memcontrol.c 176.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82
static int really_do_swap_account __initdata = 1;
#else
83
static int really_do_swap_account __initdata;
84 85
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
147 148 149 150
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
151
	struct mem_cgroup *last_visited;
152
	int last_dead_count;
M
Michal Hocko 已提交
153

154 155 156 157
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

158 159 160 161
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
162
	struct lruvec		lruvec;
163
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
164

165 166
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

167 168 169 170
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
171
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
172
						/* use container_of	   */
173 174 175 176 177 178
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

199 200 201 202 203
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
204
/* For threshold */
205
struct mem_cgroup_threshold_ary {
206
	/* An array index points to threshold just below or equal to usage. */
207
	int current_threshold;
208 209 210 211 212
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
213 214 215 216 217 218 219 220 221 222 223 224

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
225 226 227 228 229
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
230

231 232 233
/*
 * cgroup_event represents events which userspace want to receive.
 */
234
struct mem_cgroup_event {
235
	/*
236
	 * memcg which the event belongs to.
237
	 */
238
	struct mem_cgroup *memcg;
239 240 241 242 243 244 245 246
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
247 248 249 250 251
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
252
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
253
			      struct eventfd_ctx *eventfd, const char *args);
254 255 256 257 258
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
259
	void (*unregister_event)(struct mem_cgroup *memcg,
260
				 struct eventfd_ctx *eventfd);
261 262 263 264 265 266 267 268 269 270
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

271 272
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273

B
Balbir Singh 已提交
274 275 276 277 278 279 280
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 282 283
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
284 285 286 287 288 289 290
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
291

292 293 294
	/* vmpressure notifications */
	struct vmpressure vmpressure;

295 296 297
	/* css_online() has been completed */
	int initialized;

298 299 300 301
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
302

303 304 305 306
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
307 308 309 310
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
311
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
312 313 314

	bool		oom_lock;
	atomic_t	under_oom;
315
	atomic_t	oom_wakeups;
316

317
	int	swappiness;
318 319
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
320

321 322 323
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

324 325 326 327
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
328
	struct mem_cgroup_thresholds thresholds;
329

330
	/* thresholds for mem+swap usage. RCU-protected */
331
	struct mem_cgroup_thresholds memsw_thresholds;
332

K
KAMEZAWA Hiroyuki 已提交
333 334
	/* For oom notifier event fd */
	struct list_head oom_notify;
335

336 337 338 339
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
340
	unsigned long move_charge_at_immigrate;
341 342 343 344
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
345 346
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
347
	/*
348
	 * percpu counter.
349
	 */
350
	struct mem_cgroup_stat_cpu __percpu *stat;
351 352 353 354 355 356
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
357

M
Michal Hocko 已提交
358
	atomic_t	dead_count;
M
Michal Hocko 已提交
359
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
360
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
361
#endif
362
#if defined(CONFIG_MEMCG_KMEM)
363 364
	/* analogous to slab_common's slab_caches list, but per-memcg;
	 * protected by memcg_slab_mutex */
365 366 367 368
	struct list_head memcg_slab_caches;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
369 370 371 372 373 374 375

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
376

377 378 379 380
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

381 382
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
383 384
};

385 386
/* internal only representation about the status of kmem accounting. */
enum {
387
	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
388
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
389 390 391 392 393 394 395
};

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
396 397 398 399 400 401 402 403

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
404 405 406 407 408
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
409 410 411 412 413 414 415 416 417
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
418 419
#endif

420 421
/* Stuffs for move charges at task migration. */
/*
422 423
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
424 425
 */
enum move_type {
426
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
427
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
428 429 430
	NR_MOVE_TYPE,
};

431 432
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
433
	spinlock_t	  lock; /* for from, to */
434 435
	struct mem_cgroup *from;
	struct mem_cgroup *to;
436
	unsigned long immigrate_flags;
437
	unsigned long precharge;
438
	unsigned long moved_charge;
439
	unsigned long moved_swap;
440 441 442
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
443
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
444 445
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
446

D
Daisuke Nishimura 已提交
447 448
static bool move_anon(void)
{
449
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
450 451
}

452 453
static bool move_file(void)
{
454
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
455 456
}

457 458 459 460
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
461
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
462
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
463

464 465
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
466
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
467
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
468
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
469 470 471
	NR_CHARGE_TYPE,
};

472
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
473 474 475 476
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
477
	_KMEM,
G
Glauber Costa 已提交
478 479
};

480 481
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
482
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
483 484
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
485

486 487 488 489 490 491 492 493
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

494 495 496 497 498 499 500
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

501 502
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
503
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
504 505
}

506 507 508 509 510 511 512 513 514 515 516 517 518
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

519 520 521 522 523
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

524 525 526 527 528 529
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
530 531
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
532
	return memcg->css.id;
L
Li Zefan 已提交
533 534 535 536 537 538
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

539
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
540 541 542
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
543
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
544
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
545 546 547

void sock_update_memcg(struct sock *sk)
{
548
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
549
		struct mem_cgroup *memcg;
550
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
551 552 553

		BUG_ON(!sk->sk_prot->proto_cgroup);

554 555 556 557 558 559 560 561 562 563
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
564
			css_get(&sk->sk_cgrp->memcg->css);
565 566 567
			return;
		}

G
Glauber Costa 已提交
568 569
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
570
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
571
		if (!mem_cgroup_is_root(memcg) &&
572 573
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
574
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
575 576 577 578 579 580 581 582
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
583
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
584 585 586
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
587
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
588 589
	}
}
G
Glauber Costa 已提交
590 591 592 593 594 595

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

596
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
597 598
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
599

600 601
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
602
	if (!memcg_proto_activated(&memcg->tcp_mem))
603 604 605 606 607 608 609 610 611
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

612
#ifdef CONFIG_MEMCG_KMEM
613 614
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
615 616 617 618 619
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
620 621 622 623 624 625
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
626 627
int memcg_limited_groups_array_size;

628 629 630 631 632 633
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
634
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
635 636
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
637
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
638 639 640
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
641
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
642

643 644 645 646 647 648
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
649
struct static_key memcg_kmem_enabled_key;
650
EXPORT_SYMBOL(memcg_kmem_enabled_key);
651 652 653

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
654
	if (memcg_kmem_is_active(memcg)) {
655
		static_key_slow_dec(&memcg_kmem_enabled_key);
656 657
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
658 659 660 661 662
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
663 664 665 666 667 668 669 670 671 672 673 674 675
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

676
static void drain_all_stock_async(struct mem_cgroup *memcg);
677

678
static struct mem_cgroup_per_zone *
679
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
680
{
681 682 683
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

684
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
685 686
}

687
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
688
{
689
	return &memcg->css;
690 691
}

692
static struct mem_cgroup_per_zone *
693
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
694
{
695 696
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
697

698
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
699 700
}

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

716 717 718
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
					 unsigned long long new_usage_in_excess)
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

748 749
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
750 751 752 753 754 755 756
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

757 758
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
759
{
760 761 762
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
763
	__mem_cgroup_remove_exceeded(mz, mctz);
764
	spin_unlock_irqrestore(&mctz->lock, flags);
765 766 767 768 769 770 771 772 773
}


static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
	unsigned long long excess;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

774
	mctz = soft_limit_tree_from_page(page);
775 776 777 778 779
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
780
		mz = mem_cgroup_page_zoneinfo(memcg, page);
781 782 783 784 785 786
		excess = res_counter_soft_limit_excess(&memcg->res);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
787 788 789
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
790 791
			/* if on-tree, remove it */
			if (mz->on_tree)
792
				__mem_cgroup_remove_exceeded(mz, mctz);
793 794 795 796
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
797
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
798
			spin_unlock_irqrestore(&mctz->lock, flags);
799 800 801 802 803 804 805
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
806 807
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
808

809 810 811 812
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
813
			mem_cgroup_remove_exceeded(mz, mctz);
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
836
	__mem_cgroup_remove_exceeded(mz, mctz);
837
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
838
	    !css_tryget_online(&mz->memcg->css))
839 840 841 842 843 844 845 846 847 848
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

849
	spin_lock_irq(&mctz->lock);
850
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
851
	spin_unlock_irq(&mctz->lock);
852 853 854
	return mz;
}

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
874
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
875
				 enum mem_cgroup_stat_index idx)
876
{
877
	long val = 0;
878 879
	int cpu;

880 881
	get_online_cpus();
	for_each_online_cpu(cpu)
882
		val += per_cpu(memcg->stat->count[idx], cpu);
883
#ifdef CONFIG_HOTPLUG_CPU
884 885 886
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
887 888
#endif
	put_online_cpus();
889 890 891
	return val;
}

892
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
893 894 895 896 897
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

898
	get_online_cpus();
899
	for_each_online_cpu(cpu)
900
		val += per_cpu(memcg->stat->events[idx], cpu);
901
#ifdef CONFIG_HOTPLUG_CPU
902 903 904
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
905
#endif
906
	put_online_cpus();
907 908 909
	return val;
}

910
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
911
					 struct page *page,
912
					 int nr_pages)
913
{
914 915 916 917
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
918
	if (PageAnon(page))
919
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
920
				nr_pages);
921
	else
922
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
923
				nr_pages);
924

925 926 927 928
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

929 930
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
931
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
932
	else {
933
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
934 935
		nr_pages = -nr_pages; /* for event */
	}
936

937
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
938 939
}

940
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
941 942 943 944 945 946 947
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

948 949 950
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
951
{
952
	unsigned long nr = 0;
953 954
	int zid;

955
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
956

957 958 959 960 961 962 963 964 965 966 967 968
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
969
}
970

971
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
972
			unsigned int lru_mask)
973
{
974
	unsigned long nr = 0;
975
	int nid;
976

977
	for_each_node_state(nid, N_MEMORY)
978 979
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
980 981
}

982 983
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
984 985 986
{
	unsigned long val, next;

987
	val = __this_cpu_read(memcg->stat->nr_page_events);
988
	next = __this_cpu_read(memcg->stat->targets[target]);
989
	/* from time_after() in jiffies.h */
990 991 992 993 994
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
995 996 997
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
998 999 1000 1001 1002 1003 1004 1005
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1006
	}
1007
	return false;
1008 1009 1010 1011 1012 1013
}

/*
 * Check events in order.
 *
 */
1014
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1015 1016
{
	/* threshold event is triggered in finer grain than soft limit */
1017 1018
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1019
		bool do_softlimit;
1020
		bool do_numainfo __maybe_unused;
1021

1022 1023
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1024 1025 1026 1027
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
1028
		mem_cgroup_threshold(memcg);
1029 1030
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1031
#if MAX_NUMNODES > 1
1032
		if (unlikely(do_numainfo))
1033
			atomic_inc(&memcg->numainfo_events);
1034
#endif
1035
	}
1036 1037
}

1038
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1039
{
1040 1041 1042 1043 1044 1045 1046 1047
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1048
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1049 1050
}

1051
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1052
{
1053
	struct mem_cgroup *memcg = NULL;
1054

1055 1056
	rcu_read_lock();
	do {
1057 1058 1059 1060 1061 1062
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1063
			memcg = root_mem_cgroup;
1064 1065 1066 1067 1068
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1069
	} while (!css_tryget_online(&memcg->css));
1070
	rcu_read_unlock();
1071
	return memcg;
1072 1073
}

1074 1075 1076 1077 1078 1079 1080
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1081
		struct mem_cgroup *last_visited)
1082
{
1083
	struct cgroup_subsys_state *prev_css, *next_css;
1084

1085
	prev_css = last_visited ? &last_visited->css : NULL;
1086
skip_node:
1087
	next_css = css_next_descendant_pre(prev_css, &root->css);
1088 1089 1090 1091 1092 1093 1094

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
1095 1096 1097 1098 1099 1100 1101 1102
	 *
	 * We do not take a reference on the root of the tree walk
	 * because we might race with the root removal when it would
	 * be the only node in the iterated hierarchy and mem_cgroup_iter
	 * would end up in an endless loop because it expects that at
	 * least one valid node will be returned. Root cannot disappear
	 * because caller of the iterator should hold it already so
	 * skipping css reference should be safe.
1103
	 */
1104
	if (next_css) {
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
		struct mem_cgroup *memcg = mem_cgroup_from_css(next_css);

		if (next_css == &root->css)
			return memcg;

		if (css_tryget_online(next_css)) {
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				return memcg;
			css_put(next_css);
		}
1120 1121 1122

		prev_css = next_css;
		goto skip_node;
1123 1124 1125 1126 1127
	}

	return NULL;
}

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
1156 1157 1158 1159 1160 1161 1162 1163

		/*
		 * We cannot take a reference to root because we might race
		 * with root removal and returning NULL would end up in
		 * an endless loop on the iterator user level when root
		 * would be returned all the time.
		 */
		if (position && position != root &&
1164
		    !css_tryget_online(&position->css))
1165 1166 1167 1168 1169 1170 1171 1172
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
1173
				   struct mem_cgroup *root,
1174 1175
				   int sequence)
{
1176 1177
	/* root reference counting symmetric to mem_cgroup_iter_load */
	if (last_visited && last_visited != root)
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1207
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1208
				   struct mem_cgroup *prev,
1209
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1210
{
1211
	struct mem_cgroup *memcg = NULL;
1212
	struct mem_cgroup *last_visited = NULL;
1213

1214 1215
	if (mem_cgroup_disabled())
		return NULL;
1216

1217 1218
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1219

1220
	if (prev && !reclaim)
1221
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1222

1223 1224
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1225
			goto out_css_put;
1226
		return root;
1227
	}
K
KAMEZAWA Hiroyuki 已提交
1228

1229
	rcu_read_lock();
1230
	while (!memcg) {
1231
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1232
		int uninitialized_var(seq);
1233

1234 1235 1236
		if (reclaim) {
			struct mem_cgroup_per_zone *mz;

1237
			mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1238
			iter = &mz->reclaim_iter[reclaim->priority];
1239
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1240
				iter->last_visited = NULL;
1241 1242
				goto out_unlock;
			}
M
Michal Hocko 已提交
1243

1244
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1245
		}
K
KAMEZAWA Hiroyuki 已提交
1246

1247
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1248

1249
		if (reclaim) {
1250 1251
			mem_cgroup_iter_update(iter, last_visited, memcg, root,
					seq);
1252

M
Michal Hocko 已提交
1253
			if (!memcg)
1254 1255 1256 1257
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1258

1259
		if (prev && !memcg)
1260
			goto out_unlock;
1261
	}
1262 1263
out_unlock:
	rcu_read_unlock();
1264 1265 1266 1267
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1268
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1269
}
K
KAMEZAWA Hiroyuki 已提交
1270

1271 1272 1273 1274 1275 1276 1277
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1278 1279 1280 1281 1282 1283
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1284

1285 1286 1287 1288 1289 1290
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1291
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1292
	     iter != NULL;				\
1293
	     iter = mem_cgroup_iter(root, iter, NULL))
1294

1295
#define for_each_mem_cgroup(iter)			\
1296
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1297
	     iter != NULL;				\
1298
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1299

1300
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1301
{
1302
	struct mem_cgroup *memcg;
1303 1304

	rcu_read_lock();
1305 1306
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1307 1308 1309 1310
		goto out;

	switch (idx) {
	case PGFAULT:
1311 1312 1313 1314
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1315 1316 1317 1318 1319 1320 1321
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1322
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1323

1324 1325 1326
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1327
 * @memcg: memcg of the wanted lruvec
1328 1329 1330 1331 1332 1333 1334 1335 1336
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1337
	struct lruvec *lruvec;
1338

1339 1340 1341 1342
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1343

1344
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1355 1356 1357
}

/**
1358
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1359
 * @page: the page
1360
 * @zone: zone of the page
1361
 */
1362
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1363 1364
{
	struct mem_cgroup_per_zone *mz;
1365 1366
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1367
	struct lruvec *lruvec;
1368

1369 1370 1371 1372
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1373

K
KAMEZAWA Hiroyuki 已提交
1374
	pc = lookup_page_cgroup(page);
1375
	memcg = pc->mem_cgroup;
1376 1377

	/*
1378
	 * Surreptitiously switch any uncharged offlist page to root:
1379 1380 1381 1382 1383 1384 1385
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1386
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1387 1388
		pc->mem_cgroup = memcg = root_mem_cgroup;

1389
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1400
}
1401

1402
/**
1403 1404 1405 1406
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1407
 *
1408 1409
 * This function must be called when a page is added to or removed from an
 * lru list.
1410
 */
1411 1412
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1413 1414
{
	struct mem_cgroup_per_zone *mz;
1415
	unsigned long *lru_size;
1416 1417 1418 1419

	if (mem_cgroup_disabled())
		return;

1420 1421 1422 1423
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1424
}
1425

1426
/*
1427
 * Checks whether given mem is same or in the root_mem_cgroup's
1428 1429
 * hierarchy subtree
 */
1430 1431
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1432
{
1433 1434
	if (root_memcg == memcg)
		return true;
1435
	if (!root_memcg->use_hierarchy || !memcg)
1436
		return false;
1437
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1438 1439 1440 1441 1442 1443 1444
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1445
	rcu_read_lock();
1446
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1447 1448
	rcu_read_unlock();
	return ret;
1449 1450
}

1451 1452
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1453
{
1454
	struct mem_cgroup *curr = NULL;
1455
	struct task_struct *p;
1456
	bool ret;
1457

1458
	p = find_lock_task_mm(task);
1459
	if (p) {
1460
		curr = get_mem_cgroup_from_mm(p->mm);
1461 1462 1463 1464 1465 1466 1467
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1468
		rcu_read_lock();
1469 1470 1471
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1472
		rcu_read_unlock();
1473
	}
1474
	/*
1475
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1476
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1477 1478
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1479
	 */
1480
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1481
	css_put(&curr->css);
1482 1483 1484
	return ret;
}

1485
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1486
{
1487
	unsigned long inactive_ratio;
1488
	unsigned long inactive;
1489
	unsigned long active;
1490
	unsigned long gb;
1491

1492 1493
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1494

1495 1496 1497 1498 1499 1500
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1501
	return inactive * inactive_ratio < active;
1502 1503
}

1504 1505 1506
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1507
/**
1508
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1509
 * @memcg: the memory cgroup
1510
 *
1511
 * Returns the maximum amount of memory @mem can be charged with, in
1512
 * pages.
1513
 */
1514
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1515
{
1516 1517
	unsigned long long margin;

1518
	margin = res_counter_margin(&memcg->res);
1519
	if (do_swap_account)
1520
		margin = min(margin, res_counter_margin(&memcg->memsw));
1521
	return margin >> PAGE_SHIFT;
1522 1523
}

1524
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1525 1526
{
	/* root ? */
1527
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1528 1529
		return vm_swappiness;

1530
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1531 1532
}

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1547 1548 1549 1550

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1551
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1552
{
1553
	atomic_inc(&memcg_moving);
1554
	atomic_inc(&memcg->moving_account);
1555 1556 1557
	synchronize_rcu();
}

1558
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1559
{
1560 1561 1562 1563
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1564 1565
	if (memcg) {
		atomic_dec(&memcg_moving);
1566
		atomic_dec(&memcg->moving_account);
1567
	}
1568
}
1569

1570
/*
Q
Qiang Huang 已提交
1571
 * A routine for checking "mem" is under move_account() or not.
1572
 *
Q
Qiang Huang 已提交
1573 1574 1575
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1576
 */
1577
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1578
{
1579 1580
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1581
	bool ret = false;
1582 1583 1584 1585 1586 1587 1588 1589 1590
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1591

1592 1593
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1594 1595
unlock:
	spin_unlock(&mc.lock);
1596 1597 1598
	return ret;
}

1599
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1600 1601
{
	if (mc.moving_task && current != mc.moving_task) {
1602
		if (mem_cgroup_under_move(memcg)) {
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1632
#define K(x) ((x) << (PAGE_SHIFT-10))
1633
/**
1634
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1635 1636 1637 1638 1639 1640 1641 1642
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1643
	/* oom_info_lock ensures that parallel ooms do not interleave */
1644
	static DEFINE_MUTEX(oom_info_lock);
1645 1646
	struct mem_cgroup *iter;
	unsigned int i;
1647

1648
	if (!p)
1649 1650
		return;

1651
	mutex_lock(&oom_info_lock);
1652 1653
	rcu_read_lock();

T
Tejun Heo 已提交
1654 1655 1656 1657 1658
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	pr_info(" killed as a result of limit of ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_info("\n");
1659 1660 1661

	rcu_read_unlock();

1662
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1663 1664 1665
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1666
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1667 1668 1669
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1670
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1671 1672 1673
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1674 1675

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1676 1677
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1693
	mutex_unlock(&oom_info_lock);
1694 1695
}

1696 1697 1698 1699
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1700
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1701 1702
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1703 1704
	struct mem_cgroup *iter;

1705
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1706
		num++;
1707 1708 1709
	return num;
}

D
David Rientjes 已提交
1710 1711 1712
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1713
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1714 1715 1716
{
	u64 limit;

1717 1718
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1719
	/*
1720
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1721
	 */
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1736 1737
}

1738 1739
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1740 1741 1742 1743 1744 1745 1746
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1747
	/*
1748 1749 1750
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1751
	 */
1752
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1753 1754 1755 1756 1757
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1758 1759
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1760
		struct css_task_iter it;
1761 1762
		struct task_struct *task;

1763 1764
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1777
				css_task_iter_end(&it);
1778 1779 1780 1781 1782 1783 1784 1785
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1798
		}
1799
		css_task_iter_end(&it);
1800 1801 1802 1803 1804 1805 1806 1807 1808
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1845 1846
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1847
 * @memcg: the target memcg
1848 1849 1850 1851 1852 1853 1854
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1855
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1856 1857
		int nid, bool noswap)
{
1858
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1859 1860 1861
		return true;
	if (noswap || !total_swap_pages)
		return false;
1862
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1863 1864 1865 1866
		return true;
	return false;

}
1867
#if MAX_NUMNODES > 1
1868 1869 1870 1871 1872 1873 1874

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1875
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1876 1877
{
	int nid;
1878 1879 1880 1881
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1882
	if (!atomic_read(&memcg->numainfo_events))
1883
		return;
1884
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1885 1886 1887
		return;

	/* make a nodemask where this memcg uses memory from */
1888
	memcg->scan_nodes = node_states[N_MEMORY];
1889

1890
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1891

1892 1893
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1894
	}
1895

1896 1897
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1912
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1913 1914 1915
{
	int node;

1916 1917
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1918

1919
	node = next_node(node, memcg->scan_nodes);
1920
	if (node == MAX_NUMNODES)
1921
		node = first_node(memcg->scan_nodes);
1922 1923 1924 1925 1926 1927 1928 1929 1930
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1931
	memcg->last_scanned_node = node;
1932 1933 1934
	return node;
}

1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

1970
#else
1971
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1972 1973 1974
{
	return 0;
}
1975

1976 1977 1978 1979
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
1980 1981
#endif

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
			break;
2030
	}
2031 2032
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
2033 2034
}

2035 2036 2037 2038 2039 2040
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

2041 2042
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
2043 2044 2045 2046
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
2047
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2048
{
2049
	struct mem_cgroup *iter, *failed = NULL;
2050

2051 2052
	spin_lock(&memcg_oom_lock);

2053
	for_each_mem_cgroup_tree(iter, memcg) {
2054
		if (iter->oom_lock) {
2055 2056 2057 2058 2059
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2060 2061
			mem_cgroup_iter_break(memcg, iter);
			break;
2062 2063
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2064
	}
K
KAMEZAWA Hiroyuki 已提交
2065

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
2077
		}
2078 2079
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2080 2081 2082 2083

	spin_unlock(&memcg_oom_lock);

	return !failed;
2084
}
2085

2086
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2087
{
K
KAMEZAWA Hiroyuki 已提交
2088 2089
	struct mem_cgroup *iter;

2090
	spin_lock(&memcg_oom_lock);
2091
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2092
	for_each_mem_cgroup_tree(iter, memcg)
2093
		iter->oom_lock = false;
2094
	spin_unlock(&memcg_oom_lock);
2095 2096
}

2097
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2098 2099 2100
{
	struct mem_cgroup *iter;

2101
	for_each_mem_cgroup_tree(iter, memcg)
2102 2103 2104
		atomic_inc(&iter->under_oom);
}

2105
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2106 2107 2108
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2109 2110 2111 2112 2113
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2114
	for_each_mem_cgroup_tree(iter, memcg)
2115
		atomic_add_unless(&iter->under_oom, -1, 0);
2116 2117
}

K
KAMEZAWA Hiroyuki 已提交
2118 2119
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2120
struct oom_wait_info {
2121
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2122 2123 2124 2125 2126 2127
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2128 2129
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2130 2131 2132
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2133
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2134 2135

	/*
2136
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2137 2138
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2139 2140
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2141 2142 2143 2144
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2145
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2146
{
2147
	atomic_inc(&memcg->oom_wakeups);
2148 2149
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2150 2151
}

2152
static void memcg_oom_recover(struct mem_cgroup *memcg)
2153
{
2154 2155
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2156 2157
}

2158
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2159
{
2160 2161
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2162
	/*
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2175
	 */
2176 2177 2178 2179
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2180 2181 2182 2183
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2184
 * @handle: actually kill/wait or just clean up the OOM state
2185
 *
2186 2187
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2188
 *
2189
 * Memcg supports userspace OOM handling where failed allocations must
2190 2191 2192 2193
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2194
 * the end of the page fault to complete the OOM handling.
2195 2196
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2197
 * completed, %false otherwise.
2198
 */
2199
bool mem_cgroup_oom_synchronize(bool handle)
2200
{
2201
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2202
	struct oom_wait_info owait;
2203
	bool locked;
2204 2205 2206

	/* OOM is global, do not handle */
	if (!memcg)
2207
		return false;
2208

2209 2210
	if (!handle)
		goto cleanup;
2211 2212 2213 2214 2215 2216

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2217

2218
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2232
		schedule();
2233 2234 2235 2236 2237
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2238 2239 2240 2241 2242 2243 2244 2245
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2246 2247
cleanup:
	current->memcg_oom.memcg = NULL;
2248
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2249
	return true;
2250 2251
}

2252
/*
2253
 * Used to update mapped file or writeback or other statistics.
2254 2255 2256
 *
 * Notes: Race condition
 *
2257 2258 2259
 * Charging occurs during page instantiation, while the page is
 * unmapped and locked in page migration, or while the page table is
 * locked in THP migration.  No race is possible.
2260
 *
2261
 * Uncharge happens to pages with zero references, no race possible.
2262
 *
2263 2264
 * Charge moving between groups is protected by checking mm->moving
 * account and taking the move_lock in the slowpath.
2265
 */
2266

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2280
	 * need to take move_lock_mem_cgroup(). Because we already hold
2281
	 * rcu_read_lock(), any calls to move_account will be delayed until
Q
Qiang Huang 已提交
2282
	 * rcu_read_unlock().
2283
	 */
Q
Qiang Huang 已提交
2284 2285
	VM_BUG_ON(!rcu_read_lock_held());
	if (atomic_read(&memcg->moving_account) <= 0)
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2303
	 * should take move_lock_mem_cgroup().
2304 2305 2306 2307
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2308
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2309
				 enum mem_cgroup_stat_index idx, int val)
2310
{
2311
	struct mem_cgroup *memcg;
2312
	struct page_cgroup *pc = lookup_page_cgroup(page);
2313
	unsigned long uninitialized_var(flags);
2314

2315
	if (mem_cgroup_disabled())
2316
		return;
2317

2318
	VM_BUG_ON(!rcu_read_lock_held());
2319 2320
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2321
		return;
2322

2323
	this_cpu_add(memcg->stat->count[idx], val);
2324
}
2325

2326 2327 2328 2329
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2330
#define CHARGE_BATCH	32U
2331 2332
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2333
	unsigned int nr_pages;
2334
	struct work_struct work;
2335
	unsigned long flags;
2336
#define FLUSHING_CACHED_CHARGE	0
2337 2338
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2339
static DEFINE_MUTEX(percpu_charge_mutex);
2340

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2351
 */
2352
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2353 2354 2355 2356
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2357 2358 2359
	if (nr_pages > CHARGE_BATCH)
		return false;

2360
	stock = &get_cpu_var(memcg_stock);
2361 2362
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2376 2377 2378 2379
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2380
		if (do_swap_account)
2381 2382
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2393
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2394
	drain_stock(stock);
2395
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2396 2397
}

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2409 2410
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2411
 * This will be consumed by consume_stock() function, later.
2412
 */
2413
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2414 2415 2416
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2417
	if (stock->cached != memcg) { /* reset if necessary */
2418
		drain_stock(stock);
2419
		stock->cached = memcg;
2420
	}
2421
	stock->nr_pages += nr_pages;
2422 2423 2424 2425
	put_cpu_var(memcg_stock);
}

/*
2426
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2427 2428
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2429
 */
2430
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2431
{
2432
	int cpu, curcpu;
2433

2434 2435
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2436
	curcpu = get_cpu();
2437 2438
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2439
		struct mem_cgroup *memcg;
2440

2441 2442
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2443
			continue;
2444
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2445
			continue;
2446 2447 2448 2449 2450 2451
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2452
	}
2453
	put_cpu();
2454 2455 2456 2457 2458 2459

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2460
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2461 2462 2463
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2464
	put_online_cpus();
2465 2466 2467 2468 2469 2470 2471 2472
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2473
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2474
{
2475 2476 2477 2478 2479
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2480
	drain_all_stock(root_memcg, false);
2481
	mutex_unlock(&percpu_charge_mutex);
2482 2483 2484
}

/* This is a synchronous drain interface. */
2485
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2486 2487
{
	/* called when force_empty is called */
2488
	mutex_lock(&percpu_charge_mutex);
2489
	drain_all_stock(root_memcg, true);
2490
	mutex_unlock(&percpu_charge_mutex);
2491 2492
}

2493 2494 2495 2496
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2497
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2498 2499 2500
{
	int i;

2501
	spin_lock(&memcg->pcp_counter_lock);
2502
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2503
		long x = per_cpu(memcg->stat->count[i], cpu);
2504

2505 2506
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2507
	}
2508
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2509
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2510

2511 2512
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2513
	}
2514
	spin_unlock(&memcg->pcp_counter_lock);
2515 2516
}

2517
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2518 2519 2520 2521 2522
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2523
	struct mem_cgroup *iter;
2524

2525
	if (action == CPU_ONLINE)
2526 2527
		return NOTIFY_OK;

2528
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2529
		return NOTIFY_OK;
2530

2531
	for_each_mem_cgroup(iter)
2532 2533
		mem_cgroup_drain_pcp_counter(iter, cpu);

2534 2535 2536 2537 2538
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2539 2540
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2541
{
2542
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2543
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2544 2545 2546 2547 2548
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long nr_reclaimed;
	unsigned long flags = 0;
	unsigned long long size;
2549
	int ret = 0;
2550

2551 2552
	if (mem_cgroup_is_root(memcg))
		goto done;
2553
retry:
2554 2555
	if (consume_stock(memcg, nr_pages))
		goto done;
2556

2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
	size = batch * PAGE_SIZE;
	if (!res_counter_charge(&memcg->res, size, &fail_res)) {
		if (!do_swap_account)
			goto done_restock;
		if (!res_counter_charge(&memcg->memsw, size, &fail_res))
			goto done_restock;
		res_counter_uncharge(&memcg->res, size);
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2568

2569 2570 2571 2572
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2573

2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2588 2589
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2590

2591 2592
	nr_reclaimed = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);

2593
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2594
		goto retry;
2595 2596 2597

	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2598 2599 2600 2601 2602 2603 2604 2605 2606
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2607
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2608 2609 2610 2611 2612 2613 2614 2615
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2616 2617 2618
	if (nr_retries--)
		goto retry;

2619 2620 2621
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2622 2623 2624
	if (fatal_signal_pending(current))
		goto bypass;

2625
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2626
nomem:
2627
	if (!(gfp_mask & __GFP_NOFAIL))
2628
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2629
bypass:
2630
	return -EINTR;
2631 2632 2633 2634 2635

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
done:
2636
	return ret;
2637
}
2638

2639
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2640
{
2641
	unsigned long bytes = nr_pages * PAGE_SIZE;
2642

2643 2644 2645
	if (mem_cgroup_is_root(memcg))
		return;

2646 2647 2648
	res_counter_uncharge(&memcg->res, bytes);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, bytes);
2649 2650
}

2651 2652 2653 2654 2655 2656 2657 2658 2659
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

2660 2661 2662
	if (mem_cgroup_is_root(memcg))
		return;

2663 2664 2665 2666 2667 2668
	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2669 2670
/*
 * A helper function to get mem_cgroup from ID. must be called under
2671 2672 2673
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2674 2675 2676 2677 2678 2679
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2680
	return mem_cgroup_from_id(id);
2681 2682
}

2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2693
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2694
{
2695
	struct mem_cgroup *memcg = NULL;
2696
	struct page_cgroup *pc;
2697
	unsigned short id;
2698 2699
	swp_entry_t ent;

2700
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2701 2702

	pc = lookup_page_cgroup(page);
2703
	if (PageCgroupUsed(pc)) {
2704
		memcg = pc->mem_cgroup;
2705
		if (memcg && !css_tryget_online(&memcg->css))
2706
			memcg = NULL;
2707
	} else if (PageSwapCache(page)) {
2708
		ent.val = page_private(page);
2709
		id = lookup_swap_cgroup_id(ent);
2710
		rcu_read_lock();
2711
		memcg = mem_cgroup_lookup(id);
2712
		if (memcg && !css_tryget_online(&memcg->css))
2713
			memcg = NULL;
2714
		rcu_read_unlock();
2715
	}
2716
	return memcg;
2717 2718
}

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2750
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2751
			  bool lrucare)
2752
{
2753
	struct page_cgroup *pc = lookup_page_cgroup(page);
2754
	int isolated;
2755

2756
	VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2757 2758 2759 2760
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2761 2762 2763 2764 2765

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2766 2767
	if (lrucare)
		lock_page_lru(page, &isolated);
2768

2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
	/*
	 * Nobody should be changing or seriously looking at
	 * pc->mem_cgroup and pc->flags at this point:
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2783
	pc->mem_cgroup = memcg;
2784
	pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
2785

2786 2787
	if (lrucare)
		unlock_page_lru(page, isolated);
2788
}
2789

2790 2791
static DEFINE_MUTEX(set_limit_mutex);

2792
#ifdef CONFIG_MEMCG_KMEM
2793 2794 2795 2796 2797 2798
/*
 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
 */
static DEFINE_MUTEX(memcg_slab_mutex);

2799 2800
static DEFINE_MUTEX(activate_kmem_mutex);

2801 2802 2803
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2804
		memcg_kmem_is_active(memcg);
2805 2806
}

G
Glauber Costa 已提交
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
2817
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
2818 2819
}

2820
#ifdef CONFIG_SLABINFO
2821
static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2822
{
2823
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2824 2825 2826 2827 2828 2829 2830
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

2831
	mutex_lock(&memcg_slab_mutex);
2832 2833
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
2834
	mutex_unlock(&memcg_slab_mutex);
2835 2836 2837 2838 2839

	return 0;
}
#endif

2840
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2841 2842 2843 2844 2845 2846 2847 2848
{
	struct res_counter *fail_res;
	int ret = 0;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

2849
	ret = try_charge(memcg, gfp, size >> PAGE_SHIFT);
2850 2851
	if (ret == -EINTR)  {
		/*
2852 2853 2854 2855 2856 2857
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2858 2859 2860
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2861 2862 2863
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

2877
static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2878 2879 2880 2881
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2882 2883 2884 2885 2886

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

2887 2888 2889 2890 2891 2892 2893 2894
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
2895
	if (memcg_kmem_test_and_clear_dead(memcg))
2896
		css_put(&memcg->css);
2897 2898
}

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

2939
	VM_BUG_ON(!is_root_cache(s));
2940 2941 2942

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
2943
		struct memcg_cache_params *new_params;
2944 2945 2946
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
2947
		size += offsetof(struct memcg_cache_params, memcg_caches);
2948

2949 2950
		new_params = kzalloc(size, GFP_KERNEL);
		if (!new_params)
2951 2952
			return -ENOMEM;

2953
		new_params->is_root_cache = true;
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
2967
			new_params->memcg_caches[i] =
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
2980 2981 2982
		rcu_assign_pointer(s->memcg_params, new_params);
		if (cur_params)
			kfree_rcu(cur_params, rcu_head);
2983 2984 2985 2986
	}
	return 0;
}

2987 2988
static void memcg_register_cache(struct mem_cgroup *memcg,
				 struct kmem_cache *root_cache)
2989
{
2990 2991
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by
						     memcg_slab_mutex */
2992
	struct kmem_cache *cachep;
2993 2994
	int id;

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
	lockdep_assert_held(&memcg_slab_mutex);

	id = memcg_cache_id(memcg);

	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
	if (cache_from_memcg_idx(root_cache, id))
3005 3006
		return;

3007
	cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
3008
	cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
3009
	/*
3010 3011 3012
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
3013
	 */
3014 3015
	if (!cachep)
		return;
3016

3017
	css_get(&memcg->css);
3018
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3019

3020
	/*
3021 3022 3023
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
3024
	 */
3025 3026
	smp_wmb();

3027 3028
	BUG_ON(root_cache->memcg_params->memcg_caches[id]);
	root_cache->memcg_params->memcg_caches[id] = cachep;
3029
}
3030

3031
static void memcg_unregister_cache(struct kmem_cache *cachep)
3032
{
3033
	struct kmem_cache *root_cache;
3034 3035 3036
	struct mem_cgroup *memcg;
	int id;

3037
	lockdep_assert_held(&memcg_slab_mutex);
3038

3039
	BUG_ON(is_root_cache(cachep));
3040

3041 3042
	root_cache = cachep->memcg_params->root_cache;
	memcg = cachep->memcg_params->memcg;
3043
	id = memcg_cache_id(memcg);
3044

3045 3046
	BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
	root_cache->memcg_params->memcg_caches[id] = NULL;
3047

3048 3049 3050
	list_del(&cachep->memcg_params->list);

	kmem_cache_destroy(cachep);
3051 3052 3053

	/* drop the reference taken in memcg_register_cache */
	css_put(&memcg->css);
3054 3055
}

3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

3087
int __memcg_cleanup_cache_params(struct kmem_cache *s)
3088 3089
{
	struct kmem_cache *c;
3090
	int i, failed = 0;
3091

3092
	mutex_lock(&memcg_slab_mutex);
3093 3094
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
3095 3096 3097
		if (!c)
			continue;

3098
		memcg_unregister_cache(c);
3099 3100 3101

		if (cache_from_memcg_idx(s, i))
			failed++;
3102
	}
3103
	mutex_unlock(&memcg_slab_mutex);
3104
	return failed;
3105 3106
}

3107
static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3108 3109
{
	struct kmem_cache *cachep;
3110
	struct memcg_cache_params *params, *tmp;
G
Glauber Costa 已提交
3111 3112 3113 3114

	if (!memcg_kmem_is_active(memcg))
		return;

3115 3116
	mutex_lock(&memcg_slab_mutex);
	list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
G
Glauber Costa 已提交
3117
		cachep = memcg_params_to_cache(params);
3118 3119
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3120
			memcg_unregister_cache(cachep);
G
Glauber Costa 已提交
3121
	}
3122
	mutex_unlock(&memcg_slab_mutex);
G
Glauber Costa 已提交
3123 3124
}

3125
struct memcg_register_cache_work {
3126 3127 3128 3129 3130
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

3131
static void memcg_register_cache_func(struct work_struct *w)
3132
{
3133 3134
	struct memcg_register_cache_work *cw =
		container_of(w, struct memcg_register_cache_work, work);
3135 3136
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
3137

3138
	mutex_lock(&memcg_slab_mutex);
3139
	memcg_register_cache(memcg, cachep);
3140 3141
	mutex_unlock(&memcg_slab_mutex);

3142
	css_put(&memcg->css);
3143 3144 3145 3146 3147 3148
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3149 3150
static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
					    struct kmem_cache *cachep)
3151
{
3152
	struct memcg_register_cache_work *cw;
3153

3154
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
3155 3156
	if (cw == NULL) {
		css_put(&memcg->css);
3157 3158 3159 3160 3161 3162
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

3163
	INIT_WORK(&cw->work, memcg_register_cache_func);
3164 3165 3166
	schedule_work(&cw->work);
}

3167 3168
static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
					  struct kmem_cache *cachep)
3169 3170 3171 3172
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
3173
	 * in __memcg_schedule_register_cache will recurse.
3174 3175 3176 3177 3178 3179 3180 3181
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
3182
	__memcg_schedule_register_cache(memcg, cachep);
3183 3184
	memcg_resume_kmem_account();
}
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202

int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
{
	int res;

	res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
				PAGE_SIZE << order);
	if (!res)
		atomic_add(1 << order, &cachep->memcg_params->nr_pages);
	return res;
}

void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
{
	memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
	atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
}

3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
3220
	struct kmem_cache *memcg_cachep;
3221 3222 3223 3224

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3225 3226 3227
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3228 3229 3230 3231
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3232
		goto out;
3233

3234 3235 3236
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
	if (likely(memcg_cachep)) {
		cachep = memcg_cachep;
3237
		goto out;
3238 3239
	}

3240
	/* The corresponding put will be done in the workqueue. */
3241
	if (!css_tryget_online(&memcg->css))
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
3253 3254 3255
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
3256
	 */
3257
	memcg_schedule_register_cache(memcg, cachep);
3258 3259 3260 3261
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3262 3263
}

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3285 3286 3287 3288

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
V
Vladimir Davydov 已提交
3289 3290 3291 3292 3293 3294
	 * check here, since direct calls to the page allocator that are
	 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
	 * outside memcg core. We are mostly concerned with cache allocations,
	 * and by having this test at memcg_kmem_get_cache, we are already able
	 * to relay the allocation to the root cache and bypass the memcg cache
	 * altogether.
3295 3296 3297 3298 3299 3300
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3301 3302 3303
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3314
	memcg = get_mem_cgroup_from_mm(current->mm);
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}
3341 3342 3343 3344
	/*
	 * The page is freshly allocated and not visible to any
	 * outside callers yet.  Set up pc non-atomically.
	 */
3345 3346
	pc = lookup_page_cgroup(page);
	pc->mem_cgroup = memcg;
3347
	pc->flags = PCG_USED;
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	if (!PageCgroupUsed(pc))
		return;

3360 3361
	memcg = pc->mem_cgroup;
	pc->flags = 0;
3362 3363 3364 3365 3366 3367 3368 3369

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

3370
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3371 3372
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3373
#else
3374
static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3375 3376
{
}
3377 3378
#endif /* CONFIG_MEMCG_KMEM */

3379 3380 3381 3382
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
3383 3384 3385
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3386
 */
3387
void mem_cgroup_split_huge_fixup(struct page *head)
3388 3389
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3390
	struct page_cgroup *pc;
3391
	struct mem_cgroup *memcg;
3392
	int i;
3393

3394 3395
	if (mem_cgroup_disabled())
		return;
3396 3397

	memcg = head_pc->mem_cgroup;
3398 3399
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3400
		pc->mem_cgroup = memcg;
3401
		pc->flags = head_pc->flags;
3402
	}
3403 3404
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3405
}
3406
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3407

3408
/**
3409
 * mem_cgroup_move_account - move account of the page
3410
 * @page: the page
3411
 * @nr_pages: number of regular pages (>1 for huge pages)
3412 3413 3414 3415 3416
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3417
 * - page is not on LRU (isolate_page() is useful.)
3418
 * - compound_lock is held when nr_pages > 1
3419
 *
3420 3421
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3422
 */
3423 3424 3425 3426
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3427
				   struct mem_cgroup *to)
3428
{
3429 3430
	unsigned long flags;
	int ret;
3431

3432
	VM_BUG_ON(from == to);
3433
	VM_BUG_ON_PAGE(PageLRU(page), page);
3434 3435 3436 3437 3438 3439 3440
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3441
	if (nr_pages > 1 && !PageTransHuge(page))
3442 3443
		goto out;

3444 3445 3446 3447 3448 3449 3450
	/*
	 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;
3451 3452 3453

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3454
		goto out_unlock;
3455

3456
	move_lock_mem_cgroup(from, &flags);
3457

3458
	if (!PageAnon(page) && page_mapped(page)) {
3459 3460 3461 3462 3463
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
3464

3465 3466 3467 3468 3469 3470
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
3471

3472 3473 3474 3475 3476
	/*
	 * It is safe to change pc->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */
3477

3478
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3479
	pc->mem_cgroup = to;
3480
	move_unlock_mem_cgroup(from, &flags);
3481
	ret = 0;
3482 3483 3484

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
3485
	memcg_check_events(to, page);
3486
	mem_cgroup_charge_statistics(from, page, -nr_pages);
3487
	memcg_check_events(from, page);
3488 3489 3490
	local_irq_enable();
out_unlock:
	unlock_page(page);
3491
out:
3492 3493 3494
	return ret;
}

3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3515
 */
3516 3517
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3518
				  struct mem_cgroup *child)
3519 3520
{
	struct mem_cgroup *parent;
3521
	unsigned int nr_pages;
3522
	unsigned long uninitialized_var(flags);
3523 3524
	int ret;

3525
	VM_BUG_ON(mem_cgroup_is_root(child));
3526

3527 3528 3529 3530 3531
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3532

3533
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3534

3535 3536 3537 3538 3539 3540
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3541

3542
	if (nr_pages > 1) {
3543
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3544
		flags = compound_lock_irqsave(page);
3545
	}
3546

3547
	ret = mem_cgroup_move_account(page, nr_pages,
3548
				pc, child, parent);
3549 3550
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3551

3552
	if (nr_pages > 1)
3553
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3554
	putback_lru_page(page);
3555
put:
3556
	put_page(page);
3557
out:
3558 3559 3560
	return ret;
}

A
Andrew Morton 已提交
3561
#ifdef CONFIG_MEMCG_SWAP
3562 3563
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
3564
{
3565 3566
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
3567
}
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3584
				struct mem_cgroup *from, struct mem_cgroup *to)
3585 3586 3587
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3588 3589
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3590 3591 3592

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3593
		mem_cgroup_swap_statistics(to, true);
3594
		/*
3595 3596 3597
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
3598 3599 3600 3601 3602 3603
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
3604
		 */
L
Li Zefan 已提交
3605
		css_get(&to->css);
3606 3607 3608 3609 3610 3611
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3612
				struct mem_cgroup *from, struct mem_cgroup *to)
3613 3614 3615
{
	return -EINVAL;
}
3616
#endif
K
KAMEZAWA Hiroyuki 已提交
3617

3618 3619 3620 3621 3622 3623
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3624 3625 3626 3627 3628
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3648 3649
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
3650 3651 3652 3653
	}
}
#endif

3654
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3655
				unsigned long long val)
3656
{
3657
	int retry_count;
3658
	u64 memswlimit, memlimit;
3659
	int ret = 0;
3660 3661
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3662
	int enlarge;
3663 3664 3665 3666 3667 3668 3669 3670 3671

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3672

3673
	enlarge = 0;
3674
	while (retry_count) {
3675 3676 3677 3678
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3679 3680 3681
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3682
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3683 3684 3685 3686 3687 3688
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3689 3690
			break;
		}
3691 3692 3693 3694 3695

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3696
		ret = res_counter_set_limit(&memcg->res, val);
3697 3698 3699 3700 3701 3702
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3703 3704 3705 3706 3707
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3708 3709
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3710 3711
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
3712
		if (curusage >= oldusage)
3713 3714 3715
			retry_count--;
		else
			oldusage = curusage;
3716
	}
3717 3718
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3719

3720 3721 3722
	return ret;
}

L
Li Zefan 已提交
3723 3724
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3725
{
3726
	int retry_count;
3727
	u64 memlimit, memswlimit, oldusage, curusage;
3728 3729
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3730
	int enlarge = 0;
3731

3732
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
3733
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3734
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3735 3736 3737 3738 3739 3740 3741 3742
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3743
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3744 3745 3746 3747 3748 3749 3750 3751
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3752 3753 3754
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3755
		ret = res_counter_set_limit(&memcg->memsw, val);
3756 3757 3758 3759 3760 3761
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3762 3763 3764 3765 3766
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3767 3768 3769
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3770
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3771
		/* Usage is reduced ? */
3772
		if (curusage >= oldusage)
3773
			retry_count--;
3774 3775
		else
			oldusage = curusage;
3776
	}
3777 3778
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3779 3780 3781
	return ret;
}

3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
	unsigned long long excess;
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3816
		spin_lock_irq(&mctz->lock);
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
3844
		__mem_cgroup_remove_exceeded(mz, mctz);
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3855
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3856
		spin_unlock_irq(&mctz->lock);
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3874 3875 3876 3877 3878 3879 3880
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
3881
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
3882 3883
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
3884
 */
3885
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3886
				int node, int zid, enum lru_list lru)
3887
{
3888
	struct lruvec *lruvec;
3889
	unsigned long flags;
3890
	struct list_head *list;
3891 3892
	struct page *busy;
	struct zone *zone;
3893

K
KAMEZAWA Hiroyuki 已提交
3894
	zone = &NODE_DATA(node)->node_zones[zid];
3895 3896
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
3897

3898
	busy = NULL;
3899
	do {
3900
		struct page_cgroup *pc;
3901 3902
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
3903
		spin_lock_irqsave(&zone->lru_lock, flags);
3904
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3905
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3906
			break;
3907
		}
3908 3909 3910
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3911
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3912
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3913 3914
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3915
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3916

3917
		pc = lookup_page_cgroup(page);
3918

3919
		if (mem_cgroup_move_parent(page, pc, memcg)) {
3920
			/* found lock contention or "pc" is obsolete. */
3921
			busy = page;
3922 3923
		} else
			busy = NULL;
3924
		cond_resched();
3925
	} while (!list_empty(list));
3926 3927 3928
}

/*
3929 3930
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
3931
 * This enables deleting this mem_cgroup.
3932 3933
 *
 * Caller is responsible for holding css reference on the memcg.
3934
 */
3935
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
3936
{
3937
	int node, zid;
3938
	u64 usage;
3939

3940
	do {
3941 3942
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3943 3944
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
3945
		for_each_node_state(node, N_MEMORY) {
3946
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3947 3948
				enum lru_list lru;
				for_each_lru(lru) {
3949
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3950
							node, zid, lru);
3951
				}
3952
			}
3953
		}
3954 3955
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3956
		cond_resched();
3957

3958
		/*
3959 3960 3961 3962 3963
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
3964 3965 3966 3967 3968 3969
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
3970 3971 3972
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
3973 3974
}

3975 3976 3977 3978 3979 3980
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3981 3982
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3983 3984
	bool ret;

3985
	/*
3986 3987 3988 3989
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3990
	 */
3991 3992 3993 3994 3995 3996
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3997 3998
}

3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

4009 4010
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4011
	/* try to free all pages in this cgroup */
4012
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4013
		int progress;
4014

4015 4016 4017
		if (signal_pending(current))
			return -EINTR;

4018
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4019
						false);
4020
		if (!progress) {
4021
			nr_retries--;
4022
			/* maybe some writeback is necessary */
4023
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4024
		}
4025 4026

	}
4027 4028

	return 0;
4029 4030
}

4031 4032 4033
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
4034
{
4035
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4036

4037 4038
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4039
	return mem_cgroup_force_empty(memcg) ?: nbytes;
4040 4041
}

4042 4043
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
4044
{
4045
	return mem_cgroup_from_css(css)->use_hierarchy;
4046 4047
}

4048 4049
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
4050 4051
{
	int retval = 0;
4052
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4053
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
4054

4055
	mutex_lock(&memcg_create_mutex);
4056 4057 4058 4059

	if (memcg->use_hierarchy == val)
		goto out;

4060
	/*
4061
	 * If parent's use_hierarchy is set, we can't make any modifications
4062 4063 4064 4065 4066 4067
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4068
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4069
				(val == 1 || val == 0)) {
4070
		if (!memcg_has_children(memcg))
4071
			memcg->use_hierarchy = val;
4072 4073 4074 4075
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4076 4077

out:
4078
	mutex_unlock(&memcg_create_mutex);
4079 4080 4081 4082

	return retval;
}

4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
					       enum mem_cgroup_stat_index idx)
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

	if (!mem_cgroup_is_root(memcg)) {
		if (!swap)
			return res_counter_read_u64(&memcg->res, RES_USAGE);
		else
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
	}

	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);

	if (swap)
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);

	return val << PAGE_SHIFT;
}


4123
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4124
			       struct cftype *cft)
B
Balbir Singh 已提交
4125
{
4126
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4127 4128
	enum res_type type = MEMFILE_TYPE(cft->private);
	int name = MEMFILE_ATTR(cft->private);
4129

4130 4131
	switch (type) {
	case _MEM:
4132 4133
		if (name == RES_USAGE)
			return mem_cgroup_usage(memcg, false);
4134
		return res_counter_read_u64(&memcg->res, name);
4135
	case _MEMSWAP:
4136 4137
		if (name == RES_USAGE)
			return mem_cgroup_usage(memcg, true);
4138
		return res_counter_read_u64(&memcg->memsw, name);
4139
	case _KMEM:
4140
		return res_counter_read_u64(&memcg->kmem, name);
4141
		break;
4142 4143 4144
	default:
		BUG();
	}
B
Balbir Singh 已提交
4145
}
4146 4147

#ifdef CONFIG_MEMCG_KMEM
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
/* should be called with activate_kmem_mutex held */
static int __memcg_activate_kmem(struct mem_cgroup *memcg,
				 unsigned long long limit)
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

	/*
	 * We are going to allocate memory for data shared by all memory
	 * cgroups so let's stop accounting here.
	 */
	memcg_stop_kmem_account();

4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
4176
	mutex_lock(&memcg_create_mutex);
4177 4178
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
4179 4180 4181 4182
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
4183

4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
	memcg_id = ida_simple_get(&kmem_limited_groups,
				  0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
	 * Make sure we have enough space for this cgroup in each root cache's
	 * memcg_params.
	 */
4195
	mutex_lock(&memcg_slab_mutex);
4196
	err = memcg_update_all_caches(memcg_id + 1);
4197
	mutex_unlock(&memcg_slab_mutex);
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
	if (err)
		goto out_rmid;

	memcg->kmemcg_id = memcg_id;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);

	/*
	 * We couldn't have accounted to this cgroup, because it hasn't got the
	 * active bit set yet, so this should succeed.
	 */
	err = res_counter_set_limit(&memcg->kmem, limit);
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
	 * Setting the active bit after enabling static branching will
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
	memcg_kmem_set_active(memcg);
4218
out:
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
	memcg_resume_kmem_account();
	return err;

out_rmid:
	ida_simple_remove(&kmem_limited_groups, memcg_id);
	goto out;
}

static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long long limit)
{
	int ret;

	mutex_lock(&activate_kmem_mutex);
	ret = __memcg_activate_kmem(memcg, limit);
	mutex_unlock(&activate_kmem_mutex);
	return ret;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	int ret;

	if (!memcg_kmem_is_active(memcg))
		ret = memcg_activate_kmem(memcg, val);
	else
		ret = res_counter_set_limit(&memcg->kmem, val);
4247 4248 4249
	return ret;
}

4250
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4251
{
4252
	int ret = 0;
4253
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4254

4255 4256
	if (!parent)
		return 0;
4257

4258
	mutex_lock(&activate_kmem_mutex);
4259
	/*
4260 4261
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
4262
	 */
4263 4264 4265
	if (memcg_kmem_is_active(parent))
		ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
	mutex_unlock(&activate_kmem_mutex);
4266
	return ret;
4267
}
4268 4269 4270 4271 4272 4273
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	return -EINVAL;
}
4274
#endif /* CONFIG_MEMCG_KMEM */
4275

4276 4277 4278 4279
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4280 4281
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
4282
{
4283
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
G
Glauber Costa 已提交
4284 4285
	enum res_type type;
	int name;
4286 4287 4288
	unsigned long long val;
	int ret;

4289 4290 4291
	buf = strstrip(buf);
	type = MEMFILE_TYPE(of_cft(of)->private);
	name = MEMFILE_ATTR(of_cft(of)->private);
4292

4293
	switch (name) {
4294
	case RES_LIMIT:
4295 4296 4297 4298
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4299
		/* This function does all necessary parse...reuse it */
4300
		ret = res_counter_memparse_write_strategy(buf, &val);
4301 4302 4303
		if (ret)
			break;
		if (type == _MEM)
4304
			ret = mem_cgroup_resize_limit(memcg, val);
4305
		else if (type == _MEMSWAP)
4306
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4307
		else if (type == _KMEM)
4308
			ret = memcg_update_kmem_limit(memcg, val);
4309 4310
		else
			return -EINVAL;
4311
		break;
4312
	case RES_SOFT_LIMIT:
4313
		ret = res_counter_memparse_write_strategy(buf, &val);
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4326 4327 4328 4329
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
4330
	return ret ?: nbytes;
B
Balbir Singh 已提交
4331 4332
}

4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
4343 4344
	while (memcg->css.parent) {
		memcg = mem_cgroup_from_css(memcg->css.parent);
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

4357 4358
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
4359
{
4360
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
G
Glauber Costa 已提交
4361 4362
	int name;
	enum res_type type;
4363

4364 4365
	type = MEMFILE_TYPE(of_cft(of)->private);
	name = MEMFILE_ATTR(of_cft(of)->private);
4366

4367
	switch (name) {
4368
	case RES_MAX_USAGE:
4369
		if (type == _MEM)
4370
			res_counter_reset_max(&memcg->res);
4371
		else if (type == _MEMSWAP)
4372
			res_counter_reset_max(&memcg->memsw);
4373 4374 4375 4376
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
4377 4378
		break;
	case RES_FAILCNT:
4379
		if (type == _MEM)
4380
			res_counter_reset_failcnt(&memcg->res);
4381
		else if (type == _MEMSWAP)
4382
			res_counter_reset_failcnt(&memcg->memsw);
4383 4384 4385 4386
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
4387 4388
		break;
	}
4389

4390
	return nbytes;
4391 4392
}

4393
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
4394 4395
					struct cftype *cft)
{
4396
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
4397 4398
}

4399
#ifdef CONFIG_MMU
4400
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4401 4402
					struct cftype *cft, u64 val)
{
4403
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4404 4405 4406

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
4407

4408
	/*
4409 4410 4411 4412
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
4413
	 */
4414
	memcg->move_charge_at_immigrate = val;
4415 4416
	return 0;
}
4417
#else
4418
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4419 4420 4421 4422 4423
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4424

4425
#ifdef CONFIG_NUMA
4426
static int memcg_numa_stat_show(struct seq_file *m, void *v)
4427
{
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
4440
	int nid;
4441
	unsigned long nr;
4442
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4443

4444 4445 4446 4447 4448 4449 4450 4451 4452
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
4453 4454
	}

4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
4470 4471 4472 4473 4474 4475
	}

	return 0;
}
#endif /* CONFIG_NUMA */

4476 4477 4478 4479 4480
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4481
static int memcg_stat_show(struct seq_file *m, void *v)
4482
{
4483
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4484 4485
	struct mem_cgroup *mi;
	unsigned int i;
4486

4487
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4488
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4489
			continue;
4490 4491
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4492
	}
L
Lee Schermerhorn 已提交
4493

4494 4495 4496 4497 4498 4499 4500 4501
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4502
	/* Hierarchical information */
4503 4504
	{
		unsigned long long limit, memsw_limit;
4505
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4506
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4507
		if (do_swap_account)
4508 4509
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
4510
	}
K
KOSAKI Motohiro 已提交
4511

4512 4513 4514
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4515
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4516
			continue;
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4537
	}
K
KAMEZAWA Hiroyuki 已提交
4538

K
KOSAKI Motohiro 已提交
4539 4540 4541 4542
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4543
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4544 4545 4546 4547 4548
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4549
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
4550
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4551

4552 4553 4554 4555
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4556
			}
4557 4558 4559 4560
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4561 4562 4563
	}
#endif

4564 4565 4566
	return 0;
}

4567 4568
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4569
{
4570
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4571

4572
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4573 4574
}

4575 4576
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4577
{
4578
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4579

4580
	if (val > 100)
K
KOSAKI Motohiro 已提交
4581 4582
		return -EINVAL;

4583
	if (css->parent)
4584 4585 4586
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4587

K
KOSAKI Motohiro 已提交
4588 4589 4590
	return 0;
}

4591 4592 4593 4594 4595 4596 4597 4598
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4599
		t = rcu_dereference(memcg->thresholds.primary);
4600
	else
4601
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4602 4603 4604 4605

	if (!t)
		goto unlock;

4606
	usage = mem_cgroup_usage(memcg, swap);
4607 4608

	/*
4609
	 * current_threshold points to threshold just below or equal to usage.
4610 4611 4612
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4613
	i = t->current_threshold;
4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4637
	t->current_threshold = i - 1;
4638 4639 4640 4641 4642 4643
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4644 4645 4646 4647 4648 4649 4650
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4651 4652 4653 4654 4655 4656 4657
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4658 4659 4660 4661 4662 4663 4664
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4665 4666
}

4667
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4668 4669 4670
{
	struct mem_cgroup_eventfd_list *ev;

4671 4672
	spin_lock(&memcg_oom_lock);

4673
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4674
		eventfd_signal(ev->eventfd, 1);
4675 4676

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4677 4678 4679
	return 0;
}

4680
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4681
{
K
KAMEZAWA Hiroyuki 已提交
4682 4683
	struct mem_cgroup *iter;

4684
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4685
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4686 4687
}

4688
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4689
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4690
{
4691 4692
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4693
	u64 threshold, usage;
4694
	int i, size, ret;
4695 4696 4697 4698 4699 4700

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4701

4702
	if (type == _MEM) {
4703
		thresholds = &memcg->thresholds;
4704
		usage = mem_cgroup_usage(memcg, false);
4705
	} else if (type == _MEMSWAP) {
4706
		thresholds = &memcg->memsw_thresholds;
4707
		usage = mem_cgroup_usage(memcg, true);
4708
	} else
4709 4710 4711
		BUG();

	/* Check if a threshold crossed before adding a new one */
4712
	if (thresholds->primary)
4713 4714
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4715
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4716 4717

	/* Allocate memory for new array of thresholds */
4718
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4719
			GFP_KERNEL);
4720
	if (!new) {
4721 4722 4723
		ret = -ENOMEM;
		goto unlock;
	}
4724
	new->size = size;
4725 4726

	/* Copy thresholds (if any) to new array */
4727 4728
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4729
				sizeof(struct mem_cgroup_threshold));
4730 4731
	}

4732
	/* Add new threshold */
4733 4734
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4735 4736

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4737
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4738 4739 4740
			compare_thresholds, NULL);

	/* Find current threshold */
4741
	new->current_threshold = -1;
4742
	for (i = 0; i < size; i++) {
4743
		if (new->entries[i].threshold <= usage) {
4744
			/*
4745 4746
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4747 4748
			 * it here.
			 */
4749
			++new->current_threshold;
4750 4751
		} else
			break;
4752 4753
	}

4754 4755 4756 4757 4758
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4759

4760
	/* To be sure that nobody uses thresholds */
4761 4762 4763 4764 4765 4766 4767 4768
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4769
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4770 4771
	struct eventfd_ctx *eventfd, const char *args)
{
4772
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4773 4774
}

4775
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4776 4777
	struct eventfd_ctx *eventfd, const char *args)
{
4778
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4779 4780
}

4781
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4782
	struct eventfd_ctx *eventfd, enum res_type type)
4783
{
4784 4785
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4786
	u64 usage;
4787
	int i, j, size;
4788 4789

	mutex_lock(&memcg->thresholds_lock);
4790 4791

	if (type == _MEM) {
4792
		thresholds = &memcg->thresholds;
4793
		usage = mem_cgroup_usage(memcg, false);
4794
	} else if (type == _MEMSWAP) {
4795
		thresholds = &memcg->memsw_thresholds;
4796
		usage = mem_cgroup_usage(memcg, true);
4797
	} else
4798 4799
		BUG();

4800 4801 4802
	if (!thresholds->primary)
		goto unlock;

4803 4804 4805 4806
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4807 4808 4809
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4810 4811 4812
			size++;
	}

4813
	new = thresholds->spare;
4814

4815 4816
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4817 4818
		kfree(new);
		new = NULL;
4819
		goto swap_buffers;
4820 4821
	}

4822
	new->size = size;
4823 4824

	/* Copy thresholds and find current threshold */
4825 4826 4827
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4828 4829
			continue;

4830
		new->entries[j] = thresholds->primary->entries[i];
4831
		if (new->entries[j].threshold <= usage) {
4832
			/*
4833
			 * new->current_threshold will not be used
4834 4835 4836
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4837
			++new->current_threshold;
4838 4839 4840 4841
		}
		j++;
	}

4842
swap_buffers:
4843 4844
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4845 4846 4847 4848 4849 4850
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4851
	rcu_assign_pointer(thresholds->primary, new);
4852

4853
	/* To be sure that nobody uses thresholds */
4854
	synchronize_rcu();
4855
unlock:
4856 4857
	mutex_unlock(&memcg->thresholds_lock);
}
4858

4859
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4860 4861
	struct eventfd_ctx *eventfd)
{
4862
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4863 4864
}

4865
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4866 4867
	struct eventfd_ctx *eventfd)
{
4868
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4869 4870
}

4871
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4872
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4873 4874 4875 4876 4877 4878 4879
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4880
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4881 4882 4883 4884 4885

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4886
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4887
		eventfd_signal(eventfd, 1);
4888
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4889 4890 4891 4892

	return 0;
}

4893
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4894
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4895 4896 4897
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4898
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4899

4900
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4901 4902 4903 4904 4905 4906
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4907
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4908 4909
}

4910
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4911
{
4912
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4913

4914 4915
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4916 4917 4918
	return 0;
}

4919
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4920 4921
	struct cftype *cft, u64 val)
{
4922
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4923 4924

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4925
	if (!css->parent || !((val == 0) || (val == 1)))
4926 4927
		return -EINVAL;

4928
	memcg->oom_kill_disable = val;
4929
	if (!val)
4930
		memcg_oom_recover(memcg);
4931

4932 4933 4934
	return 0;
}

A
Andrew Morton 已提交
4935
#ifdef CONFIG_MEMCG_KMEM
4936
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4937
{
4938 4939
	int ret;

4940
	memcg->kmemcg_id = -1;
4941 4942 4943
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
4944

4945
	return mem_cgroup_sockets_init(memcg, ss);
4946
}
4947

4948
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4949
{
4950
	mem_cgroup_sockets_destroy(memcg);
4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
4971 4972 4973 4974
	 * css_offline() when the referencemight have dropped down to 0 and
	 * shouldn't be incremented anymore (css_tryget_online() would
	 * fail) we do not have other options because of the kmem
	 * allocations lifetime.
4975 4976
	 */
	css_get(&memcg->css);
4977 4978 4979 4980 4981 4982 4983

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
4984
		css_put(&memcg->css);
G
Glauber Costa 已提交
4985
}
4986
#else
4987
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4988 4989 4990
{
	return 0;
}
G
Glauber Costa 已提交
4991

4992 4993 4994 4995 4996
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4997 4998
{
}
4999 5000
#endif

5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

5014 5015 5016 5017 5018
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
5019
static void memcg_event_remove(struct work_struct *work)
5020
{
5021 5022
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
5023
	struct mem_cgroup *memcg = event->memcg;
5024 5025 5026

	remove_wait_queue(event->wqh, &event->wait);

5027
	event->unregister_event(memcg, event->eventfd);
5028 5029 5030 5031 5032 5033

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
5034
	css_put(&memcg->css);
5035 5036 5037 5038 5039 5040 5041
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
5042 5043
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
5044
{
5045 5046
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
5047
	struct mem_cgroup *memcg = event->memcg;
5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
5060
		spin_lock(&memcg->event_list_lock);
5061 5062 5063 5064 5065 5066 5067 5068
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
5069
		spin_unlock(&memcg->event_list_lock);
5070 5071 5072 5073 5074
	}

	return 0;
}

5075
static void memcg_event_ptable_queue_proc(struct file *file,
5076 5077
		wait_queue_head_t *wqh, poll_table *pt)
{
5078 5079
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
5080 5081 5082 5083 5084 5085

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
5086 5087
 * DO NOT USE IN NEW FILES.
 *
5088 5089 5090 5091 5092
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
5093 5094
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
5095
{
5096
	struct cgroup_subsys_state *css = of_css(of);
5097
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5098
	struct mem_cgroup_event *event;
5099 5100 5101 5102
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
5103
	const char *name;
5104 5105 5106
	char *endp;
	int ret;

5107 5108 5109
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
5110 5111
	if (*endp != ' ')
		return -EINVAL;
5112
	buf = endp + 1;
5113

5114
	cfd = simple_strtoul(buf, &endp, 10);
5115 5116
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
5117
	buf = endp + 1;
5118 5119 5120 5121 5122

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5123
	event->memcg = memcg;
5124
	INIT_LIST_HEAD(&event->list);
5125 5126 5127
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

5153 5154 5155 5156 5157
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
5158 5159
	 *
	 * DO NOT ADD NEW FILES.
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
	 */
	name = cfile.file->f_dentry->d_name.name;

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
5173 5174
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
5175 5176 5177 5178 5179
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

5180
	/*
5181 5182 5183
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
5184
	 */
5185 5186
	cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
					       &memory_cgrp_subsys);
5187
	ret = -EINVAL;
5188
	if (IS_ERR(cfile_css))
5189
		goto out_put_cfile;
5190 5191
	if (cfile_css != css) {
		css_put(cfile_css);
5192
		goto out_put_cfile;
5193
	}
5194

5195
	ret = event->register_event(memcg, event->eventfd, buf);
5196 5197 5198 5199 5200
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

5201 5202 5203
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
5204 5205 5206 5207

	fdput(cfile);
	fdput(efile);

5208
	return nbytes;
5209 5210

out_put_css:
5211
	css_put(css);
5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
5224 5225
static struct cftype mem_cgroup_files[] = {
	{
5226
		.name = "usage_in_bytes",
5227
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5228
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5229
	},
5230 5231
	{
		.name = "max_usage_in_bytes",
5232
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5233
		.write = mem_cgroup_reset,
5234
		.read_u64 = mem_cgroup_read_u64,
5235
	},
B
Balbir Singh 已提交
5236
	{
5237
		.name = "limit_in_bytes",
5238
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5239
		.write = mem_cgroup_write,
5240
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5241
	},
5242 5243 5244
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5245
		.write = mem_cgroup_write,
5246
		.read_u64 = mem_cgroup_read_u64,
5247
	},
B
Balbir Singh 已提交
5248 5249
	{
		.name = "failcnt",
5250
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5251
		.write = mem_cgroup_reset,
5252
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5253
	},
5254 5255
	{
		.name = "stat",
5256
		.seq_show = memcg_stat_show,
5257
	},
5258 5259
	{
		.name = "force_empty",
5260
		.write = mem_cgroup_force_empty_write,
5261
	},
5262 5263 5264 5265 5266
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
5267
	{
5268
		.name = "cgroup.event_control",		/* XXX: for compat */
5269
		.write = memcg_write_event_control,
5270 5271 5272
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
5273 5274 5275 5276 5277
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5278 5279 5280 5281 5282
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5283 5284
	{
		.name = "oom_control",
5285
		.seq_show = mem_cgroup_oom_control_read,
5286
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5287 5288
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5289 5290 5291
	{
		.name = "pressure_level",
	},
5292 5293 5294
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5295
		.seq_show = memcg_numa_stat_show,
5296 5297
	},
#endif
5298 5299 5300 5301
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5302
		.write = mem_cgroup_write,
5303
		.read_u64 = mem_cgroup_read_u64,
5304 5305 5306 5307
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5308
		.read_u64 = mem_cgroup_read_u64,
5309 5310 5311 5312
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5313
		.write = mem_cgroup_reset,
5314
		.read_u64 = mem_cgroup_read_u64,
5315 5316 5317 5318
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5319
		.write = mem_cgroup_reset,
5320
		.read_u64 = mem_cgroup_read_u64,
5321
	},
5322 5323 5324
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
5325
		.seq_show = mem_cgroup_slabinfo_read,
5326 5327
	},
#endif
5328
#endif
5329
	{ },	/* terminate */
5330
};
5331

5332 5333 5334 5335 5336
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5337
		.read_u64 = mem_cgroup_read_u64,
5338 5339 5340 5341
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5342
		.write = mem_cgroup_reset,
5343
		.read_u64 = mem_cgroup_read_u64,
5344 5345 5346 5347
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5348
		.write = mem_cgroup_write,
5349
		.read_u64 = mem_cgroup_read_u64,
5350 5351 5352 5353
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5354
		.write = mem_cgroup_reset,
5355
		.read_u64 = mem_cgroup_read_u64,
5356 5357 5358 5359
	},
	{ },	/* terminate */
};
#endif
5360
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5361 5362
{
	struct mem_cgroup_per_node *pn;
5363
	struct mem_cgroup_per_zone *mz;
5364
	int zone, tmp = node;
5365 5366 5367 5368 5369 5370 5371 5372
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5373 5374
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5375
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5376 5377
	if (!pn)
		return 1;
5378 5379 5380

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5381
		lruvec_init(&mz->lruvec);
5382 5383
		mz->usage_in_excess = 0;
		mz->on_tree = false;
5384
		mz->memcg = memcg;
5385
	}
5386
	memcg->nodeinfo[node] = pn;
5387 5388 5389
	return 0;
}

5390
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5391
{
5392
	kfree(memcg->nodeinfo[node]);
5393 5394
}

5395 5396
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5397
	struct mem_cgroup *memcg;
5398
	size_t size;
5399

5400 5401
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5402

5403
	memcg = kzalloc(size, GFP_KERNEL);
5404
	if (!memcg)
5405 5406
		return NULL;

5407 5408
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5409
		goto out_free;
5410 5411
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5412 5413

out_free:
5414
	kfree(memcg);
5415
	return NULL;
5416 5417
}

5418
/*
5419 5420 5421 5422 5423 5424 5425 5426
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
5427
 */
5428 5429

static void __mem_cgroup_free(struct mem_cgroup *memcg)
5430
{
5431
	int node;
5432

5433
	mem_cgroup_remove_from_trees(memcg);
5434 5435 5436 5437 5438 5439

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5451
	disarm_static_keys(memcg);
5452
	kfree(memcg);
5453
}
5454

5455 5456 5457
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
5458
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5459
{
5460
	if (!memcg->res.parent)
5461
		return NULL;
5462
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
5463
}
G
Glauber Costa 已提交
5464
EXPORT_SYMBOL(parent_mem_cgroup);
5465

5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
5489
static struct cgroup_subsys_state * __ref
5490
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
5491
{
5492
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
5493
	long error = -ENOMEM;
5494
	int node;
B
Balbir Singh 已提交
5495

5496 5497
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5498
		return ERR_PTR(error);
5499

B
Bob Liu 已提交
5500
	for_each_node(node)
5501
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5502
			goto free_out;
5503

5504
	/* root ? */
5505
	if (parent_css == NULL) {
5506
		root_mem_cgroup = memcg;
5507 5508 5509
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
5510
	}
5511

5512 5513 5514 5515 5516
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5517
	vmpressure_init(&memcg->vmpressure);
5518 5519
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5520 5521 5522 5523 5524 5525 5526 5527 5528

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
5529
mem_cgroup_css_online(struct cgroup_subsys_state *css)
5530
{
5531
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5532
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
5533
	int ret;
5534

5535
	if (css->id > MEM_CGROUP_ID_MAX)
5536 5537
		return -ENOSPC;

T
Tejun Heo 已提交
5538
	if (!parent)
5539 5540
		return 0;

5541
	mutex_lock(&memcg_create_mutex);
5542 5543 5544 5545 5546 5547

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
5548 5549
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5550
		res_counter_init(&memcg->kmem, &parent->kmem);
5551

5552
		/*
5553 5554
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
5555
		 */
5556
	} else {
5557 5558 5559
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
5560 5561 5562 5563 5564
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5565
		if (parent != root_mem_cgroup)
5566
			memory_cgrp_subsys.broken_hierarchy = true;
5567
	}
5568
	mutex_unlock(&memcg_create_mutex);
5569

5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
5582 5583
}

M
Michal Hocko 已提交
5584 5585 5586 5587 5588 5589 5590 5591
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
5592
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
5593 5594 5595 5596 5597 5598

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
5599
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
5600 5601
}

5602
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5603
{
5604
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5605
	struct mem_cgroup_event *event, *tmp;
5606
	struct cgroup_subsys_state *iter;
5607 5608 5609 5610 5611 5612

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5613 5614
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5615 5616 5617
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5618
	spin_unlock(&memcg->event_list_lock);
5619

5620 5621
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
5622
	mem_cgroup_invalidate_reclaim_iterators(memcg);
5623 5624 5625 5626 5627 5628 5629 5630

	/*
	 * This requires that offlining is serialized.  Right now that is
	 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
	 */
	css_for_each_descendant_post(iter, css)
		mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));

5631
	memcg_unregister_all_caches(memcg);
5632
	vmpressure_cleanup(&memcg->vmpressure);
5633 5634
}

5635
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5636
{
5637
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5638 5639 5640
	/*
	 * XXX: css_offline() would be where we should reparent all
	 * memory to prepare the cgroup for destruction.  However,
5641
	 * memcg does not do css_tryget_online() and res_counter charging
5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
	 * under the same RCU lock region, which means that charging
	 * could race with offlining.  Offlining only happens to
	 * cgroups with no tasks in them but charges can show up
	 * without any tasks from the swapin path when the target
	 * memcg is looked up from the swapout record and not from the
	 * current task as it usually is.  A race like this can leak
	 * charges and put pages with stale cgroup pointers into
	 * circulation:
	 *
	 * #0                        #1
	 *                           lookup_swap_cgroup_id()
	 *                           rcu_read_lock()
	 *                           mem_cgroup_lookup()
5655
	 *                           css_tryget_online()
5656
	 *                           rcu_read_unlock()
5657
	 * disable css_tryget_online()
5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673
	 * call_rcu()
	 *   offline_css()
	 *     reparent_charges()
	 *                           res_counter_charge()
	 *                           css_put()
	 *                             css_free()
	 *                           pc->mem_cgroup = dead memcg
	 *                           add page to lru
	 *
	 * The bulk of the charges are still moved in offline_css() to
	 * avoid pinning a lot of pages in case a long-term reference
	 * like a swapout record is deferring the css_free() to long
	 * after offlining.  But this makes sure we catch any charges
	 * made after offlining:
	 */
	mem_cgroup_reparent_charges(memcg);
5674

5675
	memcg_destroy_kmem(memcg);
5676
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5677 5678
}

5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	mem_cgroup_resize_limit(memcg, ULLONG_MAX);
	mem_cgroup_resize_memsw_limit(memcg, ULLONG_MAX);
	memcg_update_kmem_limit(memcg, ULLONG_MAX);
	res_counter_set_soft_limit(&memcg->res, ULLONG_MAX);
}

5702
#ifdef CONFIG_MMU
5703
/* Handlers for move charge at task migration. */
5704
static int mem_cgroup_do_precharge(unsigned long count)
5705
{
5706
	int ret;
5707 5708

	/* Try a single bulk charge without reclaim first */
5709
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
5710
	if (!ret) {
5711 5712 5713
		mc.precharge += count;
		return ret;
	}
5714
	if (ret == -EINTR) {
5715
		cancel_charge(root_mem_cgroup, count);
5716 5717
		return ret;
	}
5718 5719

	/* Try charges one by one with reclaim */
5720
	while (count--) {
5721
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
5722 5723 5724
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
5725 5726
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
5727
		 */
5728
		if (ret == -EINTR)
5729
			cancel_charge(root_mem_cgroup, 1);
5730 5731
		if (ret)
			return ret;
5732
		mc.precharge++;
5733
		cond_resched();
5734
	}
5735
	return 0;
5736 5737 5738
}

/**
5739
 * get_mctgt_type - get target type of moving charge
5740 5741 5742
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5743
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5744 5745 5746 5747 5748 5749
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5750 5751 5752
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5753 5754 5755 5756 5757
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5758
	swp_entry_t	ent;
5759 5760 5761
};

enum mc_target_type {
5762
	MC_TARGET_NONE = 0,
5763
	MC_TARGET_PAGE,
5764
	MC_TARGET_SWAP,
5765 5766
};

D
Daisuke Nishimura 已提交
5767 5768
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5769
{
D
Daisuke Nishimura 已提交
5770
	struct page *page = vm_normal_page(vma, addr, ptent);
5771

D
Daisuke Nishimura 已提交
5772 5773 5774 5775
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5776
		if (!move_anon())
D
Daisuke Nishimura 已提交
5777
			return NULL;
5778 5779
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5780 5781 5782 5783 5784 5785 5786
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5787
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5788 5789 5790 5791 5792 5793 5794 5795
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5796 5797 5798 5799
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5800
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
5801 5802 5803 5804 5805
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5806 5807 5808 5809 5810 5811 5812
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5813

5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5833 5834
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
5847
#endif
5848 5849 5850
	return page;
}

5851
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5852 5853 5854 5855
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5856
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5857 5858 5859 5860 5861 5862
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5863 5864
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5865 5866

	if (!page && !ent.val)
5867
		return ret;
5868 5869 5870
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
5871 5872 5873
		 * Do only loose check w/o serialization.
		 * mem_cgroup_move_account() checks the pc is valid or
		 * not under LRU exclusion.
5874 5875 5876 5877 5878 5879 5880 5881 5882
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5883 5884
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
5885
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5886 5887 5888
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5889 5890 5891 5892
	}
	return ret;
}

5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
5907
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5928 5929 5930 5931 5932 5933 5934 5935
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5936
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5937 5938
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5939
		spin_unlock(ptl);
5940
		return 0;
5941
	}
5942

5943 5944
	if (pmd_trans_unstable(pmd))
		return 0;
5945 5946
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5947
		if (get_mctgt_type(vma, addr, *pte, NULL))
5948 5949 5950 5951
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5952 5953 5954
	return 0;
}

5955 5956 5957 5958 5959
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5960
	down_read(&mm->mmap_sem);
5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5972
	up_read(&mm->mmap_sem);
5973 5974 5975 5976 5977 5978 5979 5980 5981

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5982 5983 5984 5985 5986
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5987 5988
}

5989 5990
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5991
{
5992 5993
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
5994
	int i;
5995

5996
	/* we must uncharge all the leftover precharges from mc.to */
5997
	if (mc.precharge) {
5998
		cancel_charge(mc.to, mc.precharge);
5999 6000 6001 6002 6003 6004 6005
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
6006
		cancel_charge(mc.from, mc.moved_charge);
6007
		mc.moved_charge = 0;
6008
	}
6009 6010 6011
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
6012 6013 6014
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
					     PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6015 6016 6017

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6018

6019 6020 6021 6022
		/*
		 * we charged both to->res and to->memsw, so we should
		 * uncharge to->res.
		 */
6023 6024 6025
		if (!mem_cgroup_is_root(mc.to))
			res_counter_uncharge(&mc.to->res,
					     PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6026
		/* we've already done css_get(mc.to) */
6027 6028
		mc.moved_swap = 0;
	}
6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6044
	spin_lock(&mc.lock);
6045 6046
	mc.from = NULL;
	mc.to = NULL;
6047
	spin_unlock(&mc.lock);
6048
	mem_cgroup_end_move(from);
6049 6050
}

6051
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6052
				 struct cgroup_taskset *tset)
6053
{
6054
	struct task_struct *p = cgroup_taskset_first(tset);
6055
	int ret = 0;
6056
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6057
	unsigned long move_charge_at_immigrate;
6058

6059 6060 6061 6062 6063 6064 6065
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6066 6067 6068
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6069
		VM_BUG_ON(from == memcg);
6070 6071 6072 6073 6074

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6075 6076 6077 6078
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6079
			VM_BUG_ON(mc.moved_charge);
6080
			VM_BUG_ON(mc.moved_swap);
6081
			mem_cgroup_start_move(from);
6082
			spin_lock(&mc.lock);
6083
			mc.from = from;
6084
			mc.to = memcg;
6085
			mc.immigrate_flags = move_charge_at_immigrate;
6086
			spin_unlock(&mc.lock);
6087
			/* We set mc.moving_task later */
6088 6089 6090 6091

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6092 6093
		}
		mmput(mm);
6094 6095 6096 6097
	}
	return ret;
}

6098
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6099
				     struct cgroup_taskset *tset)
6100
{
6101
	mem_cgroup_clear_mc();
6102 6103
}

6104 6105 6106
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6107
{
6108 6109 6110 6111
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6112 6113 6114 6115
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6116

6117 6118 6119 6120 6121 6122 6123 6124 6125 6126
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
6127
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6128
		if (mc.precharge < HPAGE_PMD_NR) {
6129
			spin_unlock(ptl);
6130 6131 6132 6133 6134 6135 6136 6137
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6138
							pc, mc.from, mc.to)) {
6139 6140 6141 6142 6143 6144 6145
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
6146
		spin_unlock(ptl);
6147
		return 0;
6148 6149
	}

6150 6151
	if (pmd_trans_unstable(pmd))
		return 0;
6152 6153 6154 6155
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6156
		swp_entry_t ent;
6157 6158 6159 6160

		if (!mc.precharge)
			break;

6161
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6162 6163 6164 6165 6166
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6167
			if (!mem_cgroup_move_account(page, 1, pc,
6168
						     mc.from, mc.to)) {
6169
				mc.precharge--;
6170 6171
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6172 6173
			}
			putback_lru_page(page);
6174
put:			/* get_mctgt_type() gets the page */
6175 6176
			put_page(page);
			break;
6177 6178
		case MC_TARGET_SWAP:
			ent = target.ent;
6179
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6180
				mc.precharge--;
6181 6182 6183
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6184
			break;
6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6199
		ret = mem_cgroup_do_precharge(1);
6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6243
	up_read(&mm->mmap_sem);
6244 6245
}

6246
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6247
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6248
{
6249
	struct task_struct *p = cgroup_taskset_first(tset);
6250
	struct mm_struct *mm = get_task_mm(p);
6251 6252

	if (mm) {
6253 6254
		if (mc.to)
			mem_cgroup_move_charge(mm);
6255 6256
		mmput(mm);
	}
6257 6258
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6259
}
6260
#else	/* !CONFIG_MMU */
6261
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6262
				 struct cgroup_taskset *tset)
6263 6264 6265
{
	return 0;
}
6266
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6267
				     struct cgroup_taskset *tset)
6268 6269
{
}
6270
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6271
				 struct cgroup_taskset *tset)
6272 6273 6274
{
}
#endif
B
Balbir Singh 已提交
6275

6276 6277
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6278 6279
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
6280
 */
6281
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6282 6283
{
	/*
6284
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6285 6286 6287
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6288
	if (cgroup_on_dfl(root_css->cgroup))
6289
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6290 6291
}

6292
struct cgroup_subsys memory_cgrp_subsys = {
6293
	.css_alloc = mem_cgroup_css_alloc,
6294
	.css_online = mem_cgroup_css_online,
6295 6296
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6297
	.css_reset = mem_cgroup_css_reset,
6298 6299
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6300
	.attach = mem_cgroup_move_task,
6301
	.bind = mem_cgroup_bind,
6302
	.legacy_cftypes = mem_cgroup_files,
6303
	.early_init = 0,
B
Balbir Singh 已提交
6304
};
6305

A
Andrew Morton 已提交
6306
#ifdef CONFIG_MEMCG_SWAP
6307 6308
static int __init enable_swap_account(char *s)
{
6309
	if (!strcmp(s, "1"))
6310
		really_do_swap_account = 1;
6311
	else if (!strcmp(s, "0"))
6312 6313 6314
		really_do_swap_account = 0;
	return 1;
}
6315
__setup("swapaccount=", enable_swap_account);
6316

6317 6318
static void __init memsw_file_init(void)
{
6319 6320
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
					  memsw_cgroup_files));
6321 6322 6323 6324 6325 6326 6327 6328
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6329
}
6330

6331
#else
6332
static void __init enable_swap_cgroup(void)
6333 6334
{
}
6335
#endif
6336

6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389
#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct page_cgroup *pc;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	pc = lookup_page_cgroup(page);

	/* Readahead page, never charged */
	if (!PageCgroupUsed(pc))
		return;

	VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);

	oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
	VM_BUG_ON_PAGE(oldid, page);

	pc->flags &= ~PCG_MEMSW;
	css_get(&pc->mem_cgroup->css);
	mem_cgroup_swap_statistics(pc->mem_cgroup, true);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
6390 6391
		if (!mem_cgroup_is_root(memcg))
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
6392 6393 6394 6395 6396 6397 6398
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}
#endif

6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		struct page_cgroup *pc = lookup_page_cgroup(page);
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
		if (PageCgroupUsed(pc))
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

6496 6497
	commit_charge(page, memcg, lrucare);

6498 6499 6500 6501 6502
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

6503 6504 6505 6506
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

6548 6549 6550 6551 6552 6553 6554
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_mem, unsigned long nr_memsw,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
	unsigned long flags;

6555 6556 6557 6558 6559 6560 6561 6562 6563
	if (!mem_cgroup_is_root(memcg)) {
		if (nr_mem)
			res_counter_uncharge(&memcg->res,
					     nr_mem * PAGE_SIZE);
		if (nr_memsw)
			res_counter_uncharge(&memcg->memsw,
					     nr_memsw * PAGE_SIZE);
		memcg_oom_recover(memcg);
	}
6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
	__this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file);
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_memsw = 0;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	unsigned long nr_mem = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;
		struct page_cgroup *pc;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

		pc = lookup_page_cgroup(page);
		if (!PageCgroupUsed(pc))
			continue;

		/*
		 * Nobody should be changing or seriously looking at
		 * pc->mem_cgroup and pc->flags at this point, we have
		 * fully exclusive access to the page.
		 */

		if (memcg != pc->mem_cgroup) {
			if (memcg) {
				uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
					       nr_anon, nr_file, nr_huge, page);
				pgpgout = nr_mem = nr_memsw = 0;
				nr_anon = nr_file = nr_huge = 0;
			}
			memcg = pc->mem_cgroup;
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

		if (pc->flags & PCG_MEM)
			nr_mem += nr_pages;
		if (pc->flags & PCG_MEMSW)
			nr_memsw += nr_pages;
		pc->flags = 0;

		pgpgout++;
	} while (next != page_list);

	if (memcg)
		uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
			       nr_anon, nr_file, nr_huge, page);
}

6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

6657
	/* Don't touch page->lru of any random page, pre-check: */
6658 6659 6660 6661
	pc = lookup_page_cgroup(page);
	if (!PageCgroupUsed(pc))
		return;

6662 6663 6664
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
6665

6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6677

6678 6679
	if (!list_empty(page_list))
		uncharge_list(page_list);
6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
 * @lrucare: both pages might be on the LRU already
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
	struct page_cgroup *pc;
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6703 6704
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
	pc = lookup_page_cgroup(newpage);
	if (PageCgroupUsed(pc))
		return;

	/* Re-entrant migration: old page already uncharged? */
	pc = lookup_page_cgroup(oldpage);
	if (!PageCgroupUsed(pc))
		return;

	VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
	VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

	pc->flags = 0;

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

6730
	commit_charge(newpage, pc->mem_cgroup, lrucare);
6731 6732
}

6733
/*
6734 6735 6736 6737 6738 6739
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6740 6741 6742 6743
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6744
	enable_swap_cgroup();
6745
	mem_cgroup_soft_limit_tree_init();
6746
	memcg_stock_init();
6747 6748 6749
	return 0;
}
subsys_initcall(mem_cgroup_init);