pybind.cc 185.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23 24
#include <mutex>  // NOLINT // for call_once
#include <string>
25 26
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
27
#include <unordered_map>
28
#include <unordered_set>
C
chengduoZH 已提交
29 30
#include <utility>
#include <vector>
31

32
#include "paddle/fluid/framework/convert_utils.h"
33
#include "paddle/fluid/framework/custom_operator.h"
34
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
35
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/executor.h"
37
#include "paddle/fluid/framework/executor_cache.h"
38
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
40
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
42
#include "paddle/fluid/framework/io/fs.h"
43
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
44
#include "paddle/fluid/framework/ir/cost_model.h"
45
#include "paddle/fluid/framework/ir/generate_pass.h"
46
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
49
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
50
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
51
#include "paddle/fluid/framework/op_info.h"
52
#include "paddle/fluid/framework/op_registry.h"
53
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
54
#include "paddle/fluid/framework/parallel_executor.h"
55
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
57
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
58
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
59
#include "paddle/fluid/framework/scope_pool.h"
60
#include "paddle/fluid/framework/selected_rows_utils.h"
61
#include "paddle/fluid/framework/tensor_util.h"
62
#include "paddle/fluid/framework/trainer.h"
63
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
64
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
65
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
66
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
67
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
68 69 70
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
71
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
72
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
73
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
74
#include "paddle/fluid/operators/py_func_op.h"
75
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
76
#include "paddle/fluid/platform/cpu_info.h"
77
#include "paddle/fluid/platform/device/device_wrapper.h"
78
#include "paddle/fluid/platform/device_context.h"
79
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
80
#include "paddle/fluid/platform/enforce.h"
81
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
82
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
83 84
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
85 86 87
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
88
#include "paddle/fluid/pybind/cuda_streams_py.h"
89
#include "paddle/fluid/pybind/distributed_py.h"
90
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
91
#include "paddle/fluid/pybind/imperative.h"
92
#include "paddle/fluid/pybind/io.h"
93 94
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
95
#include "paddle/utils/none.h"
96 97 98
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
99
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
100
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
101
#include "paddle/fluid/pybind/box_helper_py.h"
102
#include "paddle/fluid/pybind/communication.h"
103
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
104
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
105
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
106
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
107
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
108
#include "paddle/fluid/pybind/generator_py.h"
109
#include "paddle/fluid/pybind/global_value_getter_setter.h"
110
#include "paddle/fluid/pybind/gloo_context_py.h"
111
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
112
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
113
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
114
#include "paddle/fluid/pybind/ir.h"
115
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
116
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
117
#include "paddle/fluid/pybind/pybind_boost_headers.h"
118
#include "paddle/phi/backends/device_manager.h"
119

120
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
121
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
122
#endif
123
#include "paddle/fluid/framework/data_type.h"
124 125
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
126
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
127
#include "paddle/fluid/pybind/tensor_py.h"
128
#include "paddle/fluid/string/to_string.h"
129 130
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
131
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
132
#endif
133
#ifndef PADDLE_WITH_HIP
134
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
135
#endif
136
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
137 138
#endif

139
#ifdef PADDLE_WITH_ASCEND_CL
140
#include "paddle/fluid/platform/collective_helper.h"
141 142
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
143 144
#endif

145
#ifdef PADDLE_WITH_XPU
146
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
147
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
148 149
#endif

150
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
151

J
jianghaicheng 已提交
152
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
153 154
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
155
#endif
156

157 158 159 160
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
161 162 163 164
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
165
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
166 167 168
#include "paddle/fluid/pybind/fleet_py.h"
#endif

169
#include "paddle/fluid/eager/api/utils/global_utils.h"
170
#include "paddle/fluid/imperative/layout_autotune.h"
171 172
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
173 174
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
175 176
#include "pybind11/stl.h"

177
DECLARE_bool(use_mkldnn);
178

Q
Qiao Longfei 已提交
179 180
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
181 182 183
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
184

185
namespace paddle {
186
namespace pybind {
187 188

PyTypeObject *g_place_pytype = nullptr;
0
0x45f 已提交
189
PyTypeObject *g_framework_scope_pytype = nullptr;
190 191 192 193 194
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;
195
PyTypeObject *g_mluplace_pytype = nullptr;
196
PyTypeObject *g_customplace_pytype = nullptr;
197
PyTypeObject *g_framework_tensor_pytype = nullptr;
198
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
199
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
200

201
bool IsCompiledWithCUDA() {
202 203 204 205 206 207 208
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

209 210 211 212 213 214 215 216
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

217 218
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
219 220 221 222 223 224
  return false;
#else
  return true;
#endif
}

225 226 227 228 229 230 231 232
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

233 234 235 236 237 238 239 240
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

241 242 243 244 245 246 247 248
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
249 250 251 252 253 254 255 256
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

257 258 259 260 261 262 263 264
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

265 266 267 268 269 270 271 272
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

273 274 275 276 277 278 279 280
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

281 282 283 284 285 286 287 288
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

289 290 291 292 293 294 295 296 297 298 299
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

300 301 302 303 304 305 306 307 308 309 310
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

328
bool IsCompiledWithBrpc() {
329
#ifndef PADDLE_WITH_DISTRIBUTE
330 331
  return false;
#endif
332
  return true;
333 334
}

Y
update  
Yancey1989 已提交
335
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
336
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
337 338 339 340 341 342
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
343 344 345 346 347 348 349
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
350
  return static_cast<int>(paddle::platform::Place(p).GetType());
S
sneaxiy 已提交
351 352
}

H
hong 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
375 376 377
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
391 392
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
393 394
    }
    vec_res.emplace_back(
395
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
396 397 398 399 400 401 402 403 404 405 406 407
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
408 409
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
410 411 412 413 414 415 416 417 418 419 420 421
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
422 423 424
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
425 426 427 428
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
429 430
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
431 432 433 434
  }
  return vec_res;
}

435 436 437 438 439 440 441 442
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
443 444
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
445 446 447 448 449 450 451 452 453 454 455 456 457
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
458 459 460
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
461 462 463 464 465
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
466 467 468 469 470
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
471 472
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
473 474 475
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
476 477 478 479
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
480
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
481 482
        tensor_temp->mutable_data(
            exe->GetPlace(),
483
            framework::TransToPhiDataType(var_desc.GetDataType()));
484 485 486
      }
    }
  } else {
487 488
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
489 490 491 492 493
  }

  return;
}

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
518 519 520 521
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
522
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
523 524 525 526 527 528 529 530
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
531 532 533 534 535 536 537 538 539 540 541
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

542 543 544 545 546 547
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

J
Jiabin Yang 已提交
548
  BindImperative(&m);
549
  BindEager(&m);
J
Jack Zhou 已提交
550
  BindEagerStringTensor(&m);
551 552
  BindCudaStream(&m);

Y
Yu Yang 已提交
553 554 555
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
556
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
557

558 559
  AssertStaticGraphAndDygraphGradMakerNoDiff();

560
  m.doc() = "C++ core of PaddlePaddle";
561

562 563 564 565
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

566
  BindException(&m);
Y
Yu Yang 已提交
567

568 569
  m.def("set_num_threads", &platform::SetNumThreads);

570 571
  m.def("disable_signal_handler", &DisableSignalHandler);

572 573 574 575 576 577 578 579
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

580
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
581
  m.def("cudnn_version", &platform::DnnVersion);
582 583 584 585 586 587
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
588
#endif
589

Z
Zeng Jinle 已提交
590 591 592 593
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

594 595 596 597 598 599 600 601 602 603
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
604 605
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
606 607
#endif

Z
Zeng Jinle 已提交
608 609 610 611
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
612 613 614
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
615 616 617 618 619 620

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
621 622
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
623
    framework::Tensor tensor;
6
633WHU 已提交
624

S
Siming Dai 已提交
625
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
626 627
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
628
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
629
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
630 631 632 633 634
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
635

636 637 638 639 640 641
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

642 643 644 645 646 647
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
648 649
  });

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
675 676
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
677 678
    return phi::vectorize(operators::details::BroadcastTwoDims(
        phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
L
Leo Chen 已提交
679 680
  });

S
sneaxiy 已提交
681
  m.def(
S
sneaxiy 已提交
682
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
683 684 685 686
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
687 688 689
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
  m.def("_get_all_register_op_kernels",
        [](const std::string &lib) {
          std::unordered_map<std::string, std::vector<std::string>>
              all_kernels_info;
          if (lib == "fluid" || lib == "all") {
            auto &all_kernels =
                paddle::framework::OperatorWithKernel::AllOpKernels();

            for (auto &kernel_pair : all_kernels) {
              auto op_type = kernel_pair.first;
              std::vector<std::string> kernel_types;
              for (auto &info_pair : kernel_pair.second) {
                paddle::framework::OpKernelType kernel_type = info_pair.first;
                kernel_types.emplace_back(
                    paddle::framework::KernelTypeToString(kernel_type));
              }
              all_kernels_info.emplace(op_type, kernel_types);
707 708
            }
          }
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
          if (lib == "phi" || lib == "all") {
            auto phi_kernels = phi::KernelFactory::Instance().kernels();
            for (auto &kernel_pair : phi_kernels) {
              auto op_type = phi::TransToFluidOpName(kernel_pair.first);
              std::vector<std::string> kernel_types;
              for (auto &info_pair : kernel_pair.second) {
                framework::OpKernelType kernel_type =
                    framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
                auto kernel_type_str =
                    framework::KernelTypeToString(kernel_type);
                if (all_kernels_info.count(op_type)) {
                  if (std::find(all_kernels_info[op_type].begin(),
                                all_kernels_info[op_type].end(),
                                kernel_type_str) ==
                      all_kernels_info[op_type].end()) {
                    all_kernels_info[op_type].emplace_back(kernel_type_str);
                  }
                } else {
                  kernel_types.emplace_back(kernel_type_str);
728 729
                }
              }
730 731 732
              if (!kernel_types.empty()) {
                all_kernels_info.emplace(op_type, kernel_types);
              }
733 734 735
            }
          }

736 737 738 739
          return all_kernels_info;
        },
        py::arg("lib") = "all",
        R"DOC(
740 741 742
           Return the registered kernels in paddle.

           Args:
743
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
744
           )DOC");
745

746 747 748 749 750 751
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
752 753 754 755 756
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
757

S
sneaxiy 已提交
758 759 760
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
761
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
762

763
  m.def("_set_fuse_parameter_group_size",
764
        &paddle::framework::ir::SetFuseParameterGroupsSize);
765
  m.def("_set_fuse_parameter_memory_size",
766
        &paddle::framework::ir::SetFuseParameterMemorySize);
767

S
sneaxiy 已提交
768 769 770
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

771 772
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

773 774 775
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_attr", [](paddle::CustomOpKernelContext &self,
                          bool attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr", [](paddle::CustomOpKernelContext &self,
                          int attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr", [](paddle::CustomOpKernelContext &self,
                          float attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr", [](paddle::CustomOpKernelContext &self,
                          int64_t attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr", [](paddle::CustomOpKernelContext &self,
                          const std::vector<std::string> &attr) {
        self.EmplaceBackAttr(attr);
      });

827 828 829 830 831
  py::class_<framework::Tensor> framework_tensor(m, "Tensor",
                                                 py::buffer_protocol());
  g_framework_tensor_pytype =
      reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
  framework_tensor
832 833
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
834 835 836 837
      .def("_ptr",
           [](const framework::Tensor &self) {
             return reinterpret_cast<uintptr_t>(self.data());
           })
J
Jiabin Yang 已提交
838 839
      .def("_slice", &framework::Tensor::Slice)
      .def("_numel", &framework::Tensor::numel)
S
sneaxiy 已提交
840
      .def("_is_initialized",
841
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
842
      .def("_get_dims",
843
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
844
      .def("_set_dims",
845
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
846
             self.Resize(phi::make_ddim(dim));
Y
Yu Yang 已提交
847
           })
Y
yuyang18 已提交
848
      .def("_set_layout",
849
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
850 851
             self.set_layout(StringToDataLayout(layout));
           })
R
ronnywang 已提交
852 853 854 855
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::CustomPlace &place) {
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
856
      .def("_alloc_float",
857
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
858
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
859
           })
860
      .def("_alloc_float",
861
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
862 863
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
864
      .def("_alloc_float",
865
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
866
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
867
           })
868 869 870 871
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
872 873 874 875
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<float>(place);
           })
876
      .def("_alloc_double",
877
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
878 879
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
880
      .def("_alloc_int",
881
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
882
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
883
           })
R
ronnywang 已提交
884 885 886 887
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::CustomPlace &place) {
             self.mutable_data<int>(place);
           })
888
      .def("_alloc_int",
889
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
890 891
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
892
      .def("_alloc_int",
893
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
894
             self.mutable_data<int>(place);
Q
qijun 已提交
895
           })
896 897 898 899
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
900
      .def("_alloc_int",
901 902
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
903 904
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
905
      .def("_alloc_float",
906 907
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
908 909
             self.mutable_data<float>(place);
           })
910
      .def("_mutable_data",
911
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
912
              paddle::framework::proto::VarType::Type type) {
913 914
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
915
           })
R
ronnywang 已提交
916 917 918 919 920 921
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::CustomPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
           })
922
      .def("_mutable_data",
923
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
924
              paddle::framework::proto::VarType::Type type) {
925 926
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
927
           })
928
      .def("_mutable_data",
929
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
930
              paddle::framework::proto::VarType::Type type) {
931 932
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
933 934
           })
      .def("_mutable_data",
935
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
936
              paddle::framework::proto::VarType::Type type) {
937 938
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
939
           })
940 941 942
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place,
              paddle::framework::proto::VarType::Type type) {
943 944
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
945
           })
946
      .def("_clear", &framework::Tensor::clear)
947 948 949
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
950 951
             return reinterpret_cast<uintptr_t>(
                 self.mutable_data(place, framework::TransToPhiDataType(type)));
952
           })
Z
Zeng Jinle 已提交
953 954
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
R
ronnywang 已提交
955 956
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CustomPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
957 958 959 960 961 962 963 964
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
965 966
      .def("_copy_from", &TensorCopyFrom<paddle::platform::MLUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
967
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
968
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
969
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
970
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
R
ronnywang 已提交
971 972
      .def("set", SetTensorFromPyArray<paddle::platform::CustomPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
973 974
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
975
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
976
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
977 978
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
J
jianghaicheng 已提交
979 980
      .def("set", SetTensorFromPyArray<paddle::platform::IPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
981 982
      .def("set", SetTensorFromPyArray<paddle::platform::MLUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
983
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
984 985
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
986
        Set the data of Tensor on place with given numpy array.
L
Leo Chen 已提交
987 988 989
        
        Args:
          lod (numpy.ndarray): The data to set.
990
          place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace|NPUPlace|MLUPlace): The place where the
991
          Tensor is to be set.
992 993
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
994 995 996 997 998 999 1000 1001 1002 1003

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1004
                t = fluid.Tensor()
L
Leo Chen 已提交
1005 1006
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
1007

1008 1009 1010
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
1011
           Return the shape of Tensor.
L
Leo Chen 已提交
1012 1013

           Returns:
1014
               list[int]: The shape of Tensor.
L
Leo Chen 已提交
1015 1016 1017 1018 1019 1020 1021 1022


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

1023
                  t = fluid.Tensor()
L
Leo Chen 已提交
1024 1025 1026
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
1027
      .def("_to_dlpack",
1028
           [](framework::Tensor &self) {
6
633WHU 已提交
1029
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
1030
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
1048 1049 1050 1051
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
1052
      .def("_place", [](framework::Tensor &self) { return self.place(); })
1053 1054 1055 1056
      .def("_dtype",
           [](framework::Tensor &self) {
             return framework::TransToProtoVarType(self.type());
           })
1057
      .def("_layout",
1058 1059 1060 1061
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
1062
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
      .def("__str__",
           [](const framework::Tensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           }) /* ------ End of original Tensor ------ */
      .def(
          "__init__",
          [](framework::Tensor &instance, const std::vector<std::vector<size_t>>
                                              &recursive_sequence_lengths) {
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_offset_lod, -1), true,
                platform::errors::InvalidArgument(
1082 1083
                    "The provided recursive_sequence_lengths info is "
                    "invalid, "
1084 1085 1086 1087
                    "the LoD converted by recursive_sequence_lengths is %s",
                    new_lod));
            new (&instance) framework::Tensor(new_offset_lod);
          })
1088
      .def("__init__",
1089 1090
           [](framework::Tensor &instance) {
             new (&instance) framework::Tensor();
1091
           })
G
gongweibao 已提交
1092
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
1093 1094
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
1095 1096 1097
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
1098
      .def("set_lod",
1099 1100
           [](framework::Tensor &self,
              const std::vector<std::vector<size_t>> &lod) {
1101
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
1102
             LoD new_lod;
1103 1104
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
1105 1106
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
1107 1108
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
1109
             self.set_lod(new_lod);
S
sneaxiy 已提交
1110 1111
           },
           py::arg("lod"), R"DOC(
1112
           Set LoD of the Tensor.
S
sneaxiy 已提交
1113 1114

           Args:
L
Leo Chen 已提交
1115 1116 1117 1118
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1119 1120 1121 1122 1123 1124 1125

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1126
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1127 1128
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1129
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1130
           )DOC")
1131
      .def("set_recursive_sequence_lengths",
1132 1133
           [](framework::Tensor &self, const std::vector<std::vector<size_t>>
                                           &recursive_sequence_lengths) {
1134 1135 1136 1137 1138 1139 1140 1141
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1142 1143
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1144
                 platform::errors::InvalidArgument(
1145 1146
                     "The provided recursive_sequence_lengths info is "
                     "invalid, "
1147 1148 1149
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1150
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1151 1152
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
1153
           Set LoD of the Tensor according to recursive sequence lengths.
S
sneaxiy 已提交
1154

L
Leo Chen 已提交
1155
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1156
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1157
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1158 1159

           Args:
L
Leo Chen 已提交
1160 1161 1162 1163
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1164 1165 1166 1167 1168 1169 1170

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1171
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1172 1173
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
1174
                 print(t.recursive_sequence_lengths())  # [[2, 3]]
L
Leo Chen 已提交
1175
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1176
           )DOC")
1177
      .def("lod",
1178
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1179 1180 1181 1182 1183 1184
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1185 1186
           },
           R"DOC(
1187
           Return the LoD of the Tensor.
S
sneaxiy 已提交
1188 1189

           Returns:
1190
               list[list[int]]: The lod of the Tensor.
L
Leo Chen 已提交
1191
           
Z
Zeng Jinle 已提交
1192 1193 1194 1195 1196 1197
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1198
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1199 1200 1201
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1202
           )DOC")
G
gongweibao 已提交
1203
      // Set above comments of set_lod.
1204
      .def("recursive_sequence_lengths",
1205
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1206
             // output the length-based lod info
1207
             LoD lod = phi::ConvertToLengthBasedLoD(self.lod());
1208 1209 1210 1211
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1212 1213
           },
           R"DOC(
L
Leo Chen 已提交
1214
           Return the recursive sequence lengths corresponding to of the LodD 
1215
           of the Tensor.
S
sneaxiy 已提交
1216 1217

           Returns:
L
Leo Chen 已提交
1218
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1219 1220 1221 1222 1223 1224 1225

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1226
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1227 1228 1229
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1230 1231
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
1232
           [](framework::Tensor &self) -> bool {
S
sneaxiy 已提交
1233
             // Check that the lod info is valid and match the outermost
1234
             // dimension of the Tensor data
S
sneaxiy 已提交
1235 1236 1237
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
1238
           Check whether the LoD of the Tensor is valid.
S
sneaxiy 已提交
1239 1240

           Returns:
L
Leo Chen 已提交
1241
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1242 1243 1244 1245 1246 1247 1248

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1249
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1250 1251 1252
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1253
           )DOC")
L
Leo Chen 已提交
1254
      .def("_as_type",
1255
           [](const framework::Tensor &self,
L
Leo Chen 已提交
1256
              paddle::framework::proto::VarType::Type type) {
1257
             framework::Tensor dst;
L
Leo Chen 已提交
1258 1259 1260 1261 1262
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
      .def("_copy",
           [](const framework::Tensor &self, const platform::Place &place) {
             // follow fetch_op's inplementation
             framework::Tensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TensorCopySync(self, place, &dst);
             } else {
               // Not copy, if the src tensor is empty.
               dst.clear();
               dst.Resize({0});
             }
             dst.set_lod(self.lod());
             return dst;
1276
#ifdef _WIN32
1277
           });
1278 1279
#else
           })
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
#ifdef PADDLE_WITH_CUDA
      .def("_share_buffer_with",
           [](framework::Tensor &self, const framework::Tensor src,
              py::tuple t) {
             auto *cuda_ipc_allocation =
                 dynamic_cast<memory::allocation::CudaIpcAllocation *>(
                     src.Holder().get());

             PADDLE_ENFORCE_NOT_NULL(
                 cuda_ipc_allocation,
                 platform::errors::PreconditionNotMet(
                     "Tensor is not Cuda IPC shared tensor. "
                     "Now only Tensor shared by cuda ipc could use this "
                     "api."));

             size_t size = t[0].cast<size_t>();
             auto dtype =
                 static_cast<paddle::experimental::DataType>(t[1].cast<int>());
             auto dims = phi::make_ddim(t[2].cast<std::vector<int>>());
             auto lod_info = t[3].cast<framework::LoD>();
             auto device_id = t[4].cast<int>();

             auto shared_reader_holder =
                 std::make_shared<memory::allocation::Allocation>(
                     cuda_ipc_allocation->ptr(),
                     cuda_ipc_allocation->base_ptr(), size,
                     platform::CUDAPlace(device_id));

             self.ResetHolderWithType(shared_reader_holder, dtype);
             self.Resize(dims);
             self.set_lod(lod_info);

             VLOG(6) << "Reconstructed tensor with buffer shared!";
           },
           R"DOC(
           Deserialize GPU Tensor for existed shared Cuda IPC tensor.

           Params:
               tensor: Shared Cuda IPC tensor.
               tuple: contrains data size, data type,
                      tensor dims, lod information, device index.

       )DOC")
      .def("_share_cuda",
           [](framework::Tensor self) {
             if (!self.IsInitialized() || self.numel() == 0)
               throw std::runtime_error(
                   "Tensor not initialized or numel is 0.  could not pass "
                   "to shared memory. ");

             auto *holder = dynamic_cast<memory::allocation::Allocation *>(
                 self.Holder().get());
             PADDLE_ENFORCE_EQ(
                 platform::is_gpu_place(holder->place()), true,
                 platform::errors::InvalidArgument(
                     "Tensor is not on GPU. share_cuda only support GPU "
                     "Tensor, share_filename is for CPU tensor."));

             void *base_ptr = holder->base_ptr();
             ptrdiff_t offset_bytes = reinterpret_cast<char *>(holder->ptr()) -
                                      reinterpret_cast<char *>(base_ptr);

             cudaIpcMemHandle_t handle;
             PADDLE_ENFORCE_GPU_SUCCESS(cudaIpcGetMemHandle(&handle, base_ptr));

             auto _handle = py::bytes(reinterpret_cast<char *>(&handle),
                                      (py::ssize_t)CUDA_IPC_HANDLE_SIZE);

             // TODO(ZHUI): use cuda event, to avoid sync.
             const auto &device_id = paddle::platform::GetCurrentDeviceId();
             auto stream =
                 paddle::platform::stream::get_current_stream(device_id);
             stream->Synchronize();

             int type_idx = static_cast<int>(self.type());
             size_t data_size =
                 self.numel() *
                 framework::SizeOfType(
                     framework::TransToProtoVarType(self.type()));

             return py::make_tuple(_handle, (py::size_t)offset_bytes, data_size,
                                   type_idx, vectorize(self.dims()), self.lod(),
                                   device_id);
           },
           R"DOC(
           Serialize GPU Tensor by cudaIpcMemHandle.

           Returns:
               tuple: contrains handle, data size, data type,
                      tensor dims, lod information, device index.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_cuda()

      )DOC")
      .def("_new_shared_cuda",
           [](py::tuple t) {
             if (t.size() != 7)
               throw std::runtime_error(
                   "Invalid Tensor meta info for shared cuda tensor!");

             // 1. Create a new C++ instance
             framework::Tensor tensor;

             // 2. Rebuild Allocation from handle
             const std::string &handle = t[0].cast<std::string>();
             ptrdiff_t offset_bytes = (ptrdiff_t)t[1].cast<int64_t>();
             auto device_id = t[6].cast<int>();
             auto base_ptr = memory::allocation::GetIpcBasePtr(handle);
             size_t size = t[2].cast<size_t>();
             void *dev = base_ptr.get();
             dev = reinterpret_cast<char *>(dev) + offset_bytes;

             auto shared_reader_holder =
                 std::make_shared<memory::allocation::CudaIpcAllocation>(
                     dev, size, device_id, std::move(base_ptr));

             // 3. Rebuild Tensor
             tensor.ResetHolderWithType(
                 shared_reader_holder,
                 static_cast<paddle::experimental::DataType>(t[3].cast<int>()));
             tensor.Resize(phi::make_ddim(t[4].cast<std::vector<int>>()));
             tensor.set_lod(t[5].cast<framework::LoD>());

             return tensor;
           },
           R"DOC(
           Deserialize GPU lod tensor from cudaIpcMemHandle.

           Params:
               tuple: contrains handle, data size, data type,
                      tensor dims, lod information, device index.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_cuda()
                 tensor_from_shared = paddle.to_tensor(paddle.fluid.core.LoDTensor._new_shared_cuda(metainfo))

        )DOC")
#endif
      .def("_share_filename",
           [](framework::Tensor &self) {
             if (!self.IsInitialized() || self.numel() == 0)
               throw std::runtime_error(
                   "Tensor not initialized or numel is 0. could not pass to "
                   "shared memory. ");

             auto holder = self.Holder();
             PADDLE_ENFORCE_EQ(
                 platform::is_cpu_place(holder->place()) ||
                     platform::is_cuda_pinned_place(holder->place()),
                 true, platform::errors::InvalidArgument(
                           "Tensor is not on CPU. share_filename only "
                           "support CPU Tensor."));

             auto *mmap_allocation = dynamic_cast<
                 memory::allocation::RefcountedMemoryMapAllocation *>(
                 holder.get());
             // If the tensor is not shared, allocate memory map allocation.
             if (mmap_allocation == nullptr) {
               void *data_ptr = self.data();
               size_t data_size =
                   self.numel() *
                   framework::SizeOfType(
                       framework::TransToProtoVarType(self.type()));

               int flags = memory::allocation::MAPPED_SHAREDMEM |
                           memory::allocation::MAPPED_EXCLUSIVE;
               std::string handle = memory::allocation::GetIPCName();
               auto shared_holder =
                   memory::allocation::AllocateRefcountedMemoryMapAllocation(
                       handle, flags, data_size);

               // copy data & reset holder
               if (platform::is_cuda_pinned_place(holder->place())) {
#ifdef PADDLE_WITH_CUDA
                 memory::Copy(platform::CPUPlace(), shared_holder->ptr(),
                              platform::CUDAPinnedPlace(), data_ptr, data_size);
#endif
               } else {
                 memory::Copy(platform::CPUPlace(), shared_holder->ptr(),
                              platform::CPUPlace(), data_ptr, data_size);
               }
               self.ResetHolder(shared_holder);
               mmap_allocation = shared_holder.get();
             }
             int type_idx = static_cast<int>(self.type());

             return py::make_tuple(mmap_allocation->ipc_name(),
                                   mmap_allocation->size(), type_idx,
                                   vectorize(self.dims()), self.lod());
           },
           R"DOC(
           Serialize CPU lod tensor in shared memory to tuple.
           If the tensor is not in shared memory, we will copy it first.

           Returns:
               tuple: contrains ipc name, data size, data type,
                      tensor dims and lod imformation.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_filename()

       )DOC")
      .def("_new_shared_filename",
           [](py::tuple t) {  // __setstate__
             if (t.size() != 5)
               throw std::runtime_error("Invalid Tensor meta info state!");

             framework::Tensor tensor;

             // 2. Rebuild Allocation
             const std::string &ipc_name = t[0].cast<std::string>();
             size_t size = t[1].cast<size_t>();
             int flags = memory::allocation::MAPPED_SHAREDMEM |
                         memory::allocation::MAPPED_NOCREATE;

             auto shared_holder =
                 memory::allocation::AllocateRefcountedMemoryMapAllocation(
                     ipc_name, flags, size);

             // 3. Rebuild Tensor
             tensor.ResetHolderWithType(
                 shared_holder,
                 static_cast<paddle::experimental::DataType>(t[2].cast<int>()));
             tensor.Resize(phi::make_ddim(t[3].cast<std::vector<int>>()));
             tensor.set_lod(t[4].cast<framework::LoD>());

             return tensor;
           },
           R"DOC(
           Deserialize CPU lod tensor from shared memory.

           Params:
               tuple: contrains ipc file name, data size, data type,
                      tensor dims and lod information.

           Examples:
               .. code-block:: python

                 import paddle
                 tensor = paddle.ones([3,3])
                 metainfo = tensor.value().get_tensor()._share_filename()
                 tensor_from_shared = paddle.to_tensor(paddle.fluid.core.LoDTensor._new_shared_filename(metainfo))

        )DOC")
      .def("_shared_incref",
           [](framework::Tensor &self) {
             auto *mmap_allocation = dynamic_cast<
                 memory::allocation::RefcountedMemoryMapAllocation *>(
                 self.Holder().get());
             if (mmap_allocation) {
               mmap_allocation->incref();
             }
           },
           R"DOC(
            Increase reference count of share_filename tensor.
      )DOC")
      .def("_shared_decref",
           [](framework::Tensor &self) {
             auto *mmap_allocation = dynamic_cast<
                 memory::allocation::RefcountedMemoryMapAllocation *>(
                 self.Holder().get());
             if (mmap_allocation) {
               mmap_allocation->decref();
             }
           },
           R"DOC(
            Decrease reference count of share_filename tensor.
      )DOC")
1561
      .def(py::pickle(
1562
          [](const framework::Tensor &t) {  // __getstate__
1563
            auto holder = t.Holder();
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true,
                              platform::errors::PreconditionNotMet(
                                  "Tensor is not on CPU."
                                  "Now only Tensor on CPU can be serialized."));
            auto *mmap_writer_allocation =
                dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                    holder.get());
            PADDLE_ENFORCE_NOT_NULL(
                mmap_writer_allocation,
                platform::errors::PreconditionNotMet(
                    "Tensor is not in shared memory."
                    "Now only Tensor on shared memory can be serialized."));
1576 1577 1578
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
1579 1580
                                  mmap_writer_allocation->size(), type_idx,
                                  vectorize(t.dims()), t.lod());
1581 1582 1583
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
1584
              throw std::runtime_error("Invalid Tensor state!");
1585 1586

            // 1. Create a new C++ instance
1587
            framework::Tensor tensor;
1588 1589 1590 1591 1592

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
1593 1594
                memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name,
                                                                     size);
1595 1596

            // 3. Maintain global fd set
1597
            VLOG(3) << "Tensor ipc name: " << ipc_name;
1598 1599
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

1600 1601 1602
            // 4. Rebuild Tensor
            tensor.ResetHolderWithType(
                shared_reader_holder,
1603
                static_cast<paddle::experimental::DataType>(t[2].cast<int>()));
1604
            tensor.Resize(phi::make_ddim(t[3].cast<std::vector<int>>()));
1605 1606 1607 1608 1609
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1610

1611
  py::class_<phi::SelectedRows>(m, "SelectedRows")
Q
qijun 已提交
1612
      .def("__init__",
1613 1614
           [](phi::SelectedRows &instance) {
             new (&instance) phi::SelectedRows();
1615
           })
Q
qijun 已提交
1616
      .def("__init__",
1617
           [](phi::SelectedRows &instance, const std::vector<int64_t> rows,
Q
qijun 已提交
1618
              const int64_t &height) {
1619
             new (&instance) phi::SelectedRows(rows, height);
Q
qijun 已提交
1620 1621
           })
      .def("get_tensor",
1622
           [](phi::SelectedRows &self) { return self.mutable_value(); },
Q
qijun 已提交
1623
           py::return_value_policy::reference)
1624
      .def("numel",
1625
           [](phi::SelectedRows &self) -> int64_t {
1626 1627
             return self.value().numel();
           })
1628 1629
      .def("set_height", &phi::SelectedRows::set_height)
      .def("height", &phi::SelectedRows::height)
Q
qijun 已提交
1630
      .def("set_rows",
1631
           [](phi::SelectedRows &self, std::vector<int64_t> rows) {
1632
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1633 1634 1635 1636 1637 1638
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1639
      .def("sync_index",
1640 1641
           [](phi::SelectedRows &instance) { instance.SyncIndex(); })
      .def("rows", [](phi::SelectedRows &self) {
1642 1643 1644 1645 1646
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1647
      });
Q
qijun 已提交
1648

1649
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1650 1651 1652

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1653
      .def(py::init<>())
1654
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1655
      .def("set_int",
1656 1657
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1658 1659 1660 1661 1662 1663 1664
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1665
      .def("get_tensor",
1666 1667
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1668 1669
           },
           py::return_value_policy::reference)
1670 1671 1672 1673
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1686 1687 1688
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1689
      .def("get_selected_rows",
1690 1691
           [](Variable &self) -> phi::SelectedRows * {
             return self.GetMutable<phi::SelectedRows>();
Q
qijun 已提交
1692 1693
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1694 1695 1696
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1697 1698 1699
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1700
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1701 1702 1703 1704 1705
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1706
#endif
Y
Refine  
Yu Yang 已提交
1707 1708
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1709 1710 1711 1712
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1713 1714
             return self.GetMutable<framework::ReaderHolder>();
           },
1715
           py::return_value_policy::reference)
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1727 1728 1729 1730
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1731

S
sneaxiy 已提交
1732
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1733

0
0x45f 已提交
1734
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1748
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1749 1750 1751 1752 1753
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1754 1755 1756
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1757 1758
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1759
      .def("var",
1760
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1761
             return self.Var(name);
Y
Yu Yang 已提交
1762
           },
S
sneaxiy 已提交
1763 1764
           py::arg("name"),
           R"DOC(
1765
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1766

1767
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1768
           current scope, the variable would be created. Otherwise,
1769
           return the existing variable.
S
sneaxiy 已提交
1770 1771

           Args:
1772 1773
               name (str): the variable name.

S
sneaxiy 已提交
1774
           Returns:
1775
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1776 1777 1778 1779
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1780
           Find variable named :code:`name` in the current scope or
1781
           its parent scope. Return None if not found. 
1782

S
sneaxiy 已提交
1783 1784
           Args:
               name (str): the variable name.
1785

S
sneaxiy 已提交
1786
           Returns:
1787
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1788
           )DOC",
1789
           py::return_value_policy::reference)
1790
      .def("size", &Scope::Size)
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
      .def("erase", &Scope::EraseVars, py::arg("names"),
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1803
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1804 1805 1806 1807 1808 1809
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1810
           py::return_value_policy::reference)
S
sneaxiy 已提交
1811 1812 1813
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1814 1815
           )DOC")
      .def("_kids", &Scope::kids);
1816

S
sneaxiy 已提交
1817 1818 1819 1820 1821 1822
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1823 1824
        R"DOC(
        Create a new scope.
1825

S
sneaxiy 已提交
1826 1827 1828
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1829 1830
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1831 1832
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1833 1834
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1835 1836 1837 1838
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1839 1840
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1841 1842
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1843 1844 1845
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1846 1847
    return ret_values;
  });
1848 1849 1850 1851 1852 1853 1854 1855
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1856
              res = op_checker->GetDefaultAttrsMap();
1857 1858 1859 1860
            }
          }
          return res;
        });
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1877 1878 1879
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1880 1881 1882 1883 1884
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1885 1886 1887
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1902
  m.def("prune", [](const ProgramDesc &origin,
1903
                    const std::set<std::string> &feeded_var_names,
1904
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1905
    ProgramDesc prog_with_targets(origin);
1906

1907
    for (const auto &t : targets) {
1908
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1909
    }
1910
    proto::ProgramDesc pruned_desc;
1911 1912 1913 1914
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1915
  });
1916 1917 1918 1919 1920 1921 1922 1923
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
1924
            Args:
1925 1926 1927 1928 1929 1930 1931 1932
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
  m.def("get_readable_comile_key", [](const OpDesc &op_desc) {
    auto compilation_key =
        BOOST_GET_CONST(std::string, op_desc.GetAttr("compilation_key"));
    VLOG(4) << std::hash<std::string>{}(compilation_key) << " "
            << compilation_key.size();
    proto::ProgramDesc desc;
    desc.ParseFromString(compilation_key);
    auto s = desc.DebugString();
    VLOG(4) << s;
    return s;
  });
1944 1945 1946 1947
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1948 1949 1950
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1951 1952
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1953

Q
qijun 已提交
1954
  // clang-format off
Y
Yu Yang 已提交
1955
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1956 1957
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1958
                      -> paddle::platform::DeviceContext* {
W
Wilber 已提交
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
    auto* context = new paddle::platform::CPUDeviceContext();
    context->SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(place)
        .get());
    context->SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetAllocator(paddle::platform::CPUPlace())
        .get());
    context->SetZeroAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
    return context;
Q
qijun 已提交
1973
                  })
1974 1975 1976 1977 1978 1979 1980 1981 1982
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
W
Wilber 已提交
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
      return context;
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
#endif
                  })
        .def_static("create",
                  [](paddle::platform::MLUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_MLU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use MLUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with MLU support."));
#else
                    return new paddle::platform::MLUDeviceContext(place);
2009 2010
#endif
                  })
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
#endif
        })
        .def_static("create",
                    [](paddle::platform::CustomPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CustomPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with "
                 "CustomDevice support."));
#else
                return new paddle::platform::CustomDeviceContext(place);
2034 2035
#endif
        })
Q
qijun 已提交
2036
      .def_static("create",
D
dzhwinter 已提交
2037
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
2038
                      -> paddle::platform::DeviceContext* {
2039
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2040 2041 2042 2043
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
2044
#else
W
Wilber 已提交
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
      auto* context = new paddle::platform::CUDADeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
W
wanghuancoder 已提交
2058 2059 2060 2061
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
2062 2063
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
2064
#endif
C
chengduoZH 已提交
2065 2066 2067 2068
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
2069
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2070 2071 2072 2073
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
2074 2075 2076 2077
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
2078
// clang-format on
2079
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
2080 2081
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
2082 2083 2084
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2085
    device_types = phi::DeviceManager::GetAllDeviceTypes();
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2099
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2113
    devices = phi::DeviceManager::GetAllDeviceList();
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
2127
    devices = phi::DeviceManager::GetAllCustomDeviceList();
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
#else
          LOG(WARNING) << string::Sprintf(
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle-core\n");
#endif
    return devices;
  });
2140 2141
  py::class_<platform::CustomPlace> customplace(m, "CustomPlace",
                                                R"DOC(
2142 2143 2144 2145 2146 2147 2148 2149
    CustomPlace is a descriptor of a device.
    It represents a custom device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python

          import paddle
          fake_cpu_place = paddle.CustomPlace("FakeCPU", 0)
2150 2151 2152
                                             )DOC");
  g_customplace_pytype = reinterpret_cast<PyTypeObject *>(customplace.ptr());
  customplace
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
      .def("__init__",
           [](platform::CustomPlace &self, const std::string &device_type,
              int dev_id) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), device id must be 0 "
                   "or "
                   "positive integer",
                   device_type, dev_id);
               std::exit(-1);
             }

2166 2167
             if (LIKELY(phi::DeviceManager::HasDeviceType(device_type) &&
                        phi::DeviceManager::IsCustom(device_type))) {
2168
               int dev_count = static_cast<int>(
2169
                   phi::DeviceManager::GetDeviceCount(device_type));
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
               if (UNLIKELY(dev_id >= dev_count)) {
                 if (dev_count == 0) {
                   LOG(ERROR) << "Cannot use " << device_type
                              << " because there is no " << device_type
                              << " detected on your "
                                 "machine.";
                   std::exit(-1);
                 } else {
                   LOG(ERROR) << string::Sprintf(
                       "Invalid CustomPlace(%s, %d), dev_id must "
                       "inside "
                       "[0, %d), because %s "
                       "number on your machine is %d",
                       device_type, dev_id, dev_count, device_type, dev_count);
                   std::exit(-1);
                 }
               }
               new (&self) platform::CustomPlace(device_type, dev_id);
             } else {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CustomPlace(%s, %d), the device type is "
                   "not registered "
                   "as a custom device.",
                   device_type, dev_id);
               std::exit(-1);
             }
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use CustomDevice because you have installed CPU/GPU"
                 "version PaddlePaddle.\n"
                 "If you want to use CustomDevice, please try to install"
                 "CustomDevice version "
                 "PaddlePaddle by: pip install paddlepaddle-core\n"
                 "If you only have CPU, please change "
                 "CustomPlace(%s, %d) to be CPUPlace().\n",
                 device_type, dev_id);
             std::exit(-1);
#endif
           })
2209
      .def("_type", &PlaceIndex<platform::CustomPlace>)
2210 2211 2212 2213 2214 2215 2216 2217
      .def("get_device_id",
           [](const platform::CustomPlace &self) { return self.GetDeviceId(); })
      .def("get_device_type",
           [](const platform::CustomPlace &self) {
             return self.GetDeviceType();
           })
      .def("__repr__", string::to_string<const platform::CustomPlace &>)
      .def("__str__", string::to_string<const platform::CustomPlace &>);
2218
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
2219 2220 2221 2222 2223

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
2224
    The memory of CUDAPlace with different dev_id is not accessible.
2225 2226 2227 2228 2229 2230 2231 2232
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
2233 2234 2235 2236

    Examples:
        .. code-block:: python

2237 2238 2239
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
2240

2241 2242 2243
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
2244 2245
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
2246
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2247 2248 2249 2250 2251 2252 2253 2254
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

2255 2256
             if (UNLIKELY(dev_id >= platform::GetGPUDeviceCount())) {
               if (platform::GetGPUDeviceCount() == 0) {
2257 2258 2259 2260 2261 2262 2263 2264
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
2265 2266
                     dev_id, platform::GetGPUDeviceCount(),
                     platform::GetGPUDeviceCount());
2267 2268 2269 2270
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
2271 2272
             new (&self) platform::CUDAPlace(dev_id);
#else
2273 2274 2275 2276 2277 2278 2279 2280 2281
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
2282 2283
#endif
           })
2284
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2285 2286
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
2287 2288 2289 2290
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
2291
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
2292
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
2293
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::MLUPlace>)
S
sneaxiy 已提交
2294 2295
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
2296 2297 2298
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
2299
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
2300
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
2301

2302
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
2303 2304 2305 2306 2307
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
2308 2309 2310
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
2349
#ifdef PADDLE_WITH_XPU
2350 2351 2352 2353 2354 2355 2356
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
2357 2358 2359
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
2360
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
2361
      .def("__str__", string::to_string<const platform::XPUPlace &>);
2362
#ifdef PADDLE_WITH_XPU
2363 2364 2365
  py::enum_<phi::backends::xpu::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", phi::backends::xpu::XPUVersion::XPU1)
      .value("XPU2", phi::backends::xpu::XPUVersion::XPU2)
T
TTerror 已提交
2366
      .export_values();
2367
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
2368 2369
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
L
Lijunhui 已提交
2370 2371 2372 2373 2374 2375
#ifdef PADDLE_WITH_XPU_KP
  m.def("get_xpu_device_op_support_types",
        [](const std::string &op_name, phi::backends::xpu::XPUVersion version) {
          return platform::get_xpu_kp_op_support_type(op_name, version);
        });
#else
2376 2377 2378 2379
  m.def("get_xpu_device_op_support_types",
        [](const std::string &op_name, phi::backends::xpu::XPUVersion version) {
          return platform::get_xpu_op_support_type(op_name, version);
        });
L
Lijunhui 已提交
2380
#endif
2381
  m.def("get_xpu_device_op_list", [](phi::backends::xpu::XPUVersion version) {
T
TTerror 已提交
2382 2383
    return platform::get_xpu_op_list(version);
  });
T
taixiurong 已提交
2384 2385
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
2386
    return platform::get_xpu_version(place.device) >
2387
           phi::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
2388 2389 2390
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
2391
    return platform::get_xpu_version(place.device) >
2392
           phi::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
2393
  });
2394
#endif
2395

2396
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
2397
    CPUPlace is a descriptor of a device.
2398
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
2399 2400 2401 2402

    Examples:
        .. code-block:: python

2403 2404
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
2405

2406 2407 2408
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
2409 2410
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
2411
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
2412
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
2413 2414 2415 2416
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
2417
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
2418
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
2419

2420 2421
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
2422 2423 2424 2425 2426 2427
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
2428 2429 2430 2431

    Examples:
        .. code-block:: python

2432 2433
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
2434

2435 2436 2437 2438
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
2439
      .def("__init__",
S
sneaxiy 已提交
2440
           [](platform::CUDAPinnedPlace &self) {
2441
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
2442 2443 2444
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
2445
#endif
S
sneaxiy 已提交
2446
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
2447
           })
S
sneaxiy 已提交
2448 2449 2450 2451
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
2452 2453
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
2454 2455
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
2456 2457 2458 2459
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
2460
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
2461 2462
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

2463
  // NPUPlace
2464
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
2465 2466 2467 2468 2469 2470 2471 2472
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

2473 2474 2475
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
2507
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
2522 2523
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
2524 2525
      .def("__str__", string::to_string<const platform::NPUPlace &>);

J
jianghaicheng 已提交
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
  // IPUPlace
  py::class_<platform::IPUPlace>(m, "IPUPlace", R"DOC(
    IPUPlace is a descriptor of a device.
    It represents a IPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle

          # required: ipu

          ipu_place = paddle.IPUPlace()

        )DOC")
      .def("__init__",
           [](platform::IPUPlace &self) {
#ifdef PADDLE_WITH_IPU
             if (platform::GetIPUDeviceCount() == 0) {
               LOG(ERROR) << "Cannot use IPU because there is no IPU "
                             "detected on your "
                             "machine.";
               std::exit(-1);
             }
             // use ipu(0) to comile, while run with the number user configure
             // in sharding and pipline.
             new (&self) platform::IPUPlace(0);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use IPU because you didn't install IPU version "
                 "PaddlePaddle.\n"
                 "If you want to use IPU, please try to install IPU version "
                 "PaddlePaddle by: pip install paddlepaddle*\n"
                 "If you only have CPU, please change IPUPlace to be "
                 "CPUPlace().\n");
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::IPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::IPUPlace, platform::CUDAPinnedPlace>)
#ifdef PADDLE_WITH_IPU
      .def("get_device_id",
           [](const platform::IPUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::IPUPlace &>);

2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
  // MLUPlace
  py::class_<platform::MLUPlace> mluplace(m, "MLUPlace", R"DOC(
    MLUPlace is a descriptor of a device.
    It represents a MLU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          # required: mlu
          mlu_place = paddle.MLUPlace(0)

        )DOC");
  g_mluplace_pytype = reinterpret_cast<PyTypeObject *>(mluplace.ptr());
  mluplace
      .def("__init__",
           [](platform::MLUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_MLU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid MLUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetMLUDeviceCount())) {
               if (platform::GetMLUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use MLU because there is no MLU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid MLUPlace(%d), must inside [0, %d), because MLU "
                     "number on your machine is %d",
                     dev_id, platform::GetMLUDeviceCount(),
                     platform::GetMLUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::MLUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use MLU because you have installed CPU/GPU/... "
                 "version "
                 "PaddlePaddle.\n"
                 "If you want to use MLU, please try to install MLU version "
                 "PaddlePaddle by: pip install paddlepaddle-mlu\n"
                 "If you only have CPU, please change MLUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::MLUPlace>)
#ifdef PADDLE_WITH_MLU
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::MLUPlace>)
      .def("_equals",
           &IsSamePlace<platform::MLUPlace, platform::CUDAPinnedPlace>)
      .def("get_device_id",
           [](const platform::MLUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::MLUPlace &>);

2647 2648 2649
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
2650 2651 2652 2653
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
2654
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
2655
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
J
jianghaicheng 已提交
2656
      .def("_equals", &IsSamePlace<platform::Place, platform::IPUPlace>)
S
sneaxiy 已提交
2657
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
2658
      .def("_equals", &IsSamePlace<platform::Place, platform::MLUPlace>)
X
xuezhong 已提交
2659 2660
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
2661 2662
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
2663 2664
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
2665 2666
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
J
jianghaicheng 已提交
2667 2668
      .def("is_ipu_place",
           [](platform::Place &self) { return platform::is_ipu_place(self); })
S
sneaxiy 已提交
2669 2670 2671 2672
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
2673 2674
      .def("is_mlu_place",
           [](platform::Place &self) { return platform::is_mlu_place(self); })
2675 2676 2677
      .def(
          "is_custom_place",
          [](platform::Place &self) { return platform::is_custom_place(self); })
2678 2679 2680 2681 2682
      .def("gpu_device_id", [](platform::Place &self) { return self.device; })
      .def("xpu_device_id", [](platform::Place &self) { return self.device; })
      .def("npu_device_id", [](platform::Place &self) { return self.device; })
      .def("ipu_device_id", [](platform::Place &self) { return self.device; })
      .def("mlu_device_id", [](platform::Place &self) { return self.device; })
2683 2684
      .def("custom_device_id",
           [](platform::Place &self) { return self.device; })
S
sneaxiy 已提交
2685 2686
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
2687 2688 2689 2690
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
2691 2692 2693 2694
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
2695
      .def("set_place",
D
dzhwinter 已提交
2696
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
2697
             self = gpu_place;
C
chengduoZH 已提交
2698
           })
2699 2700 2701 2702 2703
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
2704 2705 2706 2707
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
J
jianghaicheng 已提交
2708 2709 2710 2711
      .def("set_place",
           [](platform::Place &self, const platform::IPUPlace &ipu_place) {
             self = ipu_place;
           })
2712 2713 2714 2715
      .def("set_place",
           [](platform::Place &self, const platform::MLUPlace &mlu_place) {
             self = mlu_place;
           })
2716 2717 2718 2719
      .def("set_place",
           [](platform::Place &self, const platform::CustomPlace &plug_place) {
             self = plug_place;
           })
2720 2721
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
2722

Y
Yu Yang 已提交
2723
  py::class_<OperatorBase>(m, "Operator")
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
2738
      .def("run",
2739
           [](OperatorBase &self, const Scope &scope,
2740 2741 2742 2743
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2744 2745
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2746 2747 2748 2749
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2750 2751
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2752 2753 2754 2755
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
2756 2757
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2758 2759 2760 2761
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2762 2763 2764
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
2765
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2766 2767
             self.Run(scope, place);
           })
2768 2769 2770 2771 2772 2773
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
2774 2775 2776 2777 2778 2779
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2780 2781 2782 2783 2784 2785 2786
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
2787 2788
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2789
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2790
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2791 2792 2793 2794
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2795

2796 2797 2798
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2799 2800 2801 2802 2803 2804 2805
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
2806 2807
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2808

2809 2810
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2811
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2812
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2813
      .def("close", &Executor::Close)
2814 2815
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2816 2817
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2818 2819 2820 2821
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2822
             pybind11::gil_scoped_release release;
2823 2824 2825 2826 2827 2828 2829
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2830 2831 2832
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2833
              std::map<std::string, FetchType *> *fetch_targets,
2834 2835 2836 2837 2838 2839 2840 2841
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2842
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2843 2844 2845 2846 2847 2848 2849
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2860
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2861 2862
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2863
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2864 2865
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2866
      });
S
sneaxiy 已提交
2867

2868
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2869
      .def(py::init<>())
2870 2871 2872 2873 2874
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2875

2876
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2877 2878 2879
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2880
           [](StandaloneExecutor &self,
H
hong 已提交
2881
              const std::unordered_map<std::string, py::array> &input_dict,
2882
              std::vector<std::string> fetch_names) {
2883
             std::vector<framework::LoDTensor> feed_tensors;
2884
             std::vector<std::string> feed_names;
H
hong 已提交
2885 2886 2887 2888 2889

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2890 2891
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2892 2893
             }

2894 2895 2896 2897 2898 2899 2900 2901 2902
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2903
              const std::unordered_map<std::string, framework::LoDTensor>
2904 2905
                  &input_dict,
              std::vector<std::string> fetch_names) {
2906
             std::vector<framework::LoDTensor> feed_tensors;
2907 2908 2909 2910 2911 2912 2913
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2914 2915 2916 2917
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2918
             }
W
wanghuancoder 已提交
2919
             return py::cast(std::move(ret));
2920
           })
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
      .def("run",
           [](StandaloneExecutor &self, std::vector<std::string> feed_names,
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, fetch_names);
             }
             return py::cast(std::move(ret));
           })
2931 2932 2933
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2934
             std::vector<framework::LoDTensor> feed_tensors;
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

2945
             framework::interpreter::CostInfo cost_info;
2946 2947 2948 2949 2950
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2951 2952
           });

D
dzhwinter 已提交
2953
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2954
  m.def("init_glog", framework::InitGLOG);
2955 2956 2957 2958
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
2959
  m.def("init_devices", []() { framework::InitDevices(); });
2960 2961
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
2962
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2963
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2964
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2965
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
2966
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2967
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2968
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2969
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
2970
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2971
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
2972
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2973
  m.def("supports_bfloat16", SupportsBfloat16);
2974
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2975 2976
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
2977
  m.def("op_supported_infos", imperative::OpSupportedInfos);
2978
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2979
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2980 2981 2982
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
3002 3003
  m.def("memory_stat_get_current", memory::StatGetCurrentValue);
  m.def("memory_stat_get_peak", memory::StatGetPeakValue);
H
hutuxian 已提交
3004 3005 3006 3007 3008 3009 3010
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
3011 3012 3013 3014 3015 3016 3017 3018 3019
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

3020
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
3021 3022
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
3023
    return platform::GetGPUComputeCapability(place.device) >= 53;
3024
  });
3025 3026 3027 3028
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
3029
#endif
3030

S
Steffy-zxf 已提交
3031 3032 3033 3034 3035 3036
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
3037 3038 3039 3040 3041
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
3042
            return py::cast(BOOST_GET(LoDTensor, var));
3043
          } else {
3044
            return py::cast(BOOST_GET(LoDTensorArray, var));
3045 3046
          }
        });
3047
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
3048

X
Xin Pan 已提交
3049 3050
  m.def("_is_program_version_supported", IsProgramVersionSupported);

3051 3052 3053 3054
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
3055
  BindCostModel(&m);
3056
  BindConstValue(&m);
3057
  BindGlobalValueGetterSetter(&m);
3058
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
3059
  BindFleetExecutor(&m);
3060
  BindTCPStore(&m);
Y
Yu Yang 已提交
3061

Y
Yu Yang 已提交
3062 3063 3064 3065 3066 3067 3068 3069 3070
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

3071
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
3072
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
3073 3074 3075

    Examples:
        .. code-block:: python
3076

Z
Zeng Jinle 已提交
3077 3078 3079
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
3080 3081 3082 3083
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
3084 3085
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
3086 3087 3088 3089 3090 3091
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
3092 3093 3094 3095
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
3096 3097 3098
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
3099 3100 3101 3102 3103 3104
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
3105 3106
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
3107 3108 3109 3110 3111 3112
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
3135

3136 3137 3138 3139 3140 3141 3142 3143
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
3144
                 auto &data = BOOST_GET(LoDTensor, self[i]);
3145 3146
                 res[i] = py::cast(std::move(data));
               } else {
3147
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
3163
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
3164 3165 3166 3167 3168 3169 3170 3171
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
3172
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
3173 3174 3175 3176 3177 3178 3179 3180 3181
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
3182 3183
        )DOC")
      .def("_move_to_list",
3184
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
3185 3186 3187 3188
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
3189
                 if (data_is_lod_tensor(self[i][j])) {
3190
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
3191 3192
                   tmp[j] = py::cast(std::move(var));
                 } else {
3193
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
3194 3195 3196 3197 3198 3199
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
3200 3201 3202 3203 3204 3205 3206 3207 3208
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
3209
  m.def("op_support_gpu", OpSupportGPU);
3210
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
3211
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
3212
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
3213 3214 3215 3216 3217 3218 3219 3220
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
3221 3222 3223 3224 3225 3226 3227
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
3253
      });
D
dangqingqing 已提交
3254

3255
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
3256 3257 3258
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
3259 3260 3261 3262
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
3263
#endif
P
peizhilin 已提交
3264
#endif
Y
Yu Yang 已提交
3265

3266 3267
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
3268
  m.def("npu_finalize", []() {
3269 3270
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

3271 3272 3273
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
3274
      platform::NPUDeviceGuard guard(devices[i]);
3275 3276 3277 3278
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
3299 3300 3301 3302
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

3303 3304 3305 3306
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

3307 3308 3309 3310 3311 3312
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

3313 3314 3315 3316
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
3317
      .value("kAll", platform::ProfilerState::kAll)
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

3329
  m.def("set_tracer_option", platform::SetTracerOption);
3330 3331
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
3332
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
3333
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
3334
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
3335 3336
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
3337 3338 3339
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
3340
    callable.inc_ref();
3341 3342 3343 3344 3345 3346 3347 3348
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
3349
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
3350 3351 3352
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
3353

3354
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
      .def("get_data", &paddle::platform::ProfilerResult::GetData,
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo);

  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
                     &paddle::platform::DevicePythonNode::stream_id);

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
                     &paddle::platform::HostPythonNode::device_node_ptrs);

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
      .def("create", &paddle::platform::Profiler::Create,
           py::return_value_policy::take_ownership)
C
chenjian 已提交
3394
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
3395 3396
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
3397 3398 3399 3400 3401 3402 3403 3404 3405
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
      .def("stop",
           [](paddle::platform::Profiler *profiler) {
             platform::DisableHostEventRecorder();
L
liutiexing 已提交
3406 3407 3408 3409
             auto result = profiler->Stop();
             framework::StaticGraphExecutorPerfStatistics(
                 result->GetNodeTrees());
             return result;
C
chenjian 已提交
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
           },
           py::return_value_policy::automatic_reference);

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
3443

3444
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
3445 3446
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
3447 3448
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
3449
#endif  // PADDLE_WITH_CUDA
3450 3451
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
3452

3453 3454 3455
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

3456 3457
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
3458
      .def("has", &ir::Pass::Has)
3459 3460 3461
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
3462
           })
3463
      .def(
3464
          "set",
3465 3466 3467
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
3468 3469
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
3470 3471
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
J
jianghaicheng 已提交
3472 3473 3474 3475 3476
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::vector<std::string> set) {
             self.Set(name, new std::vector<std::string>(set));
           })
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
3491 3492
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
3493
        self.Apply(graph.get());
F
flame 已提交
3494
      });
3495

X
fix  
Xin Pan 已提交
3496 3497
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
3512
  // -- python binds for parallel executor.
Y
yuyang18 已提交
3513
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
3514 3515 3516 3517
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

3518 3519 3520
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
3521 3522 3523
    Examples:
        .. code-block:: python

3524 3525 3526 3527 3528 3529 3530 3531 3532
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
3533

3534 3535
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
3536

3537
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
3538 3539
          sgd_optimizer.minimize(avg_loss)

3540
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
3541 3542
          exec_strategy.num_threads = 4

3543 3544 3545
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
3546 3547
        )DOC");

3548 3549 3550 3551
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
3552

Y
yuyang18 已提交
3553
  exec_strategy.def(py::init())
Y
yuyang18 已提交
3554 3555 3556 3557 3558
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
3559
          },
3560 3561
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
3562 3563 3564 3565 3566 3567 3568
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
3582
      .def_property(
3583 3584
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
3585
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
3586 3587 3588
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
3589 3590 3591 3592 3593
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
3594 3595 3596
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
3597 3598
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
3599 3600 3601 3602 3603 3604 3605
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
3606 3607 3608 3609
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
3610
                because the temp variable's shape maybe the same between two iterations.
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
3621

3622 3623 3624 3625 3626 3627 3628
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
3629
              )DOC")
Q
Qiao Longfei 已提交
3630 3631 3632 3633 3634 3635 3636 3637 3638
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
3651
              )DOC")
3652 3653 3654 3655 3656 3657 3658 3659
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
3660 3661 3662 3663 3664
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
3665

Y
yuyang18 已提交
3666
  exec_strategy.def_property(
Y
yuyang18 已提交
3667 3668 3669 3670 3671 3672 3673
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
3674 3675
      });

C
chengduo 已提交
3676 3677 3678 3679
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

3680 3681 3682
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
3683 3684 3685
    Examples:
        .. code-block:: python

3686
            import os
3687 3688 3689 3690
            import paddle
            import paddle.static as static

            paddle.enable_static()
3691

3692 3693
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
3694

3695 3696 3697 3698
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
3699

3700
            build_strategy = static.BuildStrategy()
3701 3702
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
3703 3704
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
3705
            program = program.with_data_parallel(loss_name=loss.name,
3706 3707
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
3708
)DOC");
Y
yuyang18 已提交
3709 3710 3711

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
3712 3713
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce)
      .value("_NoReduce", BuildStrategy::ReduceStrategy::kNoReduce);
Y
yuyang18 已提交
3714 3715 3716 3717 3718 3719 3720 3721
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
3722
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
3723 3724 3725 3726
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
3727 3728 3729 3730
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3731
            self.reduce_ = strategy;
C
chengduo 已提交
3732
          },
3733
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
3734 3735
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
3736
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
3737 3738
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
3739
                Default is 'AllReduce'.
F
flame 已提交
3740 3741 3742 3743

                Examples:
                    .. code-block:: python

3744 3745 3746 3747 3748 3749 3750
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
3751
                  )DOC")
Y
yuyang18 已提交
3752 3753 3754 3755 3756
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
3757 3758 3759 3760
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3761
            self.gradient_scale_ = strategy;
C
chengduo 已提交
3762
          },
3763
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
3764
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
3765 3766
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
3767
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
3768 3769 3770 3771

                Examples:
                    .. code-block:: python

C
chengduo 已提交
3772 3773
                        import numpy
                        import os
3774 3775 3776 3777
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3778 3779

                        use_cuda = True
3780 3781
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
3782 3783

                        # NOTE: If you use CPU to run the program, you need
3784
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
3785 3786 3787 3788 3789 3790
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
3791
                            places = static.cpu_places()
C
chengduo 已提交
3792
                        else:
3793
                            places = static.cuda_places()
C
chengduo 已提交
3794

3795 3796 3797 3798
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
3799

3800
                        exe.run(static.default_startup_program())
C
chengduo 已提交
3801

3802
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
3803
                        build_strategy.gradient_scale_strategy = \
3804 3805 3806
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
3807
                                          loss_name=loss.name, build_strategy=build_strategy,
3808
                                          places=places)
C
chengduo 已提交
3809 3810 3811 3812 3813 3814

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
3815 3816
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
3817
                   )DOC")
Y
yuyang18 已提交
3818 3819 3820 3821
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
3822 3823 3824 3825
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3826
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
3827
          },
3828
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
3829
                writing the SSA Graph to file in the form of graphviz.
3830
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
3831 3832 3833 3834

                Examples:
                    .. code-block:: python

3835 3836 3837 3838
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3839

3840 3841
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
3842
                    )DOC")
S
sneaxiy 已提交
3843 3844 3845 3846 3847 3848
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
3849 3850 3851 3852
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3853 3854
            self.enable_sequential_execution_ = b;
          },
3855 3856
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
3857 3858 3859 3860

                Examples:
                    .. code-block:: python

3861 3862 3863 3864 3865 3866
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3867 3868
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
3869 3870 3871 3872 3873 3874
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
3875 3876 3877 3878
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3879 3880
            self.remove_unnecessary_lock_ = b;
          },
3881 3882
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
3883 3884 3885 3886

                Examples:
                    .. code-block:: python

3887 3888 3889 3890 3891 3892
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3893 3894
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
3895 3896 3897 3898
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
3899
#ifdef WIN32
3900
            PADDLE_THROW(platform::errors::Unavailable(
3901
                "Distribution mode is not supported on Windows platform."));
3902
#endif
3903 3904
            self.num_trainers_ = num_trainers;
          })
3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
3917 3918 3919 3920 3921 3922
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
3923 3924 3925 3926 3927 3928
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
3929
      .def_property("use_hierarchical_allreduce",
3930 3931 3932 3933 3934 3935
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
3936
      .def_property("hierarchical_allreduce_inter_nranks",
3937 3938 3939 3940 3941 3942 3943
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
3944 3945 3946 3947 3948 3949
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3950 3951 3952 3953
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
3954 3955
            self.fuse_elewise_add_act_ops_ = b;
          },
3956
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3957
                to fuse elementwise_add_op and activation_op,
3958
                it may make the execution faster. Default is False.
F
flame 已提交
3959 3960 3961 3962

                Examples:
                    .. code-block:: python

3963 3964 3965 3966 3967 3968
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3969 3970
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
      .def_property(
          "fuse_gemm_epilogue",
          [](const BuildStrategy &self) { return self.fuse_gemm_epilogue_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_gemm_epilogue_ = b;
          },
          R"DOC((bool, optional): fuse_gemm_epilogue indicate whether
                to fuse matmul_op, elemenewist_add_op and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_gemm_epilogue = True
                     )DOC")
Z
Zhen Wang 已提交
3996 3997 3998 3999
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
4000
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
4001
                              platform::errors::PreconditionNotMet(
4002 4003
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
4004 4005 4006 4007 4008 4009 4010 4011 4012
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

4013 4014 4015 4016 4017 4018
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
4019 4020
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
4046 4047 4048 4049
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
4050
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
4051
                              platform::errors::PreconditionNotMet(
4052 4053
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

4064 4065 4066 4067 4068 4069
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
4070 4071
                        build_strategy.enable_auto_fusion = True
                    )DOC")
4072 4073 4074 4075 4076 4077
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
4078 4079 4080 4081
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
4082 4083
            self.fuse_relu_depthwise_conv_ = b;
          },
4084
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
4085 4086 4087
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
4088
                Default is False.
F
flame 已提交
4089 4090 4091 4092

                Examples:
                    .. code-block:: python

4093 4094 4095 4096 4097 4098
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
4099 4100
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
4101 4102 4103
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
4104
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
4105 4106
                    },
                    [](BuildStrategy &self, bool b) {
4107 4108 4109 4110
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
4111 4112
                      self.fuse_broadcast_ops_ = b;
                    },
4113
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
4114 4115 4116 4117
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
4118 4119 4120 4121 4122
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

4123 4124 4125 4126 4127 4128
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
4129 4130
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
4131 4132
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
4133
                      return self.fuse_all_optimizer_ops_ == true ||
4134
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
4135 4136
                    },
                    [](BuildStrategy &self, bool b) {
4137 4138 4139 4140
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
4141 4142
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
4143 4144 4145 4146
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
4147 4148 4149 4150
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
4151 4152
            self.sync_batch_norm_ = b;
          },
4153
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
4154 4155 4156
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
4157 4158
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
4159 4160 4161 4162

                Examples:
                    .. code-block:: python

4163 4164 4165 4166 4167 4168
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
4169 4170
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
4171 4172
      .def_property(
          "memory_optimize",
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
4183
              self.memory_optimize_ = paddle::none;
4184 4185 4186
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
4187
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
4188 4189
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
4190 4191
            }
          },
4192
          R"DOC((bool, optional): memory opitimize aims to save total memory
4193
                consumption, set to True to enable it.
4194

4195 4196 4197
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
4212 4213 4214
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
4215 4216 4217
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
4218
              PADDLE_THROW(platform::errors::Unavailable(
4219
                  "Distribution mode is not supported on Windows platform."));
4220 4221 4222 4223 4224
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
4225 4226 4227
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
4228
      .def_property(
D
dzhwinter 已提交
4229 4230 4231
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
4232 4233 4234 4235
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
4236 4237
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
4238 4239
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
4240
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
4241
          },
C
chengduo 已提交
4242
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
4243 4244 4245 4246 4247 4248 4249
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
4250 4251 4252 4253
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
4254 4255 4256 4257 4258 4259 4260 4261 4262
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
4263 4264 4265 4266 4267 4268
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
4269 4270 4271 4272 4273 4274 4275
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
4276 4277 4278 4279 4280 4281
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
4282
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
4283
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
4284 4285 4286 4287 4288
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
4289

4290 4291 4292 4293 4294 4295
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
4296
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
4297
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
4298
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
4299
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
4300 4301 4302 4303
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
4304 4305 4306 4307 4308
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
4309 4310 4311
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
4312 4313 4314 4315
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
4316 4317
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
4318 4319 4320 4321 4322 4323 4324 4325
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
4326
               return py::cast(
4327
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
4328 4329
             } else {
               return py::cast(std::move(
4330
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
4331
             }
4332 4333
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
4334

J
jianghaicheng 已提交
4335 4336
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
4337 4338 4339 4340 4341 4342 4343 4344 4345
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
      .def("get_instance",
           []() {
             return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                 platform::ipu::IpuBackend::GetInstance());
           },
           py::return_value_policy::reference)
A
Allen Guo 已提交
4346
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
4347 4348
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
4349
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
               if (py::isinstance<py::bool_>(element.second)) {
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
                         option.get_type(), option_name));
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
                         option_name, option.first.cast<std::string>(),
                         option.second.cast<std::uint64_t>());
                   }
A
Allen Guo 已提交
4394 4395 4396 4397 4398 4399 4400 4401 4402
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
                           option.second.get_type(), option_key));
                     }
                     self.InsertStringPairOption(option_name, option_key,
                                                 option_val);
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
                     element.second.get_type(), option_name));
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
4480 4481
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
4482 4483 4484
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
4485 4486
#endif

4487 4488 4489 4490 4491 4492 4493 4494
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

4495
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
4496 4497 4498 4499 4500 4501 4502 4503 4504
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
4505
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
4506 4507 4508 4509 4510 4511 4512
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
  m.def("enable_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance()
        .EnableLayoutAutoTune();
  });

  m.def("disable_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance()
        .DisableLayoutAutoTune();
  });

  m.def("use_layout_autotune", [] {
    return paddle::imperative::LayoutAutoTune::Instance().UseLayoutAutoTune();
  });

D
dongdaxiang 已提交
4527
  BindFleetWrapper(&m);
4528
  BindIO(&m);
T
Thunderbrook 已提交
4529

T
Thunderbrook 已提交
4530
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
4531
  BindHeterWrapper(&m);
4532
  BindMetrics(&m);
T
Thunderbrook 已提交
4533
#endif
T
Thunderbrook 已提交
4534
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
4535
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
4536 4537 4538
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
4539
#endif
4540
  BindGlooWrapper(&m);
H
hutuxian 已提交
4541
  BindBoxHelper(&m);
H
hutuxian 已提交
4542 4543 4544
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
4545
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
4546
  BindNCCLWrapper(&m);
4547 4548 4549
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
4550
#endif
F
flame 已提交
4551 4552
  BindGraph(&m);
  BindNode(&m);
4553
  BindPass(&m);
F
flame 已提交
4554
  BindInferenceApi(&m);
4555
  BindCompatible(&m);
4556
  BindDataset(&m);
Y
yaoxuefeng 已提交
4557
  BindGenerator(&m);
4558 4559 4560
#ifndef PADDLE_ON_INFERENCE
  BindDistributed(&m);
#endif
4561 4562 4563
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
4564
  BindAscendDevice(&m);
4565
#endif
Y
Yanghello 已提交
4566 4567 4568
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
4569

T
tangwei12 已提交
4570
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
4571 4572
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
4573
  BindCommunicatorContext(&m);
T
tangwei12 已提交
4574 4575
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
4576 4577 4578 4579 4580
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
4581 4582 4583 4584
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
4585
#ifdef PADDLE_WITH_HETERPS
4586 4587
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
4588 4589 4590
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
4591
#endif
L
Luo Tao 已提交
4592
}
4593
}  // namespace pybind
4594
}  // namespace paddle