memcontrol.c 190.7 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82 83 84 85
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
147 148 149 150
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
151
	struct mem_cgroup *last_visited;
152
	int last_dead_count;
M
Michal Hocko 已提交
153

154 155 156 157
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

158 159 160 161
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
162
	struct lruvec		lruvec;
163
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
164

165 166
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

167 168 169 170
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
171
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
172
						/* use container_of	   */
173 174 175 176 177 178
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

199 200 201 202 203
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
204
/* For threshold */
205
struct mem_cgroup_threshold_ary {
206
	/* An array index points to threshold just below or equal to usage. */
207
	int current_threshold;
208 209 210 211 212
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
213 214 215 216 217 218 219 220 221 222 223 224

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
225 226 227 228 229
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
230

231 232 233
/*
 * cgroup_event represents events which userspace want to receive.
 */
234
struct mem_cgroup_event {
235
	/*
236
	 * memcg which the event belongs to.
237
	 */
238
	struct mem_cgroup *memcg;
239 240 241 242 243 244 245 246
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
247 248 249 250 251
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
252
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
253
			      struct eventfd_ctx *eventfd, const char *args);
254 255 256 257 258
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
259
	void (*unregister_event)(struct mem_cgroup *memcg,
260
				 struct eventfd_ctx *eventfd);
261 262 263 264 265 266 267 268 269 270
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

271 272
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273

B
Balbir Singh 已提交
274 275 276 277 278 279 280
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 282 283
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
284 285 286 287 288 289 290
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
291

292 293 294
	/* vmpressure notifications */
	struct vmpressure vmpressure;

295 296 297 298
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
299

300 301 302 303
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
304 305 306 307
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
308
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309 310 311

	bool		oom_lock;
	atomic_t	under_oom;
312
	atomic_t	oom_wakeups;
313

314
	int	swappiness;
315 316
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
317

318 319 320
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

321 322 323 324
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
325
	struct mem_cgroup_thresholds thresholds;
326

327
	/* thresholds for mem+swap usage. RCU-protected */
328
	struct mem_cgroup_thresholds memsw_thresholds;
329

K
KAMEZAWA Hiroyuki 已提交
330 331
	/* For oom notifier event fd */
	struct list_head oom_notify;
332

333 334 335 336
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
337
	unsigned long move_charge_at_immigrate;
338 339 340 341
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
342 343
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
344
	/*
345
	 * percpu counter.
346
	 */
347
	struct mem_cgroup_stat_cpu __percpu *stat;
348 349 350 351 352 353
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
354

M
Michal Hocko 已提交
355
	atomic_t	dead_count;
M
Michal Hocko 已提交
356
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
358
#endif
359 360 361 362 363 364 365 366
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
367 368 369 370 371 372 373

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
374

375 376 377 378
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

379 380
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
381 382
};

383 384
/* internal only representation about the status of kmem accounting. */
enum {
385
	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
386
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
387 388 389 390 391 392 393
};

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
394 395 396 397 398 399 400 401

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
402 403 404 405 406
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
407 408 409 410 411 412 413 414 415
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
416 417
#endif

418 419
/* Stuffs for move charges at task migration. */
/*
420 421
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
422 423
 */
enum move_type {
424
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
425
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
426 427 428
	NR_MOVE_TYPE,
};

429 430
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
431
	spinlock_t	  lock; /* for from, to */
432 433
	struct mem_cgroup *from;
	struct mem_cgroup *to;
434
	unsigned long immigrate_flags;
435
	unsigned long precharge;
436
	unsigned long moved_charge;
437
	unsigned long moved_swap;
438 439 440
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
441
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
442 443
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
444

D
Daisuke Nishimura 已提交
445 446
static bool move_anon(void)
{
447
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
448 449
}

450 451
static bool move_file(void)
{
452
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
453 454
}

455 456 457 458
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
459
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
460
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
461

462 463
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
464
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
465
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
466
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
467 468 469
	NR_CHARGE_TYPE,
};

470
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
471 472 473 474
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
475
	_KMEM,
G
Glauber Costa 已提交
476 477
};

478 479
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
480
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
481 482
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
483

484 485 486 487 488 489 490 491
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

492 493 494 495 496 497 498
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

499 500
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
501
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
502 503
}

504 505 506 507 508 509 510 511 512 513 514 515 516
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

517 518 519 520 521
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

522 523 524 525 526 527
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
528 529
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
530
	return memcg->css.id;
L
Li Zefan 已提交
531 532 533 534 535 536
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

537
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
538 539 540
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
541
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
542
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
543 544 545

void sock_update_memcg(struct sock *sk)
{
546
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
547
		struct mem_cgroup *memcg;
548
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
549 550 551

		BUG_ON(!sk->sk_prot->proto_cgroup);

552 553 554 555 556 557 558 559 560 561
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
562
			css_get(&sk->sk_cgrp->memcg->css);
563 564 565
			return;
		}

G
Glauber Costa 已提交
566 567
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
568
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
569
		if (!mem_cgroup_is_root(memcg) &&
570 571
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
572
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
573 574 575 576 577 578 579 580
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
581
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
582 583 584
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
585
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
586 587
	}
}
G
Glauber Costa 已提交
588 589 590 591 592 593

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

594
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
595 596
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
597

598 599
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
600
	if (!memcg_proto_activated(&memcg->tcp_mem))
601 602 603 604 605 606 607 608 609
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

610
#ifdef CONFIG_MEMCG_KMEM
611 612
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
613 614 615 616 617
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
618 619 620 621 622 623
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
624 625
int memcg_limited_groups_array_size;

626 627 628 629 630 631
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
632
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
633 634
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
635
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
636 637 638
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
639
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
640

641 642 643 644 645 646
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
647
struct static_key memcg_kmem_enabled_key;
648
EXPORT_SYMBOL(memcg_kmem_enabled_key);
649 650 651

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
652
	if (memcg_kmem_is_active(memcg)) {
653
		static_key_slow_dec(&memcg_kmem_enabled_key);
654 655
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
656 657 658 659 660
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
661 662 663 664 665 666 667 668 669 670 671 672 673
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

674
static void drain_all_stock_async(struct mem_cgroup *memcg);
675

676
static struct mem_cgroup_per_zone *
677
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
678
{
679
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
680
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
681 682
}

683
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
684
{
685
	return &memcg->css;
686 687
}

688
static struct mem_cgroup_per_zone *
689
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
690
{
691 692
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
693

694
	return mem_cgroup_zoneinfo(memcg, nid, zid);
695 696
}

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

static void
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
	unsigned long long excess;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
	mctz = soft_limit_tree_from_page(page);

	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
			spin_unlock(&mctz->lock);
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node(node) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
838
	    !css_tryget_online(&mz->memcg->css))
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
874
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
875
				 enum mem_cgroup_stat_index idx)
876
{
877
	long val = 0;
878 879
	int cpu;

880 881
	get_online_cpus();
	for_each_online_cpu(cpu)
882
		val += per_cpu(memcg->stat->count[idx], cpu);
883
#ifdef CONFIG_HOTPLUG_CPU
884 885 886
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
887 888
#endif
	put_online_cpus();
889 890 891
	return val;
}

892
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
893 894 895
					 bool charge)
{
	int val = (charge) ? 1 : -1;
896
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
897 898
}

899
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
900 901 902 903 904
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

905
	get_online_cpus();
906
	for_each_online_cpu(cpu)
907
		val += per_cpu(memcg->stat->events[idx], cpu);
908
#ifdef CONFIG_HOTPLUG_CPU
909 910 911
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
912
#endif
913
	put_online_cpus();
914 915 916
	return val;
}

917
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
918
					 struct page *page,
919
					 bool anon, int nr_pages)
920
{
921 922 923 924 925 926
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
927
				nr_pages);
928
	else
929
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
930
				nr_pages);
931

932 933 934 935
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

936 937
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
938
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
939
	else {
940
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
941 942
		nr_pages = -nr_pages; /* for event */
	}
943

944
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
945 946
}

947
unsigned long
948
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
949 950 951 952 953 954 955 956
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
957
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
958
			unsigned int lru_mask)
959 960
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
961
	enum lru_list lru;
962 963
	unsigned long ret = 0;

964
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
965

H
Hugh Dickins 已提交
966 967 968
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
969 970 971 972 973
	}
	return ret;
}

static unsigned long
974
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
975 976
			int nid, unsigned int lru_mask)
{
977 978 979
	u64 total = 0;
	int zid;

980
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
981 982
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
983

984 985
	return total;
}
986

987
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
988
			unsigned int lru_mask)
989
{
990
	int nid;
991 992
	u64 total = 0;

993
	for_each_node_state(nid, N_MEMORY)
994
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
995
	return total;
996 997
}

998 999
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
1000 1001 1002
{
	unsigned long val, next;

1003
	val = __this_cpu_read(memcg->stat->nr_page_events);
1004
	next = __this_cpu_read(memcg->stat->targets[target]);
1005
	/* from time_after() in jiffies.h */
1006 1007 1008 1009 1010
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
1011 1012 1013
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
1014 1015 1016 1017 1018 1019 1020 1021
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1022
	}
1023
	return false;
1024 1025 1026 1027 1028 1029
}

/*
 * Check events in order.
 *
 */
1030
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1031
{
1032
	preempt_disable();
1033
	/* threshold event is triggered in finer grain than soft limit */
1034 1035
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1036
		bool do_softlimit;
1037
		bool do_numainfo __maybe_unused;
1038

1039 1040
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1041 1042 1043 1044 1045 1046
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1047
		mem_cgroup_threshold(memcg);
1048 1049
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1050
#if MAX_NUMNODES > 1
1051
		if (unlikely(do_numainfo))
1052
			atomic_inc(&memcg->numainfo_events);
1053
#endif
1054 1055
	} else
		preempt_enable();
1056 1057
}

1058
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1059
{
1060 1061 1062 1063 1064 1065 1066 1067
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1068
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1069 1070
}

1071
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1072
{
1073
	struct mem_cgroup *memcg = NULL;
1074

1075 1076
	rcu_read_lock();
	do {
1077 1078
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1079
			memcg = root_mem_cgroup;
1080
	} while (!css_tryget_online(&memcg->css));
1081
	rcu_read_unlock();
1082
	return memcg;
1083 1084
}

1085 1086 1087 1088 1089 1090 1091
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1092
		struct mem_cgroup *last_visited)
1093
{
1094
	struct cgroup_subsys_state *prev_css, *next_css;
1095

1096
	prev_css = last_visited ? &last_visited->css : NULL;
1097
skip_node:
1098
	next_css = css_next_descendant_pre(prev_css, &root->css);
1099 1100 1101 1102 1103 1104 1105

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
1106 1107 1108 1109 1110 1111 1112 1113
	 *
	 * We do not take a reference on the root of the tree walk
	 * because we might race with the root removal when it would
	 * be the only node in the iterated hierarchy and mem_cgroup_iter
	 * would end up in an endless loop because it expects that at
	 * least one valid node will be returned. Root cannot disappear
	 * because caller of the iterator should hold it already so
	 * skipping css reference should be safe.
1114
	 */
1115
	if (next_css) {
1116
		if ((next_css == &root->css) ||
1117 1118
		    ((next_css->flags & CSS_ONLINE) &&
		     css_tryget_online(next_css)))
1119
			return mem_cgroup_from_css(next_css);
1120 1121 1122

		prev_css = next_css;
		goto skip_node;
1123 1124 1125 1126 1127
	}

	return NULL;
}

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
1156 1157 1158 1159 1160 1161 1162 1163

		/*
		 * We cannot take a reference to root because we might race
		 * with root removal and returning NULL would end up in
		 * an endless loop on the iterator user level when root
		 * would be returned all the time.
		 */
		if (position && position != root &&
1164
		    !css_tryget_online(&position->css))
1165 1166 1167 1168 1169 1170 1171 1172
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
1173
				   struct mem_cgroup *root,
1174 1175
				   int sequence)
{
1176 1177
	/* root reference counting symmetric to mem_cgroup_iter_load */
	if (last_visited && last_visited != root)
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1207
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1208
				   struct mem_cgroup *prev,
1209
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1210
{
1211
	struct mem_cgroup *memcg = NULL;
1212
	struct mem_cgroup *last_visited = NULL;
1213

1214 1215
	if (mem_cgroup_disabled())
		return NULL;
1216

1217 1218
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1219

1220
	if (prev && !reclaim)
1221
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1222

1223 1224
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1225
			goto out_css_put;
1226
		return root;
1227
	}
K
KAMEZAWA Hiroyuki 已提交
1228

1229
	rcu_read_lock();
1230
	while (!memcg) {
1231
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1232
		int uninitialized_var(seq);
1233

1234 1235 1236 1237 1238 1239 1240
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1241
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1242
				iter->last_visited = NULL;
1243 1244
				goto out_unlock;
			}
M
Michal Hocko 已提交
1245

1246
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1247
		}
K
KAMEZAWA Hiroyuki 已提交
1248

1249
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1250

1251
		if (reclaim) {
1252 1253
			mem_cgroup_iter_update(iter, last_visited, memcg, root,
					seq);
1254

M
Michal Hocko 已提交
1255
			if (!memcg)
1256 1257 1258 1259
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1260

1261
		if (prev && !memcg)
1262
			goto out_unlock;
1263
	}
1264 1265
out_unlock:
	rcu_read_unlock();
1266 1267 1268 1269
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1270
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1271
}
K
KAMEZAWA Hiroyuki 已提交
1272

1273 1274 1275 1276 1277 1278 1279
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1280 1281 1282 1283 1284 1285
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1286

1287 1288 1289 1290 1291 1292
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1293
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1294
	     iter != NULL;				\
1295
	     iter = mem_cgroup_iter(root, iter, NULL))
1296

1297
#define for_each_mem_cgroup(iter)			\
1298
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1299
	     iter != NULL;				\
1300
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1301

1302
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1303
{
1304
	struct mem_cgroup *memcg;
1305 1306

	rcu_read_lock();
1307 1308
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1309 1310 1311 1312
		goto out;

	switch (idx) {
	case PGFAULT:
1313 1314 1315 1316
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1317 1318 1319 1320 1321 1322 1323
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1324
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1325

1326 1327 1328
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1329
 * @memcg: memcg of the wanted lruvec
1330 1331 1332 1333 1334 1335 1336 1337 1338
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1339
	struct lruvec *lruvec;
1340

1341 1342 1343 1344
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1345 1346

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1357 1358
}

K
KAMEZAWA Hiroyuki 已提交
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1372

1373
/**
1374
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1375
 * @page: the page
1376
 * @zone: zone of the page
1377
 */
1378
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1379 1380
{
	struct mem_cgroup_per_zone *mz;
1381 1382
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1383
	struct lruvec *lruvec;
1384

1385 1386 1387 1388
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1389

K
KAMEZAWA Hiroyuki 已提交
1390
	pc = lookup_page_cgroup(page);
1391
	memcg = pc->mem_cgroup;
1392 1393

	/*
1394
	 * Surreptitiously switch any uncharged offlist page to root:
1395 1396 1397 1398 1399 1400 1401
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1402
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1403 1404
		pc->mem_cgroup = memcg = root_mem_cgroup;

1405
	mz = page_cgroup_zoneinfo(memcg, page);
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1416
}
1417

1418
/**
1419 1420 1421 1422
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1423
 *
1424 1425
 * This function must be called when a page is added to or removed from an
 * lru list.
1426
 */
1427 1428
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1429 1430
{
	struct mem_cgroup_per_zone *mz;
1431
	unsigned long *lru_size;
1432 1433 1434 1435

	if (mem_cgroup_disabled())
		return;

1436 1437 1438 1439
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1440
}
1441

1442
/*
1443
 * Checks whether given mem is same or in the root_mem_cgroup's
1444 1445
 * hierarchy subtree
 */
1446 1447
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1448
{
1449 1450
	if (root_memcg == memcg)
		return true;
1451
	if (!root_memcg->use_hierarchy || !memcg)
1452
		return false;
1453
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1454 1455 1456 1457 1458 1459 1460
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1461
	rcu_read_lock();
1462
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1463 1464
	rcu_read_unlock();
	return ret;
1465 1466
}

1467 1468
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1469
{
1470
	struct mem_cgroup *curr = NULL;
1471
	struct task_struct *p;
1472
	bool ret;
1473

1474
	p = find_lock_task_mm(task);
1475
	if (p) {
1476
		curr = get_mem_cgroup_from_mm(p->mm);
1477 1478 1479 1480 1481 1482 1483
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1484
		rcu_read_lock();
1485 1486 1487
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1488
		rcu_read_unlock();
1489
	}
1490
	/*
1491
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1492
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1493 1494
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1495
	 */
1496
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1497
	css_put(&curr->css);
1498 1499 1500
	return ret;
}

1501
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1502
{
1503
	unsigned long inactive_ratio;
1504
	unsigned long inactive;
1505
	unsigned long active;
1506
	unsigned long gb;
1507

1508 1509
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1510

1511 1512 1513 1514 1515 1516
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1517
	return inactive * inactive_ratio < active;
1518 1519
}

1520 1521 1522
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1523
/**
1524
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1525
 * @memcg: the memory cgroup
1526
 *
1527
 * Returns the maximum amount of memory @mem can be charged with, in
1528
 * pages.
1529
 */
1530
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1531
{
1532 1533
	unsigned long long margin;

1534
	margin = res_counter_margin(&memcg->res);
1535
	if (do_swap_account)
1536
		margin = min(margin, res_counter_margin(&memcg->memsw));
1537
	return margin >> PAGE_SHIFT;
1538 1539
}

1540
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1541 1542
{
	/* root ? */
T
Tejun Heo 已提交
1543
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1544 1545
		return vm_swappiness;

1546
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1547 1548
}

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1563 1564 1565 1566

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1567
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1568
{
1569
	atomic_inc(&memcg_moving);
1570
	atomic_inc(&memcg->moving_account);
1571 1572 1573
	synchronize_rcu();
}

1574
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1575
{
1576 1577 1578 1579
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1580 1581
	if (memcg) {
		atomic_dec(&memcg_moving);
1582
		atomic_dec(&memcg->moving_account);
1583
	}
1584
}
1585

1586 1587 1588
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1589 1590
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1591 1592 1593 1594 1595 1596 1597
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1598
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1599 1600
{
	VM_BUG_ON(!rcu_read_lock_held());
1601
	return atomic_read(&memcg->moving_account) > 0;
1602
}
1603

1604
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1605
{
1606 1607
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1608
	bool ret = false;
1609 1610 1611 1612 1613 1614 1615 1616 1617
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1618

1619 1620
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1621 1622
unlock:
	spin_unlock(&mc.lock);
1623 1624 1625
	return ret;
}

1626
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1627 1628
{
	if (mc.moving_task && current != mc.moving_task) {
1629
		if (mem_cgroup_under_move(memcg)) {
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1642 1643 1644 1645
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1646
 * see mem_cgroup_stolen(), too.
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1660
#define K(x) ((x) << (PAGE_SHIFT-10))
1661
/**
1662
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1663 1664 1665 1666 1667 1668 1669 1670
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1671
	/* oom_info_lock ensures that parallel ooms do not interleave */
1672
	static DEFINE_MUTEX(oom_info_lock);
1673 1674
	struct mem_cgroup *iter;
	unsigned int i;
1675

1676
	if (!p)
1677 1678
		return;

1679
	mutex_lock(&oom_info_lock);
1680 1681
	rcu_read_lock();

T
Tejun Heo 已提交
1682 1683 1684 1685 1686
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	pr_info(" killed as a result of limit of ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_info("\n");
1687 1688 1689

	rcu_read_unlock();

1690
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1691 1692 1693
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1694
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1695 1696 1697
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1698
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1699 1700 1701
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1702 1703

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1704 1705
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1721
	mutex_unlock(&oom_info_lock);
1722 1723
}

1724 1725 1726 1727
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1728
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1729 1730
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1731 1732
	struct mem_cgroup *iter;

1733
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1734
		num++;
1735 1736 1737
	return num;
}

D
David Rientjes 已提交
1738 1739 1740
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1741
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1742 1743 1744
{
	u64 limit;

1745 1746
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1747
	/*
1748
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1749
	 */
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1764 1765
}

1766 1767
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1768 1769 1770 1771 1772 1773 1774
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1775
	/*
1776 1777 1778
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1779
	 */
1780
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1781 1782 1783 1784 1785
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1786 1787
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1788
		struct css_task_iter it;
1789 1790
		struct task_struct *task;

1791 1792
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1805
				css_task_iter_end(&it);
1806 1807 1808 1809 1810 1811 1812 1813
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1826
		}
1827
		css_task_iter_end(&it);
1828 1829 1830 1831 1832 1833 1834 1835 1836
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1873 1874
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1875
 * @memcg: the target memcg
1876 1877 1878 1879 1880 1881 1882
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1883
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1884 1885
		int nid, bool noswap)
{
1886
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1887 1888 1889
		return true;
	if (noswap || !total_swap_pages)
		return false;
1890
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1891 1892 1893 1894
		return true;
	return false;

}
1895
#if MAX_NUMNODES > 1
1896 1897 1898 1899 1900 1901 1902

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1903
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1904 1905
{
	int nid;
1906 1907 1908 1909
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1910
	if (!atomic_read(&memcg->numainfo_events))
1911
		return;
1912
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1913 1914 1915
		return;

	/* make a nodemask where this memcg uses memory from */
1916
	memcg->scan_nodes = node_states[N_MEMORY];
1917

1918
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1919

1920 1921
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1922
	}
1923

1924 1925
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1940
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1941 1942 1943
{
	int node;

1944 1945
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1946

1947
	node = next_node(node, memcg->scan_nodes);
1948
	if (node == MAX_NUMNODES)
1949
		node = first_node(memcg->scan_nodes);
1950 1951 1952 1953 1954 1955 1956 1957 1958
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1959
	memcg->last_scanned_node = node;
1960 1961 1962
	return node;
}

1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

1998
#else
1999
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2000 2001 2002
{
	return 0;
}
2003

2004 2005 2006 2007
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
2008 2009
#endif

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
			break;
2058
	}
2059 2060
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
2061 2062
}

2063 2064 2065 2066 2067 2068
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

2069 2070
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
2071 2072 2073 2074
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
2075
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2076
{
2077
	struct mem_cgroup *iter, *failed = NULL;
2078

2079 2080
	spin_lock(&memcg_oom_lock);

2081
	for_each_mem_cgroup_tree(iter, memcg) {
2082
		if (iter->oom_lock) {
2083 2084 2085 2086 2087
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2088 2089
			mem_cgroup_iter_break(memcg, iter);
			break;
2090 2091
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2092
	}
K
KAMEZAWA Hiroyuki 已提交
2093

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
2105
		}
2106 2107
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2108 2109 2110 2111

	spin_unlock(&memcg_oom_lock);

	return !failed;
2112
}
2113

2114
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2115
{
K
KAMEZAWA Hiroyuki 已提交
2116 2117
	struct mem_cgroup *iter;

2118
	spin_lock(&memcg_oom_lock);
2119
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2120
	for_each_mem_cgroup_tree(iter, memcg)
2121
		iter->oom_lock = false;
2122
	spin_unlock(&memcg_oom_lock);
2123 2124
}

2125
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2126 2127 2128
{
	struct mem_cgroup *iter;

2129
	for_each_mem_cgroup_tree(iter, memcg)
2130 2131 2132
		atomic_inc(&iter->under_oom);
}

2133
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2134 2135 2136
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2137 2138 2139 2140 2141
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2142
	for_each_mem_cgroup_tree(iter, memcg)
2143
		atomic_add_unless(&iter->under_oom, -1, 0);
2144 2145
}

K
KAMEZAWA Hiroyuki 已提交
2146 2147
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2148
struct oom_wait_info {
2149
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2150 2151 2152 2153 2154 2155
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2156 2157
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2158 2159 2160
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2161
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2162 2163

	/*
2164
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2165 2166
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2167 2168
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2169 2170 2171 2172
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2173
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2174
{
2175
	atomic_inc(&memcg->oom_wakeups);
2176 2177
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2178 2179
}

2180
static void memcg_oom_recover(struct mem_cgroup *memcg)
2181
{
2182 2183
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2184 2185
}

2186
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2187
{
2188 2189
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2190
	/*
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2203
	 */
2204 2205 2206 2207
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2208 2209 2210 2211
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2212
 * @handle: actually kill/wait or just clean up the OOM state
2213
 *
2214 2215
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2216
 *
2217
 * Memcg supports userspace OOM handling where failed allocations must
2218 2219 2220 2221
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2222
 * the end of the page fault to complete the OOM handling.
2223 2224
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2225
 * completed, %false otherwise.
2226
 */
2227
bool mem_cgroup_oom_synchronize(bool handle)
2228
{
2229
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2230
	struct oom_wait_info owait;
2231
	bool locked;
2232 2233 2234

	/* OOM is global, do not handle */
	if (!memcg)
2235
		return false;
2236

2237 2238
	if (!handle)
		goto cleanup;
2239 2240 2241 2242 2243 2244

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2245

2246
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2260
		schedule();
2261 2262 2263 2264 2265
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2266 2267 2268 2269 2270 2271 2272 2273
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2274 2275
cleanup:
	current->memcg_oom.memcg = NULL;
2276
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2277
	return true;
2278 2279
}

2280 2281 2282
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2300 2301
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2302
 */
2303

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2317
	 * need to take move_lock_mem_cgroup(). Because we already hold
2318
	 * rcu_read_lock(), any calls to move_account will be delayed until
2319
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2320
	 */
2321
	if (!mem_cgroup_stolen(memcg))
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2339
	 * should take move_lock_mem_cgroup().
2340 2341 2342 2343
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2344
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2345
				 enum mem_cgroup_stat_index idx, int val)
2346
{
2347
	struct mem_cgroup *memcg;
2348
	struct page_cgroup *pc = lookup_page_cgroup(page);
2349
	unsigned long uninitialized_var(flags);
2350

2351
	if (mem_cgroup_disabled())
2352
		return;
2353

2354
	VM_BUG_ON(!rcu_read_lock_held());
2355 2356
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2357
		return;
2358

2359
	this_cpu_add(memcg->stat->count[idx], val);
2360
}
2361

2362 2363 2364 2365
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2366
#define CHARGE_BATCH	32U
2367 2368
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2369
	unsigned int nr_pages;
2370
	struct work_struct work;
2371
	unsigned long flags;
2372
#define FLUSHING_CACHED_CHARGE	0
2373 2374
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2375
static DEFINE_MUTEX(percpu_charge_mutex);
2376

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2387
 */
2388
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2389 2390 2391 2392
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2393 2394 2395
	if (nr_pages > CHARGE_BATCH)
		return false;

2396
	stock = &get_cpu_var(memcg_stock);
2397 2398
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2412 2413 2414 2415
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2416
		if (do_swap_account)
2417 2418
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2431
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2432 2433
}

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2445 2446
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2447
 * This will be consumed by consume_stock() function, later.
2448
 */
2449
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2450 2451 2452
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2453
	if (stock->cached != memcg) { /* reset if necessary */
2454
		drain_stock(stock);
2455
		stock->cached = memcg;
2456
	}
2457
	stock->nr_pages += nr_pages;
2458 2459 2460 2461
	put_cpu_var(memcg_stock);
}

/*
2462
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2463 2464
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2465
 */
2466
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2467
{
2468
	int cpu, curcpu;
2469

2470 2471
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2472
	curcpu = get_cpu();
2473 2474
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2475
		struct mem_cgroup *memcg;
2476

2477 2478
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2479
			continue;
2480
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2481
			continue;
2482 2483 2484 2485 2486 2487
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2488
	}
2489
	put_cpu();
2490 2491 2492 2493 2494 2495

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2496
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2497 2498 2499
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2500
	put_online_cpus();
2501 2502 2503 2504 2505 2506 2507 2508
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2509
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2510
{
2511 2512 2513 2514 2515
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2516
	drain_all_stock(root_memcg, false);
2517
	mutex_unlock(&percpu_charge_mutex);
2518 2519 2520
}

/* This is a synchronous drain interface. */
2521
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2522 2523
{
	/* called when force_empty is called */
2524
	mutex_lock(&percpu_charge_mutex);
2525
	drain_all_stock(root_memcg, true);
2526
	mutex_unlock(&percpu_charge_mutex);
2527 2528
}

2529 2530 2531 2532
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2533
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2534 2535 2536
{
	int i;

2537
	spin_lock(&memcg->pcp_counter_lock);
2538
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2539
		long x = per_cpu(memcg->stat->count[i], cpu);
2540

2541 2542
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2543
	}
2544
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2545
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2546

2547 2548
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2549
	}
2550
	spin_unlock(&memcg->pcp_counter_lock);
2551 2552
}

2553
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2554 2555 2556 2557 2558
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2559
	struct mem_cgroup *iter;
2560

2561
	if (action == CPU_ONLINE)
2562 2563
		return NOTIFY_OK;

2564
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2565
		return NOTIFY_OK;
2566

2567
	for_each_mem_cgroup(iter)
2568 2569
		mem_cgroup_drain_pcp_counter(iter, cpu);

2570 2571 2572 2573 2574
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2575

2576
/* See mem_cgroup_try_charge() for details */
2577 2578 2579 2580 2581 2582 2583
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
};

2584
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2585
				unsigned int nr_pages, unsigned int min_pages,
2586
				bool invoke_oom)
2587
{
2588
	unsigned long csize = nr_pages * PAGE_SIZE;
2589 2590 2591 2592 2593
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2594
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2595 2596 2597 2598

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2599
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2600 2601 2602
		if (likely(!ret))
			return CHARGE_OK;

2603
		res_counter_uncharge(&memcg->res, csize);
2604 2605 2606 2607
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2608 2609 2610 2611
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2612
	if (nr_pages > min_pages)
2613 2614 2615 2616 2617
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2618 2619 2620
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2621
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2622
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2623
		return CHARGE_RETRY;
2624
	/*
2625 2626 2627 2628 2629 2630 2631
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2632
	 */
2633
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2634 2635 2636 2637 2638 2639 2640 2641 2642
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

2643 2644
	if (invoke_oom)
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2645

2646
	return CHARGE_NOMEM;
2647 2648
}

2649 2650 2651 2652 2653
/**
 * mem_cgroup_try_charge - try charging a memcg
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 * @oom: trigger OOM if reclaim fails
2654
 *
2655 2656
 * Returns 0 if @memcg was charged successfully, -EINTR if the charge
 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
2657
 */
2658 2659 2660 2661
static int mem_cgroup_try_charge(struct mem_cgroup *memcg,
				 gfp_t gfp_mask,
				 unsigned int nr_pages,
				 bool oom)
2662
{
2663
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2664 2665
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	int ret;
2666

2667 2668
	if (mem_cgroup_is_root(memcg))
		goto done;
K
KAMEZAWA Hiroyuki 已提交
2669
	/*
2670 2671 2672 2673
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
K
KAMEZAWA Hiroyuki 已提交
2674
	 */
2675 2676
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current)))
K
KAMEZAWA Hiroyuki 已提交
2677
		goto bypass;
2678

2679
	if (unlikely(task_in_memcg_oom(current)))
2680
		goto nomem;
2681

2682 2683
	if (gfp_mask & __GFP_NOFAIL)
		oom = false;
K
KAMEZAWA Hiroyuki 已提交
2684
again:
2685 2686
	if (consume_stock(memcg, nr_pages))
		goto done;
2687

2688
	do {
2689
		bool invoke_oom = oom && !nr_oom_retries;
2690

2691
		/* If killed, bypass charge */
2692
		if (fatal_signal_pending(current))
2693
			goto bypass;
2694

2695 2696
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
					   nr_pages, invoke_oom);
2697 2698 2699 2700
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2701
			batch = nr_pages;
K
KAMEZAWA Hiroyuki 已提交
2702
			goto again;
2703 2704 2705
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
2706
			if (!oom || invoke_oom)
K
KAMEZAWA Hiroyuki 已提交
2707
				goto nomem;
2708 2709
			nr_oom_retries--;
			break;
2710
		}
2711 2712
	} while (ret != CHARGE_OK);

2713
	if (batch > nr_pages)
2714
		refill_stock(memcg, batch - nr_pages);
2715
done:
2716 2717
	return 0;
nomem:
2718
	if (!(gfp_mask & __GFP_NOFAIL))
2719
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2720
bypass:
2721
	return -EINTR;
2722
}
2723

2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
/**
 * mem_cgroup_try_charge_mm - try charging a mm
 * @mm: mm_struct to charge
 * @nr_pages: number of pages to charge
 * @oom: trigger OOM if reclaim fails
 *
 * Returns the charged mem_cgroup associated with the given mm_struct or
 * NULL the charge failed.
 */
static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm,
				 gfp_t gfp_mask,
				 unsigned int nr_pages,
				 bool oom)

{
	struct mem_cgroup *memcg;
	int ret;

	memcg = get_mem_cgroup_from_mm(mm);
	ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom);
	css_put(&memcg->css);
	if (ret == -EINTR)
		memcg = root_mem_cgroup;
	else if (ret)
		memcg = NULL;

	return memcg;
}

2753 2754 2755 2756 2757
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2758
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2759
				       unsigned int nr_pages)
2760
{
2761
	if (!mem_cgroup_is_root(memcg)) {
2762 2763
		unsigned long bytes = nr_pages * PAGE_SIZE;

2764
		res_counter_uncharge(&memcg->res, bytes);
2765
		if (do_swap_account)
2766
			res_counter_uncharge(&memcg->memsw, bytes);
2767
	}
2768 2769
}

2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2788 2789
/*
 * A helper function to get mem_cgroup from ID. must be called under
2790 2791 2792
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2793 2794 2795 2796 2797 2798
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2799
	return mem_cgroup_from_id(id);
2800 2801
}

2802
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2803
{
2804
	struct mem_cgroup *memcg = NULL;
2805
	struct page_cgroup *pc;
2806
	unsigned short id;
2807 2808
	swp_entry_t ent;

2809
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2810 2811

	pc = lookup_page_cgroup(page);
2812
	lock_page_cgroup(pc);
2813
	if (PageCgroupUsed(pc)) {
2814
		memcg = pc->mem_cgroup;
2815
		if (memcg && !css_tryget_online(&memcg->css))
2816
			memcg = NULL;
2817
	} else if (PageSwapCache(page)) {
2818
		ent.val = page_private(page);
2819
		id = lookup_swap_cgroup_id(ent);
2820
		rcu_read_lock();
2821
		memcg = mem_cgroup_lookup(id);
2822
		if (memcg && !css_tryget_online(&memcg->css))
2823
			memcg = NULL;
2824
		rcu_read_unlock();
2825
	}
2826
	unlock_page_cgroup(pc);
2827
	return memcg;
2828 2829
}

2830
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2831
				       struct page *page,
2832
				       unsigned int nr_pages,
2833 2834
				       enum charge_type ctype,
				       bool lrucare)
2835
{
2836
	struct page_cgroup *pc = lookup_page_cgroup(page);
2837
	struct zone *uninitialized_var(zone);
2838
	struct lruvec *lruvec;
2839
	bool was_on_lru = false;
2840
	bool anon;
2841

2842
	lock_page_cgroup(pc);
2843
	VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2844 2845 2846 2847
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2848 2849 2850 2851 2852 2853 2854 2855 2856

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2857
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2858
			ClearPageLRU(page);
2859
			del_page_from_lru_list(page, lruvec, page_lru(page));
2860 2861 2862 2863
			was_on_lru = true;
		}
	}

2864
	pc->mem_cgroup = memcg;
2865 2866 2867 2868 2869 2870
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2871
	 */
K
KAMEZAWA Hiroyuki 已提交
2872
	smp_wmb();
2873
	SetPageCgroupUsed(pc);
2874

2875 2876
	if (lrucare) {
		if (was_on_lru) {
2877
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2878
			VM_BUG_ON_PAGE(PageLRU(page), page);
2879
			SetPageLRU(page);
2880
			add_page_to_lru_list(page, lruvec, page_lru(page));
2881 2882 2883 2884
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2885
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2886 2887 2888 2889
		anon = true;
	else
		anon = false;

2890
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2891
	unlock_page_cgroup(pc);
2892

2893
	/*
2894 2895 2896
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
2897
	 */
2898
	memcg_check_events(memcg, page);
2899
}
2900

2901 2902
static DEFINE_MUTEX(set_limit_mutex);

2903
#ifdef CONFIG_MEMCG_KMEM
2904 2905
static DEFINE_MUTEX(activate_kmem_mutex);

2906 2907 2908
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2909
		memcg_kmem_is_active(memcg);
2910 2911
}

G
Glauber Costa 已提交
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
2922
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
2923 2924
}

2925
#ifdef CONFIG_SLABINFO
2926
static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2927
{
2928
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2945 2946 2947 2948 2949 2950 2951 2952 2953
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	int ret = 0;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

2954 2955
	ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT,
				    oom_gfp_allowed(gfp));
2956 2957
	if (ret == -EINTR)  {
		/*
2958
		 * mem_cgroup_try_charge() chosed to bypass to root due to
2959 2960 2961 2962 2963 2964 2965 2966 2967
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
2968
		 * mem_cgroup_try_charge() above. Tasks that were already
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2988 2989 2990 2991 2992

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

2993 2994 2995 2996 2997 2998 2999 3000
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
3001
	if (memcg_kmem_test_and_clear_dead(memcg))
3002
		css_put(&memcg->css);
3003 3004
}

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3041 3042
static void kmem_cache_destroy_work_func(struct work_struct *w);

3043 3044 3045 3046
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

3047
	VM_BUG_ON(!is_root_cache(s));
3048 3049 3050

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
3051
		struct memcg_cache_params *new_params;
3052 3053 3054
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3055
		size += offsetof(struct memcg_cache_params, memcg_caches);
3056

3057 3058
		new_params = kzalloc(size, GFP_KERNEL);
		if (!new_params)
3059 3060
			return -ENOMEM;

3061
		new_params->is_root_cache = true;
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
3075
			new_params->memcg_caches[i] =
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
3088 3089 3090
		rcu_assign_pointer(s->memcg_params, new_params);
		if (cur_params)
			kfree_rcu(cur_params, rcu_head);
3091 3092 3093 3094
	}
	return 0;
}

3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
char *memcg_create_cache_name(struct mem_cgroup *memcg,
			      struct kmem_cache *root_cache)
{
	static char *buf = NULL;

	/*
	 * We need a mutex here to protect the shared buffer. Since this is
	 * expected to be called only on cache creation, we can employ the
	 * slab_mutex for that purpose.
	 */
	lockdep_assert_held(&slab_mutex);

	if (!buf) {
		buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
		if (!buf)
			return NULL;
	}

	cgroup_name(memcg->css.cgroup, buf, NAME_MAX + 1);
	return kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
			 memcg_cache_id(memcg), buf);
}

3118 3119
int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
			     struct kmem_cache *root_cache)
3120
{
3121
	size_t size;
3122 3123 3124 3125

	if (!memcg_kmem_enabled())
		return 0;

3126 3127
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3128
		size += memcg_limited_groups_array_size * sizeof(void *);
3129 3130
	} else
		size = sizeof(struct memcg_cache_params);
3131

3132 3133 3134 3135
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3136
	if (memcg) {
3137
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3138
		s->memcg_params->root_cache = root_cache;
3139 3140
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3141
		css_get(&memcg->css);
3142 3143 3144
	} else
		s->memcg_params->is_root_cache = true;

3145 3146 3147
	return 0;
}

3148 3149
void memcg_free_cache_params(struct kmem_cache *s)
{
3150 3151 3152 3153
	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		css_put(&s->memcg_params->memcg->css);
3154 3155 3156
	kfree(s->memcg_params);
}

3157
void memcg_register_cache(struct kmem_cache *s)
3158
{
3159 3160 3161 3162
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

3163 3164 3165
	if (is_root_cache(s))
		return;

3166 3167 3168 3169 3170 3171
	/*
	 * Holding the slab_mutex assures nobody will touch the memcg_caches
	 * array while we are modifying it.
	 */
	lockdep_assert_held(&slab_mutex);

3172 3173 3174 3175
	root = s->memcg_params->root_cache;
	memcg = s->memcg_params->memcg;
	id = memcg_cache_id(memcg);

3176
	/*
3177 3178 3179
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
3180
	 */
3181 3182
	smp_wmb();

3183 3184 3185 3186 3187
	/*
	 * Initialize the pointer to this cache in its parent's memcg_params
	 * before adding it to the memcg_slab_caches list, otherwise we can
	 * fail to convert memcg_params_to_cache() while traversing the list.
	 */
3188
	VM_BUG_ON(root->memcg_params->memcg_caches[id]);
3189
	root->memcg_params->memcg_caches[id] = s;
3190 3191 3192 3193

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
3194
}
3195

3196 3197 3198 3199 3200 3201 3202 3203
void memcg_unregister_cache(struct kmem_cache *s)
{
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	if (is_root_cache(s))
		return;
3204

3205 3206 3207 3208 3209 3210
	/*
	 * Holding the slab_mutex assures nobody will touch the memcg_caches
	 * array while we are modifying it.
	 */
	lockdep_assert_held(&slab_mutex);

3211
	root = s->memcg_params->root_cache;
3212 3213
	memcg = s->memcg_params->memcg;
	id = memcg_cache_id(memcg);
3214 3215 3216 3217 3218

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3219 3220 3221 3222 3223
	/*
	 * Clear the pointer to this cache in its parent's memcg_params only
	 * after removing it from the memcg_slab_caches list, otherwise we can
	 * fail to convert memcg_params_to_cache() while traversing the list.
	 */
3224
	VM_BUG_ON(root->memcg_params->memcg_caches[id] != s);
3225
	root->memcg_params->memcg_caches[id] = NULL;
3226 3227
}

3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3259 3260 3261 3262 3263 3264 3265 3266 3267
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
3284
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0)
G
Glauber Costa 已提交
3285
		kmem_cache_shrink(cachep);
3286
	else
G
Glauber Costa 已提交
3287 3288 3289 3290 3291 3292 3293 3294
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3315 3316 3317 3318 3319 3320 3321
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3322
int __kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3323 3324
{
	struct kmem_cache *c;
3325
	int i, failed = 0;
3326 3327 3328 3329 3330 3331 3332 3333

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
3334 3335
	 * we'll take the activate_kmem_mutex to protect ourselves against
	 * this.
3336
	 */
3337
	mutex_lock(&activate_kmem_mutex);
3338 3339
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3357
		cancel_work_sync(&c->memcg_params->destroy);
3358
		kmem_cache_destroy(c);
3359 3360 3361

		if (cache_from_memcg_idx(s, i))
			failed++;
3362
	}
3363
	mutex_unlock(&activate_kmem_mutex);
3364
	return failed;
3365 3366
}

G
Glauber Costa 已提交
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3384 3385 3386 3387 3388 3389
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

3390 3391
static void memcg_create_cache_work_func(struct work_struct *w)
{
3392 3393 3394
	struct create_work *cw = container_of(w, struct create_work, work);
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
3395

3396
	kmem_cache_create_memcg(memcg, cachep);
3397
	css_put(&memcg->css);
3398 3399 3400 3401 3402 3403
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3404 3405
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3406 3407 3408 3409
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3410 3411
	if (cw == NULL) {
		css_put(&memcg->css);
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
3457
	struct kmem_cache *memcg_cachep;
3458 3459 3460 3461

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3462 3463 3464
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3465 3466 3467 3468
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3469
		goto out;
3470

3471 3472 3473
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
	if (likely(memcg_cachep)) {
		cachep = memcg_cachep;
3474
		goto out;
3475 3476
	}

3477
	/* The corresponding put will be done in the workqueue. */
3478
	if (!css_tryget_online(&memcg->css))
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3504 3505 3506
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3543 3544 3545
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3556
	memcg = get_mem_cgroup_from_mm(current->mm);
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

3619
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3620 3621
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3622 3623 3624 3625
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3626 3627
#endif /* CONFIG_MEMCG_KMEM */

3628 3629
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3630
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3631 3632
/*
 * Because tail pages are not marked as "used", set it. We're under
3633 3634 3635
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3636
 */
3637
void mem_cgroup_split_huge_fixup(struct page *head)
3638 3639
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3640
	struct page_cgroup *pc;
3641
	struct mem_cgroup *memcg;
3642
	int i;
3643

3644 3645
	if (mem_cgroup_disabled())
		return;
3646 3647

	memcg = head_pc->mem_cgroup;
3648 3649
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3650
		pc->mem_cgroup = memcg;
3651 3652 3653
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3654 3655
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3656
}
3657
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3658

3659
/**
3660
 * mem_cgroup_move_account - move account of the page
3661
 * @page: the page
3662
 * @nr_pages: number of regular pages (>1 for huge pages)
3663 3664 3665 3666 3667
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3668
 * - page is not on LRU (isolate_page() is useful.)
3669
 * - compound_lock is held when nr_pages > 1
3670
 *
3671 3672
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3673
 */
3674 3675 3676 3677
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3678
				   struct mem_cgroup *to)
3679
{
3680 3681
	unsigned long flags;
	int ret;
3682
	bool anon = PageAnon(page);
3683

3684
	VM_BUG_ON(from == to);
3685
	VM_BUG_ON_PAGE(PageLRU(page), page);
3686 3687 3688 3689 3690 3691 3692
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3693
	if (nr_pages > 1 && !PageTransHuge(page))
3694 3695 3696 3697 3698 3699 3700 3701
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3702
	move_lock_mem_cgroup(from, &flags);
3703

3704 3705 3706 3707 3708 3709
	if (!anon && page_mapped(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
3710

3711 3712 3713 3714 3715 3716
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
3717

3718
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3719

3720
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3721
	pc->mem_cgroup = to;
3722
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3723
	move_unlock_mem_cgroup(from, &flags);
3724 3725
	ret = 0;
unlock:
3726
	unlock_page_cgroup(pc);
3727 3728 3729
	/*
	 * check events
	 */
3730 3731
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3732
out:
3733 3734 3735
	return ret;
}

3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3756
 */
3757 3758
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3759
				  struct mem_cgroup *child)
3760 3761
{
	struct mem_cgroup *parent;
3762
	unsigned int nr_pages;
3763
	unsigned long uninitialized_var(flags);
3764 3765
	int ret;

3766
	VM_BUG_ON(mem_cgroup_is_root(child));
3767

3768 3769 3770 3771 3772
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3773

3774
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3775

3776 3777 3778 3779 3780 3781
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3782

3783
	if (nr_pages > 1) {
3784
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3785
		flags = compound_lock_irqsave(page);
3786
	}
3787

3788
	ret = mem_cgroup_move_account(page, nr_pages,
3789
				pc, child, parent);
3790 3791
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3792

3793
	if (nr_pages > 1)
3794
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3795
	putback_lru_page(page);
3796
put:
3797
	put_page(page);
3798
out:
3799 3800 3801
	return ret;
}

3802
int mem_cgroup_charge_anon(struct page *page,
3803
			      struct mm_struct *mm, gfp_t gfp_mask)
3804
{
3805
	unsigned int nr_pages = 1;
3806
	struct mem_cgroup *memcg;
3807
	bool oom = true;
A
Andrea Arcangeli 已提交
3808

3809 3810 3811 3812 3813 3814 3815
	if (mem_cgroup_disabled())
		return 0;

	VM_BUG_ON_PAGE(page_mapped(page), page);
	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
	VM_BUG_ON(!mm);

A
Andrea Arcangeli 已提交
3816
	if (PageTransHuge(page)) {
3817
		nr_pages <<= compound_order(page);
3818
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3819 3820 3821 3822 3823
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3824
	}
3825

3826 3827 3828
	memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom);
	if (!memcg)
		return -ENOMEM;
3829 3830
	__mem_cgroup_commit_charge(memcg, page, nr_pages,
				   MEM_CGROUP_CHARGE_TYPE_ANON, false);
3831 3832 3833
	return 0;
}

3834 3835 3836
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3837
 * struct page_cgroup is acquired. This refcnt will be consumed by
3838 3839
 * "commit()" or removed by "cancel()"
 */
3840 3841 3842 3843
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3844
{
3845
	struct mem_cgroup *memcg = NULL;
3846
	struct page_cgroup *pc;
3847
	int ret;
3848

3849 3850 3851 3852 3853 3854 3855 3856 3857
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
3858 3859 3860
		goto out;
	if (do_swap_account)
		memcg = try_get_mem_cgroup_from_page(page);
3861
	if (!memcg)
3862 3863
		memcg = get_mem_cgroup_from_mm(mm);
	ret = mem_cgroup_try_charge(memcg, mask, 1, true);
3864
	css_put(&memcg->css);
3865
	if (ret == -EINTR)
3866 3867 3868 3869 3870 3871
		memcg = root_mem_cgroup;
	else if (ret)
		return ret;
out:
	*memcgp = memcg;
	return 0;
3872 3873
}

3874 3875 3876
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
3877 3878
	if (mem_cgroup_disabled()) {
		*memcgp = NULL;
3879
		return 0;
3880
	}
3881 3882 3883 3884 3885 3886 3887
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
3888
		struct mem_cgroup *memcg;
3889

3890 3891 3892 3893 3894
		memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
		if (!memcg)
			return -ENOMEM;
		*memcgp = memcg;
		return 0;
3895
	}
3896 3897 3898
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3899 3900 3901 3902 3903 3904 3905 3906 3907
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3908
static void
3909
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3910
					enum charge_type ctype)
3911
{
3912
	if (mem_cgroup_disabled())
3913
		return;
3914
	if (!memcg)
3915
		return;
3916

3917
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3918 3919 3920
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3921 3922 3923
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3924
	 */
3925
	if (do_swap_account && PageSwapCache(page)) {
3926
		swp_entry_t ent = {.val = page_private(page)};
3927
		mem_cgroup_uncharge_swap(ent);
3928
	}
3929 3930
}

3931 3932
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3933
{
3934
	__mem_cgroup_commit_charge_swapin(page, memcg,
3935
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3936 3937
}

3938
int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
3939
				gfp_t gfp_mask)
3940
{
3941
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3942
	struct mem_cgroup *memcg;
3943 3944
	int ret;

3945
	if (mem_cgroup_disabled())
3946 3947 3948 3949
		return 0;
	if (PageCompound(page))
		return 0;

3950
	if (PageSwapCache(page)) { /* shmem */
3951 3952
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3953 3954 3955 3956
		if (ret)
			return ret;
		__mem_cgroup_commit_charge_swapin(page, memcg, type);
		return 0;
3957
	}
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971

	/*
	 * Page cache insertions can happen without an actual mm
	 * context, e.g. during disk probing on boot.
	 */
	if (unlikely(!mm))
		memcg = root_mem_cgroup;
	else {
		memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
		if (!memcg)
			return -ENOMEM;
	}
	__mem_cgroup_commit_charge(memcg, page, 1, type, false);
	return 0;
3972 3973
}

3974
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3975 3976
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3977 3978 3979
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3980

3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3992
		batch->memcg = memcg;
3993 3994
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3995
	 * In those cases, all pages freed continuously can be expected to be in
3996 3997 3998 3999 4000 4001 4002 4003
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4004
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4005 4006
		goto direct_uncharge;

4007 4008 4009 4010 4011
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4012
	if (batch->memcg != memcg)
4013 4014
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4015
	batch->nr_pages++;
4016
	if (uncharge_memsw)
4017
		batch->memsw_nr_pages++;
4018 4019
	return;
direct_uncharge:
4020
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4021
	if (uncharge_memsw)
4022 4023 4024
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4025
}
4026

4027
/*
4028
 * uncharge if !page_mapped(page)
4029
 */
4030
static struct mem_cgroup *
4031 4032
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4033
{
4034
	struct mem_cgroup *memcg = NULL;
4035 4036
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4037
	bool anon;
4038

4039
	if (mem_cgroup_disabled())
4040
		return NULL;
4041

A
Andrea Arcangeli 已提交
4042
	if (PageTransHuge(page)) {
4043
		nr_pages <<= compound_order(page);
4044
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
A
Andrea Arcangeli 已提交
4045
	}
4046
	/*
4047
	 * Check if our page_cgroup is valid
4048
	 */
4049
	pc = lookup_page_cgroup(page);
4050
	if (unlikely(!PageCgroupUsed(pc)))
4051
		return NULL;
4052

4053
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4054

4055
	memcg = pc->mem_cgroup;
4056

K
KAMEZAWA Hiroyuki 已提交
4057 4058 4059
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4060 4061
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4062
	switch (ctype) {
4063
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4064 4065 4066 4067 4068
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4069 4070
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4071
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4072
		/* See mem_cgroup_prepare_migration() */
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4094
	}
K
KAMEZAWA Hiroyuki 已提交
4095

4096
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4097

4098
	ClearPageCgroupUsed(pc);
4099 4100 4101 4102 4103 4104
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4105

4106
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4107
	/*
4108
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4109
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4110
	 */
4111
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4112
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4113
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4114
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4115
	}
4116 4117 4118 4119 4120 4121
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4122
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4123

4124
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4125 4126 4127

unlock_out:
	unlock_page_cgroup(pc);
4128
	return NULL;
4129 4130
}

4131 4132
void mem_cgroup_uncharge_page(struct page *page)
{
4133 4134 4135
	/* early check. */
	if (page_mapped(page))
		return;
4136
	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4149 4150
	if (PageSwapCache(page))
		return;
4151
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4152 4153 4154 4155
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
4156 4157
	VM_BUG_ON_PAGE(page_mapped(page), page);
	VM_BUG_ON_PAGE(page->mapping, page);
4158
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4159 4160
}

4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4175 4176
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4197 4198 4199 4200 4201 4202
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4203
	memcg_oom_recover(batch->memcg);
4204 4205 4206 4207
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4208
#ifdef CONFIG_SWAP
4209
/*
4210
 * called after __delete_from_swap_cache() and drop "page" account.
4211 4212
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4213 4214
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4215 4216
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4217 4218 4219 4220 4221
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4222
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4223

K
KAMEZAWA Hiroyuki 已提交
4224 4225
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4226
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4227 4228
	 */
	if (do_swap_account && swapout && memcg)
L
Li Zefan 已提交
4229
		swap_cgroup_record(ent, mem_cgroup_id(memcg));
4230
}
4231
#endif
4232

A
Andrew Morton 已提交
4233
#ifdef CONFIG_MEMCG_SWAP
4234 4235 4236 4237 4238
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4239
{
4240
	struct mem_cgroup *memcg;
4241
	unsigned short id;
4242 4243 4244 4245

	if (!do_swap_account)
		return;

4246 4247 4248
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4249
	if (memcg) {
4250
		/*
4251 4252
		 * We uncharge this because swap is freed.  This memcg can
		 * be obsolete one. We avoid calling css_tryget_online().
4253
		 */
4254
		if (!mem_cgroup_is_root(memcg))
4255
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4256
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4257
		css_put(&memcg->css);
4258
	}
4259
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4260
}
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4277
				struct mem_cgroup *from, struct mem_cgroup *to)
4278 4279 4280
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
4281 4282
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
4283 4284 4285

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4286
		mem_cgroup_swap_statistics(to, true);
4287
		/*
4288 4289 4290
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4291 4292 4293 4294 4295 4296
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4297
		 */
L
Li Zefan 已提交
4298
		css_get(&to->css);
4299 4300 4301 4302 4303 4304
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4305
				struct mem_cgroup *from, struct mem_cgroup *to)
4306 4307 4308
{
	return -EINVAL;
}
4309
#endif
K
KAMEZAWA Hiroyuki 已提交
4310

4311
/*
4312 4313
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4314
 */
4315 4316
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4317
{
4318
	struct mem_cgroup *memcg = NULL;
4319
	unsigned int nr_pages = 1;
4320
	struct page_cgroup *pc;
4321
	enum charge_type ctype;
4322

4323
	*memcgp = NULL;
4324

4325
	if (mem_cgroup_disabled())
4326
		return;
4327

4328 4329 4330
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4331 4332 4333
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4334 4335
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4367
	}
4368
	unlock_page_cgroup(pc);
4369 4370 4371 4372
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4373
	if (!memcg)
4374
		return;
4375

4376
	*memcgp = memcg;
4377 4378 4379 4380 4381 4382 4383
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4384
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4385
	else
4386
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4387 4388 4389 4390 4391
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4392
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4393
}
4394

4395
/* remove redundant charge if migration failed*/
4396
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4397
	struct page *oldpage, struct page *newpage, bool migration_ok)
4398
{
4399
	struct page *used, *unused;
4400
	struct page_cgroup *pc;
4401
	bool anon;
4402

4403
	if (!memcg)
4404
		return;
4405

4406
	if (!migration_ok) {
4407 4408
		used = oldpage;
		unused = newpage;
4409
	} else {
4410
		used = newpage;
4411 4412
		unused = oldpage;
	}
4413
	anon = PageAnon(used);
4414 4415 4416 4417
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4418
	css_put(&memcg->css);
4419
	/*
4420 4421 4422
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4423
	 */
4424 4425 4426 4427 4428
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4429
	/*
4430 4431 4432 4433 4434 4435
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4436
	 */
4437
	if (anon)
4438
		mem_cgroup_uncharge_page(used);
4439
}
4440

4441 4442 4443 4444 4445 4446 4447 4448
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4449
	struct mem_cgroup *memcg = NULL;
4450 4451 4452 4453 4454 4455 4456 4457 4458
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4459 4460
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4461
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4462 4463
		ClearPageCgroupUsed(pc);
	}
4464 4465
	unlock_page_cgroup(pc);

4466 4467 4468 4469 4470 4471
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4472 4473 4474 4475 4476
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4477
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4478 4479
}

4480 4481 4482 4483 4484 4485
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4486 4487 4488 4489 4490
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4510 4511
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4512 4513 4514 4515
	}
}
#endif

4516
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4517
				unsigned long long val)
4518
{
4519
	int retry_count;
4520
	u64 memswlimit, memlimit;
4521
	int ret = 0;
4522 4523
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4524
	int enlarge;
4525 4526 4527 4528 4529 4530 4531 4532 4533

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4534

4535
	enlarge = 0;
4536
	while (retry_count) {
4537 4538 4539 4540
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4541 4542 4543
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4544
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4545 4546 4547 4548 4549 4550
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4551 4552
			break;
		}
4553 4554 4555 4556 4557

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4558
		ret = res_counter_set_limit(&memcg->res, val);
4559 4560 4561 4562 4563 4564
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4565 4566 4567 4568 4569
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4570 4571
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4572 4573
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4574
		if (curusage >= oldusage)
4575 4576 4577
			retry_count--;
		else
			oldusage = curusage;
4578
	}
4579 4580
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4581

4582 4583 4584
	return ret;
}

L
Li Zefan 已提交
4585 4586
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4587
{
4588
	int retry_count;
4589
	u64 memlimit, memswlimit, oldusage, curusage;
4590 4591
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4592
	int enlarge = 0;
4593

4594
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4595
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4596
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4597 4598 4599 4600 4601 4602 4603 4604
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4605
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4606 4607 4608 4609 4610 4611 4612 4613
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4614 4615 4616
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4617
		ret = res_counter_set_limit(&memcg->memsw, val);
4618 4619 4620 4621 4622 4623
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4624 4625 4626 4627 4628
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4629 4630 4631
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4632
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4633
		/* Usage is reduced ? */
4634
		if (curusage >= oldusage)
4635
			retry_count--;
4636 4637
		else
			oldusage = curusage;
4638
	}
4639 4640
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4641 4642 4643
	return ret;
}

4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
	unsigned long long excess;
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
		spin_unlock(&mctz->lock);
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

4736 4737 4738 4739 4740 4741 4742
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4743
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4744 4745
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4746
 */
4747
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4748
				int node, int zid, enum lru_list lru)
4749
{
4750
	struct lruvec *lruvec;
4751
	unsigned long flags;
4752
	struct list_head *list;
4753 4754
	struct page *busy;
	struct zone *zone;
4755

K
KAMEZAWA Hiroyuki 已提交
4756
	zone = &NODE_DATA(node)->node_zones[zid];
4757 4758
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4759

4760
	busy = NULL;
4761
	do {
4762
		struct page_cgroup *pc;
4763 4764
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4765
		spin_lock_irqsave(&zone->lru_lock, flags);
4766
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4767
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4768
			break;
4769
		}
4770 4771 4772
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4773
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4774
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4775 4776
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4777
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4778

4779
		pc = lookup_page_cgroup(page);
4780

4781
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4782
			/* found lock contention or "pc" is obsolete. */
4783
			busy = page;
4784 4785 4786
			cond_resched();
		} else
			busy = NULL;
4787
	} while (!list_empty(list));
4788 4789 4790
}

/*
4791 4792
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4793
 * This enables deleting this mem_cgroup.
4794 4795
 *
 * Caller is responsible for holding css reference on the memcg.
4796
 */
4797
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4798
{
4799
	int node, zid;
4800
	u64 usage;
4801

4802
	do {
4803 4804
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4805 4806
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4807
		for_each_node_state(node, N_MEMORY) {
4808
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4809 4810
				enum lru_list lru;
				for_each_lru(lru) {
4811
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4812
							node, zid, lru);
4813
				}
4814
			}
4815
		}
4816 4817
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4818
		cond_resched();
4819

4820
		/*
4821 4822 4823 4824 4825
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4826 4827 4828 4829 4830 4831
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4832 4833 4834
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4835 4836
}

4837 4838
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
	lockdep_assert_held(&memcg_create_mutex);
	/*
	 * The lock does not prevent addition or deletion to the list
	 * of children, but it prevents a new child from being
	 * initialized based on this parent in css_online(), so it's
	 * enough to decide whether hierarchically inherited
	 * attributes can still be changed or not.
	 */
	return memcg->use_hierarchy &&
		!list_empty(&memcg->css.cgroup->children);
4849 4850
}

4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4861

4862
	/* returns EBUSY if there is a task or if we come here twice. */
4863
	if (cgroup_has_tasks(cgrp) || !list_empty(&cgrp->children))
4864 4865
		return -EBUSY;

4866 4867
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4868
	/* try to free all pages in this cgroup */
4869
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4870
		int progress;
4871

4872 4873 4874
		if (signal_pending(current))
			return -EINTR;

4875
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4876
						false);
4877
		if (!progress) {
4878
			nr_retries--;
4879
			/* maybe some writeback is necessary */
4880
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4881
		}
4882 4883

	}
K
KAMEZAWA Hiroyuki 已提交
4884
	lru_add_drain();
4885 4886 4887
	mem_cgroup_reparent_charges(memcg);

	return 0;
4888 4889
}

4890 4891
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
4892
{
4893
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4894

4895 4896
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4897
	return mem_cgroup_force_empty(memcg);
4898 4899
}

4900 4901
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
4902
{
4903
	return mem_cgroup_from_css(css)->use_hierarchy;
4904 4905
}

4906 4907
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
4908 4909
{
	int retval = 0;
4910
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4911
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4912

4913
	mutex_lock(&memcg_create_mutex);
4914 4915 4916 4917

	if (memcg->use_hierarchy == val)
		goto out;

4918
	/*
4919
	 * If parent's use_hierarchy is set, we can't make any modifications
4920 4921 4922 4923 4924 4925
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4926
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4927
				(val == 1 || val == 0)) {
4928
		if (list_empty(&memcg->css.cgroup->children))
4929
			memcg->use_hierarchy = val;
4930 4931 4932 4933
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4934 4935

out:
4936
	mutex_unlock(&memcg_create_mutex);
4937 4938 4939 4940

	return retval;
}

4941

4942
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4943
					       enum mem_cgroup_stat_index idx)
4944
{
K
KAMEZAWA Hiroyuki 已提交
4945
	struct mem_cgroup *iter;
4946
	long val = 0;
4947

4948
	/* Per-cpu values can be negative, use a signed accumulator */
4949
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4950 4951 4952 4953 4954
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4955 4956
}

4957
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4958
{
K
KAMEZAWA Hiroyuki 已提交
4959
	u64 val;
4960

4961
	if (!mem_cgroup_is_root(memcg)) {
4962
		if (!swap)
4963
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4964
		else
4965
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4966 4967
	}

4968 4969 4970 4971
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
4972 4973
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4974

K
KAMEZAWA Hiroyuki 已提交
4975
	if (swap)
4976
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4977 4978 4979 4980

	return val << PAGE_SHIFT;
}

4981 4982
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
B
Balbir Singh 已提交
4983
{
4984
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4985
	u64 val;
4986
	int name;
G
Glauber Costa 已提交
4987
	enum res_type type;
4988 4989 4990

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4991

4992 4993
	switch (type) {
	case _MEM:
4994
		if (name == RES_USAGE)
4995
			val = mem_cgroup_usage(memcg, false);
4996
		else
4997
			val = res_counter_read_u64(&memcg->res, name);
4998 4999
		break;
	case _MEMSWAP:
5000
		if (name == RES_USAGE)
5001
			val = mem_cgroup_usage(memcg, true);
5002
		else
5003
			val = res_counter_read_u64(&memcg->memsw, name);
5004
		break;
5005 5006 5007
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5008 5009 5010
	default:
		BUG();
	}
5011

5012
	return val;
B
Balbir Singh 已提交
5013
}
5014 5015

#ifdef CONFIG_MEMCG_KMEM
5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
/* should be called with activate_kmem_mutex held */
static int __memcg_activate_kmem(struct mem_cgroup *memcg,
				 unsigned long long limit)
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

	/*
	 * We are going to allocate memory for data shared by all memory
	 * cgroups so let's stop accounting here.
	 */
	memcg_stop_kmem_account();

5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5044
	mutex_lock(&memcg_create_mutex);
5045
	if (cgroup_has_tasks(memcg->css.cgroup) || memcg_has_children(memcg))
5046 5047 5048 5049
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
5050

5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083
	memcg_id = ida_simple_get(&kmem_limited_groups,
				  0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
	 * Make sure we have enough space for this cgroup in each root cache's
	 * memcg_params.
	 */
	err = memcg_update_all_caches(memcg_id + 1);
	if (err)
		goto out_rmid;

	memcg->kmemcg_id = memcg_id;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);

	/*
	 * We couldn't have accounted to this cgroup, because it hasn't got the
	 * active bit set yet, so this should succeed.
	 */
	err = res_counter_set_limit(&memcg->kmem, limit);
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
	 * Setting the active bit after enabling static branching will
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
	memcg_kmem_set_active(memcg);
5084
out:
5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112
	memcg_resume_kmem_account();
	return err;

out_rmid:
	ida_simple_remove(&kmem_limited_groups, memcg_id);
	goto out;
}

static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long long limit)
{
	int ret;

	mutex_lock(&activate_kmem_mutex);
	ret = __memcg_activate_kmem(memcg, limit);
	mutex_unlock(&activate_kmem_mutex);
	return ret;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	int ret;

	if (!memcg_kmem_is_active(memcg))
		ret = memcg_activate_kmem(memcg, val);
	else
		ret = res_counter_set_limit(&memcg->kmem, val);
5113 5114 5115
	return ret;
}

5116
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5117
{
5118
	int ret = 0;
5119
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5120

5121 5122
	if (!parent)
		return 0;
5123

5124
	mutex_lock(&activate_kmem_mutex);
5125
	/*
5126 5127
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
5128
	 */
5129 5130 5131
	if (memcg_kmem_is_active(parent))
		ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
	mutex_unlock(&activate_kmem_mutex);
5132
	return ret;
5133
}
5134 5135 5136 5137 5138 5139
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	return -EINVAL;
}
5140
#endif /* CONFIG_MEMCG_KMEM */
5141

5142 5143 5144 5145
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5146 5147
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
5148
{
5149
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
G
Glauber Costa 已提交
5150 5151
	enum res_type type;
	int name;
5152 5153 5154
	unsigned long long val;
	int ret;

5155 5156 5157
	buf = strstrip(buf);
	type = MEMFILE_TYPE(of_cft(of)->private);
	name = MEMFILE_ATTR(of_cft(of)->private);
5158

5159
	switch (name) {
5160
	case RES_LIMIT:
5161 5162 5163 5164
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5165
		/* This function does all necessary parse...reuse it */
5166
		ret = res_counter_memparse_write_strategy(buf, &val);
5167 5168 5169
		if (ret)
			break;
		if (type == _MEM)
5170
			ret = mem_cgroup_resize_limit(memcg, val);
5171
		else if (type == _MEMSWAP)
5172
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5173
		else if (type == _KMEM)
5174
			ret = memcg_update_kmem_limit(memcg, val);
5175 5176
		else
			return -EINVAL;
5177
		break;
5178
	case RES_SOFT_LIMIT:
5179
		ret = res_counter_memparse_write_strategy(buf, &val);
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5192 5193 5194 5195
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
5196
	return ret ?: nbytes;
B
Balbir Singh 已提交
5197 5198
}

5199 5200 5201 5202 5203 5204 5205 5206 5207 5208
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5209 5210
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5223
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5224
{
5225
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5226 5227
	int name;
	enum res_type type;
5228

5229 5230
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5231

5232
	switch (name) {
5233
	case RES_MAX_USAGE:
5234
		if (type == _MEM)
5235
			res_counter_reset_max(&memcg->res);
5236
		else if (type == _MEMSWAP)
5237
			res_counter_reset_max(&memcg->memsw);
5238 5239 5240 5241
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5242 5243
		break;
	case RES_FAILCNT:
5244
		if (type == _MEM)
5245
			res_counter_reset_failcnt(&memcg->res);
5246
		else if (type == _MEMSWAP)
5247
			res_counter_reset_failcnt(&memcg->memsw);
5248 5249 5250 5251
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5252 5253
		break;
	}
5254

5255
	return 0;
5256 5257
}

5258
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5259 5260
					struct cftype *cft)
{
5261
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5262 5263
}

5264
#ifdef CONFIG_MMU
5265
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5266 5267
					struct cftype *cft, u64 val)
{
5268
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5269 5270 5271

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5272

5273
	/*
5274 5275 5276 5277
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5278
	 */
5279
	memcg->move_charge_at_immigrate = val;
5280 5281
	return 0;
}
5282
#else
5283
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5284 5285 5286 5287 5288
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5289

5290
#ifdef CONFIG_NUMA
5291
static int memcg_numa_stat_show(struct seq_file *m, void *v)
5292
{
5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
5305
	int nid;
5306
	unsigned long nr;
5307
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5308

5309 5310 5311 5312 5313 5314 5315 5316 5317
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5318 5319
	}

5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5335 5336 5337 5338 5339 5340
	}

	return 0;
}
#endif /* CONFIG_NUMA */

5341 5342 5343 5344 5345
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5346
static int memcg_stat_show(struct seq_file *m, void *v)
5347
{
5348
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5349 5350
	struct mem_cgroup *mi;
	unsigned int i;
5351

5352
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5353
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5354
			continue;
5355 5356
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5357
	}
L
Lee Schermerhorn 已提交
5358

5359 5360 5361 5362 5363 5364 5365 5366
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5367
	/* Hierarchical information */
5368 5369
	{
		unsigned long long limit, memsw_limit;
5370
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5371
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5372
		if (do_swap_account)
5373 5374
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5375
	}
K
KOSAKI Motohiro 已提交
5376

5377 5378 5379
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5380
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5381
			continue;
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5402
	}
K
KAMEZAWA Hiroyuki 已提交
5403

K
KOSAKI Motohiro 已提交
5404 5405 5406 5407
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5408
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5409 5410 5411 5412 5413
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5414
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5415
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5416

5417 5418 5419 5420
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5421
			}
5422 5423 5424 5425
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5426 5427 5428
	}
#endif

5429 5430 5431
	return 0;
}

5432 5433
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5434
{
5435
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5436

5437
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5438 5439
}

5440 5441
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5442
{
5443
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5444
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5445

T
Tejun Heo 已提交
5446
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5447 5448
		return -EINVAL;

5449
	mutex_lock(&memcg_create_mutex);
5450

K
KOSAKI Motohiro 已提交
5451
	/* If under hierarchy, only empty-root can set this value */
5452
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5453
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5454
		return -EINVAL;
5455
	}
K
KOSAKI Motohiro 已提交
5456 5457 5458

	memcg->swappiness = val;

5459
	mutex_unlock(&memcg_create_mutex);
5460

K
KOSAKI Motohiro 已提交
5461 5462 5463
	return 0;
}

5464 5465 5466 5467 5468 5469 5470 5471
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5472
		t = rcu_dereference(memcg->thresholds.primary);
5473
	else
5474
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5475 5476 5477 5478 5479 5480 5481

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5482
	 * current_threshold points to threshold just below or equal to usage.
5483 5484 5485
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5486
	i = t->current_threshold;
5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5510
	t->current_threshold = i - 1;
5511 5512 5513 5514 5515 5516
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5517 5518 5519 5520 5521 5522 5523
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5524 5525 5526 5527 5528 5529 5530
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5531 5532 5533 5534 5535 5536 5537
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5538 5539
}

5540
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5541 5542 5543
{
	struct mem_cgroup_eventfd_list *ev;

5544
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5545 5546 5547 5548
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5549
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5550
{
K
KAMEZAWA Hiroyuki 已提交
5551 5552
	struct mem_cgroup *iter;

5553
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5554
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5555 5556
}

5557
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5558
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5559
{
5560 5561
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5562
	u64 threshold, usage;
5563
	int i, size, ret;
5564 5565 5566 5567 5568 5569

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5570

5571
	if (type == _MEM)
5572
		thresholds = &memcg->thresholds;
5573
	else if (type == _MEMSWAP)
5574
		thresholds = &memcg->memsw_thresholds;
5575 5576 5577 5578 5579 5580
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5581
	if (thresholds->primary)
5582 5583
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5584
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5585 5586

	/* Allocate memory for new array of thresholds */
5587
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5588
			GFP_KERNEL);
5589
	if (!new) {
5590 5591 5592
		ret = -ENOMEM;
		goto unlock;
	}
5593
	new->size = size;
5594 5595

	/* Copy thresholds (if any) to new array */
5596 5597
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5598
				sizeof(struct mem_cgroup_threshold));
5599 5600
	}

5601
	/* Add new threshold */
5602 5603
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5604 5605

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5606
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5607 5608 5609
			compare_thresholds, NULL);

	/* Find current threshold */
5610
	new->current_threshold = -1;
5611
	for (i = 0; i < size; i++) {
5612
		if (new->entries[i].threshold <= usage) {
5613
			/*
5614 5615
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5616 5617
			 * it here.
			 */
5618
			++new->current_threshold;
5619 5620
		} else
			break;
5621 5622
	}

5623 5624 5625 5626 5627
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5628

5629
	/* To be sure that nobody uses thresholds */
5630 5631 5632 5633 5634 5635 5636 5637
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5638
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5639 5640
	struct eventfd_ctx *eventfd, const char *args)
{
5641
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
5642 5643
}

5644
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5645 5646
	struct eventfd_ctx *eventfd, const char *args)
{
5647
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
5648 5649
}

5650
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5651
	struct eventfd_ctx *eventfd, enum res_type type)
5652
{
5653 5654
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5655
	u64 usage;
5656
	int i, j, size;
5657 5658 5659

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5660
		thresholds = &memcg->thresholds;
5661
	else if (type == _MEMSWAP)
5662
		thresholds = &memcg->memsw_thresholds;
5663 5664 5665
	else
		BUG();

5666 5667 5668
	if (!thresholds->primary)
		goto unlock;

5669 5670 5671 5672 5673 5674
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5675 5676 5677
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5678 5679 5680
			size++;
	}

5681
	new = thresholds->spare;
5682

5683 5684
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5685 5686
		kfree(new);
		new = NULL;
5687
		goto swap_buffers;
5688 5689
	}

5690
	new->size = size;
5691 5692

	/* Copy thresholds and find current threshold */
5693 5694 5695
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5696 5697
			continue;

5698
		new->entries[j] = thresholds->primary->entries[i];
5699
		if (new->entries[j].threshold <= usage) {
5700
			/*
5701
			 * new->current_threshold will not be used
5702 5703 5704
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5705
			++new->current_threshold;
5706 5707 5708 5709
		}
		j++;
	}

5710
swap_buffers:
5711 5712
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5713 5714 5715 5716 5717 5718
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5719
	rcu_assign_pointer(thresholds->primary, new);
5720

5721
	/* To be sure that nobody uses thresholds */
5722
	synchronize_rcu();
5723
unlock:
5724 5725
	mutex_unlock(&memcg->thresholds_lock);
}
5726

5727
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5728 5729
	struct eventfd_ctx *eventfd)
{
5730
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
5731 5732
}

5733
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5734 5735
	struct eventfd_ctx *eventfd)
{
5736
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
5737 5738
}

5739
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5740
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
5741 5742 5743 5744 5745 5746 5747
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5748
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5749 5750 5751 5752 5753

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5754
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5755
		eventfd_signal(eventfd, 1);
5756
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5757 5758 5759 5760

	return 0;
}

5761
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5762
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
5763 5764 5765
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

5766
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5767

5768
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5769 5770 5771 5772 5773 5774
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5775
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5776 5777
}

5778
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5779
{
5780
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5781

5782 5783
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5784 5785 5786
	return 0;
}

5787
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5788 5789
	struct cftype *cft, u64 val)
{
5790
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5791
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5792 5793

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5794
	if (!parent || !((val == 0) || (val == 1)))
5795 5796
		return -EINVAL;

5797
	mutex_lock(&memcg_create_mutex);
5798
	/* oom-kill-disable is a flag for subhierarchy. */
5799
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5800
		mutex_unlock(&memcg_create_mutex);
5801 5802
		return -EINVAL;
	}
5803
	memcg->oom_kill_disable = val;
5804
	if (!val)
5805
		memcg_oom_recover(memcg);
5806
	mutex_unlock(&memcg_create_mutex);
5807 5808 5809
	return 0;
}

A
Andrew Morton 已提交
5810
#ifdef CONFIG_MEMCG_KMEM
5811
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5812
{
5813 5814
	int ret;

5815
	memcg->kmemcg_id = -1;
5816 5817 5818
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5819

5820
	return mem_cgroup_sockets_init(memcg, ss);
5821
}
5822

5823
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5824
{
5825
	mem_cgroup_sockets_destroy(memcg);
5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
5846 5847 5848 5849
	 * css_offline() when the referencemight have dropped down to 0 and
	 * shouldn't be incremented anymore (css_tryget_online() would
	 * fail) we do not have other options because of the kmem
	 * allocations lifetime.
5850 5851
	 */
	css_get(&memcg->css);
5852 5853 5854 5855 5856 5857 5858

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5859
		css_put(&memcg->css);
G
Glauber Costa 已提交
5860
}
5861
#else
5862
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5863 5864 5865
{
	return 0;
}
G
Glauber Costa 已提交
5866

5867 5868 5869 5870 5871
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5872 5873
{
}
5874 5875
#endif

5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

5889 5890 5891 5892 5893
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
5894
static void memcg_event_remove(struct work_struct *work)
5895
{
5896 5897
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
5898
	struct mem_cgroup *memcg = event->memcg;
5899 5900 5901

	remove_wait_queue(event->wqh, &event->wait);

5902
	event->unregister_event(memcg, event->eventfd);
5903 5904 5905 5906 5907 5908

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
5909
	css_put(&memcg->css);
5910 5911 5912 5913 5914 5915 5916
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
5917 5918
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
5919
{
5920 5921
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
5922
	struct mem_cgroup *memcg = event->memcg;
5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
5935
		spin_lock(&memcg->event_list_lock);
5936 5937 5938 5939 5940 5941 5942 5943
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
5944
		spin_unlock(&memcg->event_list_lock);
5945 5946 5947 5948 5949
	}

	return 0;
}

5950
static void memcg_event_ptable_queue_proc(struct file *file,
5951 5952
		wait_queue_head_t *wqh, poll_table *pt)
{
5953 5954
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
5955 5956 5957 5958 5959 5960

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
5961 5962
 * DO NOT USE IN NEW FILES.
 *
5963 5964 5965 5966 5967
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
5968 5969
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
5970
{
5971
	struct cgroup_subsys_state *css = of_css(of);
5972
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5973
	struct mem_cgroup_event *event;
5974 5975 5976 5977
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
5978
	const char *name;
5979 5980 5981
	char *endp;
	int ret;

5982 5983 5984
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
5985 5986
	if (*endp != ' ')
		return -EINVAL;
5987
	buf = endp + 1;
5988

5989
	cfd = simple_strtoul(buf, &endp, 10);
5990 5991
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
5992
	buf = endp + 1;
5993 5994 5995 5996 5997

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5998
	event->memcg = memcg;
5999
	INIT_LIST_HEAD(&event->list);
6000 6001 6002
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

6028 6029 6030 6031 6032
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
6033 6034
	 *
	 * DO NOT ADD NEW FILES.
6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047
	 */
	name = cfile.file->f_dentry->d_name.name;

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
6048 6049
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
6050 6051 6052 6053 6054
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

6055
	/*
6056 6057 6058
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
6059
	 */
6060 6061
	cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
					       &memory_cgrp_subsys);
6062
	ret = -EINVAL;
6063
	if (IS_ERR(cfile_css))
6064
		goto out_put_cfile;
6065 6066
	if (cfile_css != css) {
		css_put(cfile_css);
6067
		goto out_put_cfile;
6068
	}
6069

6070
	ret = event->register_event(memcg, event->eventfd, buf);
6071 6072 6073 6074 6075
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

6076 6077 6078
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
6079 6080 6081 6082

	fdput(cfile);
	fdput(efile);

6083
	return nbytes;
6084 6085

out_put_css:
6086
	css_put(css);
6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
6099 6100
static struct cftype mem_cgroup_files[] = {
	{
6101
		.name = "usage_in_bytes",
6102
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6103
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
6104
	},
6105 6106
	{
		.name = "max_usage_in_bytes",
6107
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6108
		.trigger = mem_cgroup_reset,
6109
		.read_u64 = mem_cgroup_read_u64,
6110
	},
B
Balbir Singh 已提交
6111
	{
6112
		.name = "limit_in_bytes",
6113
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6114
		.write = mem_cgroup_write,
6115
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
6116
	},
6117 6118 6119
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6120
		.write = mem_cgroup_write,
6121
		.read_u64 = mem_cgroup_read_u64,
6122
	},
B
Balbir Singh 已提交
6123 6124
	{
		.name = "failcnt",
6125
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6126
		.trigger = mem_cgroup_reset,
6127
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
6128
	},
6129 6130
	{
		.name = "stat",
6131
		.seq_show = memcg_stat_show,
6132
	},
6133 6134 6135 6136
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
6137 6138
	{
		.name = "use_hierarchy",
6139
		.flags = CFTYPE_INSANE,
6140 6141 6142
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
6143
	{
6144
		.name = "cgroup.event_control",		/* XXX: for compat */
6145
		.write = memcg_write_event_control,
6146 6147 6148
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
6149 6150 6151 6152 6153
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
6154 6155 6156 6157 6158
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
6159 6160
	{
		.name = "oom_control",
6161
		.seq_show = mem_cgroup_oom_control_read,
6162
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
6163 6164
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
6165 6166 6167
	{
		.name = "pressure_level",
	},
6168 6169 6170
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
6171
		.seq_show = memcg_numa_stat_show,
6172 6173
	},
#endif
6174 6175 6176 6177
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6178
		.write = mem_cgroup_write,
6179
		.read_u64 = mem_cgroup_read_u64,
6180 6181 6182 6183
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6184
		.read_u64 = mem_cgroup_read_u64,
6185 6186 6187 6188 6189
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
6190
		.read_u64 = mem_cgroup_read_u64,
6191 6192 6193 6194 6195
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
6196
		.read_u64 = mem_cgroup_read_u64,
6197
	},
6198 6199 6200
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
6201
		.seq_show = mem_cgroup_slabinfo_read,
6202 6203
	},
#endif
6204
#endif
6205
	{ },	/* terminate */
6206
};
6207

6208 6209 6210 6211 6212
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6213
		.read_u64 = mem_cgroup_read_u64,
6214 6215 6216 6217 6218
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
6219
		.read_u64 = mem_cgroup_read_u64,
6220 6221 6222 6223
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6224
		.write = mem_cgroup_write,
6225
		.read_u64 = mem_cgroup_read_u64,
6226 6227 6228 6229 6230
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
6231
		.read_u64 = mem_cgroup_read_u64,
6232 6233 6234 6235
	},
	{ },	/* terminate */
};
#endif
6236
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6237 6238
{
	struct mem_cgroup_per_node *pn;
6239
	struct mem_cgroup_per_zone *mz;
6240
	int zone, tmp = node;
6241 6242 6243 6244 6245 6246 6247 6248
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6249 6250
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6251
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6252 6253
	if (!pn)
		return 1;
6254 6255 6256

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6257
		lruvec_init(&mz->lruvec);
6258 6259
		mz->usage_in_excess = 0;
		mz->on_tree = false;
6260
		mz->memcg = memcg;
6261
	}
6262
	memcg->nodeinfo[node] = pn;
6263 6264 6265
	return 0;
}

6266
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6267
{
6268
	kfree(memcg->nodeinfo[node]);
6269 6270
}

6271 6272
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6273
	struct mem_cgroup *memcg;
6274
	size_t size;
6275

6276 6277
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6278

6279
	memcg = kzalloc(size, GFP_KERNEL);
6280
	if (!memcg)
6281 6282
		return NULL;

6283 6284
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6285
		goto out_free;
6286 6287
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6288 6289

out_free:
6290
	kfree(memcg);
6291
	return NULL;
6292 6293
}

6294
/*
6295 6296 6297 6298 6299 6300 6301 6302
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6303
 */
6304 6305

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6306
{
6307
	int node;
6308

6309
	mem_cgroup_remove_from_trees(memcg);
6310 6311 6312 6313 6314 6315

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6327
	disarm_static_keys(memcg);
6328
	kfree(memcg);
6329
}
6330

6331 6332 6333
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6334
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6335
{
6336
	if (!memcg->res.parent)
6337
		return NULL;
6338
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6339
}
G
Glauber Costa 已提交
6340
EXPORT_SYMBOL(parent_mem_cgroup);
6341

6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6365
static struct cgroup_subsys_state * __ref
6366
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6367
{
6368
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6369
	long error = -ENOMEM;
6370
	int node;
B
Balbir Singh 已提交
6371

6372 6373
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6374
		return ERR_PTR(error);
6375

B
Bob Liu 已提交
6376
	for_each_node(node)
6377
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6378
			goto free_out;
6379

6380
	/* root ? */
6381
	if (parent_css == NULL) {
6382
		root_mem_cgroup = memcg;
6383 6384 6385
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6386
	}
6387

6388 6389 6390 6391 6392
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6393
	vmpressure_init(&memcg->vmpressure);
6394 6395
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
6396 6397 6398 6399 6400 6401 6402 6403 6404

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6405
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6406
{
6407 6408
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6409

6410
	if (css->id > MEM_CGROUP_ID_MAX)
6411 6412
		return -ENOSPC;

T
Tejun Heo 已提交
6413
	if (!parent)
6414 6415
		return 0;

6416
	mutex_lock(&memcg_create_mutex);
6417 6418 6419 6420 6421 6422

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6423 6424
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6425
		res_counter_init(&memcg->kmem, &parent->kmem);
6426

6427
		/*
6428 6429
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6430
		 */
6431
	} else {
6432 6433
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6434
		res_counter_init(&memcg->kmem, NULL);
6435 6436 6437 6438 6439
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6440
		if (parent != root_mem_cgroup)
6441
			memory_cgrp_subsys.broken_hierarchy = true;
6442
	}
6443
	mutex_unlock(&memcg_create_mutex);
6444

6445
	return memcg_init_kmem(memcg, &memory_cgrp_subsys);
B
Balbir Singh 已提交
6446 6447
}

M
Michal Hocko 已提交
6448 6449 6450 6451 6452 6453 6454 6455
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6456
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6457 6458 6459 6460 6461 6462

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6463
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6464 6465
}

6466
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6467
{
6468
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6469
	struct mem_cgroup_event *event, *tmp;
6470
	struct cgroup_subsys_state *iter;
6471 6472 6473 6474 6475 6476

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
6477 6478
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6479 6480 6481
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
6482
	spin_unlock(&memcg->event_list_lock);
6483

6484 6485
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6486
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6487 6488 6489 6490 6491 6492 6493 6494

	/*
	 * This requires that offlining is serialized.  Right now that is
	 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
	 */
	css_for_each_descendant_post(iter, css)
		mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));

G
Glauber Costa 已提交
6495
	mem_cgroup_destroy_all_caches(memcg);
6496
	vmpressure_cleanup(&memcg->vmpressure);
6497 6498
}

6499
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6500
{
6501
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6502 6503 6504
	/*
	 * XXX: css_offline() would be where we should reparent all
	 * memory to prepare the cgroup for destruction.  However,
6505
	 * memcg does not do css_tryget_online() and res_counter charging
6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518
	 * under the same RCU lock region, which means that charging
	 * could race with offlining.  Offlining only happens to
	 * cgroups with no tasks in them but charges can show up
	 * without any tasks from the swapin path when the target
	 * memcg is looked up from the swapout record and not from the
	 * current task as it usually is.  A race like this can leak
	 * charges and put pages with stale cgroup pointers into
	 * circulation:
	 *
	 * #0                        #1
	 *                           lookup_swap_cgroup_id()
	 *                           rcu_read_lock()
	 *                           mem_cgroup_lookup()
6519
	 *                           css_tryget_online()
6520
	 *                           rcu_read_unlock()
6521
	 * disable css_tryget_online()
6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537
	 * call_rcu()
	 *   offline_css()
	 *     reparent_charges()
	 *                           res_counter_charge()
	 *                           css_put()
	 *                             css_free()
	 *                           pc->mem_cgroup = dead memcg
	 *                           add page to lru
	 *
	 * The bulk of the charges are still moved in offline_css() to
	 * avoid pinning a lot of pages in case a long-term reference
	 * like a swapout record is deferring the css_free() to long
	 * after offlining.  But this makes sure we catch any charges
	 * made after offlining:
	 */
	mem_cgroup_reparent_charges(memcg);
6538

6539
	memcg_destroy_kmem(memcg);
6540
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6541 6542
}

6543
#ifdef CONFIG_MMU
6544
/* Handlers for move charge at task migration. */
6545 6546
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6547
{
6548 6549
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6550
	struct mem_cgroup *memcg = mc.to;
6551

6552
	if (mem_cgroup_is_root(memcg)) {
6553 6554 6555 6556 6557 6558 6559 6560
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6561
		 * "memcg" cannot be under rmdir() because we've already checked
6562 6563 6564 6565
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6566
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6567
			goto one_by_one;
6568
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6569
						PAGE_SIZE * count, &dummy)) {
6570
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6587
		ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false);
6588
		if (ret)
6589
			/* mem_cgroup_clear_mc() will do uncharge later */
6590
			return ret;
6591 6592
		mc.precharge++;
	}
6593 6594 6595 6596
	return ret;
}

/**
6597
 * get_mctgt_type - get target type of moving charge
6598 6599 6600
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6601
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6602 6603 6604 6605 6606 6607
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6608 6609 6610
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6611 6612 6613 6614 6615
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6616
	swp_entry_t	ent;
6617 6618 6619
};

enum mc_target_type {
6620
	MC_TARGET_NONE = 0,
6621
	MC_TARGET_PAGE,
6622
	MC_TARGET_SWAP,
6623 6624
};

D
Daisuke Nishimura 已提交
6625 6626
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6627
{
D
Daisuke Nishimura 已提交
6628
	struct page *page = vm_normal_page(vma, addr, ptent);
6629

D
Daisuke Nishimura 已提交
6630 6631 6632 6633
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6634
		if (!move_anon())
D
Daisuke Nishimura 已提交
6635
			return NULL;
6636 6637
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6638 6639 6640 6641 6642 6643 6644
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6645
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6646 6647 6648 6649 6650 6651 6652 6653
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6654 6655 6656 6657
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6658
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6659 6660 6661 6662 6663
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6664 6665 6666 6667 6668 6669 6670
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6671

6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6691 6692 6693 6694 6695 6696
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6697
		if (do_swap_account)
6698
			*entry = swap;
6699
		page = find_get_page(swap_address_space(swap), swap.val);
6700
	}
6701
#endif
6702 6703 6704
	return page;
}

6705
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6706 6707 6708 6709
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6710
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6711 6712 6713 6714 6715 6716
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6717 6718
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6719 6720

	if (!page && !ent.val)
6721
		return ret;
6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6737 6738
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
6739
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6740 6741 6742
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6743 6744 6745 6746
	}
	return ret;
}

6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
6761
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6782 6783 6784 6785 6786 6787 6788 6789
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6790
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6791 6792
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
6793
		spin_unlock(ptl);
6794
		return 0;
6795
	}
6796

6797 6798
	if (pmd_trans_unstable(pmd))
		return 0;
6799 6800
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6801
		if (get_mctgt_type(vma, addr, *pte, NULL))
6802 6803 6804 6805
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6806 6807 6808
	return 0;
}

6809 6810 6811 6812 6813
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6814
	down_read(&mm->mmap_sem);
6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6826
	up_read(&mm->mmap_sem);
6827 6828 6829 6830 6831 6832 6833 6834 6835

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6836 6837 6838 6839 6840
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6841 6842
}

6843 6844
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6845
{
6846 6847
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6848
	int i;
6849

6850
	/* we must uncharge all the leftover precharges from mc.to */
6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6862
	}
6863 6864 6865 6866 6867 6868
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6869 6870 6871

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6872 6873 6874 6875 6876 6877 6878 6879 6880

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6881
		/* we've already done css_get(mc.to) */
6882 6883
		mc.moved_swap = 0;
	}
6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6899
	spin_lock(&mc.lock);
6900 6901
	mc.from = NULL;
	mc.to = NULL;
6902
	spin_unlock(&mc.lock);
6903
	mem_cgroup_end_move(from);
6904 6905
}

6906
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6907
				 struct cgroup_taskset *tset)
6908
{
6909
	struct task_struct *p = cgroup_taskset_first(tset);
6910
	int ret = 0;
6911
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6912
	unsigned long move_charge_at_immigrate;
6913

6914 6915 6916 6917 6918 6919 6920
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6921 6922 6923
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6924
		VM_BUG_ON(from == memcg);
6925 6926 6927 6928 6929

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6930 6931 6932 6933
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6934
			VM_BUG_ON(mc.moved_charge);
6935
			VM_BUG_ON(mc.moved_swap);
6936
			mem_cgroup_start_move(from);
6937
			spin_lock(&mc.lock);
6938
			mc.from = from;
6939
			mc.to = memcg;
6940
			mc.immigrate_flags = move_charge_at_immigrate;
6941
			spin_unlock(&mc.lock);
6942
			/* We set mc.moving_task later */
6943 6944 6945 6946

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6947 6948
		}
		mmput(mm);
6949 6950 6951 6952
	}
	return ret;
}

6953
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6954
				     struct cgroup_taskset *tset)
6955
{
6956
	mem_cgroup_clear_mc();
6957 6958
}

6959 6960 6961
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6962
{
6963 6964 6965 6966
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6967 6968 6969 6970
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6971

6972 6973 6974 6975 6976 6977 6978 6979 6980 6981
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
6982
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6983
		if (mc.precharge < HPAGE_PMD_NR) {
6984
			spin_unlock(ptl);
6985 6986 6987 6988 6989 6990 6991 6992
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6993
							pc, mc.from, mc.to)) {
6994 6995 6996 6997 6998 6999 7000
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
7001
		spin_unlock(ptl);
7002
		return 0;
7003 7004
	}

7005 7006
	if (pmd_trans_unstable(pmd))
		return 0;
7007 7008 7009 7010
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
7011
		swp_entry_t ent;
7012 7013 7014 7015

		if (!mc.precharge)
			break;

7016
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
7017 7018 7019 7020 7021
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
7022
			if (!mem_cgroup_move_account(page, 1, pc,
7023
						     mc.from, mc.to)) {
7024
				mc.precharge--;
7025 7026
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
7027 7028
			}
			putback_lru_page(page);
7029
put:			/* get_mctgt_type() gets the page */
7030 7031
			put_page(page);
			break;
7032 7033
		case MC_TARGET_SWAP:
			ent = target.ent;
7034
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
7035
				mc.precharge--;
7036 7037 7038
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
7039
			break;
7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
7054
		ret = mem_cgroup_do_precharge(1);
7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
7098
	up_read(&mm->mmap_sem);
7099 7100
}

7101
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7102
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
7103
{
7104
	struct task_struct *p = cgroup_taskset_first(tset);
7105
	struct mm_struct *mm = get_task_mm(p);
7106 7107

	if (mm) {
7108 7109
		if (mc.to)
			mem_cgroup_move_charge(mm);
7110 7111
		mmput(mm);
	}
7112 7113
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
7114
}
7115
#else	/* !CONFIG_MMU */
7116
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7117
				 struct cgroup_taskset *tset)
7118 7119 7120
{
	return 0;
}
7121
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7122
				     struct cgroup_taskset *tset)
7123 7124
{
}
7125
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7126
				 struct cgroup_taskset *tset)
7127 7128 7129
{
}
#endif
B
Balbir Singh 已提交
7130

7131 7132 7133 7134
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
7135
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7136 7137 7138 7139 7140 7141
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
7142 7143
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
7144 7145
}

7146
struct cgroup_subsys memory_cgrp_subsys = {
7147
	.css_alloc = mem_cgroup_css_alloc,
7148
	.css_online = mem_cgroup_css_online,
7149 7150
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
7151 7152
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
7153
	.attach = mem_cgroup_move_task,
7154
	.bind = mem_cgroup_bind,
7155
	.base_cftypes = mem_cgroup_files,
7156
	.early_init = 0,
B
Balbir Singh 已提交
7157
};
7158

A
Andrew Morton 已提交
7159
#ifdef CONFIG_MEMCG_SWAP
7160 7161
static int __init enable_swap_account(char *s)
{
7162
	if (!strcmp(s, "1"))
7163
		really_do_swap_account = 1;
7164
	else if (!strcmp(s, "0"))
7165 7166 7167
		really_do_swap_account = 0;
	return 1;
}
7168
__setup("swapaccount=", enable_swap_account);
7169

7170 7171
static void __init memsw_file_init(void)
{
7172
	WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files));
7173 7174 7175 7176 7177 7178 7179 7180
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
7181
}
7182

7183
#else
7184
static void __init enable_swap_cgroup(void)
7185 7186
{
}
7187
#endif
7188 7189

/*
7190 7191 7192 7193 7194 7195
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
7196 7197 7198 7199
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7200
	enable_swap_cgroup();
7201
	mem_cgroup_soft_limit_tree_init();
7202
	memcg_stock_init();
7203 7204 7205
	return 0;
}
subsys_initcall(mem_cgroup_init);