memcontrol.c 149.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78 79
struct mem_cgroup *root_mem_cgroup __read_mostly;

80
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
81

82 83 84
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

85 86 87
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

88
/* Whether the swap controller is active */
A
Andrew Morton 已提交
89
#ifdef CONFIG_MEMCG_SWAP
90 91
int do_swap_account __read_mostly;
#else
92
#define do_swap_account		0
93 94
#endif

95 96 97 98 99 100
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

101 102 103
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
104
	"rss_huge",
105
	"mapped_file",
106
	"dirty",
107
	"writeback",
108 109 110 111 112 113 114 115 116 117
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

118 119 120 121 122 123 124 125
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

126 127 128
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
150 151 152 153 154
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
155

156 157 158
/*
 * cgroup_event represents events which userspace want to receive.
 */
159
struct mem_cgroup_event {
160
	/*
161
	 * memcg which the event belongs to.
162
	 */
163
	struct mem_cgroup *memcg;
164 165 166 167 168 169 170 171
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
172 173 174 175 176
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
177
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
178
			      struct eventfd_ctx *eventfd, const char *args);
179 180 181 182 183
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
184
	void (*unregister_event)(struct mem_cgroup *memcg,
185
				 struct eventfd_ctx *eventfd);
186 187 188 189 190 191 192 193 194 195
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

196 197
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198

199 200
/* Stuffs for move charges at task migration. */
/*
201
 * Types of charges to be moved.
202
 */
203 204 205
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
206

207 208
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
209
	spinlock_t	  lock; /* for from, to */
210 211
	struct mem_cgroup *from;
	struct mem_cgroup *to;
212
	unsigned long flags;
213
	unsigned long precharge;
214
	unsigned long moved_charge;
215
	unsigned long moved_swap;
216 217 218
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
219
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
220 221
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
222

223 224 225 226
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
227
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
228
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
229

230 231
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
232
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
233
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
234
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
235 236 237
	NR_CHARGE_TYPE,
};

238
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
239 240 241 242
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
243
	_KMEM,
V
Vladimir Davydov 已提交
244
	_TCP,
G
Glauber Costa 已提交
245 246
};

247 248
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
249
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
250 251
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
252

253 254 255 256 257 258 259
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

260 261 262 263 264 265 266 267 268 269 270 271 272
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

273 274 275 276 277
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

278 279 280 281 282 283
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
284 285
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
286
	return memcg->css.id;
L
Li Zefan 已提交
287 288
}

289 290 291 292 293 294
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
 */
L
Li Zefan 已提交
295 296 297 298
static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

299
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
300 301 302
	return mem_cgroup_from_css(css);
}

303
#ifndef CONFIG_SLOB
304
/*
305
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
306 307 308 309 310
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
311
 *
312 313
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
314
 */
315 316
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
317

318 319 320 321 322 323 324 325 326 327 328 329 330
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

331 332 333 334 335 336
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
337
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
338 339
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
340
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
341 342 343
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
344
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
345

346 347 348 349 350 351
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
352
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
353
EXPORT_SYMBOL(memcg_kmem_enabled_key);
354

355
#endif /* !CONFIG_SLOB */
356

357
static struct mem_cgroup_per_zone *
358
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
359
{
360 361 362
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

363
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
364 365
}

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 *
 * XXX: The above description of behavior on the default hierarchy isn't
 * strictly true yet as replace_page_cache_page() can modify the
 * association before @page is released even on the default hierarchy;
 * however, the current and planned usages don't mix the the two functions
 * and replace_page_cache_page() will soon be updated to make the invariant
 * actually true.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

390
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
391 392 393 394 395
		memcg = root_mem_cgroup;

	return &memcg->css;
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

424
static struct mem_cgroup_per_zone *
425
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
426
{
427 428
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
429

430
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
431 432
}

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

448 449
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
450
					 unsigned long new_usage_in_excess)
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

480 481
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
482 483 484 485 486 487 488
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

489 490
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
491
{
492 493 494
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
495
	__mem_cgroup_remove_exceeded(mz, mctz);
496
	spin_unlock_irqrestore(&mctz->lock, flags);
497 498
}

499 500 501
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
502
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
503 504 505 506 507 508 509
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
510 511 512

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
513
	unsigned long excess;
514 515 516
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

517
	mctz = soft_limit_tree_from_page(page);
518 519 520 521 522
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
523
		mz = mem_cgroup_page_zoneinfo(memcg, page);
524
		excess = soft_limit_excess(memcg);
525 526 527 528 529
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
530 531 532
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
533 534
			/* if on-tree, remove it */
			if (mz->on_tree)
535
				__mem_cgroup_remove_exceeded(mz, mctz);
536 537 538 539
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
540
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
541
			spin_unlock_irqrestore(&mctz->lock, flags);
542 543 544 545 546 547 548
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
549 550
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
551

552 553 554 555
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
556
			mem_cgroup_remove_exceeded(mz, mctz);
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
579
	__mem_cgroup_remove_exceeded(mz, mctz);
580
	if (!soft_limit_excess(mz->memcg) ||
581
	    !css_tryget_online(&mz->memcg->css))
582 583 584 585 586 587 588 589 590 591
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

592
	spin_lock_irq(&mctz->lock);
593
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
594
	spin_unlock_irq(&mctz->lock);
595 596 597
	return mz;
}

598
/*
599 600
 * Return page count for single (non recursive) @memcg.
 *
601 602 603 604 605
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
606
 * a periodic synchronization of counter in memcg's counter.
607 608 609 610 611 612 613 614 615
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
616
 * common workload, threshold and synchronization as vmstat[] should be
617 618
 * implemented.
 */
619 620
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
621
{
622
	long val = 0;
623 624
	int cpu;

625
	/* Per-cpu values can be negative, use a signed accumulator */
626
	for_each_possible_cpu(cpu)
627
		val += per_cpu(memcg->stat->count[idx], cpu);
628 629 630 631 632 633
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
634 635 636
	return val;
}

637
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
638 639 640 641 642
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

643
	for_each_possible_cpu(cpu)
644
		val += per_cpu(memcg->stat->events[idx], cpu);
645 646 647
	return val;
}

648
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
649
					 struct page *page,
650
					 bool compound, int nr_pages)
651
{
652 653 654 655
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
656
	if (PageAnon(page))
657
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
658
				nr_pages);
659
	else
660
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
661
				nr_pages);
662

663 664
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
665 666
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);
667
	}
668

669 670
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
671
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
672
	else {
673
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
674 675
		nr_pages = -nr_pages; /* for event */
	}
676

677
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
678 679
}

680 681 682
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
683
{
684
	unsigned long nr = 0;
685 686
	int zid;

687
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
688

689 690 691 692 693 694 695 696 697 698 699 700
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
701
}
702

703
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
704
			unsigned int lru_mask)
705
{
706
	unsigned long nr = 0;
707
	int nid;
708

709
	for_each_node_state(nid, N_MEMORY)
710 711
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
712 713
}

714 715
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
716 717 718
{
	unsigned long val, next;

719
	val = __this_cpu_read(memcg->stat->nr_page_events);
720
	next = __this_cpu_read(memcg->stat->targets[target]);
721
	/* from time_after() in jiffies.h */
722 723 724 725 726
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
727 728 729
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
730 731 732 733 734 735 736 737
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
738
	}
739
	return false;
740 741 742 743 744 745
}

/*
 * Check events in order.
 *
 */
746
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
747 748
{
	/* threshold event is triggered in finer grain than soft limit */
749 750
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
751
		bool do_softlimit;
752
		bool do_numainfo __maybe_unused;
753

754 755
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
756 757 758 759
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
760
		mem_cgroup_threshold(memcg);
761 762
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
763
#if MAX_NUMNODES > 1
764
		if (unlikely(do_numainfo))
765
			atomic_inc(&memcg->numainfo_events);
766
#endif
767
	}
768 769
}

770
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
771
{
772 773 774 775 776 777 778 779
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

780
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
781
}
M
Michal Hocko 已提交
782
EXPORT_SYMBOL(mem_cgroup_from_task);
783

784
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
785
{
786
	struct mem_cgroup *memcg = NULL;
787

788 789
	rcu_read_lock();
	do {
790 791 792 793 794 795
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
796
			memcg = root_mem_cgroup;
797 798 799 800 801
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
802
	} while (!css_tryget_online(&memcg->css));
803
	rcu_read_unlock();
804
	return memcg;
805 806
}

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
824
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
825
				   struct mem_cgroup *prev,
826
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
827
{
M
Michal Hocko 已提交
828
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
829
	struct cgroup_subsys_state *css = NULL;
830
	struct mem_cgroup *memcg = NULL;
831
	struct mem_cgroup *pos = NULL;
832

833 834
	if (mem_cgroup_disabled())
		return NULL;
835

836 837
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
838

839
	if (prev && !reclaim)
840
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
841

842 843
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
844
			goto out;
845
		return root;
846
	}
K
KAMEZAWA Hiroyuki 已提交
847

848
	rcu_read_lock();
M
Michal Hocko 已提交
849

850 851 852 853 854 855 856 857 858
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

859
		while (1) {
860
			pos = READ_ONCE(iter->position);
861 862
			if (!pos || css_tryget(&pos->css))
				break;
863
			/*
864 865 866 867 868 869
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
870
			 */
871 872
			(void)cmpxchg(&iter->position, pos, NULL);
		}
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
890
		}
K
KAMEZAWA Hiroyuki 已提交
891

892 893 894 895 896 897
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
898

899 900
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
901

902
		if (css_tryget(css)) {
903 904 905 906 907 908 909
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
910

911
			css_put(css);
912
		}
913

914
		memcg = NULL;
915
	}
916 917 918

	if (reclaim) {
		/*
919 920 921
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
922
		 */
923 924
		(void)cmpxchg(&iter->position, pos, memcg);

925 926 927 928 929 930 931
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
932
	}
933

934 935
out_unlock:
	rcu_read_unlock();
936
out:
937 938 939
	if (prev && prev != root)
		css_put(&prev->css);

940
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
941
}
K
KAMEZAWA Hiroyuki 已提交
942

943 944 945 946 947 948 949
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
950 951 952 953 954 955
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
956

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
				for (i = 0; i <= DEF_PRIORITY; i++) {
					iter = &mz->iter[i];
					cmpxchg(&iter->position,
						dead_memcg, NULL);
				}
			}
		}
	}
}

979 980 981 982 983 984
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
985
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
986
	     iter != NULL;				\
987
	     iter = mem_cgroup_iter(root, iter, NULL))
988

989
#define for_each_mem_cgroup(iter)			\
990
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
991
	     iter != NULL;				\
992
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
993

994 995 996
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
997
 * @memcg: memcg of the wanted lruvec
998 999 1000 1001 1002 1003 1004 1005 1006
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1007
	struct lruvec *lruvec;
1008

1009 1010 1011 1012
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1013

1014
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1025 1026 1027
}

/**
1028
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1029
 * @page: the page
1030
 * @zone: zone of the page
1031 1032 1033 1034
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1035
 */
1036
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1037 1038
{
	struct mem_cgroup_per_zone *mz;
1039
	struct mem_cgroup *memcg;
1040
	struct lruvec *lruvec;
1041

1042 1043 1044 1045
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1046

1047
	memcg = page->mem_cgroup;
1048
	/*
1049
	 * Swapcache readahead pages are added to the LRU - and
1050
	 * possibly migrated - before they are charged.
1051
	 */
1052 1053
	if (!memcg)
		memcg = root_mem_cgroup;
1054

1055
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1066
}
1067

1068
/**
1069 1070 1071 1072
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1073
 *
1074 1075
 * This function must be called when a page is added to or removed from an
 * lru list.
1076
 */
1077 1078
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1079 1080
{
	struct mem_cgroup_per_zone *mz;
1081
	unsigned long *lru_size;
1082 1083 1084 1085

	if (mem_cgroup_disabled())
		return;

1086 1087 1088 1089
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1090
}
1091

1092
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1093
{
1094
	struct mem_cgroup *task_memcg;
1095
	struct task_struct *p;
1096
	bool ret;
1097

1098
	p = find_lock_task_mm(task);
1099
	if (p) {
1100
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1101 1102 1103 1104 1105 1106 1107
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1108
		rcu_read_lock();
1109 1110
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1111
		rcu_read_unlock();
1112
	}
1113 1114
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1115 1116 1117
	return ret;
}

1118
/**
1119
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1120
 * @memcg: the memory cgroup
1121
 *
1122
 * Returns the maximum amount of memory @mem can be charged with, in
1123
 * pages.
1124
 */
1125
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1126
{
1127 1128 1129
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1130

1131
	count = page_counter_read(&memcg->memory);
1132
	limit = READ_ONCE(memcg->memory.limit);
1133 1134 1135
	if (count < limit)
		margin = limit - count;

1136
	if (do_memsw_account()) {
1137
		count = page_counter_read(&memcg->memsw);
1138
		limit = READ_ONCE(memcg->memsw.limit);
1139 1140 1141 1142 1143
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1144 1145
}

1146
/*
Q
Qiang Huang 已提交
1147
 * A routine for checking "mem" is under move_account() or not.
1148
 *
Q
Qiang Huang 已提交
1149 1150 1151
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1152
 */
1153
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1154
{
1155 1156
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1157
	bool ret = false;
1158 1159 1160 1161 1162 1163 1164 1165 1166
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1167

1168 1169
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1170 1171
unlock:
	spin_unlock(&mc.lock);
1172 1173 1174
	return ret;
}

1175
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1176 1177
{
	if (mc.moving_task && current != mc.moving_task) {
1178
		if (mem_cgroup_under_move(memcg)) {
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1191
#define K(x) ((x) << (PAGE_SHIFT-10))
1192
/**
1193
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1194 1195 1196 1197 1198 1199 1200 1201
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1202
	/* oom_info_lock ensures that parallel ooms do not interleave */
1203
	static DEFINE_MUTEX(oom_info_lock);
1204 1205
	struct mem_cgroup *iter;
	unsigned int i;
1206

1207
	mutex_lock(&oom_info_lock);
1208 1209
	rcu_read_lock();

1210 1211 1212 1213 1214 1215 1216 1217
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1218
	pr_cont_cgroup_path(memcg->css.cgroup);
1219
	pr_cont("\n");
1220 1221 1222

	rcu_read_unlock();

1223 1224 1225 1226 1227 1228 1229 1230 1231
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1232 1233

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1234 1235
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1236 1237 1238
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1239
			if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1240
				continue;
1241
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1242 1243 1244 1245 1246 1247 1248 1249 1250
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1251
	mutex_unlock(&oom_info_lock);
1252 1253
}

1254 1255 1256 1257
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1258
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1259 1260
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1261 1262
	struct mem_cgroup *iter;

1263
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1264
		num++;
1265 1266 1267
	return num;
}

D
David Rientjes 已提交
1268 1269 1270
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1271
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1272
{
1273
	unsigned long limit;
1274

1275
	limit = memcg->memory.limit;
1276
	if (mem_cgroup_swappiness(memcg)) {
1277
		unsigned long memsw_limit;
1278

1279 1280
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1281 1282
	}
	return limit;
D
David Rientjes 已提交
1283 1284
}

1285 1286
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1287
{
1288 1289 1290 1291 1292 1293
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
		.gfp_mask = gfp_mask,
		.order = order,
	};
1294 1295 1296 1297 1298 1299
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1300 1301
	mutex_lock(&oom_lock);

1302
	/*
1303 1304 1305
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1306
	 */
1307
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1308
		mark_oom_victim(current);
1309
		goto unlock;
1310 1311
	}

1312
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1313
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1314
	for_each_mem_cgroup_tree(iter, memcg) {
1315
		struct css_task_iter it;
1316 1317
		struct task_struct *task;

1318 1319
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1320
			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1331
				css_task_iter_end(&it);
1332 1333 1334
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1335
				goto unlock;
1336 1337 1338 1339
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1352
		}
1353
		css_task_iter_end(&it);
1354 1355
	}

1356 1357
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1358 1359
		oom_kill_process(&oc, chosen, points, totalpages, memcg,
				 "Memory cgroup out of memory");
1360 1361 1362
	}
unlock:
	mutex_unlock(&oom_lock);
1363 1364
}

1365 1366
#if MAX_NUMNODES > 1

1367 1368
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1369
 * @memcg: the target memcg
1370 1371 1372 1373 1374 1375 1376
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1377
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1378 1379
		int nid, bool noswap)
{
1380
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1381 1382 1383
		return true;
	if (noswap || !total_swap_pages)
		return false;
1384
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1385 1386 1387 1388
		return true;
	return false;

}
1389 1390 1391 1392 1393 1394 1395

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1396
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1397 1398
{
	int nid;
1399 1400 1401 1402
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1403
	if (!atomic_read(&memcg->numainfo_events))
1404
		return;
1405
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1406 1407 1408
		return;

	/* make a nodemask where this memcg uses memory from */
1409
	memcg->scan_nodes = node_states[N_MEMORY];
1410

1411
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1412

1413 1414
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1415
	}
1416

1417 1418
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1433
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1434 1435 1436
{
	int node;

1437 1438
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1439

1440
	node = next_node(node, memcg->scan_nodes);
1441
	if (node == MAX_NUMNODES)
1442
		node = first_node(memcg->scan_nodes);
1443 1444 1445 1446 1447 1448 1449 1450 1451
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1452
	memcg->last_scanned_node = node;
1453 1454 1455
	return node;
}
#else
1456
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1457 1458 1459 1460 1461
{
	return 0;
}
#endif

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1477
	excess = soft_limit_excess(root_memcg);
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1506
		if (!soft_limit_excess(root_memcg))
1507
			break;
1508
	}
1509 1510
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1511 1512
}

1513 1514 1515 1516 1517 1518
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1519 1520
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1521 1522 1523 1524
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1525
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1526
{
1527
	struct mem_cgroup *iter, *failed = NULL;
1528

1529 1530
	spin_lock(&memcg_oom_lock);

1531
	for_each_mem_cgroup_tree(iter, memcg) {
1532
		if (iter->oom_lock) {
1533 1534 1535 1536 1537
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1538 1539
			mem_cgroup_iter_break(memcg, iter);
			break;
1540 1541
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1542
	}
K
KAMEZAWA Hiroyuki 已提交
1543

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1555
		}
1556 1557
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1558 1559 1560 1561

	spin_unlock(&memcg_oom_lock);

	return !failed;
1562
}
1563

1564
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1565
{
K
KAMEZAWA Hiroyuki 已提交
1566 1567
	struct mem_cgroup *iter;

1568
	spin_lock(&memcg_oom_lock);
1569
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1570
	for_each_mem_cgroup_tree(iter, memcg)
1571
		iter->oom_lock = false;
1572
	spin_unlock(&memcg_oom_lock);
1573 1574
}

1575
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1576 1577 1578
{
	struct mem_cgroup *iter;

1579
	spin_lock(&memcg_oom_lock);
1580
	for_each_mem_cgroup_tree(iter, memcg)
1581 1582
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1583 1584
}

1585
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1586 1587 1588
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1589 1590
	/*
	 * When a new child is created while the hierarchy is under oom,
1591
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1592
	 */
1593
	spin_lock(&memcg_oom_lock);
1594
	for_each_mem_cgroup_tree(iter, memcg)
1595 1596 1597
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1598 1599
}

K
KAMEZAWA Hiroyuki 已提交
1600 1601
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1602
struct oom_wait_info {
1603
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1604 1605 1606 1607 1608 1609
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1610 1611
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1612 1613 1614
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1615
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1616

1617 1618
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1619 1620 1621 1622
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1623
static void memcg_oom_recover(struct mem_cgroup *memcg)
1624
{
1625 1626 1627 1628 1629 1630 1631 1632 1633
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1634
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1635 1636
}

1637
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1638
{
T
Tejun Heo 已提交
1639
	if (!current->memcg_may_oom)
1640
		return;
K
KAMEZAWA Hiroyuki 已提交
1641
	/*
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1654
	 */
1655
	css_get(&memcg->css);
T
Tejun Heo 已提交
1656 1657 1658
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1659 1660 1661 1662
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1663
 * @handle: actually kill/wait or just clean up the OOM state
1664
 *
1665 1666
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1667
 *
1668
 * Memcg supports userspace OOM handling where failed allocations must
1669 1670 1671 1672
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1673
 * the end of the page fault to complete the OOM handling.
1674 1675
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1676
 * completed, %false otherwise.
1677
 */
1678
bool mem_cgroup_oom_synchronize(bool handle)
1679
{
T
Tejun Heo 已提交
1680
	struct mem_cgroup *memcg = current->memcg_in_oom;
1681
	struct oom_wait_info owait;
1682
	bool locked;
1683 1684 1685

	/* OOM is global, do not handle */
	if (!memcg)
1686
		return false;
1687

1688
	if (!handle || oom_killer_disabled)
1689
		goto cleanup;
1690 1691 1692 1693 1694 1695

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1696

1697
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1708 1709
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1710
	} else {
1711
		schedule();
1712 1713 1714 1715 1716
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1717 1718 1719 1720 1721 1722 1723 1724
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1725
cleanup:
T
Tejun Heo 已提交
1726
	current->memcg_in_oom = NULL;
1727
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1728
	return true;
1729 1730
}

1731 1732 1733
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1734
 *
1735 1736 1737
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1738
 *
1739
 *   memcg = mem_cgroup_begin_page_stat(page);
1740 1741
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1742
 *   mem_cgroup_end_page_stat(memcg);
1743
 */
1744
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1745 1746
{
	struct mem_cgroup *memcg;
1747
	unsigned long flags;
1748

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
1761 1762 1763 1764
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
1765
again:
1766
	memcg = page->mem_cgroup;
1767
	if (unlikely(!memcg))
1768 1769
		return NULL;

Q
Qiang Huang 已提交
1770
	if (atomic_read(&memcg->moving_account) <= 0)
1771
		return memcg;
1772

1773
	spin_lock_irqsave(&memcg->move_lock, flags);
1774
	if (memcg != page->mem_cgroup) {
1775
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1776 1777
		goto again;
	}
1778 1779 1780 1781 1782 1783 1784 1785

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1786 1787

	return memcg;
1788
}
1789
EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1790

1791 1792 1793 1794
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
1795
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1796
{
1797 1798 1799 1800 1801 1802 1803 1804
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1805

1806
	rcu_read_unlock();
1807
}
1808
EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1809

1810 1811 1812 1813
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1814
#define CHARGE_BATCH	32U
1815 1816
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1817
	unsigned int nr_pages;
1818
	struct work_struct work;
1819
	unsigned long flags;
1820
#define FLUSHING_CACHED_CHARGE	0
1821 1822
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1823
static DEFINE_MUTEX(percpu_charge_mutex);
1824

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1835
 */
1836
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1837 1838
{
	struct memcg_stock_pcp *stock;
1839
	bool ret = false;
1840

1841
	if (nr_pages > CHARGE_BATCH)
1842
		return ret;
1843

1844
	stock = &get_cpu_var(memcg_stock);
1845
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1846
		stock->nr_pages -= nr_pages;
1847 1848
		ret = true;
	}
1849 1850 1851 1852 1853
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1854
 * Returns stocks cached in percpu and reset cached information.
1855 1856 1857 1858 1859
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1860
	if (stock->nr_pages) {
1861
		page_counter_uncharge(&old->memory, stock->nr_pages);
1862
		if (do_memsw_account())
1863
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1864
		css_put_many(&old->css, stock->nr_pages);
1865
		stock->nr_pages = 0;
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1876
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1877
	drain_stock(stock);
1878
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1879 1880 1881
}

/*
1882
 * Cache charges(val) to local per_cpu area.
1883
 * This will be consumed by consume_stock() function, later.
1884
 */
1885
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1886 1887 1888
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1889
	if (stock->cached != memcg) { /* reset if necessary */
1890
		drain_stock(stock);
1891
		stock->cached = memcg;
1892
	}
1893
	stock->nr_pages += nr_pages;
1894 1895 1896 1897
	put_cpu_var(memcg_stock);
}

/*
1898
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1899
 * of the hierarchy under it.
1900
 */
1901
static void drain_all_stock(struct mem_cgroup *root_memcg)
1902
{
1903
	int cpu, curcpu;
1904

1905 1906 1907
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1908 1909
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1910
	curcpu = get_cpu();
1911 1912
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1913
		struct mem_cgroup *memcg;
1914

1915 1916
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1917
			continue;
1918
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1919
			continue;
1920 1921 1922 1923 1924 1925
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1926
	}
1927
	put_cpu();
A
Andrew Morton 已提交
1928
	put_online_cpus();
1929
	mutex_unlock(&percpu_charge_mutex);
1930 1931
}

1932
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1933 1934 1935 1936 1937 1938
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1939
	if (action == CPU_ONLINE)
1940 1941
		return NOTIFY_OK;

1942
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1943
		return NOTIFY_OK;
1944

1945 1946 1947 1948 1949
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1970 1971 1972 1973 1974 1975 1976
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1977
	struct mem_cgroup *memcg;
1978 1979 1980 1981

	if (likely(!nr_pages))
		return;

1982 1983
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1984 1985 1986 1987
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1988 1989
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1990
{
1991
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1992
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1993
	struct mem_cgroup *mem_over_limit;
1994
	struct page_counter *counter;
1995
	unsigned long nr_reclaimed;
1996 1997
	bool may_swap = true;
	bool drained = false;
1998

1999
	if (mem_cgroup_is_root(memcg))
2000
		return 0;
2001
retry:
2002
	if (consume_stock(memcg, nr_pages))
2003
		return 0;
2004

2005
	if (!do_memsw_account() ||
2006 2007
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2008
			goto done_restock;
2009
		if (do_memsw_account())
2010 2011
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2012
	} else {
2013
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2014
		may_swap = false;
2015
	}
2016

2017 2018 2019 2020
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2021

2022 2023 2024 2025 2026 2027 2028 2029 2030
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
2031
		goto force;
2032 2033 2034 2035

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2036
	if (!gfpflags_allow_blocking(gfp_mask))
2037
		goto nomem;
2038

2039 2040
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2041 2042
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2043

2044
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2045
		goto retry;
2046

2047
	if (!drained) {
2048
		drain_all_stock(mem_over_limit);
2049 2050 2051 2052
		drained = true;
		goto retry;
	}

2053 2054
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2055 2056 2057 2058 2059 2060 2061 2062 2063
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2064
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2065 2066 2067 2068 2069 2070 2071 2072
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2073 2074 2075
	if (nr_retries--)
		goto retry;

2076
	if (gfp_mask & __GFP_NOFAIL)
2077
		goto force;
2078

2079
	if (fatal_signal_pending(current))
2080
		goto force;
2081

2082 2083
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2084 2085
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
2086
nomem:
2087
	if (!(gfp_mask & __GFP_NOFAIL))
2088
		return -ENOMEM;
2089 2090 2091 2092 2093 2094 2095
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2096
	if (do_memsw_account())
2097 2098 2099 2100
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2101 2102

done_restock:
2103
	css_get_many(&memcg->css, batch);
2104 2105
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2106

2107
	/*
2108 2109
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2110
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2111 2112 2113 2114
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2115 2116
	 */
	do {
2117
		if (page_counter_read(&memcg->memory) > memcg->high) {
2118 2119 2120 2121 2122
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2123
			current->memcg_nr_pages_over_high += batch;
2124 2125 2126
			set_notify_resume(current);
			break;
		}
2127
	} while ((memcg = parent_mem_cgroup(memcg)));
2128 2129

	return 0;
2130
}
2131

2132
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2133
{
2134 2135 2136
	if (mem_cgroup_is_root(memcg))
		return;

2137
	page_counter_uncharge(&memcg->memory, nr_pages);
2138
	if (do_memsw_account())
2139
		page_counter_uncharge(&memcg->memsw, nr_pages);
2140

2141
	css_put_many(&memcg->css, nr_pages);
2142 2143
}

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2175
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2176
			  bool lrucare)
2177
{
2178
	int isolated;
2179

2180
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2181 2182 2183 2184 2185

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2186 2187
	if (lrucare)
		lock_page_lru(page, &isolated);
2188

2189 2190
	/*
	 * Nobody should be changing or seriously looking at
2191
	 * page->mem_cgroup at this point:
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2203
	page->mem_cgroup = memcg;
2204

2205 2206
	if (lrucare)
		unlock_page_lru(page, isolated);
2207
}
2208

2209
#ifndef CONFIG_SLOB
2210
static int memcg_alloc_cache_id(void)
2211
{
2212 2213 2214
	int id, size;
	int err;

2215
	id = ida_simple_get(&memcg_cache_ida,
2216 2217 2218
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2219

2220
	if (id < memcg_nr_cache_ids)
2221 2222 2223 2224 2225 2226
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2227
	down_write(&memcg_cache_ids_sem);
2228 2229

	size = 2 * (id + 1);
2230 2231 2232 2233 2234
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2235
	err = memcg_update_all_caches(size);
2236 2237
	if (!err)
		err = memcg_update_all_list_lrus(size);
2238 2239 2240 2241 2242
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2243
	if (err) {
2244
		ida_simple_remove(&memcg_cache_ida, id);
2245 2246 2247 2248 2249 2250 2251
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2252
	ida_simple_remove(&memcg_cache_ida, id);
2253 2254
}

2255
struct memcg_kmem_cache_create_work {
2256 2257 2258 2259 2260
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2261
static void memcg_kmem_cache_create_func(struct work_struct *w)
2262
{
2263 2264
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2265 2266
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2267

2268
	memcg_create_kmem_cache(memcg, cachep);
2269

2270
	css_put(&memcg->css);
2271 2272 2273 2274 2275 2276
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2277 2278
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2279
{
2280
	struct memcg_kmem_cache_create_work *cw;
2281

2282
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2283
	if (!cw)
2284
		return;
2285 2286

	css_get(&memcg->css);
2287 2288 2289

	cw->memcg = memcg;
	cw->cachep = cachep;
2290
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2291 2292 2293 2294

	schedule_work(&cw->work);
}

2295 2296
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2297 2298 2299 2300
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2301
	 * in __memcg_schedule_kmem_cache_create will recurse.
2302 2303 2304 2305 2306 2307 2308
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2309
	current->memcg_kmem_skip_account = 1;
2310
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2311
	current->memcg_kmem_skip_account = 0;
2312
}
2313

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
V
Vladimir Davydov 已提交
2327
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2328 2329
{
	struct mem_cgroup *memcg;
2330
	struct kmem_cache *memcg_cachep;
2331
	int kmemcg_id;
2332

2333
	VM_BUG_ON(!is_root_cache(cachep));
2334

V
Vladimir Davydov 已提交
2335 2336 2337 2338 2339 2340
	if (cachep->flags & SLAB_ACCOUNT)
		gfp |= __GFP_ACCOUNT;

	if (!(gfp & __GFP_ACCOUNT))
		return cachep;

2341
	if (current->memcg_kmem_skip_account)
2342 2343
		return cachep;

2344
	memcg = get_mem_cgroup_from_mm(current->mm);
2345
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2346
	if (kmemcg_id < 0)
2347
		goto out;
2348

2349
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2350 2351
	if (likely(memcg_cachep))
		return memcg_cachep;
2352 2353 2354 2355 2356 2357 2358 2359 2360

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2361 2362 2363
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2364
	 */
2365
	memcg_schedule_kmem_cache_create(memcg, cachep);
2366
out:
2367
	css_put(&memcg->css);
2368
	return cachep;
2369 2370
}

2371 2372 2373
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2374
		css_put(&cachep->memcg_params.memcg->css);
2375 2376
}

2377 2378
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			      struct mem_cgroup *memcg)
2379
{
2380 2381
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2382 2383
	int ret;

2384
	if (!memcg_kmem_online(memcg))
2385
		return 0;
2386

2387
	ret = try_charge(memcg, gfp, nr_pages);
2388
	if (ret)
2389
		return ret;
2390 2391 2392 2393 2394

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2395 2396
	}

2397
	page->mem_cgroup = memcg;
2398

2399
	return 0;
2400 2401
}

2402
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2403
{
2404 2405
	struct mem_cgroup *memcg;
	int ret;
2406

2407 2408
	memcg = get_mem_cgroup_from_mm(current->mm);
	ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2409
	css_put(&memcg->css);
2410
	return ret;
2411 2412
}

2413
void __memcg_kmem_uncharge(struct page *page, int order)
2414
{
2415
	struct mem_cgroup *memcg = page->mem_cgroup;
2416
	unsigned int nr_pages = 1 << order;
2417 2418 2419 2420

	if (!memcg)
		return;

2421
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2422

2423 2424 2425
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2426
	page_counter_uncharge(&memcg->memory, nr_pages);
2427
	if (do_memsw_account())
2428
		page_counter_uncharge(&memcg->memsw, nr_pages);
2429

2430
	page->mem_cgroup = NULL;
2431
	css_put_many(&memcg->css, nr_pages);
2432
}
2433
#endif /* !CONFIG_SLOB */
2434

2435 2436 2437 2438
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2439
 * zone->lru_lock and migration entries setup in all page mappings.
2440
 */
2441
void mem_cgroup_split_huge_fixup(struct page *head)
2442
{
2443
	int i;
2444

2445 2446
	if (mem_cgroup_disabled())
		return;
2447

2448
	for (i = 1; i < HPAGE_PMD_NR; i++)
2449
		head[i].mem_cgroup = head->mem_cgroup;
2450

2451
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2452
		       HPAGE_PMD_NR);
2453
}
2454
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2455

A
Andrew Morton 已提交
2456
#ifdef CONFIG_MEMCG_SWAP
2457 2458
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2459
{
2460 2461
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2462
}
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2475
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2476 2477 2478
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2479
				struct mem_cgroup *from, struct mem_cgroup *to)
2480 2481 2482
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2483 2484
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2485 2486 2487

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2488
		mem_cgroup_swap_statistics(to, true);
2489 2490 2491 2492 2493 2494
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2495
				struct mem_cgroup *from, struct mem_cgroup *to)
2496 2497 2498
{
	return -EINVAL;
}
2499
#endif
K
KAMEZAWA Hiroyuki 已提交
2500

2501
static DEFINE_MUTEX(memcg_limit_mutex);
2502

2503
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2504
				   unsigned long limit)
2505
{
2506 2507 2508
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2509
	int retry_count;
2510
	int ret;
2511 2512 2513 2514 2515 2516

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2517 2518
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2519

2520
	oldusage = page_counter_read(&memcg->memory);
2521

2522
	do {
2523 2524 2525 2526
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2527 2528 2529 2530

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2531
			ret = -EINVAL;
2532 2533
			break;
		}
2534 2535 2536 2537
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2538 2539 2540 2541

		if (!ret)
			break;

2542 2543
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2544
		curusage = page_counter_read(&memcg->memory);
2545
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2546
		if (curusage >= oldusage)
2547 2548 2549
			retry_count--;
		else
			oldusage = curusage;
2550 2551
	} while (retry_count);

2552 2553
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2554

2555 2556 2557
	return ret;
}

L
Li Zefan 已提交
2558
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2559
					 unsigned long limit)
2560
{
2561 2562 2563
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2564
	int retry_count;
2565
	int ret;
2566

2567
	/* see mem_cgroup_resize_res_limit */
2568 2569 2570 2571 2572 2573
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2574 2575 2576 2577
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2578 2579 2580 2581

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2582 2583 2584
			ret = -EINVAL;
			break;
		}
2585 2586 2587 2588
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2589 2590 2591 2592

		if (!ret)
			break;

2593 2594
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2595
		curusage = page_counter_read(&memcg->memsw);
2596
		/* Usage is reduced ? */
2597
		if (curusage >= oldusage)
2598
			retry_count--;
2599 2600
		else
			oldusage = curusage;
2601 2602
	} while (retry_count);

2603 2604
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2605

2606 2607 2608
	return ret;
}

2609 2610 2611 2612 2613 2614 2615 2616 2617
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2618
	unsigned long excess;
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2643
		spin_lock_irq(&mctz->lock);
2644
		__mem_cgroup_remove_exceeded(mz, mctz);
2645 2646 2647 2648 2649 2650

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2651 2652 2653
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2654
		excess = soft_limit_excess(mz->memcg);
2655 2656 2657 2658 2659 2660 2661 2662 2663
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2664
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2665
		spin_unlock_irq(&mctz->lock);
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2683 2684 2685 2686 2687 2688
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2689 2690
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2691 2692
	bool ret;

2693
	/*
2694 2695 2696 2697
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
2698
	 */
2699 2700 2701 2702 2703 2704
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2705 2706
}

2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2717 2718
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2719
	/* try to free all pages in this cgroup */
2720
	while (nr_retries && page_counter_read(&memcg->memory)) {
2721
		int progress;
2722

2723 2724 2725
		if (signal_pending(current))
			return -EINTR;

2726 2727
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2728
		if (!progress) {
2729
			nr_retries--;
2730
			/* maybe some writeback is necessary */
2731
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2732
		}
2733 2734

	}
2735 2736

	return 0;
2737 2738
}

2739 2740 2741
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2742
{
2743
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2744

2745 2746
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2747
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2748 2749
}

2750 2751
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2752
{
2753
	return mem_cgroup_from_css(css)->use_hierarchy;
2754 2755
}

2756 2757
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2758 2759
{
	int retval = 0;
2760
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2761
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2762

2763
	mutex_lock(&memcg_create_mutex);
2764 2765 2766 2767

	if (memcg->use_hierarchy == val)
		goto out;

2768
	/*
2769
	 * If parent's use_hierarchy is set, we can't make any modifications
2770 2771 2772 2773 2774 2775
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2776
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2777
				(val == 1 || val == 0)) {
2778
		if (!memcg_has_children(memcg))
2779
			memcg->use_hierarchy = val;
2780 2781 2782 2783
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2784 2785

out:
2786
	mutex_unlock(&memcg_create_mutex);
2787 2788 2789 2790

	return retval;
}

2791 2792
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
2793 2794
{
	struct mem_cgroup *iter;
2795
	unsigned long val = 0;
2796 2797 2798 2799 2800 2801 2802

	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	return val;
}

2803
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2804
{
2805
	unsigned long val;
2806

2807 2808 2809 2810 2811 2812
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
2813
		if (!swap)
2814
			val = page_counter_read(&memcg->memory);
2815
		else
2816
			val = page_counter_read(&memcg->memsw);
2817
	}
2818
	return val;
2819 2820
}

2821 2822 2823 2824 2825 2826 2827
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2828

2829
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2830
			       struct cftype *cft)
B
Balbir Singh 已提交
2831
{
2832
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2833
	struct page_counter *counter;
2834

2835
	switch (MEMFILE_TYPE(cft->private)) {
2836
	case _MEM:
2837 2838
		counter = &memcg->memory;
		break;
2839
	case _MEMSWAP:
2840 2841
		counter = &memcg->memsw;
		break;
2842
	case _KMEM:
2843
		counter = &memcg->kmem;
2844
		break;
V
Vladimir Davydov 已提交
2845 2846 2847 2848 2849
#if defined(CONFIG_MEMCG_LEGACY_KMEM) && defined(CONFIG_INET)
	case _TCP:
		counter = &memcg->tcp_mem.memory_allocated;
		break;
#endif
2850 2851 2852
	default:
		BUG();
	}
2853 2854 2855 2856

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2857
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2858
		if (counter == &memcg->memsw)
2859
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2872
}
2873

2874
#ifndef CONFIG_SLOB
2875
static int memcg_online_kmem(struct mem_cgroup *memcg)
2876 2877 2878 2879
{
	int err = 0;
	int memcg_id;

2880
	BUG_ON(memcg->kmemcg_id >= 0);
2881
	BUG_ON(memcg->kmem_state);
2882

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
2895
	mutex_lock(&memcg_create_mutex);
2896
	if (cgroup_is_populated(memcg->css.cgroup) ||
2897
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
2898 2899 2900 2901
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
2902

2903
	memcg_id = memcg_alloc_cache_id();
2904 2905 2906 2907 2908
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

2909
	static_branch_inc(&memcg_kmem_enabled_key);
2910
	/*
2911
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2912
	 * kmemcg_id. Setting the id after enabling static branching will
2913 2914 2915
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2916
	memcg->kmemcg_id = memcg_id;
2917
	memcg->kmem_state = KMEM_ONLINE;
2918
out:
2919 2920 2921
	return err;
}

2922
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2923
{
2924
	int ret = 0;
2925
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2926

2927 2928
	if (!parent)
		return 0;
2929

2930
	mutex_lock(&memcg_limit_mutex);
2931
	/*
2932 2933 2934
	 * If the parent cgroup is not kmem-online now, it cannot be
	 * onlined after this point, because it has at least one child
	 * already.
2935
	 */
2936 2937
	if (memcg_kmem_online(parent) ||
	    (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nokmem))
2938
		ret = memcg_online_kmem(memcg);
2939
	mutex_unlock(&memcg_limit_mutex);
2940
	return ret;
2941
}
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995

static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2996
#else
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

3009
#ifdef CONFIG_MEMCG_LEGACY_KMEM
3010
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3011
				   unsigned long limit)
3012
{
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
	int ret;

	mutex_lock(&memcg_limit_mutex);
	/* Top-level cgroup doesn't propagate from root */
	if (!memcg_kmem_online(memcg)) {
		ret = memcg_online_kmem(memcg);
		if (ret)
			goto out;
	}
	ret = page_counter_limit(&memcg->kmem, limit);
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
3026
}
3027 3028 3029
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long limit)
3030
{
3031
	return -EINVAL;
3032
}
3033
#endif /* CONFIG_MEMCG_LEGACY_KMEM */
3034

3035

V
Vladimir Davydov 已提交
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
#if defined(CONFIG_MEMCG_LEGACY_KMEM) && defined(CONFIG_INET)
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

	ret = page_counter_limit(&memcg->tcp_mem.memory_allocated, limit);
	if (ret)
		goto out;

	if (!memcg->tcp_mem.active) {
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
		 * function is the last one to run. See sock_update_memcg() for
		 * details, and note that we don't mark any socket as belonging
		 * to this memcg until that flag is up.
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
		 * We never race with the readers in sock_update_memcg(),
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
		memcg->tcp_mem.active = true;
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}
#else
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	return -EINVAL;
}
#endif /* CONFIG_MEMCG_LEGACY_KMEM && CONFIG_INET */

3078 3079 3080 3081
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3082 3083
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3084
{
3085
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3086
	unsigned long nr_pages;
3087 3088
	int ret;

3089
	buf = strstrip(buf);
3090
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3091 3092
	if (ret)
		return ret;
3093

3094
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3095
	case RES_LIMIT:
3096 3097 3098 3099
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3100 3101 3102
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3103
			break;
3104 3105
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3106
			break;
3107 3108 3109
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
3110 3111 3112
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
3113
		}
3114
		break;
3115 3116 3117
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3118 3119
		break;
	}
3120
	return ret ?: nbytes;
B
Balbir Singh 已提交
3121 3122
}

3123 3124
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3125
{
3126
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3127
	struct page_counter *counter;
3128

3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3139 3140 3141 3142 3143
#if defined(CONFIG_MEMCG_LEGACY_KMEM) && defined(CONFIG_INET)
	case _TCP:
		counter = &memcg->tcp_mem.memory_allocated;
		break;
#endif
3144 3145 3146
	default:
		BUG();
	}
3147

3148
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3149
	case RES_MAX_USAGE:
3150
		page_counter_reset_watermark(counter);
3151 3152
		break;
	case RES_FAILCNT:
3153
		counter->failcnt = 0;
3154
		break;
3155 3156
	default:
		BUG();
3157
	}
3158

3159
	return nbytes;
3160 3161
}

3162
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3163 3164
					struct cftype *cft)
{
3165
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3166 3167
}

3168
#ifdef CONFIG_MMU
3169
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3170 3171
					struct cftype *cft, u64 val)
{
3172
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3173

3174
	if (val & ~MOVE_MASK)
3175
		return -EINVAL;
3176

3177
	/*
3178 3179 3180 3181
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3182
	 */
3183
	memcg->move_charge_at_immigrate = val;
3184 3185
	return 0;
}
3186
#else
3187
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3188 3189 3190 3191 3192
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3193

3194
#ifdef CONFIG_NUMA
3195
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3196
{
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3209
	int nid;
3210
	unsigned long nr;
3211
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3212

3213 3214 3215 3216 3217 3218 3219 3220 3221
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3222 3223
	}

3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3239 3240 3241 3242 3243 3244
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3245
static int memcg_stat_show(struct seq_file *m, void *v)
3246
{
3247
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3248
	unsigned long memory, memsw;
3249 3250
	struct mem_cgroup *mi;
	unsigned int i;
3251

3252 3253 3254 3255
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3256 3257
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3258
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3259
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3260
			continue;
3261
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3262
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3263
	}
L
Lee Schermerhorn 已提交
3264

3265 3266 3267 3268 3269 3270 3271 3272
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3273
	/* Hierarchical information */
3274 3275 3276 3277
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3278
	}
3279 3280
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3281
	if (do_memsw_account())
3282 3283
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3284

3285
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3286
		unsigned long long val = 0;
3287

3288
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3289
			continue;
3290 3291
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3292
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3310
	}
K
KAMEZAWA Hiroyuki 已提交
3311

K
KOSAKI Motohiro 已提交
3312 3313 3314 3315
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3316
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3317 3318 3319 3320 3321
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3322
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3323
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3324

3325 3326 3327 3328
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3329
			}
3330 3331 3332 3333
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3334 3335 3336
	}
#endif

3337 3338 3339
	return 0;
}

3340 3341
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3342
{
3343
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3344

3345
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3346 3347
}

3348 3349
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3350
{
3351
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3352

3353
	if (val > 100)
K
KOSAKI Motohiro 已提交
3354 3355
		return -EINVAL;

3356
	if (css->parent)
3357 3358 3359
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3360

K
KOSAKI Motohiro 已提交
3361 3362 3363
	return 0;
}

3364 3365 3366
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3367
	unsigned long usage;
3368 3369 3370 3371
	int i;

	rcu_read_lock();
	if (!swap)
3372
		t = rcu_dereference(memcg->thresholds.primary);
3373
	else
3374
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3375 3376 3377 3378

	if (!t)
		goto unlock;

3379
	usage = mem_cgroup_usage(memcg, swap);
3380 3381

	/*
3382
	 * current_threshold points to threshold just below or equal to usage.
3383 3384 3385
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3386
	i = t->current_threshold;
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3410
	t->current_threshold = i - 1;
3411 3412 3413 3414 3415 3416
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3417 3418
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3419
		if (do_memsw_account())
3420 3421 3422 3423
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3424 3425 3426 3427 3428 3429 3430
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3431 3432 3433 3434 3435 3436 3437
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3438 3439
}

3440
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3441 3442 3443
{
	struct mem_cgroup_eventfd_list *ev;

3444 3445
	spin_lock(&memcg_oom_lock);

3446
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3447
		eventfd_signal(ev->eventfd, 1);
3448 3449

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3450 3451 3452
	return 0;
}

3453
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3454
{
K
KAMEZAWA Hiroyuki 已提交
3455 3456
	struct mem_cgroup *iter;

3457
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3458
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3459 3460
}

3461
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3462
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3463
{
3464 3465
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3466 3467
	unsigned long threshold;
	unsigned long usage;
3468
	int i, size, ret;
3469

3470
	ret = page_counter_memparse(args, "-1", &threshold);
3471 3472 3473 3474
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3475

3476
	if (type == _MEM) {
3477
		thresholds = &memcg->thresholds;
3478
		usage = mem_cgroup_usage(memcg, false);
3479
	} else if (type == _MEMSWAP) {
3480
		thresholds = &memcg->memsw_thresholds;
3481
		usage = mem_cgroup_usage(memcg, true);
3482
	} else
3483 3484 3485
		BUG();

	/* Check if a threshold crossed before adding a new one */
3486
	if (thresholds->primary)
3487 3488
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3489
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3490 3491

	/* Allocate memory for new array of thresholds */
3492
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3493
			GFP_KERNEL);
3494
	if (!new) {
3495 3496 3497
		ret = -ENOMEM;
		goto unlock;
	}
3498
	new->size = size;
3499 3500

	/* Copy thresholds (if any) to new array */
3501 3502
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3503
				sizeof(struct mem_cgroup_threshold));
3504 3505
	}

3506
	/* Add new threshold */
3507 3508
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3509 3510

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3511
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3512 3513 3514
			compare_thresholds, NULL);

	/* Find current threshold */
3515
	new->current_threshold = -1;
3516
	for (i = 0; i < size; i++) {
3517
		if (new->entries[i].threshold <= usage) {
3518
			/*
3519 3520
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3521 3522
			 * it here.
			 */
3523
			++new->current_threshold;
3524 3525
		} else
			break;
3526 3527
	}

3528 3529 3530 3531 3532
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3533

3534
	/* To be sure that nobody uses thresholds */
3535 3536 3537 3538 3539 3540 3541 3542
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3543
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3544 3545
	struct eventfd_ctx *eventfd, const char *args)
{
3546
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3547 3548
}

3549
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3550 3551
	struct eventfd_ctx *eventfd, const char *args)
{
3552
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3553 3554
}

3555
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3556
	struct eventfd_ctx *eventfd, enum res_type type)
3557
{
3558 3559
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3560
	unsigned long usage;
3561
	int i, j, size;
3562 3563

	mutex_lock(&memcg->thresholds_lock);
3564 3565

	if (type == _MEM) {
3566
		thresholds = &memcg->thresholds;
3567
		usage = mem_cgroup_usage(memcg, false);
3568
	} else if (type == _MEMSWAP) {
3569
		thresholds = &memcg->memsw_thresholds;
3570
		usage = mem_cgroup_usage(memcg, true);
3571
	} else
3572 3573
		BUG();

3574 3575 3576
	if (!thresholds->primary)
		goto unlock;

3577 3578 3579 3580
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3581 3582 3583
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3584 3585 3586
			size++;
	}

3587
	new = thresholds->spare;
3588

3589 3590
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3591 3592
		kfree(new);
		new = NULL;
3593
		goto swap_buffers;
3594 3595
	}

3596
	new->size = size;
3597 3598

	/* Copy thresholds and find current threshold */
3599 3600 3601
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3602 3603
			continue;

3604
		new->entries[j] = thresholds->primary->entries[i];
3605
		if (new->entries[j].threshold <= usage) {
3606
			/*
3607
			 * new->current_threshold will not be used
3608 3609 3610
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3611
			++new->current_threshold;
3612 3613 3614 3615
		}
		j++;
	}

3616
swap_buffers:
3617 3618
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3619

3620
	rcu_assign_pointer(thresholds->primary, new);
3621

3622
	/* To be sure that nobody uses thresholds */
3623
	synchronize_rcu();
3624 3625 3626 3627 3628 3629

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3630
unlock:
3631 3632
	mutex_unlock(&memcg->thresholds_lock);
}
3633

3634
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3635 3636
	struct eventfd_ctx *eventfd)
{
3637
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3638 3639
}

3640
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3641 3642
	struct eventfd_ctx *eventfd)
{
3643
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3644 3645
}

3646
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3647
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3648 3649 3650 3651 3652 3653 3654
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3655
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3656 3657 3658 3659 3660

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3661
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3662
		eventfd_signal(eventfd, 1);
3663
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3664 3665 3666 3667

	return 0;
}

3668
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3669
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3670 3671 3672
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3673
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3674

3675
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3676 3677 3678 3679 3680 3681
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3682
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3683 3684
}

3685
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3686
{
3687
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3688

3689
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3690
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3691 3692 3693
	return 0;
}

3694
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3695 3696
	struct cftype *cft, u64 val)
{
3697
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3698 3699

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3700
	if (!css->parent || !((val == 0) || (val == 1)))
3701 3702
		return -EINVAL;

3703
	memcg->oom_kill_disable = val;
3704
	if (!val)
3705
		memcg_oom_recover(memcg);
3706

3707 3708 3709
	return 0;
}

3710 3711 3712 3713 3714 3715 3716
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3727 3728 3729 3730 3731
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3742 3743 3744
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3745 3746
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3747 3748 3749
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3750 3751 3752
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3753
 *
3754 3755 3756 3757 3758
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3759
 */
3760 3761 3762
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3763 3764 3765 3766 3767 3768 3769 3770
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3771 3772 3773
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3774 3775 3776 3777 3778

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3779
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3780 3781 3782 3783
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3795 3796 3797 3798
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3799 3800
#endif	/* CONFIG_CGROUP_WRITEBACK */

3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3814 3815 3816 3817 3818
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3819
static void memcg_event_remove(struct work_struct *work)
3820
{
3821 3822
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3823
	struct mem_cgroup *memcg = event->memcg;
3824 3825 3826

	remove_wait_queue(event->wqh, &event->wait);

3827
	event->unregister_event(memcg, event->eventfd);
3828 3829 3830 3831 3832 3833

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3834
	css_put(&memcg->css);
3835 3836 3837 3838 3839 3840 3841
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3842 3843
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3844
{
3845 3846
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3847
	struct mem_cgroup *memcg = event->memcg;
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3860
		spin_lock(&memcg->event_list_lock);
3861 3862 3863 3864 3865 3866 3867 3868
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3869
		spin_unlock(&memcg->event_list_lock);
3870 3871 3872 3873 3874
	}

	return 0;
}

3875
static void memcg_event_ptable_queue_proc(struct file *file,
3876 3877
		wait_queue_head_t *wqh, poll_table *pt)
{
3878 3879
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3880 3881 3882 3883 3884 3885

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3886 3887
 * DO NOT USE IN NEW FILES.
 *
3888 3889 3890 3891 3892
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3893 3894
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3895
{
3896
	struct cgroup_subsys_state *css = of_css(of);
3897
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3898
	struct mem_cgroup_event *event;
3899 3900 3901 3902
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3903
	const char *name;
3904 3905 3906
	char *endp;
	int ret;

3907 3908 3909
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3910 3911
	if (*endp != ' ')
		return -EINVAL;
3912
	buf = endp + 1;
3913

3914
	cfd = simple_strtoul(buf, &endp, 10);
3915 3916
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3917
	buf = endp + 1;
3918 3919 3920 3921 3922

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3923
	event->memcg = memcg;
3924
	INIT_LIST_HEAD(&event->list);
3925 3926 3927
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3953 3954 3955 3956 3957
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3958 3959
	 *
	 * DO NOT ADD NEW FILES.
3960
	 */
A
Al Viro 已提交
3961
	name = cfile.file->f_path.dentry->d_name.name;
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3973 3974
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3975 3976 3977 3978 3979
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3980
	/*
3981 3982 3983
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3984
	 */
A
Al Viro 已提交
3985
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3986
					       &memory_cgrp_subsys);
3987
	ret = -EINVAL;
3988
	if (IS_ERR(cfile_css))
3989
		goto out_put_cfile;
3990 3991
	if (cfile_css != css) {
		css_put(cfile_css);
3992
		goto out_put_cfile;
3993
	}
3994

3995
	ret = event->register_event(memcg, event->eventfd, buf);
3996 3997 3998 3999 4000
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4001 4002 4003
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4004 4005 4006 4007

	fdput(cfile);
	fdput(efile);

4008
	return nbytes;
4009 4010

out_put_css:
4011
	css_put(css);
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4024
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4025
	{
4026
		.name = "usage_in_bytes",
4027
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4028
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4029
	},
4030 4031
	{
		.name = "max_usage_in_bytes",
4032
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4033
		.write = mem_cgroup_reset,
4034
		.read_u64 = mem_cgroup_read_u64,
4035
	},
B
Balbir Singh 已提交
4036
	{
4037
		.name = "limit_in_bytes",
4038
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4039
		.write = mem_cgroup_write,
4040
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4041
	},
4042 4043 4044
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4045
		.write = mem_cgroup_write,
4046
		.read_u64 = mem_cgroup_read_u64,
4047
	},
B
Balbir Singh 已提交
4048 4049
	{
		.name = "failcnt",
4050
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4051
		.write = mem_cgroup_reset,
4052
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4053
	},
4054 4055
	{
		.name = "stat",
4056
		.seq_show = memcg_stat_show,
4057
	},
4058 4059
	{
		.name = "force_empty",
4060
		.write = mem_cgroup_force_empty_write,
4061
	},
4062 4063 4064 4065 4066
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4067
	{
4068
		.name = "cgroup.event_control",		/* XXX: for compat */
4069
		.write = memcg_write_event_control,
4070
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4071
	},
K
KOSAKI Motohiro 已提交
4072 4073 4074 4075 4076
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4077 4078 4079 4080 4081
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4082 4083
	{
		.name = "oom_control",
4084
		.seq_show = mem_cgroup_oom_control_read,
4085
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4086 4087
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4088 4089 4090
	{
		.name = "pressure_level",
	},
4091 4092 4093
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4094
		.seq_show = memcg_numa_stat_show,
4095 4096
	},
#endif
4097
#ifdef CONFIG_MEMCG_LEGACY_KMEM
4098 4099 4100
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4101
		.write = mem_cgroup_write,
4102
		.read_u64 = mem_cgroup_read_u64,
4103 4104 4105 4106
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4107
		.read_u64 = mem_cgroup_read_u64,
4108 4109 4110 4111
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4112
		.write = mem_cgroup_reset,
4113
		.read_u64 = mem_cgroup_read_u64,
4114 4115 4116 4117
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4118
		.write = mem_cgroup_reset,
4119
		.read_u64 = mem_cgroup_read_u64,
4120
	},
4121 4122 4123
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4124 4125 4126 4127
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4128 4129
	},
#endif
V
Vladimir Davydov 已提交
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
#ifdef CONFIG_INET
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
#endif
4155
#endif
4156
	{ },	/* terminate */
4157
};
4158

4159
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4160 4161
{
	struct mem_cgroup_per_node *pn;
4162
	struct mem_cgroup_per_zone *mz;
4163
	int zone, tmp = node;
4164 4165 4166 4167 4168 4169 4170 4171
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4172 4173
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4174
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4175 4176
	if (!pn)
		return 1;
4177 4178 4179

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4180
		lruvec_init(&mz->lruvec);
4181 4182
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4183
		mz->memcg = memcg;
4184
	}
4185
	memcg->nodeinfo[node] = pn;
4186 4187 4188
	return 0;
}

4189
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4190
{
4191
	kfree(memcg->nodeinfo[node]);
4192 4193
}

4194 4195
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4196
	struct mem_cgroup *memcg;
4197
	size_t size;
4198

4199 4200
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4201

4202
	memcg = kzalloc(size, GFP_KERNEL);
4203
	if (!memcg)
4204 4205
		return NULL;

4206 4207
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4208
		goto out_free;
T
Tejun Heo 已提交
4209 4210 4211 4212

	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto out_free_stat;

4213
	return memcg;
4214

T
Tejun Heo 已提交
4215 4216
out_free_stat:
	free_percpu(memcg->stat);
4217
out_free:
4218
	kfree(memcg);
4219
	return NULL;
4220 4221
}

4222
/*
4223 4224 4225 4226 4227 4228 4229 4230
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4231
 */
4232 4233

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4234
{
4235
	int node;
4236

4237 4238
	cancel_work_sync(&memcg->high_work);

4239
	mem_cgroup_remove_from_trees(memcg);
4240 4241 4242 4243 4244

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);
T
Tejun Heo 已提交
4245
	memcg_wb_domain_exit(memcg);
4246
	kfree(memcg);
4247
}
4248

L
Li Zefan 已提交
4249
static struct cgroup_subsys_state * __ref
4250
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4251
{
4252
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4253
	long error = -ENOMEM;
4254
	int node;
B
Balbir Singh 已提交
4255

4256 4257
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4258
		return ERR_PTR(error);
4259

B
Bob Liu 已提交
4260
	for_each_node(node)
4261
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4262
			goto free_out;
4263

4264
	/* root ? */
4265
	if (parent_css == NULL) {
4266
		root_mem_cgroup = memcg;
4267
		page_counter_init(&memcg->memory, NULL);
4268
		memcg->high = PAGE_COUNTER_MAX;
4269
		memcg->soft_limit = PAGE_COUNTER_MAX;
4270 4271
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4272
	}
4273

4274
	INIT_WORK(&memcg->high_work, high_work_func);
4275 4276 4277 4278 4279
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4280
	vmpressure_init(&memcg->vmpressure);
4281 4282
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4283
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4284 4285
	memcg->kmemcg_id = -1;
#endif
4286 4287
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
4288 4289 4290
#endif
#ifdef CONFIG_INET
	memcg->socket_pressure = jiffies;
4291
#endif
4292 4293 4294 4295 4296 4297 4298 4299
	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4300
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4301
{
4302
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4303
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4304
	int ret;
4305

4306
	if (css->id > MEM_CGROUP_ID_MAX)
4307 4308
		return -ENOSPC;

T
Tejun Heo 已提交
4309
	if (!parent)
4310 4311
		return 0;

4312
	mutex_lock(&memcg_create_mutex);
4313 4314 4315 4316 4317 4318

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4319
		page_counter_init(&memcg->memory, &parent->memory);
4320
		memcg->high = PAGE_COUNTER_MAX;
4321
		memcg->soft_limit = PAGE_COUNTER_MAX;
4322 4323
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
V
Vladimir Davydov 已提交
4324 4325 4326 4327
#if defined(CONFIG_MEMCG_LEGACY_KMEM) && defined(CONFIG_INET)
		page_counter_init(&memcg->tcp_mem.memory_allocated,
				  &parent->tcp_mem.memory_allocated);
#endif
4328

4329
		/*
4330 4331
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4332
		 */
4333
	} else {
4334
		page_counter_init(&memcg->memory, NULL);
4335
		memcg->high = PAGE_COUNTER_MAX;
4336
		memcg->soft_limit = PAGE_COUNTER_MAX;
4337 4338
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
V
Vladimir Davydov 已提交
4339 4340 4341
#if defined(CONFIG_MEMCG_LEGACY_KMEM) && defined(CONFIG_INET)
		page_counter_init(&memcg->tcp_mem.memory_allocated, NULL);
#endif
4342 4343 4344 4345 4346
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4347
		if (parent != root_mem_cgroup)
4348
			memory_cgrp_subsys.broken_hierarchy = true;
4349
	}
4350
	mutex_unlock(&memcg_create_mutex);
4351

4352
	ret = memcg_propagate_kmem(memcg);
4353 4354
	if (ret)
		return ret;
4355

4356
#ifdef CONFIG_INET
4357
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4358
		static_branch_inc(&memcg_sockets_enabled_key);
4359 4360
#endif

4361 4362 4363 4364 4365 4366 4367 4368
	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4369 4370
}

4371
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4372
{
4373
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4374
	struct mem_cgroup_event *event, *tmp;
4375 4376 4377 4378 4379 4380

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4381 4382
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4383 4384 4385
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4386
	spin_unlock(&memcg->event_list_lock);
4387

4388
	vmpressure_cleanup(&memcg->vmpressure);
4389

4390
	memcg_offline_kmem(memcg);
4391 4392

	wb_memcg_offline(memcg);
4393 4394
}

4395 4396 4397 4398 4399 4400 4401
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4402
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4403
{
4404
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4405

4406 4407
#ifdef CONFIG_INET
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4408
		static_branch_dec(&memcg_sockets_enabled_key);
4409
#endif
4410 4411

	memcg_free_kmem(memcg);
4412

4413
#if defined(CONFIG_MEMCG_LEGACY_KMEM) && defined(CONFIG_INET)
V
Vladimir Davydov 已提交
4414 4415
	if (memcg->tcp_mem.active)
		static_branch_dec(&memcg_sockets_enabled_key);
4416 4417
#endif

4418
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4419 4420
}

4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4438 4439 4440
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4441 4442
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4443
	memcg->soft_limit = PAGE_COUNTER_MAX;
4444
	memcg_wb_domain_size_changed(memcg);
4445 4446
}

4447
#ifdef CONFIG_MMU
4448
/* Handlers for move charge at task migration. */
4449
static int mem_cgroup_do_precharge(unsigned long count)
4450
{
4451
	int ret;
4452

4453 4454
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4455
	if (!ret) {
4456 4457 4458
		mc.precharge += count;
		return ret;
	}
4459 4460

	/* Try charges one by one with reclaim */
4461
	while (count--) {
4462
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4463 4464
		if (ret)
			return ret;
4465
		mc.precharge++;
4466
		cond_resched();
4467
	}
4468
	return 0;
4469 4470 4471
}

/**
4472
 * get_mctgt_type - get target type of moving charge
4473 4474 4475
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4476
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4477 4478 4479 4480 4481 4482
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4483 4484 4485
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4486 4487 4488 4489 4490
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4491
	swp_entry_t	ent;
4492 4493 4494
};

enum mc_target_type {
4495
	MC_TARGET_NONE = 0,
4496
	MC_TARGET_PAGE,
4497
	MC_TARGET_SWAP,
4498 4499
};

D
Daisuke Nishimura 已提交
4500 4501
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4502
{
D
Daisuke Nishimura 已提交
4503
	struct page *page = vm_normal_page(vma, addr, ptent);
4504

D
Daisuke Nishimura 已提交
4505 4506 4507
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4508
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4509
			return NULL;
4510 4511 4512 4513
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4514 4515 4516 4517 4518 4519
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4520
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4521 4522 4523 4524 4525 4526
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4527
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4528
		return NULL;
4529 4530 4531 4532
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4533
	page = find_get_page(swap_address_space(ent), ent.val);
4534
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4535 4536 4537 4538
		entry->val = ent.val;

	return page;
}
4539 4540 4541 4542 4543 4544 4545
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4546

4547 4548 4549 4550 4551 4552 4553 4554 4555
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4556
	if (!(mc.flags & MOVE_FILE))
4557 4558 4559
		return NULL;

	mapping = vma->vm_file->f_mapping;
4560
	pgoff = linear_page_index(vma, addr);
4561 4562

	/* page is moved even if it's not RSS of this task(page-faulted). */
4563 4564
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4565 4566 4567 4568
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4569
			if (do_memsw_account())
4570 4571 4572 4573 4574 4575 4576
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4577
#endif
4578 4579 4580
	return page;
}

4581 4582 4583 4584 4585 4586 4587
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4588
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4589 4590 4591 4592 4593
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4594
				   bool compound,
4595 4596 4597 4598
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4599
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4600
	int ret;
4601
	bool anon;
4602 4603 4604

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4605
	VM_BUG_ON(compound && !PageTransHuge(page));
4606 4607

	/*
4608 4609
	 * Prevent mem_cgroup_replace_page() from looking at
	 * page->mem_cgroup of its source page while we change it.
4610
	 */
4611
	ret = -EBUSY;
4612 4613 4614 4615 4616 4617 4618
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4619 4620
	anon = PageAnon(page);

4621 4622
	spin_lock_irqsave(&from->move_lock, flags);

4623
	if (!anon && page_mapped(page)) {
4624 4625 4626 4627 4628 4629
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4666
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4667
	memcg_check_events(to, page);
4668
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4669 4670 4671 4672 4673 4674 4675 4676
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4677
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4678 4679 4680
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4681
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4682 4683 4684 4685 4686 4687
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4688
	else if (pte_none(ptent))
4689
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4690 4691

	if (!page && !ent.val)
4692
		return ret;
4693 4694
	if (page) {
		/*
4695
		 * Do only loose check w/o serialization.
4696
		 * mem_cgroup_move_account() checks the page is valid or
4697
		 * not under LRU exclusion.
4698
		 */
4699
		if (page->mem_cgroup == mc.from) {
4700 4701 4702 4703 4704 4705 4706
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4707 4708
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4709
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4710 4711 4712
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4713 4714 4715 4716
	}
	return ret;
}

4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4730
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4731
	if (!(mc.flags & MOVE_ANON))
4732
		return ret;
4733
	if (page->mem_cgroup == mc.from) {
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4750 4751 4752 4753
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4754
	struct vm_area_struct *vma = walk->vma;
4755 4756 4757
	pte_t *pte;
	spinlock_t *ptl;

4758
	if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4759 4760
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4761
		spin_unlock(ptl);
4762
		return 0;
4763
	}
4764

4765 4766
	if (pmd_trans_unstable(pmd))
		return 0;
4767 4768
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4769
		if (get_mctgt_type(vma, addr, *pte, NULL))
4770 4771 4772 4773
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4774 4775 4776
	return 0;
}

4777 4778 4779 4780
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4781 4782 4783 4784
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4785
	down_read(&mm->mmap_sem);
4786
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4787
	up_read(&mm->mmap_sem);
4788 4789 4790 4791 4792 4793 4794 4795 4796

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4797 4798 4799 4800 4801
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4802 4803
}

4804 4805
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4806
{
4807 4808 4809
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4810
	/* we must uncharge all the leftover precharges from mc.to */
4811
	if (mc.precharge) {
4812
		cancel_charge(mc.to, mc.precharge);
4813 4814 4815 4816 4817 4818 4819
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4820
		cancel_charge(mc.from, mc.moved_charge);
4821
		mc.moved_charge = 0;
4822
	}
4823 4824 4825
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4826
		if (!mem_cgroup_is_root(mc.from))
4827
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4828

4829
		/*
4830 4831
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4832
		 */
4833
		if (!mem_cgroup_is_root(mc.to))
4834 4835
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4836
		css_put_many(&mc.from->css, mc.moved_swap);
4837

L
Li Zefan 已提交
4838
		/* we've already done css_get(mc.to) */
4839 4840
		mc.moved_swap = 0;
	}
4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4854
	spin_lock(&mc.lock);
4855 4856
	mc.from = NULL;
	mc.to = NULL;
4857
	spin_unlock(&mc.lock);
4858 4859
}

4860
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4861
{
4862
	struct cgroup_subsys_state *css;
4863
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4864
	struct mem_cgroup *from;
4865
	struct task_struct *leader, *p;
4866
	struct mm_struct *mm;
4867
	unsigned long move_flags;
4868
	int ret = 0;
4869

4870 4871
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4872 4873
		return 0;

4874 4875 4876 4877 4878 4879 4880
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4881
	cgroup_taskset_for_each_leader(leader, css, tset) {
4882 4883
		WARN_ON_ONCE(p);
		p = leader;
4884
		memcg = mem_cgroup_from_css(css);
4885 4886 4887 4888
	}
	if (!p)
		return 0;

4889 4890 4891 4892 4893 4894 4895 4896 4897
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4923
	}
4924
	mmput(mm);
4925 4926 4927
	return ret;
}

4928
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4929
{
4930 4931
	if (mc.to)
		mem_cgroup_clear_mc();
4932 4933
}

4934 4935 4936
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4937
{
4938
	int ret = 0;
4939
	struct vm_area_struct *vma = walk->vma;
4940 4941
	pte_t *pte;
	spinlock_t *ptl;
4942 4943 4944
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4945

4946
	if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4947
		if (mc.precharge < HPAGE_PMD_NR) {
4948
			spin_unlock(ptl);
4949 4950 4951 4952 4953 4954
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4955
				if (!mem_cgroup_move_account(page, true,
4956
							     mc.from, mc.to)) {
4957 4958 4959 4960 4961 4962 4963
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4964
		spin_unlock(ptl);
4965
		return 0;
4966 4967
	}

4968 4969
	if (pmd_trans_unstable(pmd))
		return 0;
4970 4971 4972 4973
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4974
		swp_entry_t ent;
4975 4976 4977 4978

		if (!mc.precharge)
			break;

4979
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4980 4981
		case MC_TARGET_PAGE:
			page = target.page;
4982 4983 4984 4985 4986 4987 4988 4989
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4990 4991
			if (isolate_lru_page(page))
				goto put;
4992 4993
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4994
				mc.precharge--;
4995 4996
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4997 4998
			}
			putback_lru_page(page);
4999
put:			/* get_mctgt_type() gets the page */
5000 5001
			put_page(page);
			break;
5002 5003
		case MC_TARGET_SWAP:
			ent = target.ent;
5004
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5005
				mc.precharge--;
5006 5007 5008
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5009
			break;
5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5024
		ret = mem_cgroup_do_precharge(1);
5025 5026 5027 5028 5029 5030 5031 5032 5033
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
5034 5035 5036 5037
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
5038 5039

	lru_add_drain_all();
5040 5041 5042 5043 5044 5045 5046
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5060 5061 5062 5063 5064
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5065
	up_read(&mm->mmap_sem);
5066
	atomic_dec(&mc.from->moving_account);
5067 5068
}

5069
static void mem_cgroup_move_task(struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5070
{
5071 5072
	struct cgroup_subsys_state *css;
	struct task_struct *p = cgroup_taskset_first(tset, &css);
5073
	struct mm_struct *mm = get_task_mm(p);
5074 5075

	if (mm) {
5076 5077
		if (mc.to)
			mem_cgroup_move_charge(mm);
5078 5079
		mmput(mm);
	}
5080 5081
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5082
}
5083
#else	/* !CONFIG_MMU */
5084
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5085 5086 5087
{
	return 0;
}
5088
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5089 5090
{
}
5091
static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5092 5093 5094
{
}
#endif
B
Balbir Singh 已提交
5095

5096 5097
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5098 5099
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5100
 */
5101
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5102 5103
{
	/*
5104
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5105 5106 5107
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5108
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5109 5110 5111
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5112 5113
}

5114 5115 5116
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5117 5118 5119
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5120 5121 5122 5123 5124
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5125
	unsigned long low = READ_ONCE(memcg->low);
5126 5127

	if (low == PAGE_COUNTER_MAX)
5128
		seq_puts(m, "max\n");
5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5143
	err = page_counter_memparse(buf, "max", &low);
5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5155
	unsigned long high = READ_ONCE(memcg->high);
5156 5157

	if (high == PAGE_COUNTER_MAX)
5158
		seq_puts(m, "max\n");
5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
5173
	err = page_counter_memparse(buf, "max", &high);
5174 5175 5176 5177 5178
	if (err)
		return err;

	memcg->high = high;

5179
	memcg_wb_domain_size_changed(memcg);
5180 5181 5182 5183 5184 5185
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5186
	unsigned long max = READ_ONCE(memcg->memory.limit);
5187 5188

	if (max == PAGE_COUNTER_MAX)
5189
		seq_puts(m, "max\n");
5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
5204
	err = page_counter_memparse(buf, "max", &max);
5205 5206 5207 5208 5209 5210 5211
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

5212
	memcg_wb_domain_size_changed(memcg);
5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
5231
		.flags = CFTYPE_NOT_ON_ROOT,
5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5255
		.file_offset = offsetof(struct mem_cgroup, events_file),
5256 5257 5258 5259 5260
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5261
struct cgroup_subsys memory_cgrp_subsys = {
5262
	.css_alloc = mem_cgroup_css_alloc,
5263
	.css_online = mem_cgroup_css_online,
5264
	.css_offline = mem_cgroup_css_offline,
5265
	.css_released = mem_cgroup_css_released,
5266
	.css_free = mem_cgroup_css_free,
5267
	.css_reset = mem_cgroup_css_reset,
5268 5269
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5270
	.attach = mem_cgroup_move_task,
5271
	.bind = mem_cgroup_bind,
5272 5273
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5274
	.early_init = 0,
B
Balbir Singh 已提交
5275
};
5276

5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5299
	if (page_counter_read(&memcg->memory) >= memcg->low)
5300 5301 5302 5303 5304 5305 5306 5307
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5308
		if (page_counter_read(&memcg->memory) >= memcg->low)
5309 5310 5311 5312 5313
			return false;
	}
	return true;
}

5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5332 5333
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5334 5335
{
	struct mem_cgroup *memcg = NULL;
5336
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5350
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5351
		if (page->mem_cgroup)
5352
			goto out;
5353

5354
		if (do_memsw_account()) {
5355 5356 5357 5358 5359 5360 5361 5362 5363
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5394
			      bool lrucare, bool compound)
5395
{
5396
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5411 5412 5413
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5414
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5415 5416
	memcg_check_events(memcg, page);
	local_irq_enable();
5417

5418
	if (do_memsw_account() && PageSwapCache(page)) {
5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5436 5437
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5438
{
5439
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5454 5455 5456 5457
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5458
	unsigned long nr_pages = nr_anon + nr_file;
5459 5460
	unsigned long flags;

5461
	if (!mem_cgroup_is_root(memcg)) {
5462
		page_counter_uncharge(&memcg->memory, nr_pages);
5463
		if (do_memsw_account())
5464
			page_counter_uncharge(&memcg->memsw, nr_pages);
5465 5466
		memcg_oom_recover(memcg);
	}
5467 5468 5469 5470 5471 5472

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5473
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5474 5475
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5476 5477

	if (!mem_cgroup_is_root(memcg))
5478
		css_put_many(&memcg->css, nr_pages);
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5501
		if (!page->mem_cgroup)
5502 5503 5504 5505
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5506
		 * page->mem_cgroup at this point, we have fully
5507
		 * exclusive access to the page.
5508 5509
		 */

5510
		if (memcg != page->mem_cgroup) {
5511
			if (memcg) {
5512 5513 5514
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5515
			}
5516
			memcg = page->mem_cgroup;
5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5530
		page->mem_cgroup = NULL;
5531 5532 5533 5534 5535

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5536 5537
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5538 5539
}

5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5552
	/* Don't touch page->lru of any random page, pre-check: */
5553
	if (!page->mem_cgroup)
5554 5555
		return;

5556 5557 5558
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5559

5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5571

5572 5573
	if (!list_empty(page_list))
		uncharge_list(page_list);
5574 5575 5576
}

/**
5577
 * mem_cgroup_replace_page - migrate a charge to another page
5578 5579 5580 5581 5582 5583
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
5584
 * Either or both pages might be on the LRU already.
5585
 */
5586
void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5587
{
5588
	struct mem_cgroup *memcg;
5589 5590 5591 5592 5593
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5594 5595
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5596 5597 5598 5599 5600

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5601
	if (newpage->mem_cgroup)
5602 5603
		return;

5604
	/* Swapcache readahead pages can get replaced before being charged */
5605
	memcg = oldpage->mem_cgroup;
5606
	if (!memcg)
5607 5608
		return;

5609
	lock_page_lru(oldpage, &isolated);
5610
	oldpage->mem_cgroup = NULL;
5611
	unlock_page_lru(oldpage, isolated);
5612

5613
	commit_charge(newpage, memcg, true);
5614 5615
}

5616
#ifdef CONFIG_INET
5617

5618
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
EXPORT_SYMBOL(memcg_sockets_enabled_key);

void sock_update_memcg(struct sock *sk)
{
	struct mem_cgroup *memcg;

	/* Socket cloning can throw us here with sk_cgrp already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5641 5642
	if (memcg == root_mem_cgroup)
		goto out;
5643
#ifdef CONFIG_MEMCG_LEGACY_KMEM
5644 5645 5646 5647
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcp_mem.active)
		goto out;
#endif
	if (css_tryget_online(&memcg->css))
5648
		sk->sk_memcg = memcg;
5649
out:
5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669
	rcu_read_unlock();
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	WARN_ON(!sk->sk_memcg);
	css_put(&sk->sk_memcg->css);
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5670
	gfp_t gfp_mask = GFP_KERNEL;
5671

5672
#ifdef CONFIG_MEMCG_LEGACY_KMEM
5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		struct page_counter *counter;

		if (page_counter_try_charge(&memcg->tcp_mem.memory_allocated,
					    nr_pages, &counter)) {
			memcg->tcp_mem.memory_pressure = 0;
			return true;
		}
		page_counter_charge(&memcg->tcp_mem.memory_allocated, nr_pages);
		memcg->tcp_mem.memory_pressure = 1;
		return false;
5684
	}
5685 5686 5687 5688 5689 5690 5691 5692 5693
#endif
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5694 5695 5696 5697 5698 5699 5700 5701 5702 5703
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5704
#ifdef CONFIG_MEMCG_LEGACY_KMEM
5705 5706 5707 5708 5709 5710 5711 5712
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		page_counter_uncharge(&memcg->tcp_mem.memory_allocated,
				      nr_pages);
		return;
	}
#endif
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5713 5714
}

5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725
#endif /* CONFIG_INET */

static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5726 5727
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5728 5729 5730 5731
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5732

5733
/*
5734 5735 5736 5737 5738 5739
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5740 5741 5742
 */
static int __init mem_cgroup_init(void)
{
5743 5744
	int cpu, node;

5745
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5768 5769 5770
	return 0;
}
subsys_initcall(mem_cgroup_init);
5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5788
	if (!do_memsw_account())
5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5806 5807 5808 5809 5810 5811 5812
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5813
	mem_cgroup_charge_statistics(memcg, page, false, -1);
5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827
	memcg_check_events(memcg, page);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5828
	if (!do_memsw_account())
5829 5830 5831 5832
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5833
	memcg = mem_cgroup_from_id(id);
5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898
	if (memcg) {
		if (!mem_cgroup_is_root(memcg))
			page_counter_uncharge(&memcg->memsw, 1);
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */