
	struct page_counter *counter;
1915
	unsigned long nr_reclaimed;
1916 1917
	bool may_swap = true;
	bool drained = false;
1918

1919
	if (mem_cgroup_is_root(memcg))
1920
		return 0;
1921
retry:
1922
	if (consume_stock(memcg, nr_pages))
1923
		return 0;
1924

1925
	if (!do_memsw_account() ||
1926 1927
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1928
			goto done_restock;
1929
		if (do_memsw_account())
1930 1931
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1932
	} else {
1933
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1934
		may_swap = false;
1935
	}
1936

1937 1938 1939 1940
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1941

1942 1943 1944 1945 1946 1947 1948 1949 1950
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1951
		goto force;
1952 1953 1954 1955

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1956
	if (!gfpflags_allow_blocking(gfp_mask))
1957
		goto nomem;
1958

1959 1960
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

1961 1962
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
1963

1964
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1965
		goto retry;
1966

1967
	if (!drained) {
1968
		drain_all_stock(mem_over_limit);
1969 1970 1971 1972
		drained = true;
		goto retry;
	}

1973 1974
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
1975 1976 1977 1978 1979 1980 1981 1982 1983
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
1984
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1985 1986 1987 1988 1989 1990 1991 1992
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

1993 1994 1995
	if (nr_retries--)
		goto retry;

1996
	if (gfp_mask & __GFP_NOFAIL)
1997
		goto force;
1998

1999
	if (fatal_signal_pending(current))
2000
		goto force;
2001

2002 2003
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2004 2005
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
2006
nomem:
2007
	if (!(gfp_mask & __GFP_NOFAIL))
2008
		return -ENOMEM;
2009 2010 2011 2012 2013 2014 2015
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2016
	if (do_memsw_account())
2017 2018 2019 2020
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2021 2022

done_restock:
2023
	css_get_many(&memcg->css, batch);
2024 2025
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2026

2027
	/*
2028 2029
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2030
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2031 2032 2033 2034
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2035 2036
	 */
	do {
2037
		if (page_counter_read(&memcg->memory) > memcg->high) {
2038 2039 2040 2041 2042
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2043
			current->memcg_nr_pages_over_high += batch;
2044 2045 2046
			set_notify_resume(current);
			break;
		}
2047
	} while ((memcg = parent_mem_cgroup(memcg)));
2048 2049

	return 0;
2050
}
2051

2052
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2053
{
2054 2055 2056
	if (mem_cgroup_is_root(memcg))
		return;

2057
	page_counter_uncharge(&memcg->memory, nr_pages);
2058
	if (do_memsw_account())
2059
		page_counter_uncharge(&memcg->memsw, nr_pages);
2060

2061
	css_put_many(&memcg->css, nr_pages);
2062 2063
}

2064 2065 2066 2067
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

2068
	spin_lock_irq(zone_lru_lock(zone));
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2092
	spin_unlock_irq(zone_lru_lock(zone));
2093 2094
}

2095
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2096
			  bool lrucare)
2097
{
2098
	int isolated;
2099

2100
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2101 2102 2103 2104 2105

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2106 2107
	if (lrucare)
		lock_page_lru(page, &isolated);
2108

2109 2110
	/*
	 * Nobody should be changing or seriously looking at
2111
	 * page->mem_cgroup at this point:
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2123
	page->mem_cgroup = memcg;
2124

2125 2126
	if (lrucare)
		unlock_page_lru(page, isolated);
2127
}
2128

2129
#ifndef CONFIG_SLOB
2130
static int memcg_alloc_cache_id(void)
2131
{
2132 2133 2134
	int id, size;
	int err;

2135
	id = ida_simple_get(&memcg_cache_ida,
2136 2137 2138
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2139

2140
	if (id < memcg_nr_cache_ids)
2141 2142 2143 2144 2145 2146
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2147
	down_write(&memcg_cache_ids_sem);
2148 2149

	size = 2 * (id + 1);
2150 2151 2152 2153 2154
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2155
	err = memcg_update_all_caches(size);
2156 2157
	if (!err)
		err = memcg_update_all_list_lrus(size);
2158 2159 2160 2161 2162
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2163
	if (err) {
2164
		ida_simple_remove(&memcg_cache_ida, id);
2165 2166 2167 2168 2169 2170 2171
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2172
	ida_simple_remove(&memcg_cache_ida, id);
2173 2174
}

2175
struct memcg_kmem_cache_create_work {
2176 2177 2178 2179 2180
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2181
static void memcg_kmem_cache_create_func(struct work_struct *w)
2182
{
2183 2184
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2185 2186
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2187

2188
	memcg_create_kmem_cache(memcg, cachep);
2189

2190
	css_put(&memcg->css);
2191 2192 2193 2194 2195 2196
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2197 2198
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2199
{
2200
	struct memcg_kmem_cache_create_work *cw;
2201

2202
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2203
	if (!cw)
2204
		return;
2205 2206

	css_get(&memcg->css);
2207 2208 2209

	cw->memcg = memcg;
	cw->cachep = cachep;
2210
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2211 2212 2213 2214

	schedule_work(&cw->work);
}

2215 2216
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2217 2218 2219 2220
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2221
	 * in __memcg_schedule_kmem_cache_create will recurse.
2222 2223 2224 2225 2226 2227 2228
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2229
	current->memcg_kmem_skip_account = 1;
2230
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2231
	current->memcg_kmem_skip_account = 0;
2232
}
2233

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2245 2246 2247
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2248 2249 2250
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2251
 *
2252 2253 2254 2255
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2256
 */
2257
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2258 2259
{
	struct mem_cgroup *memcg;
2260
	struct kmem_cache *memcg_cachep;
2261
	int kmemcg_id;
2262

2263
	VM_BUG_ON(!is_root_cache(cachep));
2264

2265
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2266 2267
		return cachep;

2268
	if (current->memcg_kmem_skip_account)
2269 2270
		return cachep;

2271
	memcg = get_mem_cgroup_from_mm(current->mm);
2272
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2273
	if (kmemcg_id < 0)
2274
		goto out;
2275

2276
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2277 2278
	if (likely(memcg_cachep))
		return memcg_cachep;
2279 2280 2281 2282 2283 2284 2285 2286 2287

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2288 2289 2290
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2291
	 */
2292
	memcg_schedule_kmem_cache_create(memcg, cachep);
2293
out:
2294
	css_put(&memcg->css);
2295
	return cachep;
2296 2297
}

2298 2299 2300 2301 2302
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2303 2304
{
	if (!is_root_cache(cachep))
2305
		css_put(&cachep->memcg_params.memcg->css);
2306 2307
}

2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
/**
 * memcg_kmem_charge: charge a kmem page
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			    struct mem_cgroup *memcg)
2319
{
2320 2321
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2322 2323
	int ret;

2324
	ret = try_charge(memcg, gfp, nr_pages);
2325
	if (ret)
2326
		return ret;
2327 2328 2329 2330 2331

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2332 2333
	}

2334
	page->mem_cgroup = memcg;
2335

2336
	return 0;
2337 2338
}

2339 2340 2341 2342 2343 2344 2345 2346 2347
/**
 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2348
{
2349
	struct mem_cgroup *memcg;
2350
	int ret = 0;
2351

2352 2353 2354
	if (memcg_kmem_bypass())
		return 0;

2355
	memcg = get_mem_cgroup_from_mm(current->mm);
2356
	if (!mem_cgroup_is_root(memcg))
2357
		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2358
	css_put(&memcg->css);
2359
	return ret;
2360
}
2361 2362 2363 2364 2365 2366
/**
 * memcg_kmem_uncharge: uncharge a kmem page
 * @page: page to uncharge
 * @order: allocation order
 */
void memcg_kmem_uncharge(struct page *page, int order)
2367
{
2368
	struct mem_cgroup *memcg = page->mem_cgroup;
2369
	unsigned int nr_pages = 1 << order;
2370 2371 2372 2373

	if (!memcg)
		return;

2374
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2375

2376 2377 2378
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2379
	page_counter_uncharge(&memcg->memory, nr_pages);
2380
	if (do_memsw_account())
2381
		page_counter_uncharge(&memcg->memsw, nr_pages);
2382

2383
	page->mem_cgroup = NULL;
2384
	css_put_many(&memcg->css, nr_pages);
2385
}
2386
#endif /* !CONFIG_SLOB */
2387

2388 2389 2390 2391
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2392
 * zone_lru_lock and migration entries setup in all page mappings.
2393
 */
2394
void mem_cgroup_split_huge_fixup(struct page *head)
2395
{
2396
	int i;
2397

2398 2399
	if (mem_cgroup_disabled())
		return;
2400

2401
	for (i = 1; i < HPAGE_PMD_NR; i++)
2402
		head[i].mem_cgroup = head->mem_cgroup;
2403

2404
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2405
		       HPAGE_PMD_NR);
2406
}
2407
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2408

A
Andrew Morton 已提交
2409
#ifdef CONFIG_MEMCG_SWAP
2410 2411
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2412
{
2413 2414
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2415
}
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2428
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2429 2430 2431
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2432
				struct mem_cgroup *from, struct mem_cgroup *to)
2433 2434 2435
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2436 2437
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2438 2439 2440

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2441
		mem_cgroup_swap_statistics(to, true);
2442 2443 2444 2445 2446 2447
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2448
				struct mem_cgroup *from, struct mem_cgroup *to)
2449 2450 2451
{
	return -EINVAL;
}
2452
#endif
K
KAMEZAWA Hiroyuki 已提交
2453

2454
static DEFINE_MUTEX(memcg_limit_mutex);
2455

2456
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2457
				   unsigned long limit)
2458
{
2459 2460 2461
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2462
	int retry_count;
2463
	int ret;
2464 2465 2466 2467 2468 2469

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2470 2471
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2472

2473
	oldusage = page_counter_read(&memcg->memory);
2474

2475
	do {
2476 2477 2478 2479
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2480 2481 2482 2483

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2484
			ret = -EINVAL;
2485 2486
			break;
		}
2487 2488 2489 2490
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2491 2492 2493 2494

		if (!ret)
			break;

2495 2496
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2497
		curusage = page_counter_read(&memcg->memory);
2498
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2499
		if (curusage >= oldusage)
2500 2501 2502
			retry_count--;
		else
			oldusage = curusage;
2503 2504
	} while (retry_count);

2505 2506
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2507

2508 2509 2510
	return ret;
}

L
Li Zefan 已提交
2511
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2512
					 unsigned long limit)
2513
{
2514 2515 2516
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2517
	int retry_count;
2518
	int ret;
2519

2520
	/* see mem_cgroup_resize_res_limit */
2521 2522 2523 2524 2525 2526
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2527 2528 2529 2530
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2531 2532 2533 2534

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2535 2536 2537
			ret = -EINVAL;
			break;
		}
2538 2539 2540 2541
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2542 2543 2544 2545

		if (!ret)
			break;

2546 2547
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2548
		curusage = page_counter_read(&memcg->memsw);
2549
		/* Usage is reduced ? */
2550
		if (curusage >= oldusage)
2551
			retry_count--;
2552 2553
		else
			oldusage = curusage;
2554 2555
	} while (retry_count);

2556 2557
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2558

2559 2560 2561
	return ret;
}

2562 2563 2564 2565 2566 2567 2568 2569 2570
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2571
	unsigned long excess;
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2596
		spin_lock_irq(&mctz->lock);
2597
		__mem_cgroup_remove_exceeded(mz, mctz);
2598 2599 2600 2601 2602 2603

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2604 2605 2606
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2607
		excess = soft_limit_excess(mz->memcg);
2608 2609 2610 2611 2612 2613 2614 2615 2616
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2617
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2618
		spin_unlock_irq(&mctz->lock);
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2636 2637 2638 2639 2640 2641
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2642 2643
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2644 2645 2646 2647 2648 2649
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2650 2651
}

2652
/*
2653
 * Reclaims as many pages from the given memcg as possible.
2654 2655 2656 2657 2658 2659 2660
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2661 2662
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2663
	/* try to free all pages in this cgroup */
2664
	while (nr_retries && page_counter_read(&memcg->memory)) {
2665
		int progress;
2666

2667 2668 2669
		if (signal_pending(current))
			return -EINTR;

2670 2671
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2672
		if (!progress) {
2673
			nr_retries--;
2674
			/* maybe some writeback is necessary */
2675
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2676
		}
2677 2678

	}
2679 2680

	return 0;
2681 2682
}

2683 2684 2685
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2686
{
2687
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2688

2689 2690
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2691
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2692 2693
}

2694 2695
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2696
{
2697
	return mem_cgroup_from_css(css)->use_hierarchy;
2698 2699
}

2700 2701
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2702 2703
{
	int retval = 0;
2704
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2705
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2706

2707
	if (memcg->use_hierarchy == val)
2708
		return 0;
2709

2710
	/*
2711
	 * If parent's use_hierarchy is set, we can't make any modifications
2712 2713 2714 2715 2716 2717
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2718
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2719
				(val == 1 || val == 0)) {
2720
		if (!memcg_has_children(memcg))
2721
			memcg->use_hierarchy = val;
2722 2723 2724 2725
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2726

2727 2728 2729
	return retval;
}

2730
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2731 2732
{
	struct mem_cgroup *iter;
2733
	int i;
2734

2735
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2736

2737 2738 2739 2740
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
			stat[i] += mem_cgroup_read_stat(iter, i);
	}
2741 2742
}

2743
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2744 2745
{
	struct mem_cgroup *iter;
2746
	int i;
2747

2748
	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2749

2750 2751 2752 2753
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_EVENTS; i++)
			events[i] += mem_cgroup_read_events(iter, i);
	}
2754 2755
}

2756
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2757
{
2758
	unsigned long val = 0;
2759

2760
	if (mem_cgroup_is_root(memcg)) {
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_CACHE);
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_RSS);
			if (swap)
				val += mem_cgroup_read_stat(iter,
						MEM_CGROUP_STAT_SWAP);
		}
2772
	} else {
2773
		if (!swap)
2774
			val = page_counter_read(&memcg->memory);
2775
		else
2776
			val = page_counter_read(&memcg->memsw);
2777
	}
2778
	return val;
2779 2780
}

2781 2782 2783 2784 2785 2786 2787
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2788

2789
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2790
			       struct cftype *cft)
B
Balbir Singh 已提交
2791
{
2792
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2793
	struct page_counter *counter;
2794

2795
	switch (MEMFILE_TYPE(cft->private)) {
2796
	case _MEM:
2797 2798
		counter = &memcg->memory;
		break;
2799
	case _MEMSWAP:
2800 2801
		counter = &memcg->memsw;
		break;
2802
	case _KMEM:
2803
		counter = &memcg->kmem;
2804
		break;
V
Vladimir Davydov 已提交
2805
	case _TCP:
2806
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2807
		break;
2808 2809 2810
	default:
		BUG();
	}
2811 2812 2813 2814

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2815
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2816
		if (counter == &memcg->memsw)
2817
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2830
}
2831

2832
#ifndef CONFIG_SLOB
2833
static int memcg_online_kmem(struct mem_cgroup *memcg)
2834 2835 2836
{
	int memcg_id;

2837 2838 2839
	if (cgroup_memory_nokmem)
		return 0;

2840
	BUG_ON(memcg->kmemcg_id >= 0);
2841
	BUG_ON(memcg->kmem_state);
2842

2843
	memcg_id = memcg_alloc_cache_id();
2844 2845
	if (memcg_id < 0)
		return memcg_id;
2846

2847
	static_branch_inc(&memcg_kmem_enabled_key);
2848
	/*
2849
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2850
	 * kmemcg_id. Setting the id after enabling static branching will
2851 2852 2853
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2854
	memcg->kmemcg_id = memcg_id;
2855
	memcg->kmem_state = KMEM_ONLINE;
2856 2857

	return 0;
2858 2859
}

2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
2893
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2894 2895 2896 2897 2898 2899 2900
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
2901 2902
	rcu_read_unlock();

2903 2904 2905 2906 2907 2908 2909
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2910 2911 2912 2913
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2914 2915 2916 2917 2918 2919
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2920
#else
2921
static int memcg_online_kmem(struct mem_cgroup *memcg)
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2933
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2934
				   unsigned long limit)
2935
{
2936
	int ret;
2937 2938 2939 2940 2941

	mutex_lock(&memcg_limit_mutex);
	ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2942
}
2943

V
Vladimir Davydov 已提交
2944 2945 2946 2947 2948 2949
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2950
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2951 2952 2953
	if (ret)
		goto out;

2954
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
		 * function is the last one to run. See sock_update_memcg() for
		 * details, and note that we don't mark any socket as belonging
		 * to this memcg until that flag is up.
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
		 * We never race with the readers in sock_update_memcg(),
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
2972
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
2973 2974 2975 2976 2977 2978
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

2979 2980 2981 2982
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2983 2984
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
2985
{
2986
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2987
	unsigned long nr_pages;
2988 2989
	int ret;

2990
	buf = strstrip(buf);
2991
	ret = page_counter_memparse(buf, "-1", &nr_pages);
2992 2993
	if (ret)
		return ret;
2994

2995
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2996
	case RES_LIMIT:
2997 2998 2999 3000
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3001 3002 3003
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3004
			break;
3005 3006
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3007
			break;
3008 3009 3010
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
3011 3012 3013
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
3014
		}
3015
		break;
3016 3017 3018
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3019 3020
		break;
	}
3021
	return ret ?: nbytes;
B
Balbir Singh 已提交
3022 3023
}

3024 3025
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3026
{
3027
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3028
	struct page_counter *counter;
3029

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3040
	case _TCP:
3041
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3042
		break;
3043 3044 3045
	default:
		BUG();
	}
3046

3047
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3048
	case RES_MAX_USAGE:
3049
		page_counter_reset_watermark(counter);
3050 3051
		break;
	case RES_FAILCNT:
3052
		counter->failcnt = 0;
3053
		break;
3054 3055
	default:
		BUG();
3056
	}
3057

3058
	return nbytes;
3059 3060
}

3061
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3062 3063
					struct cftype *cft)
{
3064
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3065 3066
}

3067
#ifdef CONFIG_MMU
3068
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3069 3070
					struct cftype *cft, u64 val)
{
3071
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3072

3073
	if (val & ~MOVE_MASK)
3074
		return -EINVAL;
3075

3076
	/*
3077 3078 3079 3080
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3081
	 */
3082
	memcg->move_charge_at_immigrate = val;
3083 3084
	return 0;
}
3085
#else
3086
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3087 3088 3089 3090 3091
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3092

3093
#ifdef CONFIG_NUMA
3094
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3095
{
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3108
	int nid;
3109
	unsigned long nr;
3110
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3111

3112 3113 3114 3115 3116 3117 3118 3119 3120
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3121 3122
	}

3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3138 3139 3140 3141 3142 3143
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3144
static int memcg_stat_show(struct seq_file *m, void *v)
3145
{
3146
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3147
	unsigned long memory, memsw;
3148 3149
	struct mem_cgroup *mi;
	unsigned int i;
3150

3151 3152 3153 3154
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3155 3156
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3157
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3158
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3159
			continue;
3160
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3161
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3162
	}
L
Lee Schermerhorn 已提交
3163

3164 3165 3166 3167 3168 3169 3170 3171
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3172
	/* Hierarchical information */
3173 3174 3175 3176
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3177
	}
3178 3179
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3180
	if (do_memsw_account())
3181 3182
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3183

3184
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3185
		unsigned long long val = 0;
3186

3187
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3188
			continue;
3189 3190
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3191
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3209
	}
K
KAMEZAWA Hiroyuki 已提交
3210

K
KOSAKI Motohiro 已提交
3211 3212 3213 3214
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3215
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3216 3217 3218 3219 3220
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3221
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3222
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3223

3224 3225 3226 3227
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3228
			}
3229 3230 3231 3232
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3233 3234 3235
	}
#endif

3236 3237 3238
	return 0;
}

3239 3240
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3241
{
3242
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3243

3244
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3245 3246
}

3247 3248
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3249
{
3250
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3251

3252
	if (val > 100)
K
KOSAKI Motohiro 已提交
3253 3254
		return -EINVAL;

3255
	if (css->parent)
3256 3257 3258
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3259

K
KOSAKI Motohiro 已提交
3260 3261 3262
	return 0;
}

3263 3264 3265
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3266
	unsigned long usage;
3267 3268 3269 3270
	int i;

	rcu_read_lock();
	if (!swap)
3271
		t = rcu_dereference(memcg->thresholds.primary);
3272
	else
3273
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3274 3275 3276 3277

	if (!t)
		goto unlock;

3278
	usage = mem_cgroup_usage(memcg, swap);
3279 3280

	/*
3281
	 * current_threshold points to threshold just below or equal to usage.
3282 3283 3284
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3285
	i = t->current_threshold;
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3309
	t->current_threshold = i - 1;
3310 3311 3312 3313 3314 3315
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3316 3317
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3318
		if (do_memsw_account())
3319 3320 3321 3322
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3323 3324 3325 3326 3327 3328 3329
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3330 3331 3332 3333 3334 3335 3336
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3337 3338
}

3339
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3340 3341 3342
{
	struct mem_cgroup_eventfd_list *ev;

3343 3344
	spin_lock(&memcg_oom_lock);

3345
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3346
		eventfd_signal(ev->eventfd, 1);
3347 3348

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3349 3350 3351
	return 0;
}

3352
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3353
{
K
KAMEZAWA Hiroyuki 已提交
3354 3355
	struct mem_cgroup *iter;

3356
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3357
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3358 3359
}

3360
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3361
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3362
{
3363 3364
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3365 3366
	unsigned long threshold;
	unsigned long usage;
3367
	int i, size, ret;
3368

3369
	ret = page_counter_memparse(args, "-1", &threshold);
3370 3371 3372 3373
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3374

3375
	if (type == _MEM) {
3376
		thresholds = &memcg->thresholds;
3377
		usage = mem_cgroup_usage(memcg, false);
3378
	} else if (type == _MEMSWAP) {
3379
		thresholds = &memcg->memsw_thresholds;
3380
		usage = mem_cgroup_usage(memcg, true);
3381
	} else
3382 3383 3384
		BUG();

	/* Check if a threshold crossed before adding a new one */
3385
	if (thresholds->primary)
3386 3387
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3388
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3389 3390

	/* Allocate memory for new array of thresholds */
3391
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3392
			GFP_KERNEL);
3393
	if (!new) {
3394 3395 3396
		ret = -ENOMEM;
		goto unlock;
	}
3397
	new->size = size;
3398 3399

	/* Copy thresholds (if any) to new array */
3400 3401
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3402
				sizeof(struct mem_cgroup_threshold));
3403 3404
	}

3405
	/* Add new threshold */
3406 3407
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3408 3409

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3410
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3411 3412 3413
			compare_thresholds, NULL);

	/* Find current threshold */
3414
	new->current_threshold = -1;
3415
	for (i = 0; i < size; i++) {
3416
		if (new->entries[i].threshold <= usage) {
3417
			/*
3418 3419
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3420 3421
			 * it here.
			 */
3422
			++new->current_threshold;
3423 3424
		} else
			break;
3425 3426
	}

3427 3428 3429 3430 3431
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3432

3433
	/* To be sure that nobody uses thresholds */
3434 3435 3436 3437 3438 3439 3440 3441
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3442
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3443 3444
	struct eventfd_ctx *eventfd, const char *args)
{
3445
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3446 3447
}

3448
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3449 3450
	struct eventfd_ctx *eventfd, const char *args)
{
3451
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3452 3453
}

3454
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3455
	struct eventfd_ctx *eventfd, enum res_type type)
3456
{
3457 3458
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3459
	unsigned long usage;
3460
	int i, j, size;
3461 3462

	mutex_lock(&memcg->thresholds_lock);
3463 3464

	if (type == _MEM) {
3465
		thresholds = &memcg->thresholds;
3466
		usage = mem_cgroup_usage(memcg, false);
3467
	} else if (type == _MEMSWAP) {
3468
		thresholds = &memcg->memsw_thresholds;
3469
		usage = mem_cgroup_usage(memcg, true);
3470
	} else
3471 3472
		BUG();

3473 3474 3475
	if (!thresholds->primary)
		goto unlock;

3476 3477 3478 3479
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3480 3481 3482
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3483 3484 3485
			size++;
	}

3486
	new = thresholds->spare;
3487

3488 3489
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3490 3491
		kfree(new);
		new = NULL;
3492
		goto swap_buffers;
3493 3494
	}

3495
	new->size = size;
3496 3497

	/* Copy thresholds and find current threshold */
3498 3499 3500
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3501 3502
			continue;

3503
		new->entries[j] = thresholds->primary->entries[i];
3504
		if (new->entries[j].threshold <= usage) {
3505
			/*
3506
			 * new->current_threshold will not be used
3507 3508 3509
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3510
			++new->current_threshold;
3511 3512 3513 3514
		}
		j++;
	}

3515
swap_buffers:
3516 3517
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3518

3519
	rcu_assign_pointer(thresholds->primary, new);
3520

3521
	/* To be sure that nobody uses thresholds */
3522
	synchronize_rcu();
3523 3524 3525 3526 3527 3528

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3529
unlock:
3530 3531
	mutex_unlock(&memcg->thresholds_lock);
}
3532

3533
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3534 3535
	struct eventfd_ctx *eventfd)
{
3536
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3537 3538
}

3539
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3540 3541
	struct eventfd_ctx *eventfd)
{
3542
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3543 3544
}

3545
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3546
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3547 3548 3549 3550 3551 3552 3553
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3554
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3555 3556 3557 3558 3559

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3560
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3561
		eventfd_signal(eventfd, 1);
3562
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3563 3564 3565 3566

	return 0;
}

3567
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3568
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3569 3570 3571
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3572
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3573

3574
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3575 3576 3577 3578 3579 3580
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3581
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3582 3583
}

3584
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3585
{
3586
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3587

3588
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3589
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3590 3591 3592
	return 0;
}

3593
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3594 3595
	struct cftype *cft, u64 val)
{
3596
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3597 3598

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3599
	if (!css->parent || !((val == 0) || (val == 1)))
3600 3601
		return -EINVAL;

3602
	memcg->oom_kill_disable = val;
3603
	if (!val)
3604
		memcg_oom_recover(memcg);
3605

3606 3607 3608
	return 0;
}

3609 3610 3611 3612 3613 3614 3615
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3626 3627 3628 3629 3630
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3641 3642 3643
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3644 3645
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3646 3647 3648
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3649 3650 3651
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3652
 *
3653 3654 3655 3656 3657
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3658
 */
3659 3660 3661
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3662 3663 3664 3665 3666 3667 3668 3669
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3670 3671 3672
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3673 3674 3675 3676 3677

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3678
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3679 3680 3681 3682
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3694 3695 3696 3697
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3698 3699
#endif	/* CONFIG_CGROUP_WRITEBACK */

3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3713 3714 3715 3716 3717
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3718
static void memcg_event_remove(struct work_struct *work)
3719
{
3720 3721
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3722
	struct mem_cgroup *memcg = event->memcg;
3723 3724 3725

	remove_wait_queue(event->wqh, &event->wait);

3726
	event->unregister_event(memcg, event->eventfd);
3727 3728 3729 3730 3731 3732

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3733
	css_put(&memcg->css);
3734 3735 3736 3737 3738 3739 3740
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3741 3742
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3743
{
3744 3745
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3746
	struct mem_cgroup *memcg = event->memcg;
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3759
		spin_lock(&memcg->event_list_lock);
3760 3761 3762 3763 3764 3765 3766 3767
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3768
		spin_unlock(&memcg->event_list_lock);
3769 3770 3771 3772 3773
	}

	return 0;
}

3774
static void memcg_event_ptable_queue_proc(struct file *file,
3775 3776
		wait_queue_head_t *wqh, poll_table *pt)
{
3777 3778
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3779 3780 3781 3782 3783 3784

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3785 3786
 * DO NOT USE IN NEW FILES.
 *
3787 3788 3789 3790 3791
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3792 3793
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3794
{
3795
	struct cgroup_subsys_state *css = of_css(of);
3796
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3797
	struct mem_cgroup_event *event;
3798 3799 3800 3801
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3802
	const char *name;
3803 3804 3805
	char *endp;
	int ret;

3806 3807 3808
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3809 3810
	if (*endp != ' ')
		return -EINVAL;
3811
	buf = endp + 1;
3812

3813
	cfd = simple_strtoul(buf, &endp, 10);
3814 3815
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3816
	buf = endp + 1;
3817 3818 3819 3820 3821

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3822
	event->memcg = memcg;
3823
	INIT_LIST_HEAD(&event->list);
3824 3825 3826
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3852 3853 3854 3855 3856
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3857 3858
	 *
	 * DO NOT ADD NEW FILES.
3859
	 */
A
Al Viro 已提交
3860
	name = cfile.file->f_path.dentry->d_name.name;
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3872 3873
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3874 3875 3876 3877 3878
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3879
	/*
3880 3881 3882
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3883
	 */
A
Al Viro 已提交
3884
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3885
					       &memory_cgrp_subsys);
3886
	ret = -EINVAL;
3887
	if (IS_ERR(cfile_css))
3888
		goto out_put_cfile;
3889 3890
	if (cfile_css != css) {
		css_put(cfile_css);
3891
		goto out_put_cfile;
3892
	}
3893

3894
	ret = event->register_event(memcg, event->eventfd, buf);
3895 3896 3897 3898 3899
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3900 3901 3902
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3903 3904 3905 3906

	fdput(cfile);
	fdput(efile);

3907
	return nbytes;
3908 3909

out_put_css:
3910
	css_put(css);
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3923
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3924
	{
3925
		.name = "usage_in_bytes",
3926
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3927
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3928
	},
3929 3930
	{
		.name = "max_usage_in_bytes",
3931
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3932
		.write = mem_cgroup_reset,
3933
		.read_u64 = mem_cgroup_read_u64,
3934
	},
B
Balbir Singh 已提交
3935
	{
3936
		.name = "limit_in_bytes",
3937
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3938
		.write = mem_cgroup_write,
3939
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3940
	},
3941 3942 3943
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3944
		.write = mem_cgroup_write,
3945
		.read_u64 = mem_cgroup_read_u64,
3946
	},
B
Balbir Singh 已提交
3947 3948
	{
		.name = "failcnt",
3949
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3950
		.write = mem_cgroup_reset,
3951
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3952
	},
3953 3954
	{
		.name = "stat",
3955
		.seq_show = memcg_stat_show,
3956
	},
3957 3958
	{
		.name = "force_empty",
3959
		.write = mem_cgroup_force_empty_write,
3960
	},
3961 3962 3963 3964 3965
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
3966
	{
3967
		.name = "cgroup.event_control",		/* XXX: for compat */
3968
		.write = memcg_write_event_control,
3969
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3970
	},
K
KOSAKI Motohiro 已提交
3971 3972 3973 3974 3975
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3976 3977 3978 3979 3980
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3981 3982
	{
		.name = "oom_control",
3983
		.seq_show = mem_cgroup_oom_control_read,
3984
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3985 3986
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
3987 3988 3989
	{
		.name = "pressure_level",
	},
3990 3991 3992
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
3993
		.seq_show = memcg_numa_stat_show,
3994 3995
	},
#endif
3996 3997 3998
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3999
		.write = mem_cgroup_write,
4000
		.read_u64 = mem_cgroup_read_u64,
4001 4002 4003 4004
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4005
		.read_u64 = mem_cgroup_read_u64,
4006 4007 4008 4009
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4010
		.write = mem_cgroup_reset,
4011
		.read_u64 = mem_cgroup_read_u64,
4012 4013 4014 4015
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4016
		.write = mem_cgroup_reset,
4017
		.read_u64 = mem_cgroup_read_u64,
4018
	},
4019 4020 4021
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4022 4023 4024 4025
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4026 4027
	},
#endif
V
Vladimir Davydov 已提交
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4051
	{ },	/* terminate */
4052
};
4053

4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

static void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	atomic_inc(&memcg->id.ref);
}

static void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	if (atomic_dec_and_test(&memcg->id.ref)) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4108
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4109 4110
{
	struct mem_cgroup_per_node *pn;
4111
	struct mem_cgroup_per_zone *mz;
4112
	int zone, tmp = node;
4113 4114 4115 4116 4117 4118 4119 4120
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4121 4122
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4123
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4124 4125
	if (!pn)
		return 1;
4126 4127 4128

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4129
		lruvec_init(&mz->lruvec);
4130 4131
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4132
		mz->memcg = memcg;
4133
	}
4134
	memcg->nodeinfo[node] = pn;
4135 4136 4137
	return 0;
}

4138
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4139
{
4140
	kfree(memcg->nodeinfo[node]);
4141 4142
}

4143
static void mem_cgroup_free(struct mem_cgroup *memcg)
4144
{
4145
	int node;
4146

4147
	memcg_wb_domain_exit(memcg);
4148 4149 4150
	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);
	free_percpu(memcg->stat);
4151
	kfree(memcg);
4152
}
4153

4154
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4155
{
4156
	struct mem_cgroup *memcg;
4157
	size_t size;
4158
	int node;
B
Balbir Singh 已提交
4159

4160 4161 4162 4163
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4164
	if (!memcg)
4165 4166
		return NULL;

4167 4168 4169 4170 4171 4172
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4173 4174 4175
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4176

B
Bob Liu 已提交
4177
	for_each_node(node)
4178
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4179
			goto fail;
4180

4181 4182
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4183

4184
	INIT_WORK(&memcg->high_work, high_work_func);
4185 4186 4187 4188
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4189
	vmpressure_init(&memcg->vmpressure);
4190 4191
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4192
	memcg->socket_pressure = jiffies;
4193
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4194 4195
	memcg->kmemcg_id = -1;
#endif
4196 4197 4198
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4199
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4200 4201
	return memcg;
fail:
4202 4203
	if (memcg->id.id > 0)
		idr_remove(&mem_cgroup_idr, memcg->id.id);
4204 4205
	mem_cgroup_free(memcg);
	return NULL;
4206 4207
}

4208 4209
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4210
{
4211 4212 4213
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4214

4215 4216 4217
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4218

4219 4220 4221 4222 4223 4224 4225 4226
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4227
		page_counter_init(&memcg->memory, &parent->memory);
4228
		page_counter_init(&memcg->swap, &parent->swap);
4229 4230
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4231
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4232
	} else {
4233
		page_counter_init(&memcg->memory, NULL);
4234
		page_counter_init(&memcg->swap, NULL);
4235 4236
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4237
		page_counter_init(&memcg->tcpmem, NULL);
4238 4239 4240 4241 4242
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4243
		if (parent != root_mem_cgroup)
4244
			memory_cgrp_subsys.broken_hierarchy = true;
4245
	}
4246

4247 4248 4249 4250 4251 4252
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4253
	error = memcg_online_kmem(memcg);
4254 4255
	if (error)
		goto fail;
4256

4257
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4258
		static_branch_inc(&memcg_sockets_enabled_key);
4259

4260 4261 4262
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
4263
	return ERR_PTR(-ENOMEM);
4264 4265
}

4266
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4267
{
4268 4269 4270
	/* Online state pins memcg ID, memcg ID pins CSS */
	mem_cgroup_id_get(mem_cgroup_from_css(css));
	css_get(css);
4271
	return 0;
B
Balbir Singh 已提交
4272 4273
}

4274
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4275
{
4276
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4277
	struct mem_cgroup_event *event, *tmp;
4278 4279 4280 4281 4282 4283

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4284 4285
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4286 4287 4288
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4289
	spin_unlock(&memcg->event_list_lock);
4290

4291
	memcg_offline_kmem(memcg);
4292
	wb_memcg_offline(memcg);
4293 4294

	mem_cgroup_id_put(memcg);
4295 4296
}

4297 4298 4299 4300 4301 4302 4303
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4304
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4305
{
4306
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4307

4308
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4309
		static_branch_dec(&memcg_sockets_enabled_key);
4310

4311
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4312
		static_branch_dec(&memcg_sockets_enabled_key);
4313

4314 4315 4316
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4317
	memcg_free_kmem(memcg);
4318
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4319 4320
}

4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4338 4339 4340 4341 4342
	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4343 4344
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4345
	memcg->soft_limit = PAGE_COUNTER_MAX;
4346
	memcg_wb_domain_size_changed(memcg);
4347 4348
}

4349
#ifdef CONFIG_MMU
4350
/* Handlers for move charge at task migration. */
4351
static int mem_cgroup_do_precharge(unsigned long count)
4352
{
4353
	int ret;
4354

4355 4356
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4357
	if (!ret) {
4358 4359 4360
		mc.precharge += count;
		return ret;
	}
4361 4362

	/* Try charges one by one with reclaim */
4363
	while (count--) {
4364
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4365 4366
		if (ret)
			return ret;
4367
		mc.precharge++;
4368
		cond_resched();
4369
	}
4370
	return 0;
4371 4372 4373 4374
}

union mc_target {
	struct page	*page;
4375
	swp_entry_t	ent;
4376 4377 4378
};

enum mc_target_type {
4379
	MC_TARGET_NONE = 0,
4380
	MC_TARGET_PAGE,
4381
	MC_TARGET_SWAP,
4382 4383
};

D
Daisuke Nishimura 已提交
4384 4385
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4386
{
D
Daisuke Nishimura 已提交
4387
	struct page *page = vm_normal_page(vma, addr, ptent);
4388

D
Daisuke Nishimura 已提交
4389 4390 4391
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4392
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4393
			return NULL;
4394 4395 4396 4397
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4398 4399 4400 4401 4402 4403
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4404
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4405
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4406
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4407 4408 4409 4410
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4411
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4412
		return NULL;
4413 4414 4415 4416
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4417
	page = find_get_page(swap_address_space(ent), ent.val);
4418
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4419 4420 4421 4422
		entry->val = ent.val;

	return page;
}
4423 4424
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4425
			pte_t ptent, swp_entry_t *entry)
4426 4427 4428 4429
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4430

4431 4432 4433 4434 4435 4436 4437 4438 4439
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4440
	if (!(mc.flags & MOVE_FILE))
4441 4442 4443
		return NULL;

	mapping = vma->vm_file->f_mapping;
4444
	pgoff = linear_page_index(vma, addr);
4445 4446

	/* page is moved even if it's not RSS of this task(page-faulted). */
4447 4448
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4449 4450 4451 4452
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4453
			if (do_memsw_account())
4454 4455 4456 4457 4458 4459 4460
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4461
#endif
4462 4463 4464
	return page;
}

4465 4466 4467
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4468
 * @compound: charge the page as compound or small page
4469 4470 4471
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4472
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4473 4474 4475 4476 4477
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4478
				   bool compound,
4479 4480 4481 4482
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4483
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4484
	int ret;
4485
	bool anon;
4486 4487 4488

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4489
	VM_BUG_ON(compound && !PageTransHuge(page));
4490 4491

	/*
4492
	 * Prevent mem_cgroup_migrate() from looking at
4493
	 * page->mem_cgroup of its source page while we change it.
4494
	 */
4495
	ret = -EBUSY;
4496 4497 4498 4499 4500 4501 4502
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4503 4504
	anon = PageAnon(page);

4505 4506
	spin_lock_irqsave(&from->move_lock, flags);

4507
	if (!anon && page_mapped(page)) {
4508 4509 4510 4511 4512 4513
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4550
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4551
	memcg_check_events(to, page);
4552
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4553 4554 4555 4556 4557 4558 4559 4560
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
 *
 * Called with pte lock held.
 */

4580
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4581 4582 4583
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4584
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4585 4586 4587 4588 4589
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4590
		page = mc_handle_swap_pte(vma, ptent, &ent);
4591
	else if (pte_none(ptent))
4592
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4593 4594

	if (!page && !ent.val)
4595
		return ret;
4596 4597
	if (page) {
		/*
4598
		 * Do only loose check w/o serialization.
4599
		 * mem_cgroup_move_account() checks the page is valid or
4600
		 * not under LRU exclusion.
4601
		 */
4602
		if (page->mem_cgroup == mc.from) {
4603 4604 4605 4606 4607 4608 4609
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4610 4611
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4612
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4613 4614 4615
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4616 4617 4618 4619
	}
	return ret;
}

4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4633
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4634
	if (!(mc.flags & MOVE_ANON))
4635
		return ret;
4636
	if (page->mem_cgroup == mc.from) {
4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4653 4654 4655 4656
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4657
	struct vm_area_struct *vma = walk->vma;
4658 4659 4660
	pte_t *pte;
	spinlock_t *ptl;

4661 4662
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4663 4664
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4665
		spin_unlock(ptl);
4666
		return 0;
4667
	}
4668

4669 4670
	if (pmd_trans_unstable(pmd))
		return 0;
4671 4672
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4673
		if (get_mctgt_type(vma, addr, *pte, NULL))
4674 4675 4676 4677
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4678 4679 4680
	return 0;
}

4681 4682 4683 4684
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4685 4686 4687 4688
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4689
	down_read(&mm->mmap_sem);
4690
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4691
	up_read(&mm->mmap_sem);
4692 4693 4694 4695 4696 4697 4698 4699 4700

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4701 4702 4703 4704 4705
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4706 4707
}

4708 4709
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4710
{
4711 4712 4713
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4714
	/* we must uncharge all the leftover precharges from mc.to */
4715
	if (mc.precharge) {
4716
		cancel_charge(mc.to, mc.precharge);
4717 4718 4719 4720 4721 4722 4723
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4724
		cancel_charge(mc.from, mc.moved_charge);
4725
		mc.moved_charge = 0;
4726
	}
4727 4728 4729
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4730
		if (!mem_cgroup_is_root(mc.from))
4731
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4732

4733
		/*
4734 4735
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4736
		 */
4737
		if (!mem_cgroup_is_root(mc.to))
4738 4739
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4740
		css_put_many(&mc.from->css, mc.moved_swap);
4741

L
Li Zefan 已提交
4742
		/* we've already done css_get(mc.to) */
4743 4744
		mc.moved_swap = 0;
	}
4745 4746 4747 4748 4749 4750 4751
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
4752 4753
	struct mm_struct *mm = mc.mm;

4754 4755 4756 4757 4758 4759
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4760
	spin_lock(&mc.lock);
4761 4762
	mc.from = NULL;
	mc.to = NULL;
4763
	mc.mm = NULL;
4764
	spin_unlock(&mc.lock);
4765 4766

	mmput(mm);
4767 4768
}

4769
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4770
{
4771
	struct cgroup_subsys_state *css;
4772
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4773
	struct mem_cgroup *from;
4774
	struct task_struct *leader, *p;
4775
	struct mm_struct *mm;
4776
	unsigned long move_flags;
4777
	int ret = 0;
4778

4779 4780
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4781 4782
		return 0;

4783 4784 4785 4786 4787 4788 4789
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4790
	cgroup_taskset_for_each_leader(leader, css, tset) {
4791 4792
		WARN_ON_ONCE(p);
		p = leader;
4793
		memcg = mem_cgroup_from_css(css);
4794 4795 4796 4797
	}
	if (!p)
		return 0;

4798 4799 4800 4801 4802 4803 4804 4805 4806
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
4823
		mc.mm = mm;
4824 4825 4826 4827 4828 4829 4830 4831 4832
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4833 4834
	} else {
		mmput(mm);
4835 4836 4837 4838
	}
	return ret;
}

4839
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4840
{
4841 4842
	if (mc.to)
		mem_cgroup_clear_mc();
4843 4844
}

4845 4846 4847
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4848
{
4849
	int ret = 0;
4850
	struct vm_area_struct *vma = walk->vma;
4851 4852
	pte_t *pte;
	spinlock_t *ptl;
4853 4854 4855
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4856

4857 4858
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4859
		if (mc.precharge < HPAGE_PMD_NR) {
4860
			spin_unlock(ptl);
4861 4862 4863 4864 4865 4866
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4867
				if (!mem_cgroup_move_account(page, true,
4868
							     mc.from, mc.to)) {
4869 4870 4871 4872 4873 4874 4875
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4876
		spin_unlock(ptl);
4877
		return 0;
4878 4879
	}

4880 4881
	if (pmd_trans_unstable(pmd))
		return 0;
4882 4883 4884 4885
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4886
		swp_entry_t ent;
4887 4888 4889 4890

		if (!mc.precharge)
			break;

4891
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4892 4893
		case MC_TARGET_PAGE:
			page = target.page;
4894 4895 4896 4897 4898 4899 4900 4901
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4902 4903
			if (isolate_lru_page(page))
				goto put;
4904 4905
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4906
				mc.precharge--;
4907 4908
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4909 4910
			}
			putback_lru_page(page);
4911
put:			/* get_mctgt_type() gets the page */
4912 4913
			put_page(page);
			break;
4914 4915
		case MC_TARGET_SWAP:
			ent = target.ent;
4916
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4917
				mc.precharge--;
4918 4919 4920
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4921
			break;
4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4936
		ret = mem_cgroup_do_precharge(1);
4937 4938 4939 4940 4941 4942 4943
		if (!ret)
			goto retry;
	}

	return ret;
}

4944
static void mem_cgroup_move_charge(void)
4945
{
4946 4947
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
4948
		.mm = mc.mm,
4949
	};
4950 4951

	lru_add_drain_all();
4952
	/*
4953 4954 4955
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
4956 4957 4958
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4959
retry:
4960
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4972 4973 4974 4975 4976
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4977
	up_read(&mc.mm->mmap_sem);
4978
	atomic_dec(&mc.from->moving_account);
4979 4980
}

4981
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
4982
{
4983 4984
	if (mc.to) {
		mem_cgroup_move_charge();
4985
		mem_cgroup_clear_mc();
4986
	}
B
Balbir Singh 已提交
4987
}
4988
#else	/* !CONFIG_MMU */
4989
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4990 4991 4992
{
	return 0;
}
4993
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4994 4995
{
}
4996
static void mem_cgroup_move_task(void)
4997 4998 4999
{
}
#endif
B
Balbir Singh 已提交
5000

5001 5002
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5003 5004
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5005
 */
5006
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5007 5008
{
	/*
5009
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5010 5011 5012
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5013
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5014 5015 5016
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5017 5018
}

5019 5020 5021
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5022 5023 5024
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5025 5026 5027 5028 5029
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5030
	unsigned long low = READ_ONCE(memcg->low);
5031 5032

	if (low == PAGE_COUNTER_MAX)
5033
		seq_puts(m, "max\n");
5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5048
	err = page_counter_memparse(buf, "max", &low);
5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5060
	unsigned long high = READ_ONCE(memcg->high);
5061 5062

	if (high == PAGE_COUNTER_MAX)
5063
		seq_puts(m, "max\n");
5064 5065 5066 5067 5068 5069 5070 5071 5072 5073
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5074
	unsigned long nr_pages;
5075 5076 5077 5078
	unsigned long high;
	int err;

	buf = strstrip(buf);
5079
	err = page_counter_memparse(buf, "max", &high);
5080 5081 5082 5083 5084
	if (err)
		return err;

	memcg->high = high;

5085 5086 5087 5088 5089
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5090
	memcg_wb_domain_size_changed(memcg);
5091 5092 5093 5094 5095 5096
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5097
	unsigned long max = READ_ONCE(memcg->memory.limit);
5098 5099

	if (max == PAGE_COUNTER_MAX)
5100
		seq_puts(m, "max\n");
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5111 5112
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5113 5114 5115 5116
	unsigned long max;
	int err;

	buf = strstrip(buf);
5117
	err = page_counter_memparse(buf, "max", &max);
5118 5119 5120
	if (err)
		return err;

5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150
	xchg(&memcg->memory.limit, max);

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

		mem_cgroup_events(memcg, MEMCG_OOM, 1);
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5151

5152
	memcg_wb_domain_size_changed(memcg);
5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

5168 5169 5170
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5171 5172
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[MEMCG_NR_EVENTS];
5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5186 5187 5188
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5189
	seq_printf(m, "anon %llu\n",
5190
		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5191
	seq_printf(m, "file %llu\n",
5192
		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5193 5194
	seq_printf(m, "kernel_stack %llu\n",
		   (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5195 5196 5197
	seq_printf(m, "slab %llu\n",
		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5198
	seq_printf(m, "sock %llu\n",
5199
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5200 5201

	seq_printf(m, "file_mapped %llu\n",
5202
		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5203
	seq_printf(m, "file_dirty %llu\n",
5204
		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5205
	seq_printf(m, "file_writeback %llu\n",
5206
		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5218 5219 5220 5221 5222
	seq_printf(m, "slab_reclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
	seq_printf(m, "slab_unreclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);

5223 5224 5225
	/* Accumulated memory events */

	seq_printf(m, "pgfault %lu\n",
5226
		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5227
	seq_printf(m, "pgmajfault %lu\n",
5228
		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5229 5230 5231 5232

	return 0;
}

5233 5234 5235
static struct cftype memory_files[] = {
	{
		.name = "current",
5236
		.flags = CFTYPE_NOT_ON_ROOT,
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5260
		.file_offset = offsetof(struct mem_cgroup, events_file),
5261 5262
		.seq_show = memory_events_show,
	},
5263 5264 5265 5266 5267
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5268 5269 5270
	{ }	/* terminate */
};

5271
struct cgroup_subsys memory_cgrp_subsys = {
5272
	.css_alloc = mem_cgroup_css_alloc,
5273
	.css_online = mem_cgroup_css_online,
5274
	.css_offline = mem_cgroup_css_offline,
5275
	.css_released = mem_cgroup_css_released,
5276
	.css_free = mem_cgroup_css_free,
5277
	.css_reset = mem_cgroup_css_reset,
5278 5279
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5280
	.post_attach = mem_cgroup_move_task,
5281
	.bind = mem_cgroup_bind,
5282 5283
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5284
	.early_init = 0,
B
Balbir Singh 已提交
5285
};
5286

5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5309
	if (page_counter_read(&memcg->memory) >= memcg->low)
5310 5311 5312 5313 5314 5315 5316 5317
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5318
		if (page_counter_read(&memcg->memory) >= memcg->low)
5319 5320 5321 5322 5323
			return false;
	}
	return true;
}

5324 5325 5326 5327 5328 5329
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5330
 * @compound: charge the page as compound or small page
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5343 5344
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5345 5346
{
	struct mem_cgroup *memcg = NULL;
5347
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5361
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5362
		if (page->mem_cgroup)
5363
			goto out;
5364

5365
		if (do_swap_account) {
5366 5367 5368 5369 5370 5371 5372 5373 5374
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5393
 * @compound: charge the page as compound or small page
5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5406
			      bool lrucare, bool compound)
5407
{
5408
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5423 5424 5425
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5426
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5427 5428
	memcg_check_events(memcg, page);
	local_irq_enable();
5429

5430
	if (do_memsw_account() && PageSwapCache(page)) {
5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
5445
 * @compound: charge the page as compound or small page
5446 5447 5448
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5449 5450
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5451
{
5452
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5467 5468
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
5469 5470
			   unsigned long nr_huge, unsigned long nr_kmem,
			   struct page *dummy_page)
5471
{
5472
	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5473 5474
	unsigned long flags;

5475
	if (!mem_cgroup_is_root(memcg)) {
5476
		page_counter_uncharge(&memcg->memory, nr_pages);
5477
		if (do_memsw_account())
5478
			page_counter_uncharge(&memcg->memsw, nr_pages);
5479 5480
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
			page_counter_uncharge(&memcg->kmem, nr_kmem);
5481 5482
		memcg_oom_recover(memcg);
	}
5483 5484 5485 5486 5487 5488

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5489
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5490 5491
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5492 5493

	if (!mem_cgroup_is_root(memcg))
5494
		css_put_many(&memcg->css, nr_pages);
5495 5496 5497 5498 5499 5500 5501 5502
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
5503
	unsigned long nr_kmem = 0;
5504 5505 5506 5507
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

5508 5509 5510 5511
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
5512 5513 5514 5515 5516 5517 5518 5519
	next = page_list->next;
	do {
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5520
		if (!page->mem_cgroup)
5521 5522 5523 5524
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5525
		 * page->mem_cgroup at this point, we have fully
5526
		 * exclusive access to the page.
5527 5528
		 */

5529
		if (memcg != page->mem_cgroup) {
5530
			if (memcg) {
5531
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5532 5533 5534
					       nr_huge, nr_kmem, page);
				pgpgout = nr_anon = nr_file =
					nr_huge = nr_kmem = 0;
5535
			}
5536
			memcg = page->mem_cgroup;
5537 5538
		}

5539 5540
		if (!PageKmemcg(page)) {
			unsigned int nr_pages = 1;
5541

5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552
			if (PageTransHuge(page)) {
				nr_pages <<= compound_order(page);
				nr_huge += nr_pages;
			}
			if (PageAnon(page))
				nr_anon += nr_pages;
			else
				nr_file += nr_pages;
			pgpgout++;
		} else
			nr_kmem += 1 << compound_order(page);
5553

5554
		page->mem_cgroup = NULL;
5555 5556 5557
	} while (next != page_list);

	if (memcg)
5558
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5559
			       nr_huge, nr_kmem, page);
5560 5561
}

5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5574
	/* Don't touch page->lru of any random page, pre-check: */
5575
	if (!page->mem_cgroup)
5576 5577
		return;

5578 5579 5580
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5581

5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5593

5594 5595
	if (!list_empty(page_list))
		uncharge_list(page_list);
5596 5597 5598
}

/**
5599 5600 5601
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5602
 *
5603 5604
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5605 5606 5607
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5608
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5609
{
5610
	struct mem_cgroup *memcg;
5611 5612
	unsigned int nr_pages;
	bool compound;
5613
	unsigned long flags;
5614 5615 5616 5617

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5618 5619
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5620 5621 5622 5623 5624

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5625
	if (newpage->mem_cgroup)
5626 5627
		return;

5628
	/* Swapcache readahead pages can get replaced before being charged */
5629
	memcg = oldpage->mem_cgroup;
5630
	if (!memcg)
5631 5632
		return;

5633 5634 5635 5636 5637 5638 5639 5640
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5641

5642
	commit_charge(newpage, memcg, false);
5643

5644
	local_irq_save(flags);
5645 5646
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
5647
	local_irq_restore(flags);
5648 5649
}

5650
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672
EXPORT_SYMBOL(memcg_sockets_enabled_key);

void sock_update_memcg(struct sock *sk)
{
	struct mem_cgroup *memcg;

	/* Socket cloning can throw us here with sk_cgrp already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5673 5674
	if (memcg == root_mem_cgroup)
		goto out;
5675
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5676 5677
		goto out;
	if (css_tryget_online(&memcg->css))
5678
		sk->sk_memcg = memcg;
5679
out:
5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699
	rcu_read_unlock();
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	WARN_ON(!sk->sk_memcg);
	css_put(&sk->sk_memcg->css);
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5700
	gfp_t gfp_mask = GFP_KERNEL;
5701

5702
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5703
		struct page_counter *fail;
5704

5705 5706
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5707 5708
			return true;
		}
5709 5710
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5711
		return false;
5712
	}
5713

5714 5715 5716 5717
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5718 5719
	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);

5720 5721 5722 5723
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5724 5725 5726 5727 5728 5729 5730 5731 5732 5733
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5734
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5735
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5736 5737
		return;
	}
5738

5739 5740
	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);

5741 5742
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5743 5744
}

5745 5746 5747 5748 5749 5750 5751 5752 5753
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5754 5755
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5756 5757 5758 5759
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5760

5761
/*
5762 5763 5764 5765 5766 5767
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5768 5769 5770
 */
static int __init mem_cgroup_init(void)
{
5771 5772
	int cpu, node;

5773
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5796 5797 5798
	return 0;
}
subsys_initcall(mem_cgroup_init);
5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5816
	if (!do_memsw_account())
5817 5818 5819 5820 5821 5822 5823 5824
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

5825
	mem_cgroup_id_get(memcg);
5826 5827 5828 5829 5830 5831 5832 5833 5834
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5835 5836 5837 5838 5839 5840 5841
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5842
	mem_cgroup_charge_statistics(memcg, page, false, -1);
5843
	memcg_check_events(memcg, page);
5844 5845 5846

	if (!mem_cgroup_is_root(memcg))
		css_put(&memcg->css);
5847 5848
}

5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876
/*
 * mem_cgroup_try_charge_swap - try charging a swap entry
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
 * Try to charge @entry to the memcg that @page belongs to.
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	struct page_counter *counter;
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

	if (!mem_cgroup_is_root(memcg) &&
	    !page_counter_try_charge(&memcg->swap, 1, &counter))
		return -ENOMEM;

5877
	mem_cgroup_id_get(memcg);
5878 5879 5880 5881 5882 5883 5884
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	return 0;
}

5885 5886 5887 5888
/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
5889
 * Drop the swap charge associated with @entry.
5890 5891 5892 5893 5894 5895
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5896
	if (!do_swap_account)
5897 5898 5899 5900
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5901
	memcg = mem_cgroup_from_id(id);
5902
	if (memcg) {
5903 5904 5905 5906 5907 5908
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
				page_counter_uncharge(&memcg->swap, 1);
			else
				page_counter_uncharge(&memcg->memsw, 1);
		}
5909
		mem_cgroup_swap_statistics(memcg, false);
5910
		mem_cgroup_id_put(memcg);
5911 5912 5913 5914
	}
	rcu_read_unlock();
}

5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6055 6056
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6057 6058 6059 6060 6061 6062 6063 6064
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */