nn.py 494.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39
    'fc',
H
HaoRen 已提交
40
    'center_loss',
X
Xin Pan 已提交
41 42 43 44 45 46 47 48 49
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
50
    'bpr_loss',
X
Xin Pan 已提交
51 52 53 54 55 56 57 58 59 60
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
61 62
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
63
    'batch_norm',
H
heqiaozhi 已提交
64
    'data_norm',
X
Xin Pan 已提交
65 66 67 68 69 70
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
71
    'sequence_unpad',
X
Xin Pan 已提交
72 73 74 75 76 77
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
78 79
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
80 81
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
82
    'sequence_slice',
X
Xin Pan 已提交
83 84 85 86 87 88 89 90 91 92 93 94
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
95
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
96 97 98 99 100
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
101
    'group_norm',
D
dengkaipeng 已提交
102
    'spectral_norm',
X
Xin Pan 已提交
103 104 105 106 107 108 109 110
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
111
    'lod_append',
X
Xin Pan 已提交
112 113 114 115 116
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
117
    'roi_align',
X
Xin Pan 已提交
118 119 120 121
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
K
Kaipeng Deng 已提交
122
    'resize_trilinear',
123
    'resize_nearest',
X
Xin Pan 已提交
124
    'gather',
125
    'gather_nd',
X
Xin Pan 已提交
126 127 128 129 130
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
131
    'selu',
X
Xin Pan 已提交
132 133 134
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
135
    'margin_rank_loss',
X
Xin Pan 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
Z
zhoukunsheng 已提交
152
    'unique',
153
    'unique_with_counts',
X
Xin Pan 已提交
154 155 156 157 158 159 160 161 162 163
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
164 165
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
166 167 168 169 170 171 172
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
173
    'rank',
Z
zhoukunsheng 已提交
174
    'size',
X
Xin Pan 已提交
175 176 177 178 179 180 181 182 183 184
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
185
    'space_to_depth',
W
whs 已提交
186
    'affine_grid',
S
sneaxiy 已提交
187
    'sequence_reverse',
188
    'sequence_topk_avg_pooling',
189
    'affine_channel',
B
barrierye 已提交
190
    'similarity_focus',
M
minqiyang 已提交
191
    'hash',
D
dengkaipeng 已提交
192
    'grid_sampler',
G
gmcather 已提交
193 194
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
195
    'bilinear_tensor_product',
C
chengduo 已提交
196 197
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
198
    'lstm',
S
shippingwang 已提交
199
    'shuffle_channel',
200
    'temporal_shift',
S
sneaxiy 已提交
201
    'py_func',
202
    'psroi_pool',
H
heqiaozhi 已提交
203
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
204
    'huber_loss',
D
dengkaipeng 已提交
205
    'kldiv_loss',
Z
zhaozhehao 已提交
206
    'tree_conv',
C
ceci3 已提交
207
    'npair_loss',
R
ruri 已提交
208
    'pixel_shuffle',
209
    'fsp_matrix',
H
heqiaozhi 已提交
210
    'continuous_value_model',
Z
zhoukunsheng 已提交
211
    'where',
Z
zhoukunsheng 已提交
212
    'sign',
213
    'deformable_conv',
214
    'unfold',
C
cjt222 已提交
215
    'deformable_roi_pooling',
A
Aurelius84 已提交
216
    'match_matrix_tensor',
J
Jiawei Wang 已提交
217
    'filter_by_instag',
K
Kevin 已提交
218
    'var_conv_2d',
219
    'shard_index',
H
huangjun12 已提交
220
    'hard_swish',
Y
Yu Yang 已提交
221 222
]

J
jerrywgz 已提交
223 224
kIgnoreIndex = -100

Y
Yu Yang 已提交
225 226 227 228 229 230 231

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
232
       name=None):
Y
Yu Yang 已提交
233
    """
234
    **Fully Connected Layer**
Y
Yu Yang 已提交
235

236
    This function creates a fully connected layer in the network. It can take
237
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
238
    Args in detail). It creates a variable called weights for each input tensor,
239 240 241 242
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
243
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
244 245
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
246

247
    When the input is single tensor:
C
caoying03 已提交
248

249 250 251 252 253
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
254 255 256

    .. math::

257
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
258 259 260

    In the above equation:

261 262 263
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
264
    * :math:`b`: The bias parameter created by this layer (if needed).
265
    * :math:`Act`: The activation function.
C
caoying03 已提交
266
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
267

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
286
    Args:
R
ranqiu 已提交
287 288 289 290 291 292 293 294 295 296
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
297
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
298 299 300 301
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
302 303
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
304 305
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
306

307
    Returns:
F
fengjiayi 已提交
308
        Variable: The transformation result.
309 310

    Raises:
C
caoying03 已提交
311
        ValueError: If rank of the input tensor is less than 2.
312 313 314 315

    Examples:
        .. code-block:: python

316
          import paddle.fluid as fluid
317
          # when input is single tensor
F
fengjiayi 已提交
318
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
319
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
320 321 322 323 324

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
325
    """
C
caoying03 已提交
326
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
327 328 329 330

    dtype = helper.input_dtype()

    mul_results = []
331 332
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
333 334 335
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
336

Y
Yu Yang 已提交
337
        w = helper.create_parameter(
338
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
339
        tmp = helper.create_variable_for_type_inference(dtype)
340
        helper.append_op(
341 342 343
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
344
            outputs={"Out": tmp},
M
mozga-intel 已提交
345 346
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
347 348 349 350
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
351
    else:
X
Xin Pan 已提交
352
        pre_bias = helper.create_variable_for_type_inference(dtype)
353
        helper.append_op(
354 355 356
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
357
            attrs={"use_mkldnn": False})
358 359 360 361
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
362 363


H
HaoRen 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
def center_loss(input,
                label,
                num_classes,
                alpha,
                param_attr,
                update_center=True):
    """
    **Center loss Cost layer**
    
    This layer accepts input (deep features,the output of the last hidden layer)
    and target label and return the center loss cost
    
    For deep features, :math:`X`, and target labels, :math:`Y`, the equation is:
    
    .. math::

        Out = \\frac{1}{2}(X - Y)^2

    Args:
        input (Variable): a 2-D tensor with shape[N x M].
        label (Variable): the groud truth which is a 2-D tensor
                         with shape[N x 1],where N is the batch size.
        num_classes (int): the number of classification categories.
        alpha (float|Variable): learning rate of centers.
        param_attr (ParamAttr): Attribute initializer of centers. 
        update_center (bool): whether to update value of center.

    Returns:
        Variable: 2-D tensor with shape [N * 1] 

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid 

          input = fluid.layers.data(name='x',shape=[20,30],dtype='float32')
          label = fluid.layers.data(name='y',shape=[20,1],dtype='int64')
          num_classes = 1000
          alpha = 0.01
          param_attr = fluid.initializer.Xavier(uniform=False)
          center_loss=fluid.layers.center_loss(input=input,
                 label=label,
                 num_classes=1000,
                 alpha=alpha,
                 param_attr=fluid.initializer.Xavier(uniform=False),
                 update_center=True)
    """
    helper = LayerHelper('center_loss', **locals())
    dtype = helper.input_dtype()
    centers_shape = [num_classes, input.shape[1]]
    centers_param = helper.create_parameter(
        attr=param_attr, shape=centers_shape, dtype=dtype)
    centers_param.stop_gradient = True
    if isinstance(alpha, Variable):
        alpha_param = alpha
    else:
        assert isinstance(alpha, float)
        alpha_param = helper.create_variable(
            name="centerloss_alpha",
            shape=[1],
            dtype="float32",
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=True,
            stop_gradient=True,
            initializer=Constant(alpha))

    centersdiff = helper.create_variable_for_type_inference(dtype=input.dtype)
    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='center_loss',
        inputs={
            'X': [input],
            'Label': [label],
            'Centers': [centers_param],
            'CenterUpdateRate': [alpha_param]
        },
        outputs={
            'SampleCenterDiff': [centersdiff],
            'Loss': [loss],
            'CentersOut': [centers_param]
        },
        attrs={'cluster_num': num_classes,
               'need_update': update_center})
    return loss


450 451 452
def embedding(input,
              size,
              is_sparse=False,
453
              is_distributed=False,
454 455 456
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
457
    """
458 459
    **Embedding Layer**

460
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
461 462
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
463 464 465

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
466 467

    Args:
468
        input(Variable): Input is a Tensor<int64> Variable, which contains the IDs information.
K
Kevin 已提交
469
            The value of the input IDs should satisfy :math:`0<= id < size[0]`.
470 471 472 473
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
474
        is_distributed(bool): Whether to run lookup table from remote parameter server.
K
Kevin 已提交
475 476 477 478 479 480 481 482
        padding_idx(int|long|None): It will output all-zero padding data whenever
            lookup encounters :math:`padding\_idx` in Ids. If set :attr:`None`, it makes
            no effect to output. If :math:`padding\_idx < 0`, the :math:`padding\_idx`
            will automatically be converted to :math:`size[0] + padding\_idx` to use.
            Default: None.
        param_attr(ParamAttr): Parameters for this layer.
        dtype(np.dtype|core.VarDesc.VarType|str): The dtype refers to the data type of output
            tensor. It can be float32, float_16, int etc.
Y
Yu Yang 已提交
483

484 485 486
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
487

488 489
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
490

B
bdzhuxiaoning 已提交
491 492 493
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.embedding(input=data, size=[128, 64])    
Y
Yu Yang 已提交
494 495 496
    """

    helper = LayerHelper('embedding', **locals())
497
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
498 499
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
500 501
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
502
    tmp = helper.create_variable_for_type_inference(dtype)
503 504
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
505 506 507 508 509
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
510 511 512
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
513
            'remote_prefetch': remote_prefetch,
514 515
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
516 517 518
    return tmp


W
wopeizl 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
535

W
wopeizl 已提交
536 537 538 539 540 541 542 543 544 545 546
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
547

W
wopeizl 已提交
548 549 550 551
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
552

W
wopeizl 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
589
            
590
            import paddle.fluid as fluid
591 592
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
593
            hidden_dim = 512
594 595 596 597 598 599
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
600
                                           bias_attr=False)
601

W
wopeizl 已提交
602 603 604
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
605
    assert in_dygraph_mode(
606
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
650 651


P
phlrain 已提交
652 653 654 655 656 657
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
658
         dropout_prob=0.0,
P
phlrain 已提交
659 660 661 662 663
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
664
    """
P
phlrain 已提交
665
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
666 667

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
668
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
669 670
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
671
    .. math::
M
minqiyang 已提交
672 673 674 675 676 677 678

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
679
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
680 681 682 683

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
684 685

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
686 687 688 689 690 691
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
692 693 694
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
695
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
696

M
minqiyang 已提交
697
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
698 699 700 701 702
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
703
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
704 705 706 707 708
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
709
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
710 711
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
712 713
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
714 715 716 717 718 719
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
720
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
721

L
liuhongyu 已提交
722 723

    Returns:
M
minqiyang 已提交
724 725
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
726
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
727

H
haowang101779990 已提交
728 729 730 731
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
732
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
733 734
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
735
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
736 737 738 739


    Examples:
        .. code-block:: python
740
            
741 742 743
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

744 745 746 747 748
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
749 750 751 752 753 754
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
755 756 757 758 759
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
760 761 762 763
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
764 765 766
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
826 827 828 829 830 831 832 833 834 835
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
836
                  proj_activation='tanh',
837
                  dtype='float32',
X
xuezhong 已提交
838 839 840 841 842
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
843 844 845
    """
    **Dynamic LSTMP Layer**

846 847 848 849 850 851
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
852 853 854 855 856

    The formula is as follows:

    .. math::

857
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
858

859
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
860

861
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
862

863
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
864

865
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
866

867
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
868

869
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
870

Y
Yibing Liu 已提交
871 872 873 874 875 876
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
翟飞跃 已提交
877
          we use vectors to represent these diagonal weight matrices.
Y
Yibing Liu 已提交
878
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
879
          bias vector).
Y
Yibing Liu 已提交
880 881 882
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
883
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
884
    * :math:`h`: The hidden state.
885
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
886 887
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
888
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
889
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
890
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
891 892
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
893 894 895 896

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
897

Y
Yibing Liu 已提交
898 899 900 901 902 903 904 905 906 907 908 909
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
910
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
911 912
                               hidden-hidden weight and projection weight.

913 914
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
915 916
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
917 918
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
919
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
920 921 922 923 924

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
925
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
926 927 928 929 930 931
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
932
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
933 934 935
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
936
                                - The shape is (1 x 7D).
C
chengduo 已提交
937 938 939 940 941

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
942 943 944 945 946 947 948 949 950
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
951
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
952 953
                              default "tanh".
        proj_activation(str): The activation for projection output.
954
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
955
                              default "tanh".
Y
Yibing Liu 已提交
956
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
957 958
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
959 960 961 962 963 964 965 966 967 968 969
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
970 971

    Returns:
972 973 974 975
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
976 977

    Examples:
978

Y
Yibing Liu 已提交
979 980
        .. code-block:: python

981
            import paddle.fluid as fluid
982 983 984 985
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
986
            hidden_dim, proj_dim = 512, 256
987
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
988
                                     act=None, bias_attr=None)
989 990 991
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
992 993 994 995
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
996
    """
997

L
lujun 已提交
998
    assert in_dygraph_mode(
999 1000
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
1001
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
1002
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
1003
    size = size // 4
Y
Yibing Liu 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
1014 1015 1016 1017 1018 1019
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
1035

X
xuezhong 已提交
1036 1037 1038 1039 1040
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
1041 1042
    helper.append_op(
        type='lstmp',
1043
        inputs=inputs,
Y
Yibing Liu 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
1053 1054
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
1064 1065 1066 1067 1068 1069 1070
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
1071 1072
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
1073
    """
1074
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
1075

1076 1077 1078
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
1079

G
guosheng 已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
1089

G
guosheng 已提交
1090
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
1091

Q
Qiao Longfei 已提交
1092 1093 1094

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
1107
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1108 1109
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1110 1111 1112 1113
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1114
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1115 1116

    Args:
1117 1118
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1119
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1120
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1121 1122
            is the hidden size.
        size(int): The dimension of the gru cell.
1123
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1124 1125
            hidden-hidden weight matrix. Note:

1126
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1127
              :math:`D` is the hidden size.
1128
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1129
              The first part are weights of the update gate and reset gate with
1130
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1131
              candidate hidden state with shape :math:`(D \\times D)`.
1132 1133 1134 1135 1136

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1137
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1138
            the bias in the update gate, reset gate and candidate calculations.
1139 1140 1141
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1142 1143
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1144
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1145 1146 1147
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1148
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1149
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1150 1151 1152 1153
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1154 1155

    Returns:
G
guosheng 已提交
1156
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1157
            and sequence length is the same with the input.
1158

G
guosheng 已提交
1159
    Examples:
1160

G
guosheng 已提交
1161 1162
        .. code-block:: python

1163 1164
            import paddle.fluid as fluid

1165 1166 1167 1168
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1169
            hidden_dim = 512
1170
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1171
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1172 1173
    """

L
lujun 已提交
1174
    assert in_dygraph_mode(
1175 1176
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1177 1178 1179 1180 1181 1182 1183
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1184
    batch_size = input.shape[0]
G
guosheng 已提交
1185
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1186
    if h_0:
G
guosheng 已提交
1187
        assert h_0.shape == (
Y
Yancey 已提交
1188 1189 1190
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1191

X
Xin Pan 已提交
1192 1193 1194 1195
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1209 1210
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1211 1212 1213 1214
        })
    return hidden


Y
Yu Yang 已提交
1215 1216 1217
def gru_unit(input,
             hidden,
             size,
1218 1219
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1220
             activation='tanh',
Q
Qiao Longfei 已提交
1221 1222
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1223
    """
1224 1225 1226
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1227
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1228
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1229

1230 1231
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1232

1233
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1234

1235
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1236

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1252 1253

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1254 1255 1256
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1257 1258
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1259 1260
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1261 1262 1263
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1264 1265 1266

    Args:
        input (Variable): The fc transformed input value of current step.
1267
        hidden (Variable): The hidden value of gru unit from previous step.
1268
        size (integer): The input dimension value.
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1283
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1284
            the bias in the update gate, reset gate and candidate calculations.
1285 1286 1287
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1288 1289
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1290 1291 1292 1293
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1294

1295 1296 1297 1298 1299 1300
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1301

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1325
    size = size // 3
Y
Yu Yang 已提交
1326 1327

    # create weight
1328 1329
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1330

X
Xin Pan 已提交
1331 1332 1333
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1334
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1335
    # create bias
1336
    if helper.bias_attr:
Y
Yu Yang 已提交
1337 1338 1339
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1340
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1341 1342 1343

    helper.append_op(
        type='gru_unit',
1344
        inputs=inputs,
Y
Yu Yang 已提交
1345 1346 1347 1348 1349 1350
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1351 1352
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1353 1354 1355 1356 1357
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1358
@templatedoc()
1359
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1360 1361 1362 1363 1364 1365 1366
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1367
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1368 1369 1370 1371
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1372 1373 1374
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1375

J
JesseyXujin 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             emission = fluid.layers.data(name='emission', shape=[1000], dtype='float32')
             target = fluid.layers.data(name='target', shape=[1], dtype='int32')
             crf_cost = fluid.layers.linear_chain_crf(
                 input=emission,
                 label=target,
                 param_attr=fluid.ParamAttr(
                     name='crfw',
                     learning_rate=0.2))

Y
yuyang18 已提交
1389
    """
Y
Yu Yang 已提交
1390 1391 1392 1393 1394 1395
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1396 1397 1398 1399 1400 1401 1402 1403
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1419 1420 1421 1422
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1423

W
wopeizl 已提交
1424 1425
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1426

W
wopeizl 已提交
1427
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1428

W
wopeizl 已提交
1429
        label(${label_type}): ${label_comment}
1430

W
wopeizl 已提交
1431 1432
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1433

W
wopeizl 已提交
1434 1435
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1436

1437
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
1438 1439 1440 1441 1442 1443 1444
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1445 1446 1447 1448 1449 1450 1451 1452
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1453
                "Transition": transition,
W
wopeizl 已提交
1454 1455
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1456

W
wopeizl 已提交
1457
    return viterbi_path
Y
Yu Yang 已提交
1458 1459


Y
yi.wu 已提交
1460
@templatedoc()
F
fengjiayi 已提交
1461
def cos_sim(X, Y):
Y
Yu Yang 已提交
1462
    """
Y
yi.wu 已提交
1463 1464 1465
    ${comment}

    Args:
1466 1467
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1468

Y
yi.wu 已提交
1469
    Returns:
1470
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1471 1472 1473 1474

    Examples:
        .. code-block:: python

1475
            import paddle.fluid as fluid
L
lvmengsi 已提交
1476 1477 1478
            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1479
    """
F
fengjiayi 已提交
1480
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1481 1482 1483
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1494 1495 1496 1497 1498
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1499
            dropout_implementation="downgrade_in_infer"):
1500 1501 1502 1503 1504
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1505
    training. The dropout operator randomly sets (according to the given dropout
1506 1507 1508
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1509 1510
    dropout op can be removed from the program to make the program more efficient.

1511
    Args:
1512 1513
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1514 1515 1516 1517 1518 1519 1520
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1521 1522
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1523
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1524 1525

                                           - train: out = input * mask
C
ceci3 已提交
1526
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1527 1528 1529

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1530
                                        2. upscale_in_train, upscale the outcome at training time
1531

H
haowang101779990 已提交
1532 1533
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1534

H
haowang101779990 已提交
1535 1536
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1537

M
minqiyang 已提交
1538

1539
    Returns:
1540
        Variable: A tensor variable is the shape with `x`.
1541 1542

    Examples:
1543

1544 1545
        .. code-block:: python

1546
            import paddle.fluid as fluid
1547 1548
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1549 1550
    """

F
fengjiayi 已提交
1551
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1552 1553
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1554
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1555 1556 1557 1558

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1559 1560 1561 1562 1563
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1564 1565 1566 1567
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
L
lvmengsi 已提交
1568
            'seed': seed if seed is not None else 0,
P
phlrain 已提交
1569
            'dropout_implementation': dropout_implementation,
1570
        })
1571 1572 1573
    return out


J
jerrywgz 已提交
1574
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1575
    """
Y
Yibing Liu 已提交
1576 1577
    **Cross Entropy Layer**

1578 1579 1580
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1581 1582

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1583
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1584

Y
Yibing Liu 已提交
1585
        .. math::
Y
yangyaming 已提交
1586

Y
Yibing Liu 已提交
1587 1588 1589
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1590 1591
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1592 1593 1594 1595 1596

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1597
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1598 1599 1600
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1601 1602
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1603
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1604

Y
Yibing Liu 已提交
1605
    Args:
Y
yangyaming 已提交
1606
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1607 1608 1609 1610
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1611
        label (Variable|list): the ground truth which is a 2-D tensor. When
1612 1613 1614 1615
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1616
        soft_label (bool): a flag indicating whether to
1617
                                           interpretate the given labels as soft
1618
                                           labels. Default: `False`.
M
minqiyang 已提交
1619 1620
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1621
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1622 1623 1624 1625 1626

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1627 1628 1629
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1630

H
haowang101779990 已提交
1631 1632
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1633

H
haowang101779990 已提交
1634 1635
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1636 1637 1638 1639

    Examples:
        .. code-block:: python

1640
          import paddle.fluid as fluid
L
lvmengsi 已提交
1641 1642 1643 1644
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1645
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1646
    """
S
sneaxiy 已提交
1647 1648
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1649
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1650
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1651 1652 1653 1654 1655
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1656 1657
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1658 1659 1660
    return out


S
sneaxiy 已提交
1661 1662 1663 1664
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1665
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1666 1667 1668 1669 1670
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1671
                 'MatchX': [match_x],
S
sneaxiy 已提交
1672 1673 1674 1675 1676
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1677
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1678
    """
1679
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1680

1681
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1682
    The loss at a given point in one session is defined as:
1683 1684 1685

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1686 1687

    Learn more details by reading paper <session-based recommendations with recurrent
1688
    neural networks>.
F
frankwhzhang 已提交
1689

1690 1691 1692 1693 1694 1695
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1696 1697
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1698 1699 1700
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1701 1702 1703
    Examples:
        .. code-block:: python

1704 1705 1706 1707 1708 1709 1710
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1711
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1712
    """
1713 1714 1715 1716 1717
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1718
                'Label': [label]},
1719 1720 1721 1722
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1723
def square_error_cost(input, label):
Y
Yu Yang 已提交
1724
    """
1725 1726
    **Square error cost layer**

1727 1728
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1729

1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1743 1744
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1745 1746

    Returns:
G
guosheng 已提交
1747
        Variable: The tensor variable storing the element-wise squared error \
1748
                  difference of input and label.
1749 1750 1751 1752

    Examples:
        .. code-block:: python

1753
          import paddle.fluid as fluid
R
ruri 已提交
1754 1755 1756
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1757

Y
Yu Yang 已提交
1758
    """
F
fengjiayi 已提交
1759
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1760
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1761 1762 1763 1764 1765 1766
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1767
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1768
    helper.append_op(
F
fengjiayi 已提交
1769 1770
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1771 1772 1773
    return square_out


Y
yi.wu 已提交
1774
@templatedoc()
Y
Yu Yang 已提交
1775 1776 1777 1778
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
1779 1780
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
1781
    """
Y
yi.wu 已提交
1782
    **Chunk Evaluator**
Y
yi.wu 已提交
1783

Y
yangyaming 已提交
1784
    This function computes and outputs the precision, recall and
1785
    F1-score of chunk detection.
Y
yi.wu 已提交
1786

M
minqiyang 已提交
1787
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1788
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1789 1790 1791 1792 1793 1794

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1795

Y
yi.wu 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1821

Y
yi.wu 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1846
    Args:
1847 1848 1849 1850 1851
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
1852
        seq_length(Variable): 1-D Tensor specifying sequence length when input and label are Tensor type.
F
fengjiayi 已提交
1853

Y
yi.wu 已提交
1854
    Returns:
Y
update  
yi.wu 已提交
1855 1856 1857
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1858

Y
yi.wu 已提交
1859 1860 1861
    Examples:
        .. code-block:: python

1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1873
            crf = fluid.layers.linear_chain_crf(
1874
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1875
            crf_decode = fluid.layers.crf_decoding(
1876
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1877 1878 1879 1880 1881
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1882
    """
F
fengjiayi 已提交
1883
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1884 1885

    # prepare output
X
Xin Pan 已提交
1886 1887 1888 1889 1890 1891 1892
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1893

1894 1895 1896 1897 1898
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
1899 1900
    helper.append_op(
        type="chunk_eval",
1901
        inputs=this_input,
Y
Yu Yang 已提交
1902 1903 1904
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1905 1906 1907 1908
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1909 1910 1911
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1912 1913
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1914
        })
1915 1916
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1917 1918


1919
@templatedoc()
Y
Yu Yang 已提交
1920 1921 1922 1923
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
1924 1925
                  padding=True,
                  padding_start=None,
Y
Yu Yang 已提交
1926 1927
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1928 1929
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1930
    """
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
    The sequence_conv receives input sequences with variable length and other convolutional
    configuration parameters for the filter and stride to apply the convolution operation.
    It fills all-zero padding data on both sides of the sequence by default to ensure that
    the output is the same length as the input. You can customize the padding behavior by
    configuring the parameter :attr:`padding\_start`.
    
    **Warning:** the parameter :attr:`padding` take no effect and will be deprecated in the future.

    .. code-block:: text

            Here we'll illustrate the details of the padding operation:
            For a mini-batch of 2 variable lengths sentences, containing 3, and 1 time-steps:
            Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3, 4].
            Besides, for the sake of simplicity, we assume M=1 and N=2.
            X = [[a1, a2;
                  b1, b2;
                  c1, c2]
                 [d1, d2]]

            This is to say that input (X) has 4 words and the dimension of each word
            representation is 2.

            * Case1:

                If padding_start is -1 and filter_size is 3.
                The length of padding data is calculated as follows:
                up_pad_len = max(0, -padding_start) = 1
                down_pad_len = max(0, filter_size + padding_start - 1) = 1

                The output of the input sequence after padding is:
                data_aftet_padding = [[0,  0,  a1, a2, b1, b2;
                                       a1, a2, b1, b2, c1, c2;
                                       b1, b2, c1, c2, 0,  0 ]
                                      [0,  0,  d1, d2, 0,  0 ]]

                It will be multiplied by the filter weight to get the final output.
1967 1968 1969

    Args:
        input (Variable): ${x_comment}
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
        num_filters (int): the number of filters.
        filter_size (int): the height of filter, the width is hidden size by default.
        filter_stride (int): stride of the filter. Currently only supports :attr:`stride` = 1.
        padding (bool): the parameter :attr:`padding` take no effect and will be discarded in the
            future. Currently, it will always pad input to make sure the length of the output is
            the same as input whether :attr:`padding` is set true or false. Because the length of
            input sequence may be shorter than :attr:`filter\_size`, which will cause the convolution
            result to not be computed correctly. These padding data will not be trainable or updated
            while trainnig. 
        padding_start (int|None): It is used to indicate the start index for padding the input
            sequence, which can be negative. The negative number means to pad
            :attr:`|padding_start|` time-steps of all-zero data at the beginning of each instance.
            The positive number means to skip :attr:`padding_start` time-steps of each instance,
            and it will pad :math:`filter\_size + padding\_start - 1` time-steps of all-zero data
            at the end of the sequence to ensure that the output is the same length as the input.
            If set None, the same length :math:`\\frac{filter\_size}{2}` of data will be filled
            on both sides of the sequence. If set 0, the length of :math:`filter\_size - 1` data
            is padded at the end of each input sequence.
C
chengduo 已提交
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
2001

2002 2003
    Returns:
        Variable: output of sequence_conv
B
bdzhuxiaoning 已提交
2004 2005

    Examples:
2006

B
bdzhuxiaoning 已提交
2007 2008 2009
        .. code-block:: python

             import paddle.fluid as fluid
2010

B
bdzhuxiaoning 已提交
2011
             x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
2012
             x_conved = fluid.layers.sequence_conv(input=x, num_filters=2, filter_size=3, padding_start=-1)
Y
Yu Yang 已提交
2013 2014
    """

L
lujun 已提交
2015
    assert not in_dygraph_mode(), (
2016
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
2017 2018 2019 2020 2021
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
2022
    pre_bias = helper.create_variable_for_type_inference(dtype)
2023 2024
    if padding_start is None:
        padding_start = -int(filter_size // 2)
Y
Yu Yang 已提交
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
2035 2036
            'contextStart': padding_start,
            'contextLength': filter_size,
Y
Yu Yang 已提交
2037 2038 2039 2040 2041
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
2042
def sequence_softmax(input, use_cudnn=False, name=None):
2043 2044 2045
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
2046
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
2063 2064 2065
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
2066

2067 2068 2069 2070 2071 2072 2073
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

2074
             import paddle.fluid as fluid
2075 2076 2077 2078
             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
2079
    assert not in_dygraph_mode(), (
2080
        "sequence layer is not supported in dygraph mode yet.")
2081 2082
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2083
    softmax_out = helper.create_variable_for_type_inference(dtype)
2084 2085 2086 2087 2088 2089 2090 2091
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
2092
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
2093
    """
2094
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
2095
    has the same shape as the input.
Q
qiaolongfei 已提交
2096

D
dengkaipeng 已提交
2097
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
2098
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
2099
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
2100 2101 2102
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
2103
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
2104
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
2105 2106 2107 2108 2109 2110 2111

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
2112
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
2113 2114 2115 2116 2117 2118 2119 2120

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
2121 2122
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
2123 2124
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
2125 2126 2127
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
2128 2129 2130 2131 2132 2133 2134 2135

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
2136 2137
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
2138
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
2139
             # perform softmax in the second dimension
D
dengkaipeng 已提交
2140
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
2141 2142
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
2143 2144

    """
2145 2146
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2147
    softmax_out = helper.create_variable_for_type_inference(dtype)
2148 2149 2150 2151
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
2152 2153
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
2154 2155 2156
    return softmax_out


Y
Yu Yang 已提交
2157 2158 2159
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
2160 2161
           stride=1,
           padding=0,
2162
           dilation=1,
Y
Yu Yang 已提交
2163 2164 2165
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
2166
           use_cudnn=True,
2167 2168
           act=None,
           name=None):
Y
Yu Yang 已提交
2169
    """
C
chengduoZH 已提交
2170
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
2171 2172
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
2173
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
2174 2175 2176 2177 2178 2179
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
2180
    for more details.
2181 2182 2183
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2184

2185
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2186

C
chengduoZH 已提交
2187 2188
    .. math::

C
refine  
chengduoZH 已提交
2189
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2190

T
tensor-tang 已提交
2191
    Where:
C
chengduoZH 已提交
2192

2193 2194 2195 2196 2197
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2198
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2199 2200 2201

    Example:

2202 2203
        - Input:

W
weixing02 已提交
2204
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2205

W
weixing02 已提交
2206
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2207

2208
        - Output:
T
tensor-tang 已提交
2209

W
weixing02 已提交
2210
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2211

C
chengduoZH 已提交
2212
        Where
2213 2214

        .. math::
C
chengduoZH 已提交
2215

W
weixing02 已提交
2216 2217
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2218 2219

    Args:
2220
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2221
        num_filters(int): The number of filter. It is as same as the output
2222
            image channel.
2223
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2239 2240 2241 2242 2243
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2244
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2245 2246 2247 2248 2249
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2250 2251
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2252 2253
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2254
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2255
            will be named automatically. Default: None
C
chengduoZH 已提交
2256 2257

    Returns:
G
guosheng 已提交
2258
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2259 2260
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2261
    Raises:
2262 2263
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2264

C
chengduoZH 已提交
2265 2266 2267
    Examples:
        .. code-block:: python

2268
          import paddle.fluid as fluid
2269 2270
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2271 2272 2273
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2274
    assert param_attr is not False, "param_attr should not be False here."
2275
    l_type = 'conv2d'
X
xzl 已提交
2276 2277
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2278
        l_type = 'depthwise_conv2d'
2279 2280 2281 2282

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2283 2284 2285 2286 2287
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2288
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2289

C
chengduoZH 已提交
2290 2291 2292
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2293
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2294

C
chengduoZH 已提交
2295 2296
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2297 2298

    input_shape = input.shape
M
minqiyang 已提交
2299
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2300 2301

    def _get_default_param_initializer():
C
chengduo 已提交
2302 2303
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2304 2305 2306 2307 2308 2309 2310 2311
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2312
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2313

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2328
    helper.append_op(
2329
        type=l_type,
Y
Yu Yang 已提交
2330 2331 2332 2333 2334
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2335 2336 2337
        attrs={
            'strides': stride,
            'paddings': padding,
2338
            'dilations': dilation,
C
chengduoZH 已提交
2339
            'groups': groups,
2340
            'use_cudnn': use_cudnn,
2341
            'use_mkldnn': False,
2342
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2343
        })
Y
Yu Yang 已提交
2344 2345 2346 2347 2348 2349

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2367 2368 2369 2370 2371 2372
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2373 2374 2375 2376 2377 2378 2379 2380 2381

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2382 2383
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2384 2385 2386
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2387
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
2410
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
2411 2412
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2413
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2414 2415
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2416
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2417 2418
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2419
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2420 2421
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2422
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2423 2424 2425 2426 2427 2428
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2439 2440
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2441 2442
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2443
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2444
            will be named automatically. Default: None.
C
chengduoZH 已提交
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2457
          import paddle.fluid as fluid
2458 2459
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2460 2461 2462
    """

    l_type = 'conv3d'
C
chengduo 已提交
2463
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2474
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2488 2489 2490
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2491 2492 2493 2494 2495 2496 2497 2498
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2499
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2514
            'use_mkldnn': False
C
chengduoZH 已提交
2515 2516
        })

2517
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2518 2519 2520 2521

    return helper.append_activation(pre_act)


2522
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
Y
Yu Yang 已提交
2523
    """
Y
yangyaming 已提交
2524 2525 2526
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

2537 2538
       x is a 1-level LoDTensor and **pad_value** = 0.0:
         x.lod = [[2, 3, 2, 0]]
L
Luo Tao 已提交
2539 2540 2541 2542
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
2543
         out.dim = [4, 1]
2544
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2545 2546

       for different pool_type:
2547 2548 2549
         average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
2550
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
2551 2552 2553 2554 2555
         max    : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
         last   : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

         and all above 0.0 = **pad_value**.
F
fengjiayi 已提交
2556

L
Luo Tao 已提交
2557
    Args:
2558
        input (variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2559
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2560
            It supports average, sum, sqrt and max.
2561 2562
        is_test (bool): Used to distinguish training from scoring mode. Default False.
        pad_value (float): Used to pad the pooling result for empty input sequence.
L
Luo Tao 已提交
2563 2564 2565 2566 2567 2568 2569

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2570

2571 2572
             import paddle.fluid as fluid

Y
yangyaming 已提交
2573
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2574 2575 2576 2577 2578
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2579 2580
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2581
    """
L
lujun 已提交
2582
    assert not in_dygraph_mode(), (
2583
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2584
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2585
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2586 2587
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2588 2589 2590 2591 2592 2593

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
2594 2595 2596 2597 2598
        attrs={
            "pooltype": pool_type.upper(),
            "is_test": is_test,
            "pad_value": pad_value
        })
Y
Yu Yang 已提交
2599

Y
yangyaming 已提交
2600 2601 2602 2603 2604
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2605 2606 2607
    return pool_out


C
add doc  
chengduoZH 已提交
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
2624 2625 2626 2627
           import paddle.fluid as fluid
           x = fluid.layers.data(name='x', shape=[10], dtype='float32')
           y = fluid.layers.data(name='y', shape=[10], dtype='float32')
           out = fluid.layers.sequence_concat(input=[x, y])
C
add doc  
chengduoZH 已提交
2628
    """
L
lujun 已提交
2629
    assert not in_dygraph_mode(), (
2630
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2631
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2632
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2633 2634 2635 2636 2637
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2638
def sequence_first_step(input):
L
Luo Tao 已提交
2639
    """
L
Luo Tao 已提交
2640
    This function gets the first step of sequence.
L
Luo Tao 已提交
2641 2642 2643 2644

    .. code-block:: text

       x is a 1-level LoDTensor:
2645
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2646 2647 2648 2649 2650
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2651
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2652
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2653

L
Luo Tao 已提交
2654 2655 2656 2657 2658 2659 2660 2661 2662
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2663

2664
             import paddle.fluid as fluid
Y
yangyaming 已提交
2665
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2666 2667 2668
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2669 2670 2671
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2672
def sequence_last_step(input):
L
Luo Tao 已提交
2673
    """
L
Luo Tao 已提交
2674
    This function gets the last step of sequence.
L
Luo Tao 已提交
2675 2676 2677 2678

    .. code-block:: text

       x is a 1-level LoDTensor:
2679
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2680 2681 2682 2683 2684
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2685
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2686
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2687

L
Luo Tao 已提交
2688 2689 2690 2691 2692 2693 2694 2695 2696
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2697

2698
             import paddle.fluid as fluid
Y
yangyaming 已提交
2699
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2700 2701 2702
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2703 2704 2705
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2706 2707 2708 2709
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2710
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2711 2712 2713 2714 2715
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2716

H
haowang101779990 已提交
2717
              - Case:
Y
Yibing Liu 已提交
2718

2719
            Given the input Variable **input**:
2720

2721 2722 2723
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2724

2725
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2726

2727
            the output Variable will be
2728

2729 2730 2731
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2732

M
minqiyang 已提交
2733
    Note:
H
haowang101779990 已提交
2734
          The first dimension size of **input**, **offset** and **length**
2735
          should be equal. The **offset** should start from 0.
2736

Y
Yibing Liu 已提交
2737
    Args:
2738
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2739
                         sequences.
Y
Yibing Liu 已提交
2740 2741 2742 2743 2744 2745
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2746
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2747 2748 2749 2750 2751

    Examples:

        .. code-block:: python

2752
             import paddle.fluid as fluid
Y
Yibing Liu 已提交
2753 2754 2755 2756 2757
             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2758
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2759 2760
                                                   length=length)
    """
L
lujun 已提交
2761
    assert not in_dygraph_mode(), (
2762
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2763 2764
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2765
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2780
@templatedoc()
Y
Yu Yang 已提交
2781
def pool2d(input,
C
chengduoZH 已提交
2782 2783
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2784 2785
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2786
           global_pooling=False,
C
chengduoZH 已提交
2787
           use_cudnn=True,
2788
           ceil_mode=False,
2789 2790
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2791
    """
F
fengjiayi 已提交
2792
    ${comment}
2793 2794

    Args:
2795 2796 2797
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2798
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2799
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2800 2801
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2802
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2803 2804 2805 2806 2807 2808
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2809 2810 2811
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2812
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2813
                        layer will be named automatically.
2814
        exclusive (bool): Whether to exclude padding points in average pooling
2815
                          mode, default is true
F
fengjiayi 已提交
2816

2817
    Returns:
F
fengjiayi 已提交
2818
        Variable: The pooling result.
F
fengjiayi 已提交
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

2829
          import paddle.fluid as fluid
F
fengjiayi 已提交
2830 2831
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2832
          pool2d = fluid.layers.pool2d(
2833 2834 2835 2836
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2837
                            global_pooling=False)
Y
Yu Yang 已提交
2838 2839 2840 2841 2842
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2843

C
chengduoZH 已提交
2844 2845 2846 2847 2848
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2849 2850 2851 2852
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2853 2854
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2855

C
Add doc  
chengduoZH 已提交
2856
    l_type = 'pool2d'
2857 2858

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2859
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2860
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2861 2862

    helper.append_op(
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2874 2875
            "use_mkldnn": False,
            "exclusive": exclusive,
2876 2877 2878 2879 2880
        })

    return pool_out


D
dengkaipeng 已提交
2881
@templatedoc()
2882 2883 2884 2885 2886 2887 2888 2889
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2890 2891
           name=None,
           exclusive=True):
2892
    """
2893
    ${comment}
2894 2895

    Args:
D
dengkaipeng 已提交
2896 2897 2898 2899 2900
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2901 2902 2903 2904 2905
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2906 2907 2908 2909 2910 2911 2912
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2913
        exclusive (bool): Whether to exclude padding points in average pooling
2914
                          mode, default is true
2915

2916
    Returns:
2917
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2918 2919 2920 2921 2922

    Examples:

        .. code-block:: python

2923
          import paddle.fluid as fluid
D
dengkaipeng 已提交
2924 2925 2926 2927 2928 2929 2930 2931
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2932 2933 2934 2935 2936
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2937

C
chengduoZH 已提交
2938 2939 2940 2941 2942
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2943 2944 2945
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2946

C
chengduoZH 已提交
2947 2948
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2949

2950 2951
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2952
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2953
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2954 2955

    helper.append_op(
2956
        type=l_type,
Y
Yu Yang 已提交
2957 2958 2959 2960 2961 2962 2963
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2964
            "paddings": pool_padding,
2965
            "use_cudnn": use_cudnn,
2966
            "ceil_mode": ceil_mode,
2967 2968
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2969 2970 2971 2972 2973
        })

    return pool_out


2974 2975 2976 2977 2978 2979 2980
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2981 2982 2983 2984 2985 2986 2987
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2988

2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
3002 3003 3004 3005 3006 3007 3008 3009 3010

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
3011 3012
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
3027
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
3028
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
3029
          # of input data into m * n grids averagely and performs poolings in each
3030 3031
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
3032
          #
3033 3034 3035 3036 3037 3038 3039 3040
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
3041
          import paddle.fluid as fluid
3042 3043
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
3044
          pool_out = fluid.layers.adaptive_pool2d(
3045 3046
                            input=data,
                            pool_size=[3, 3],
3047
                            pool_type='avg')
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3058
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3084
    return (pool_out, mask) if require_index else pool_out
3085 3086 3087 3088 3089 3090 3091 3092 3093


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
3094 3095 3096 3097 3098 3099 3100
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
3101

3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
3119 3120 3121

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
3122 3123 3124
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
3125
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
3126
            it must contain three integers, (Depth, Height, Width).
3127
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
3128 3129
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

3144 3145
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
3146
          # of input data into l * m * n grids averagely and performs poolings in each
3147 3148
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
3149
          #
3150 3151 3152 3153 3154 3155 3156 3157 3158
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
3159
          #                 output[:, :, i, j, k] =
3160 3161
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
3162 3163 3164

          import paddle.fluid as fluid

3165
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
3166 3167
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
3168
                            input=data,
D
dengkaipeng 已提交
3169
                            pool_size=[3, 3, 3],
3170
                            pool_type='avg')
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3181
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3207
    return (pool_out, mask) if require_index else pool_out
3208 3209


Y
Yu Yang 已提交
3210 3211 3212 3213 3214 3215 3216
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3217
               data_layout='NCHW',
Y
Yang Yang 已提交
3218
               in_place=False,
3219 3220
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3221
               moving_variance_name=None,
3222
               do_model_average_for_mean_and_var=False,
3223 3224
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3225
    """
Q
qiaolongfei 已提交
3226 3227 3228 3229
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3230

Q
qiaolongfei 已提交
3231
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3232

Q
qiaolongfei 已提交
3233 3234
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3235 3236 3237
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3250

3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
3264 3265 3266 3267
    Note:
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use 
        sync_batch_norm automatically.

3268
    Args:
Q
qingqing01 已提交
3269
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3270
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3271 3272 3273 3274 3275 3276 3277 3278 3279
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3280 3281
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
3282 3283 3284
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
3285 3286
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
3287 3288 3289
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
Q
qiaolongfei 已提交
3290
        data_layout(string, default NCHW): NCHW|NHWC
3291
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3292 3293
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
3294 3295 3296
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean. If it 
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
Q
qiaolongfei 已提交
3297
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
3298 3299
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
Q
qiaolongfei 已提交
3300
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3301
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3302 3303 3304 3305 3306
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3307 3308

    Returns:
Q
qiaolongfei 已提交
3309
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3310 3311 3312 3313 3314

    Examples:

        .. code-block:: python

3315
            import paddle.fluid as fluid
L
lvmengsi 已提交
3316
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3317 3318
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3319
    """
C
chengduo 已提交
3320
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3321 3322 3323
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3324 3325 3326 3327
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3346
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3347

3348 3349
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3350 3351 3352
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3353
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3354
        shape=param_shape,
W
Wu Yi 已提交
3355
        dtype=dtype)
3356 3357 3358 3359 3360 3361
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3362
            trainable=False,
W
wanghaoshuang 已提交
3363
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3364
        shape=param_shape,
W
Wu Yi 已提交
3365
        dtype=dtype)
3366
    variance.stop_gradient = True
Y
Yu Yang 已提交
3367 3368 3369 3370 3371 3372

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3373 3374 3375 3376
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3377

X
Xin Pan 已提交
3378 3379
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3397 3398 3399 3400
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3401
            "data_layout": data_layout,
X
Xin Pan 已提交
3402
            "use_mkldnn": False,
3403 3404
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3405
        })
Y
Yu Yang 已提交
3406 3407 3408 3409

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3461 3462
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3463

3464 3465
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3531
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3532 3533 3534 3535

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3536
@templatedoc()
G
guosheng 已提交
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3547
    ${comment}
G
guosheng 已提交
3548 3549 3550

    The formula is as follows:

Y
yuyang18 已提交
3551
    ..  math::
G
guosheng 已提交
3552 3553 3554 3555 3556 3557 3558

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3559 3560 3561 3562 3563 3564 3565 3566
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3567

G
guosheng 已提交
3568 3569
    Args:
        input(Variable): The input tensor variable.
3570
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3571
            normalization. Default True.
3572
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3573 3574
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3575
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3576
            Default 1.
3577
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3578
            division by zero. Default 1e-05.
G
guosheng 已提交
3579
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3580 3581
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3582 3583
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3584
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3585 3586
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3587
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3588
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3589
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3590 3591 3592
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3593 3594

    Returns:
Y
yuyang18 已提交
3595
        ${y_comment}
G
guosheng 已提交
3596 3597 3598

    Examples:

3599
        >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3600 3601 3602
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3603
    """
L
lujun 已提交
3604
    assert in_dygraph_mode(
L
lujun 已提交
3605
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3620
    if shift:
G
guosheng 已提交
3621 3622 3623 3624 3625 3626
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3627 3628 3629 3630 3631
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3659
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

3681
        >>> import paddle.fluid as fluid
D
Dun 已提交
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3708 3709
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3727
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3728 3729 3730
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3731
    This layer calculates the spectral normalization value of weight parameters of
3732
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3733
    Parameters. Calculations are showed as follows.
3734

D
dengkaipeng 已提交
3735 3736 3737
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3738
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3751
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3752 3753 3754 3755

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3756

D
dengkaipeng 已提交
3757
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3758 3759
                

D
dengkaipeng 已提交
3760 3761 3762 3763
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3764 3765 3766
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3767 3768 3769
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3770
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3771 3772

    Examples:
K
Kaipeng Deng 已提交
3773
       .. code-block:: python
D
dengkaipeng 已提交
3774

K
Kaipeng Deng 已提交
3775 3776 3777 3778 3779
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3780 3781
    """
    helper = LayerHelper('spectral_norm', **locals())
3782
    dtype = weight.dtype
D
dengkaipeng 已提交
3783 3784 3785

    # create intput and parameters
    inputs = {'Weight': weight}
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3804 3805

    # create output
3806
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3807 3808

    helper.append_op(
3809
        type="spectral_norm",
D
Dun 已提交
3810
        inputs=inputs,
3811 3812 3813 3814 3815 3816
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3817

3818
    return out
D
Dun 已提交
3819 3820


Y
Yu Yang 已提交
3821 3822 3823 3824
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3825 3826 3827
                     padding=0,
                     stride=1,
                     dilation=1,
3828
                     groups=None,
C
caoying03 已提交
3829
                     param_attr=None,
3830
                     bias_attr=None,
C
chengduoZH 已提交
3831
                     use_cudnn=True,
3832
                     act=None,
C
caoying03 已提交
3833
                     name=None):
Y
Yu Yang 已提交
3834
    """
3835 3836 3837 3838 3839 3840 3841 3842
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3843
    layer, please refer to the following explanation and references
L
lvmengsi 已提交
3844
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3845 3846 3847
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3848 3849 3850 3851 3852

    For each input :math:`X`, the equation is:

    .. math::

3853
        Out = \sigma (W \\ast X + b)
3854

3855
    Where:
3856 3857 3858

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3859 3860 3861 3862
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3863

3864 3865 3866 3867
    Example:

        - Input:

3868
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3869

3870
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3871 3872 3873

        - Output:

3874
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3875 3876

        Where
Y
Yu Yang 已提交
3877

3878 3879
        .. math::

3880 3881
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
L
lvmengsi 已提交
3882 3883 3884 3885 3886 3887 3888 3889 3890
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ] 

    Note:
          if output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.
Y
Yu Yang 已提交
3891 3892

    Args:
3893 3894 3895 3896
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3897 3898 3899 3900
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3929
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3930 3931 3932
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3933
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3934
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3935 3936

    Returns:
3937
        Variable: The tensor variable storing the convolution transpose result.
3938 3939

    Raises:
3940 3941
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3942 3943 3944 3945

    Examples:
       .. code-block:: python

3946
          import paddle.fluid as fluid
3947 3948
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3949
    """
C
chengduo 已提交
3950
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3951 3952 3953 3954 3955 3956 3957 3958
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3959 3960 3961
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3962 3963 3964
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3965

C
chengduoZH 已提交
3966 3967
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3968

Y
Yu Yang 已提交
3969 3970 3971 3972 3973
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3974

Y
Yu Yang 已提交
3975 3976
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3977

C
chengduoZH 已提交
3978
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3979
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3980
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3981
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3982
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3983 3984 3985
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3986

3987 3988 3989 3990 3991 3992 3993
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3994
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3995
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3996

Y
Yu Yang 已提交
3997 3998 3999
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
4000
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4001
    helper.append_op(
4002
        type=op_type,
Y
Yu Yang 已提交
4003 4004
        inputs={'Input': [input],
                'Filter': [img_filter]},
4005
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4006
        attrs={
4007
            'output_size': output_size,
4008 4009 4010 4011 4012
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
4013 4014
        })

4015 4016 4017
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
4018 4019


4020
def conv3d_transpose(input,
Y
Yu Yang 已提交
4021 4022 4023
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
4024 4025 4026
                     padding=0,
                     stride=1,
                     dilation=1,
4027
                     groups=None,
C
caoying03 已提交
4028
                     param_attr=None,
4029
                     bias_attr=None,
C
chengduoZH 已提交
4030
                     use_cudnn=True,
4031
                     act=None,
C
caoying03 已提交
4032
                     name=None):
Y
Yu Yang 已提交
4033
    """
4034
    **Convlution3D transpose layer**
4035

4036
    The convolution3D transpose layer calculates the output based on the input,
4037
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
4038 4039 4040 4041 4042
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
L
lvmengsi 已提交
4043
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
4044 4045 4046
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
4047 4048 4049 4050 4051

    For each input :math:`X`, the equation is:

    .. math::

4052
        Out = \sigma (W \\ast X + b)
4053 4054 4055

    In the above equation:

4056 4057
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
4058 4059 4060 4061
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
4062

4063 4064 4065 4066
    Example:

        - Input:

4067
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
4068

4069
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
4070 4071 4072

        - Output:

4073
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
4074 4075

        Where
Y
Yu Yang 已提交
4076

4077 4078
        .. math::

4079 4080 4081
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
4082 4083

    Args:
4084
        input(Variable): The input image with [N, C, D, H, W] format.
4085 4086 4087
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
4088
            tuple, it must contain three integers, (image_D, image_H, image_W). This
4089 4090
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
4091
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
4092 4093 4094
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
4095 4096
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
4097
        stride(int|tuple): The stride size. If stride is a tuple, it must
4098 4099
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
4100
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
4101 4102 4103
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
4104 4105 4106 4107 4108
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
4109 4110 4111 4112 4113 4114 4115 4116 4117
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
4118 4119
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
4120 4121
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
4122 4123
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
4124 4125

    Returns:
4126
        Variable: The tensor variable storing the convolution transpose result.
4127 4128

    Raises:
4129 4130
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
4131 4132 4133 4134

    Examples:
       .. code-block:: python

4135
          import paddle.fluid as fluid
4136 4137
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
4138
    """
C
chengduo 已提交
4139
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
4140 4141
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
4142
    if not isinstance(input, Variable):
4143
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
4144 4145
    input_channel = input.shape[1]

4146 4147 4148
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
4149

C
chengduoZH 已提交
4150 4151 4152
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
4153 4154 4155 4156 4157 4158
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

4159 4160 4161
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
4162

4163
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
4164
                         padding[0] - 1) // dilation[0] + 1
4165
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
4166
                         padding[1] - 1) // dilation[1] + 1
4167
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
4168
                         padding[2] - 1) // dilation[2] + 1
4169
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
4170
    else:
4171 4172
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
4173

4174
    groups = 1 if groups is None else groups
M
minqiyang 已提交
4175
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
4176 4177 4178
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
4179
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4180
    helper.append_op(
4181
        type=l_type,
Y
Yu Yang 已提交
4182 4183
        inputs={'Input': [input],
                'Filter': [img_filter]},
4184
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4185 4186 4187 4188
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
4189
            'groups': groups,
C
chengduoZH 已提交
4190 4191
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
4192

4193 4194
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
4195
    return out
Y
yangyaming 已提交
4196 4197


Y
yangyaming 已提交
4198
def sequence_expand(x, y, ref_level=-1, name=None):
4199
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
4200 4201 4202 4203
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
4204 4205 4206 4207 4208

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
4209
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
4210
                x.data = [[a], [b], [c], [d]]
4211 4212 4213
                x.dims = [4, 1]

            y is a LoDTensor:
4214 4215
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
4216

Y
yangyaming 已提交
4217
            ref_level: 0
4218

Y
yangyaming 已提交
4219
            then output is a 1-level LoDTensor:
4220
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4221
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4222 4223 4224 4225
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4226
                x.data = [[a], [b], [c]]
4227 4228 4229
                x.dims = [3, 1]

            y is a LoDTensor:
4230
                y.lod = [[2, 0, 3]]
4231

Y
yangyaming 已提交
4232
            ref_level: -1
4233

Y
yangyaming 已提交
4234 4235 4236
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4237 4238 4239
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4240 4241
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4242
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4243
                        will be named automatically.
4244 4245 4246 4247 4248 4249

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4250
	
4251
            import paddle.fluid as fluid
4252
            import paddle.fluid.layers as layers
4253 4254 4255
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4256
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4257
    """
L
lujun 已提交
4258
    assert not in_dygraph_mode(), (
4259
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4260
    helper = LayerHelper('sequence_expand', input=x, **locals())
4261
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4262
    tmp = helper.create_variable_for_type_inference(dtype)
4263
    helper.append_op(
Y
yangyaming 已提交
4264 4265 4266 4267 4268
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4269
    return tmp
4270 4271


C
chengduo 已提交
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4320 4321
            
            import paddle.fluid as fluid
4322
            import paddle.fluid.layers as layers
C
chengduo 已提交
4323 4324 4325 4326 4327 4328

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4329
    assert not in_dygraph_mode(), (
4330
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4331 4332
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4333
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4334 4335 4336 4337 4338 4339 4340 4341
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4342
@templatedoc()
4343
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4344 4345 4346 4347 4348
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4349 4350 4351
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4352
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4353 4354 4355 4356
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4357 4358 4359
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4360

F
fengjiayi 已提交
4361
    Returns:
M
minqiyang 已提交
4362
        Variable: The padded sequence batch and the original lengths before
4363
                  padding. All sequences has the same length.
M
minqiyang 已提交
4364

F
fengjiayi 已提交
4365 4366 4367
    Examples:
        .. code-block:: python

4368
            import paddle.fluid as fluid
F
fengjiayi 已提交
4369 4370 4371 4372
            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4373
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4374
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4375 4376 4377
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4378
    assert not in_dygraph_mode(), (
4379
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4380 4381
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4382 4383
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4384 4385 4386 4387

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4388 4389 4390 4391 4392 4393
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4394 4395
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4396
        attrs={'padded_length': maxlen})
4397
    return out, length
F
fengjiayi 已提交
4398 4399


4400
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4401
    """
4402
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4403

4404 4405
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4406 4407 4408 4409 4410 4411 4412 4413 4414
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4415 4416 4417
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4418
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4419 4420 4421 4422 4423 4424

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4425
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4426 4427 4428 4429 4430 4431

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4432 4433
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4434 4435 4436 4437 4438 4439 4440

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

4441
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
4442 4443 4444 4445 4446
            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4447
    assert not in_dygraph_mode(), (
4448
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4449 4450
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4451
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4463 4464 4465 4466 4467 4468 4469
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4470
                is_accumulated=True,
4471 4472
                name=None,
                return_parent_idx=False):
4473
    """
4474 4475
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4476 4477 4478

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4479 4480

    This layer does the search in beams for one time step. Specifically, it
4481 4482 4483
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4495 4496 4497 4498

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4499

4500
    Args:
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4524 4525
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4526 4527
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4528 4529 4530 4531
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4532

4533
    Returns:
4534 4535 4536 4537
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4538 4539 4540 4541

    Examples:
        .. code-block:: python

4542 4543
            import paddle.fluid as fluid

4544 4545 4546
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4559
                axis=0)
4560
            selected_ids, selected_scores = fluid.layers.beam_search(
4561 4562 4563 4564 4565 4566 4567
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4568
    helper = LayerHelper('beam_search', **locals())
4569 4570 4571 4572 4573 4574
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4575

X
Xin Pan 已提交
4576 4577 4578
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4579 4580 4581 4582 4583
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4584 4585 4586

    helper.append_op(
        type='beam_search',
4587
        inputs=inputs,
Q
Qiao Longfei 已提交
4588 4589 4590
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4591
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4592 4593 4594 4595 4596 4597
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4598
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4599
        })
4600 4601 4602 4603
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4604 4605


4606 4607 4608 4609 4610 4611 4612
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4613

4614 4615 4616 4617 4618 4619 4620 4621 4622
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4623

4624 4625 4626 4627 4628 4629
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4630

4631 4632
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4633

4634 4635
            import paddle.fluid as fluid

4636 4637
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4638 4639 4640
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4641 4642 4643
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4644 4645
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4661 4662 4663 4664
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4665
              param_attr=None,
C
caoying03 已提交
4666 4667
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4668 4669 4670 4671
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4672
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4673

4674
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4675

4676
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4677

4678
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4679 4680 4681

            h_t & = o_t tanh(c_t)

4682 4683 4684 4685 4686 4687
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4688 4689 4690

        .. math::

4691
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4692 4693 4694 4695 4696 4697 4698 4699

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

4700
    This layer has two outputs including :math:`h_t` and :math:`c_t`.
Y
yangyaming 已提交
4701 4702

    Args:
Y
yangyaming 已提交
4703 4704 4705 4706 4707 4708
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4709
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4722 4723
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4724 4725

    Returns:
Y
yangyaming 已提交
4726
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4727 4728

    Raises:
4729 4730 4731 4732
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4733 4734 4735 4736 4737

    Examples:

        .. code-block:: python

4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4765
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4766 4767 4768 4769
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4770 4771
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4772 4773 4774
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4775
    size = cell_t_prev.shape[1]
4776
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4777 4778
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4779
                param_attr=param_attr,
4780
                bias_attr=bias_attr)
Y
yangyaming 已提交
4781
    dtype = x_t.dtype
X
Xin Pan 已提交
4782 4783
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4784 4785 4786 4787 4788 4789 4790 4791 4792

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4793
    return h, c
G
guosheng 已提交
4794 4795


C
caoying03 已提交
4796
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4797
    """
Y
yangyaming 已提交
4798
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4799 4800 4801

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4802
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4803 4804
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4805 4806
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4807
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4808
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4809
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4810 4811
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4812 4813 4814

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4815

G
guosheng 已提交
4816 4817 4818
    Examples:
        .. code-block:: python

4819
            import paddle.fluid as fluid
G
guosheng 已提交
4820 4821 4822
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4823
            # Each example is followed by the corresponding output tensor.
4824
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4825 4826 4827 4828
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4829

4830
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4831 4832
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4833
            # Each example is followed by the corresponding output tensor.
4834 4835 4836
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4837

G
guosheng 已提交
4838 4839
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4840
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4841 4842
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4843 4844 4845 4846 4847
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4848
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4849 4850 4851 4852
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4853 4854


C
caoying03 已提交
4855
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4856
    """
Y
Yibing Liu 已提交
4857
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4858 4859 4860

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4861 4862 4863
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4864
            must be in the range :math:`[-rank(input), rank(input))`. If
4865
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4866
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4867 4868
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4869
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4870
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4871
                       will be named automatically.
G
guosheng 已提交
4872 4873

    Returns:
Y
Yibing Liu 已提交
4874
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4875

G
guosheng 已提交
4876 4877 4878
    Examples:
        .. code-block:: python

4879
            import paddle.fluid as fluid
G
guosheng 已提交
4880 4881 4882 4883
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4884
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4885 4886 4887
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4888
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4889

4890
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4891 4892 4893
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4894 4895 4896
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4897 4898
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4899
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4900 4901
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4902 4903 4904 4905 4906
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4907
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4908 4909 4910 4911
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4912 4913


C
caoying03 已提交
4914
def reduce_max(input, dim=None, keep_dim=False, name=None):
4915
    """
Y
yangyaming 已提交
4916
    Computes the maximum of tensor elements over the given dimension.
4917 4918 4919

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4920
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4921 4922 4923
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4924
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4925 4926
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4927
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4928 4929
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4930 4931 4932

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4933

4934 4935 4936
    Examples:
        .. code-block:: python

4937
            import paddle.fluid as fluid
4938 4939 4940 4941
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4942
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4943 4944 4945 4946
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4947

4948
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4949 4950 4951
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4952 4953 4954
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4955 4956
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4957
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4958 4959
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4960 4961 4962 4963 4964
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4965
            'dim': dim if dim != None else [0],
4966 4967 4968 4969 4970 4971
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4972
def reduce_min(input, dim=None, keep_dim=False, name=None):
4973
    """
Y
yangyaming 已提交
4974
    Computes the minimum of tensor elements over the given dimension.
4975 4976 4977

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4978
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4979 4980 4981
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4982
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4983 4984
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4985
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4986 4987
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4988 4989 4990

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4991

4992 4993 4994
    Examples:
        .. code-block:: python

4995
            import paddle.fluid as fluid
4996 4997 4998 4999
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5000
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5001 5002 5003 5004
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
5005

5006
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5007 5008 5009
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5010 5011 5012
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
5013 5014
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
5015
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5016 5017
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5018 5019 5020 5021 5022
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5023
            'dim': dim if dim != None else [0],
5024 5025 5026 5027
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
5028 5029


5030 5031 5032 5033 5034 5035
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
5036
        dim (list|int|None): The dimensions along which the product is performed. If
5037 5038
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
5039 5040
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
5041 5042 5043
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
5044
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
5045
            layer will be named automatically.
5046 5047 5048 5049 5050 5051 5052

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

5053
            import paddle.fluid as fluid
5054 5055 5056 5057
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5058
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5059 5060 5061
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
5062
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
5063
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
5064

5065
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5066 5067 5068
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5069 5070 5071
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
5072 5073
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
5074
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5075 5076
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5077 5078 5079 5080 5081
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5082
            'dim': dim if dim != None else [0],
5083 5084 5085 5086 5087 5088
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
5089 5090
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5091
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5111
        
5112
            import paddle.fluid as fluid
5113 5114 5115
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5116 5117 5118
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
5119 5120 5121 5122 5123 5124 5125
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
Z
zhoukunsheng 已提交
5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5146
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5166

5167
            import paddle.fluid as fluid
5168 5169 5170
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5171 5172 5173
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
5174 5175 5176 5177 5178 5179 5180
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
5195 5196 5197 5198 5199
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
5200
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
5201
    """
C
caoying03 已提交
5202
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
5203 5204 5205

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
5206 5207 5208 5209 5210
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
5211
            :attr:`dim` dimension orderly.
C
caoying03 已提交
5212
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
5213
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
5214 5215
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5216 5217

    Returns:
D
dzhwinter 已提交
5218
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
5219 5220 5221 5222

    Examples:
        .. code-block:: python

5223 5224 5225 5226 5227 5228
            import paddle.fluid as fluid

            # input is a variable which shape is [-1, 3, 9, 5]
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")

5229
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
5230 5231 5232 5233 5234 5235 5236 5237
            # x0.shape [-1, 3, 3, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 3, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 2, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 4, 5]
G
guosheng 已提交
5238 5239 5240 5241 5242 5243 5244 5245
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
5246
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
5247 5248 5249
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
5250
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
5264 5265 5266 5267 5268 5269 5270 5271 5272


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5273
    .. math::
5274 5275

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5276 5277 5278 5279 5280

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5281
        x(Variable|list): The input tensor to l2_normalize layer.
5282
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5283 5284
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5285
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
5286
            the default value is 1e-12.
5287
        name(str|None): A name for this layer(optional). If set None, the layer \
5288
            will be named automatically.
C
caoying03 已提交
5289 5290

    Returns:
5291
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5292 5293

    Examples:
5294

C
caoying03 已提交
5295 5296
        .. code-block:: python

5297
            import paddle.fluid as fluid
5298 5299 5300 5301
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5302 5303
    """

F
fengjiayi 已提交
5304 5305
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5306 5307
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5308 5309
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5310
    helper.append_op(
5311 5312 5313 5314
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5315
        attrs={
5316 5317
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5318 5319
        })
    return out
5320 5321


S
sneaxiy 已提交
5322
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5323
    """
Y
ying 已提交
5324 5325 5326 5327
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5328

C
chengduoZH 已提交
5329
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5330
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5331

5332 5333 5334 5335 5336
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5337
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5338

C
chengduoZH 已提交
5339
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5340
      performs in the following way.
G
guosheng 已提交
5341

5342
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5343
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5344
        last two dimensions and a batched matrix multiply supporting broadcast
5345
        applies on the two tensors.
G
guosheng 已提交
5346

Y
ying 已提交
5347 5348
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5349
    removed after matrix multiplication.
G
guosheng 已提交
5350 5351 5352

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5353 5354 5355
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5356
        alpha (float): The scale of output. Default 1.0.
5357
        name(str|None): A name for this layer(optional). If set None, the layer
5358
            will be named automatically.
G
guosheng 已提交
5359 5360

    Returns:
石晓伟 已提交
5361
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
5362

G
guosheng 已提交
5363 5364 5365
    Examples:
        .. code-block:: python

5366
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5367
            # x: [B, ..., M, K], y: [B, ..., K, N]
5368
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5369

5370
            # x: [B, M, K], y: [B, K, N]
5371
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5372

5373
            # x: [B, M, K], y: [K, N]
5374
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5375

5376
            # x: [M, K], y: [K, N]
5377
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5378 5379

            # x: [B, M, K], y: [K]
5380
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
5381

5382
            # x: [K], y: [K]
5383
            # fluid.layers.matmul(x, y)  # out: [1]
5384

Y
ying 已提交
5385
            # x: [M], y: [N]
5386 5387
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

5388
            import paddle.fluid as fluid
5389 5390 5391
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
5392
    """
Y
ying 已提交
5393 5394 5395 5396 5397 5398 5399

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5400
            y_shape = y_shape + [1]
Y
ying 已提交
5401 5402 5403 5404 5405 5406 5407

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5408 5409
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5410

C
chengduo 已提交
5411
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5412
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5413 5414 5415
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5416
                if dim_x != y_shape[i]:
C
chengduo 已提交
5417 5418
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5419 5420 5421

    __check_input(x, y)

5422
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5423
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5424
    helper.append_op(
5425 5426 5427 5428
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5429 5430 5431
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5432
            'alpha': float(alpha),
S
sneaxiy 已提交
5433
        })
5434
    return out
5435 5436


5437
def topk(input, k, name=None):
Q
qingqing01 已提交
5438 5439 5440 5441
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5442
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5443 5444 5445 5446 5447 5448
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5470 5471 5472
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5473
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5474
                 of input.
5475
        name(str|None): A name for this layer(optional). If set None, the layer
5476
                       will be named automatically.
F
fengjiayi 已提交
5477
                       Default: None
Q
qingqing01 已提交
5478 5479

    Returns:
5480 5481 5482
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5483
        within the last dimension of input.
Q
qingqing01 已提交
5484

F
fengjiayi 已提交
5485 5486
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5487 5488 5489 5490

    Examples:
        .. code-block:: python

5491
            import paddle.fluid as fluid
5492 5493
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5494 5495 5496
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5497 5498
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5499 5500 5501 5502 5503 5504
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5505 5506
    helper.append_op(
        type="top_k",
W
whs 已提交
5507
        inputs=inputs,
Q
qingqing01 已提交
5508 5509
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5510
        attrs=attrs)
Q
qingqing01 已提交
5511 5512 5513 5514 5515
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5516 5517 5518 5519 5520 5521
def edit_distance(input,
                  label,
                  normalized=True,
                  ignored_tokens=None,
                  input_length=None,
                  label_length=None):
5522
    """
R
ruri 已提交
5523
    Edit distance operator computes the edit distances between a batch of
Y
ying 已提交
5524 5525 5526 5527 5528 5529 5530 5531
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5532

Y
ying 已提交
5533
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5534

5535
    The input is a LoDTensor/Tensor consisting of all the hypothesis strings with
Y
ying 已提交
5536
    the total number denoted by `batch_size`, and the separation is specified
5537 5538
    by the LoD information or input_length. And the `batch_size` reference strings are arranged
    in order in the same way as `input`.
W
wanghaoshuang 已提交
5539

5540
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5541 5542
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5543

5544
    Args:
5545 5546
        input(Variable): The indices for hypothesis strings, it should have rank 2 and dtype int64.
        label(Variable): The indices for reference strings, it should have rank 2 and dtype int64.
5547
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5548
                          the length of reference string.
5549
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5550
                                     calculating edit distance.
5551 5552
        input_length(Variable): The length for each sequence in `input` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
        label_length(Variable): The length for each sequence in `label` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
5553

W
wanghaoshuang 已提交
5554
    Returns:
5555 5556 5557
        edit_distance_out(Variable): edit distance result in shape [batch_size, 1]. \n
        sequence_num(Variable): sequence number in shape [].
        
W
wanghaoshuang 已提交
5558 5559 5560

    Examples:
        .. code-block:: python
5561
            
R
ruri 已提交
5562 5563
            import paddle.fluid as fluid

5564 5565 5566 5567
            # using LoDTensor
            x_lod = fluid.layers.data(name='x_lod', shape=[1], dtype='int64', lod_level=1)
            y_lod = fluid.layers.data(name='y_lod', shape=[1], dtype='int64', lod_level=1)
            distance_lod, seq_num_lod = fluid.layers.edit_distance(input=x_lod, label=y_lod)
R
ruri 已提交
5568

5569 5570 5571 5572 5573 5574 5575 5576
            # using Tensor
            x_seq_len = 5
            y_seq_len = 6
            x_pad = fluid.layers.data(name='x_pad', shape=[x_seq_len], dtype='int64')
            y_pad = fluid.layers.data(name='y_pad', shape=[y_seq_len], dtype='int64')
            x_len = fluid.layers.data(name='x_len', shape=[], dtype='int64')
            y_len = fluid.layers.data(name='y_len', shape=[], dtype='int64')
            distance_pad, seq_num_pad = fluid.layers.edit_distance(input=x_pad, label=y_pad, input_length=x_len, label_length=y_len)
R
ruri 已提交
5577

5578
    """
5579
    helper = LayerHelper("edit_distance", **locals())
5580

5581
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5582
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5583 5584
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5585 5586 5587 5588 5589

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5590
            attrs={"tokens": ignored_tokens})
5591 5592 5593 5594 5595
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5596
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5597
            attrs={"tokens": ignored_tokens})
5598 5599
        label = erased_label

5600 5601 5602 5603 5604
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length and label_length:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

5605
    # edit distance op
X
Xin Pan 已提交
5606 5607
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5608 5609
    helper.append_op(
        type="edit_distance",
5610
        inputs=this_inputs,
5611 5612
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5613 5614
        attrs={"normalized": normalized})

5615
    return edit_distance_out, sequence_num
5616 5617 5618 5619 5620


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5621

Y
ying 已提交
5622 5623 5624 5625
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5643
        input.lod = [[4, 4]]
M
minqiyang 已提交
5644

W
whs 已提交
5645
        Computation:
5646

W
whs 已提交
5647 5648 5649 5650 5651 5652
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5653 5654 5655 5656 5657

        output.data = [[2],
                       [1],
                       [3]]

5658
        output.lod = [[2, 1]]
5659

W
whs 已提交
5660

5661 5662
    Args:

Y
ying 已提交
5663 5664 5665 5666 5667 5668 5669 5670 5671
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5672
        name (str): The name of this layer. It is optional.
5673 5674

    Returns:
H
haowang101779990 已提交
5675 5676 5677
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5678
                  LoD [[]] and dims [1, 1].
5679 5680 5681 5682

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5683
            import paddle.fluid as fluid
5684 5685
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5686
    """
5687
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5688
    _, topk_indices = topk(input, k=1)
5689 5690

    # ctc align op
X
Xin Pan 已提交
5691
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5692 5693 5694
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5695
        outputs={"Output": [ctc_out]},
5696 5697
        attrs={"merge_repeated": True,
               "blank": blank})
5698
    return ctc_out
5699 5700


5701 5702 5703 5704 5705 5706 5707
def warpctc(input,
            label,
            blank=0,
            norm_by_times=False,
            use_cudnn=False,
            input_length=None,
            label_length=None):
W
wanghaoshuang 已提交
5708
    """
5709 5710
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5711
    to compute Connectionist Temporal Classification (CTC) loss.
5712 5713
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5714 5715 5716
    input tensor.

    Args:
5717
       input (Variable): The unscaled probabilities of variable-length sequences,
5718 5719 5720
         which is a 2-D Tensor with LoD information, or a 3-D Tensor without Lod
         information. When it is a 2-D LodTensor, it's shape is 
         [Lp, num_classes + 1], where Lp is the sum of all input
W
wanghaoshuang 已提交
5721
         sequences' length and num_classes is the true number of classes.
5722 5723 5724 5725
         (not including the blank label). When it is a 3-D Tensor, it's shape 
         is [max_logit_length, batch_size, num_classes + 1],
         where max_logit_length is the length of the longest
         input logit sequence.
5726
       label (Variable): The ground truth of variable-length sequence,
5727 5728 5729
         which is a 2-D Tensor with LoD information or a 2-D Tensor without
         LoD information. When it is a 2-D LoDTensor or 2-D Tensor, 
         it is of the shape [Lg, 1], where Lg is th sum of all labels' length.
5730
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5731 5732
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5733 5734 5735
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5736
         follewed by a mean_op.
W
Wu Yi 已提交
5737
       use_cudnn (bool, default false): Whether to use cudnn.
5738 5739 5740 5741
       input_length(Variable): The length for each input sequence if it is 
         of Tensor type, it should have shape `[batch_size]` and dtype int64.
       label_length(Variable): The length for each label sequence if it is
         of Tensor type, it should have shape `[batch_size]` and dtype int64.
W
wanghaoshuang 已提交
5742 5743

    Returns:
5744 5745
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5746 5747 5748

    Examples:
        .. code-block:: python
5749

5750
            # using LoDTensor
B
Bai Yifan 已提交
5751
            import paddle.fluid as fluid
5752 5753 5754
            import numpy as np
            
            label = fluid.layers.data(name='label', shape=[12, 1],
B
Bai Yifan 已提交
5755
                                      dtype='float32', lod_level=1)
5756 5757 5758
            predict = fluid.layers.data(name='predict', 
                                        shape=[11, 8],
                                        dtype='float32',lod_level=1)
5759
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5760

5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778
            # using Tensor
            input_length = fluid.layers.data(name='logits_length', shape=[11],
                                         dtype='int64')
            label_length = fluid.layers.data(name='labels_length', shape=[12],
                                         dtype='int64')
            target = fluid.layers.data(name='target', shape=[12, 1],
                                       dtype='int32')
            # length of the longest logit sequence
            max_seq_length = 4
            # number of logit sequences
            batch_size = 4
            output = fluid.layers.data(name='output', 
                                       shape=[max_seq_length, batch_size, 8],
                                       dtype='float32')
            loss = fluid.layers.warpctc(input=output,label=target,
                                        input_length=input_length,
                                        label_length=label_length)

W
wanghaoshuang 已提交
5779
    """
F
fengjiayi 已提交
5780
    helper = LayerHelper('warpctc', **locals())
5781 5782 5783 5784 5785
    this_inputs = {'Logits': [input], 'Label': [label]}
    if input_length and label_length:
        this_inputs['LogitsLength'] = [input_length]
        this_inputs['LabelLength'] = [label_length]

X
Xin Pan 已提交
5786 5787
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
5788

W
wanghaoshuang 已提交
5789 5790
    helper.append_op(
        type='warpctc',
5791
        inputs=this_inputs,
W
wanghaoshuang 已提交
5792 5793
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5794 5795 5796 5797 5798
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5799
    return loss_out
5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5815 5816 5817
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5818 5819 5820 5821 5822
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5823

5824
            out.lod  = [[0, 1, 3]]
5825 5826 5827 5828

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5829 5830 5831 5832 5833 5834 5835
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5836 5837 5838

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5839 5840

    Returns:
5841

5842 5843 5844 5845 5846
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
5847 5848 5849
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
5850
    """
L
lujun 已提交
5851
    assert not in_dygraph_mode(), (
5852
        "sequence layer is not supported in dygraph mode yet.")
5853
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5854
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5855 5856 5857 5858 5859 5860
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5861 5862


5863 5864 5865 5866
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5867 5868 5869 5870 5871 5872
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5873
        num_neg_samples=None,
5874 5875 5876
        name=None,
        sampler="uniform",
        custom_dist=None,
5877 5878
        seed=0,
        is_sparse=False):
5879 5880 5881 5882 5883 5884 5885
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5886 5887
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5888
            sample is 1.0.
C
chengduo 已提交
5889 5890 5891 5892 5893 5894 5895 5896 5897
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5898
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5899 5900
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5901 5902 5903
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5904
        custom_dist (float[]): A float[] with size=num_total_classes.
5905 5906 5907 5908
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5909
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5910

5911
    Returns:
Y
Yibing Liu 已提交
5912 5913 5914 5915 5916 5917
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


X
xsrobin 已提交
5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951
            import paddle.fluid as fluid
            import numpy as np

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(fluid.layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
                                   param_attr='embed', is_sparse=True)
                embs.append(emb)

            embs = fluid.layers.concat(input=embs, axis=1)
            loss = fluid.layers.nce(input=embs, label=words[label_word],
                      num_total_classes=dict_size, param_attr='nce.w_0',
                      bias_attr='nce.b_0')

             #or use custom distribution
             dist = np.array([0.05,0.5,0.1,0.3,0.05])
             loss = fluid.layers.nce(input=embs, label=words[label_word],
                       num_total_classes=5, param_attr='nce.w_1',
                       bias_attr='nce.b_1',
                       num_neg_samples=3,
                       sampler="custom_dist",
                       custom_dist=dist)
5952
    """
Y
Yang Yu 已提交
5953 5954 5955
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5956 5957

    dim = input.shape[1]
Y
Yang Yu 已提交
5958 5959 5960 5961 5962 5963
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5964
    inputs = {}
C
chengduo 已提交
5965 5966 5967 5968 5969 5970 5971
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5972 5973 5974
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5975

5976 5977 5978 5979
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5980 5981 5982 5983 5984 5985 5986

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5987 5988
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5989
        custom_dist_len = num_total_classes
5990 5991 5992 5993 5994 5995
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5996
            if normal_prob - 1.0 > 0:
5997
                bigs.append((i, normal_prob))
5998
            elif 1.0 - normal_prob > 0:
5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
6014
            if big_left - 1.0 > 0:
6015
                bigs.append((big_idx, big_left))
6016
            elif 1.0 - big_left > 0:
6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
6046 6047 6048 6049
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

6050 6051 6052 6053 6054
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

6055 6056 6057 6058
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
6059

Y
Yang Yu 已提交
6060 6061
    attrs = {
        'num_total_classes': int(num_total_classes),
6062 6063
        'num_neg_samples': num_neg_samples,
        'seed': seed,
6064
        'sampler': sampler,
6065 6066
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
6067
    }
Y
Yang Yu 已提交
6068 6069 6070

    helper.append_op(
        type='nce',
C
chengduo 已提交
6071
        inputs=inputs,
Y
Yang Yu 已提交
6072 6073 6074 6075 6076 6077
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
6078
    return cost / (num_neg_samples + 1)
6079 6080


C
chengduo 已提交
6081 6082
def hsigmoid(input,
             label,
6083
             num_classes,
C
chengduo 已提交
6084 6085
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
6086
             name=None,
6087 6088 6089
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
6090
             is_sparse=False):
W
weixing02 已提交
6091 6092
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
6093
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
6094
    complete binary tree, or you can use is_custom to pass your own tree to
6095
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
6096 6097 6098 6099 6100 6101
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

6102
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
6103
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
6104

6105 6106
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
6107 6108 6109 6110
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
6111
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
6112
       related to the same batch of inputs.
6113

W
weixing02 已提交
6114
    Args:
M
minqiyang 已提交
6115
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
6116 6117 6118 6119
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
6120 6121
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
6122
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
6134
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
6135
            it should be in leaf -> root order
M
minqiyang 已提交
6136 6137 6138
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
6139
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
6140
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
6141
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
6142
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
6143
             of W and input will be sparse.
W
weixing02 已提交
6144 6145

    Returns:
J
JiabinYang 已提交
6146
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
6147 6148 6149 6150 6151

    Examples:

        .. code-block:: python

6152
            import paddle.fluid as fluid
G
guosheng 已提交
6153 6154 6155
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
6156 6157 6158 6159
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6160 6161
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
6162
    dim = input.shape[1]
6163
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
6164 6165 6166
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

6167 6168 6169 6170 6171 6172 6173 6174 6175
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

6176
    if (is_custom) and (path_code is None):
6177
        raise ValueError("path_code should not be None with custom tree")
6178
    elif (is_custom) and (path_table is None):
6179
        raise ValueError("path_table should not be None with custom tree")
6180
    elif (is_custom) and (num_classes is None):
6181
        raise ValueError("num_classes should not be None with custom tree")
6182 6183 6184
    else:
        pass

J
JiabinYang 已提交
6185
    weights = None
6186 6187 6188 6189
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
6190
    if not is_custom:
J
JiabinYang 已提交
6191 6192 6193 6194 6195 6196 6197 6198
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
6199
            shape=[num_classes, dim],
J
JiabinYang 已提交
6200 6201
            is_bias=False,
            dtype=input.dtype)
6202 6203 6204
    inputs = {
        "X": input,
        "W": weights,
6205
        "PathTable": path_table,
6206
        "PathCode": path_code,
6207 6208
        "Label": label
    }
W
weixing02 已提交
6209
    if helper.bias_attr:
6210
        if not is_custom:
J
JiabinYang 已提交
6211 6212
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
6213
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
6214 6215 6216 6217 6218 6219
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
6220
                shape=[num_classes, 1],
J
JiabinYang 已提交
6221 6222 6223
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
6224 6225
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
6226
        inputs=inputs,
W
weixing02 已提交
6227
        outputs={"Out": out,
6228 6229 6230 6231 6232 6233 6234
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
6235 6236 6237
    return out


Y
fix ci.  
ying 已提交
6238
def transpose(x, perm, name=None):
Y
ying 已提交
6239 6240 6241 6242 6243 6244 6245
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
6246 6247 6248
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
6249 6250 6251 6252 6253 6254 6255

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

6256
            # use append_batch_size=False to avoid prepending extra
6257
            # batch size in shape
6258
            import paddle.fluid as fluid
6259
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
6260
                            dtype='float32', append_batch_size=False)
6261
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
6262 6263
    """

Y
fix ci.  
ying 已提交
6264
    if len(perm) != len(x.shape):
Y
ying 已提交
6265 6266
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
6267
            "Its length should be equal to Input(input)'s rank.")
Y
ying 已提交
6268 6269 6270 6271 6272 6273
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
6274 6275

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
6276 6277
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
6278
    helper.append_op(
6279
        type='transpose2',
Y
fix ci.  
ying 已提交
6280
        inputs={'X': [x]},
6281 6282
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
6283 6284
        attrs={'axis': perm})
    return out
6285 6286


6287 6288 6289 6290 6291 6292 6293
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
6294
    """
6295 6296 6297 6298 6299 6300 6301
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
6302 6303 6304 6305 6306 6307 6308 6309 6310 6311

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

6330 6331 6332 6333 6334 6335 6336 6337 6338
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

6339 6340 6341
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
6342 6343 6344 6345 6346
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6374 6375 6376
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6389
            output.dims = {8, 8}
6390

6391
            output.lod = [[4, 4]]
6392

T
Tink_Y 已提交
6393
    Examples:
6394 6395 6396

        .. code-block:: python

B
Bai Yifan 已提交
6397 6398 6399
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
6400
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
6401 6402
                input=data, stride=[1, 1], filter_size=[2, 2])

6403 6404

    """
L
lujun 已提交
6405
    assert not in_dygraph_mode(), (
6406
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6407 6408 6409 6410 6411 6412 6413 6414 6415 6416

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6417
    inputs = {"X": input}
6418
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
6419 6420 6421 6422 6423
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6424
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6425
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6426
    helper.append_op(
6427
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6428
    return out
6429 6430


Y
yuyang18 已提交
6431
@templatedoc()
6432
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6433 6434
    """
    ${comment}
6435 6436

    Args:
Y
yuyang18 已提交
6437
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6438 6439
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6440 6441 6442 6443 6444
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6445
        ${out_comment}.
6446 6447

    Examples:
Y
yuyang18 已提交
6448 6449 6450 6451
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6452 6453 6454 6455 6456 6457
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6458
    out = helper.create_variable_for_type_inference(dtype)
6459 6460 6461 6462 6463
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6464
    return helper.append_activation(out)
6465 6466


Y
yuyang18 已提交
6467
@templatedoc()
6468 6469
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6470 6471
    ${comment}

L
lujun 已提交
6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6515 6516

    Args:
Y
yuyang18 已提交
6517 6518
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6519 6520

    Returns:
Y
yuyang18 已提交
6521
        ${out_comment}.
6522 6523
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6524 6525 6526 6527 6528

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6529
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6530 6531 6532 6533 6534 6535
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6536 6537


6538 6539 6540
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6541
                               ignore_index=kIgnoreIndex,
6542
                               numeric_stable_mode=True,
6543 6544
                               return_softmax=False,
                               axis=-1):
6545 6546
    """
    **Softmax With Cross Entropy Operator.**
6547

6548
    Cross entropy loss with softmax is used as the output layer extensively. This
6549 6550 6551
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6552

6553 6554 6555
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6556

6557 6558 6559 6560
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6561

6562
    The equation is as follows:
6563

6564
    1) Hard label (one-hot label, so every sample has exactly one class)
6565

6566 6567 6568 6569
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6570

6571 6572 6573
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6574

6575 6576 6577 6578
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6579 6580
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6581 6582

    .. math::
6583

H
haowang101779990 已提交
6584
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6585

H
haowang101779990 已提交
6586
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6587

H
haowang101779990 已提交
6588
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6589 6590 6591

    and then cross entropy loss is calculated by softmax and label.

6592
    Args:
6593 6594 6595 6596 6597 6598
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6599
        soft_label (bool): A flag to indicate whether to interpretate the given
6600
            labels as soft labels. Default False.
M
minqiyang 已提交
6601 6602
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6603 6604
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6605 6606
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6607 6608 6609 6610
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6611
                                    Note that the speed may be slower when use
6612
                                    stable algorithm. Default: True
6613
        return_softmax (bool): A flag indicating whether to return the softmax
6614
                               along with the cross entropy loss. Default: False
6615 6616 6617
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6618

6619
    Returns:
H
haowang101779990 已提交
6620 6621
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6622 6623 6624 6625
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6626 6627 6628 6629

    Examples:
        .. code-block:: python

6630 6631
            import paddle.fluid as fluid

6632 6633 6634
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6635 6636
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6637 6638
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6639 6640
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6641 6642 6643 6644 6645 6646
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6647 6648 6649
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6650 6651
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6652
        })
6653 6654 6655 6656

    if return_softmax:
        return loss, softmax

6657 6658 6659
    return loss


6660 6661 6662
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6663
                                       num_true=1,
6664
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6665 6666 6667
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6668
                                       seed=0):
X
xuezhong 已提交
6669 6670 6671 6672 6673
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6674
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6675 6676 6677 6678 6679 6680 6681 6682
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6683
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6684 6685 6686 6687 6688 6689 6690 6691
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6692
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6704
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6705 6706 6707 6708 6709
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6710
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6711
            logits.
X
xuezhong 已提交
6712 6713 6714 6715 6716
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6717 6718 6719
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6720 6721 6722 6723 6724 6725 6726
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

6727 6728 6729
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
6730
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
6731
            fc = fluid.layers.fc(input=input, size=100)
X
xuezhong 已提交
6732
            out = fluid.layers.sampled_softmax_with_cross_entropy(
6733
                      logits=fc, label=label, num_samples=25)
X
xuezhong 已提交
6734 6735 6736 6737 6738 6739 6740 6741
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6742 6743
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6744 6745
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6746 6747 6748 6749 6750

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6751
            'Labels': label,
X
xuezhong 已提交
6752 6753
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6754 6755 6756 6757
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6758
            'SampledLabels': sampled_label,
6759 6760 6761
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6762 6763
        },
        attrs={
X
xuezhong 已提交
6764
            'use_customized_samples': use_customized_samples,
6765
            'uniq': True,
X
xuezhong 已提交
6766 6767 6768 6769
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6770 6771
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6772 6773 6774 6775 6776 6777
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6778 6779
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6780
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6781
                'Label': sampled_softlabel},
X
xuezhong 已提交
6782 6783 6784
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6785
            'soft_label': True,
X
xuezhong 已提交
6786 6787 6788
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6789
    return loss / num_true
X
xuezhong 已提交
6790 6791


6792 6793
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6794 6795
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6796
    For each instance, it computes the smooth L1 loss element by element first
6797
    and then sums all the losses. So the shape of ouput Variable is
6798
    [batch_size, 1].
6799

6800 6801
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6802
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6803
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6804
            L1 loss op with same shape as :attr:`x`.
6805
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6806 6807
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6808
            by this tensor element by element.
6809
        outside_weight (Variable|None): A tensor with rank at least 2. This
6810 6811
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6812
            element by element.
6813
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6814 6815
           scalar with default value 1.0.

6816
    Returns:
6817
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6818 6819 6820 6821

    Examples:
        .. code-block:: python

6822
            import paddle.fluid as fluid
6823
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6824 6825
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6826
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6827
            out = fluid.layers.smooth_l1(x=fc, y=label)
6828
    """
6829

6830
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6831 6832
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6833 6834 6835 6836 6837 6838 6839 6840 6841 6842
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6843
        attrs={'sigma': sigma if sigma is not None else 1.0})
6844
    return loss
6845 6846


6847
def one_hot(input, depth, allow_out_of_range=False):
6848
    """
Y
Yibing Liu 已提交
6849
    This layer creates the one-hot representations for input indices.
6850 6851

    Args:
Y
Yibing Liu 已提交
6852 6853
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6854 6855 6856 6857
        allow_out_of_range(bool): A bool value indicating whether the input
            indices could be out of range [0, depth). When input indices are
            out of range, exceptions is raised if allow_out_of_range is False,
            or zero-filling representations is created if it is set True
6858 6859

    Returns:
Y
Yibing Liu 已提交
6860
        Variable: The one-hot representations of input.
6861 6862

    Examples:
C
caoying03 已提交
6863
        .. code-block:: python
6864

6865
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
6866 6867
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6868 6869
    """
    helper = LayerHelper("one_hot", **locals())
6870

X
Xin Pan 已提交
6871
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6872 6873 6874 6875 6876 6877 6878 6879 6880 6881

    if in_dygraph_mode():
        inputs = {'X': input}
        attrs = {'depth': depth}
    else:
        if not isinstance(depth, Variable):
            # user attribute 
            inputs = {'X': input}
            attrs = {'depth': depth}
        else:
H
Hongyu Liu 已提交
6882
            depth.stop_gradient = True
6883 6884
            inputs = {'X': input, 'depth_tensor': depth}
            attrs = {}
6885 6886
    helper.append_op(
        type="one_hot",
6887 6888
        inputs=inputs,
        attrs=attrs,
6889 6890
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6891
    return one_hot_out
Y
Yu Yang 已提交
6892 6893


Y
Yu Yang 已提交
6894
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6895
    """
Y
yi.wu 已提交
6896 6897 6898
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6899 6900 6901 6902 6903 6904

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6905 6906
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6907 6908 6909 6910

    Examples:
        .. code-block:: python

6911
           import paddle.fluid as fluid
Y
yi.wu 已提交
6912
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6913
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6914 6915
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6916 6917
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6918 6919 6920 6921 6922
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6923
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6924
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6925 6926
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6927
            outputs={'Out': [counter]},
M
minqiyang 已提交
6928 6929
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6930 6931 6932
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6933 6934


6935
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6936
    """
C
caoying03 已提交
6937 6938
    Gives a new shape to the input Tensor without changing its data.

6939 6940 6941 6942 6943
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6944

6945
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6946

6947 6948 6949 6950
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6951
    2. 0 means the actual dimension value is going to be copied from the
6952 6953 6954 6955
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6956 6957

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6958
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6959
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6960

6961
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6962 6963
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6964 6965
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6966
    dimensions.
C
caoying03 已提交
6967

6968
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6969 6970 6971 6972
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6973 6974

    Args:
6975
        x(variable): The input tensor.
C
caoying03 已提交
6976 6977
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6978 6979 6980 6981 6982
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6983 6984
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6985 6986 6987
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6988
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6989
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6990

6991
    Returns:
G
guosheng 已提交
6992 6993 6994 6995
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6996

X
Xin Pan 已提交
6997 6998 6999
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
7000 7001
    Examples:
        .. code-block:: python
G
guosheng 已提交
7002

7003
            import paddle.fluid as fluid
7004
            data = fluid.layers.data(
7005
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
7006
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
7007
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
7008 7009 7010
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
7011
        raise ValueError("Input shape must be a python list or tuple.")
7012

X
Xin Pan 已提交
7013 7014 7015 7016 7017
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
7018

7019 7020
    # Validate the shape
    unk_dim_idx = -1
7021
    contain_var = False
7022
    for dim_idx, dim_size in enumerate(shape):
7023 7024 7025 7026
        if isinstance(dim_size, Variable):
            contain_var = True
            continue

7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

7039
    helper = LayerHelper("reshape2", **locals())
7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061
    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'shape': shape}
    else:
        if contain_var:
            new_shape_tensor = []
            for dim in shape:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_shape_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = helper.create_variable_for_type_inference(
                        'int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_shape_tensor.append(temp_out)
            inputs['ShapeTensor'] = new_shape_tensor
            attrs = {}

        else:
            attrs = {'shape': shape}
7062 7063
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
7064
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
7065
    helper.append_op(
7066
        type="reshape2",
X
Xin Pan 已提交
7067
        inputs=inputs,
7068
        attrs=attrs,
7069 7070
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
7071

D
dzhwinter 已提交
7072
    return helper.append_activation(out)
7073

7074

7075
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
7076
    """
M
minqiyang 已提交
7077 7078 7079
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
7080
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
7081

H
haowang101779990 已提交
7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
7103

Y
Yibing Liu 已提交
7104
    Args:
7105
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
7106
        axes (list): List of integers, indicating the dimensions to be squeezed.
7107
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7108 7109 7110 7111 7112 7113 7114

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

7115
            import paddle.fluid as fluid
7116
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
7117
            x = layers.data(name='x', shape=[5, 1, 10])
7118
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7119
    """
L
lujun 已提交
7120
    assert not in_dygraph_mode(), (
L
lujun 已提交
7121
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
7122
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
7123 7124
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7125
    helper.append_op(
7126
        type="squeeze2",
7127
        inputs={"X": input},
Y
Yibing Liu 已提交
7128
        attrs={"axes": axes},
7129 7130
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7131

7132 7133 7134
    return out


7135
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
7136
    """
M
minqiyang 已提交
7137 7138 7139
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
7140

M
minqiyang 已提交
7141
    For example:
H
haowang101779990 已提交
7142 7143 7144

    .. code-block:: text

M
minqiyang 已提交
7145
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
7146
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
7147

Y
Yibing Liu 已提交
7148
    Args:
7149
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
7150
        axes (list): List of integers, indicating the dimensions to be inserted.
7151
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7152 7153 7154 7155 7156 7157 7158

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

7159 7160 7161
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7162 7163
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
7164 7165
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7166
    helper.append_op(
7167
        type="unsqueeze2",
7168
        inputs={"X": input},
Y
Yibing Liu 已提交
7169
        attrs={"axes": axes},
7170 7171
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7172

7173 7174
    return out

7175

Y
yangyaming 已提交
7176
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
7177
    """
Y
Yibing Liu 已提交
7178
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
7179 7180 7181 7182
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
7183
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
7184 7185 7186 7187 7188 7189

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
7190
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
7191 7192 7193
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

7194
            target_lod: [4, 2]
Y
yangyaming 已提交
7195 7196

            then we get a 1-level LoDTensor:
7197
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
7198 7199 7200 7201 7202 7203
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
7204
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7205 7206 7207 7208
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
7209
                y.data = [[2, 4]]
Y
yangyaming 已提交
7210 7211 7212
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
7213
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
7214 7215 7216 7217 7218 7219
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
7220
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7221 7222 7223 7224
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
7225
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7226 7227 7228 7229
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
7230
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7231 7232 7233 7234
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
7235
        x (Variable): Input variable which could be a Tensor or LoDTensor.
7236
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
7237
                           from :attr:`y`.
Y
yangyaming 已提交
7238
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
7239
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
7240 7241

    Returns:
Y
Yibing Liu 已提交
7242
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
7243 7244

    Raises:
Y
Yibing Liu 已提交
7245
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
7246 7247 7248 7249

    Examples:
        .. code-block:: python

7250
            import paddle.fluid as fluid
7251 7252 7253
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
7254 7255
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
7256
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a tensor or LoDTensor.
7294
        level (list|tuple|Variable): The LoD level to be appended into LoD of x.
7295 7296 7297 7298 7299 7300

    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
7301

7302 7303 7304 7305 7306 7307 7308 7309 7310 7311
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    from collections import Iterable
    if x is None:
        raise ValueError("Input(x) can't be None.")
7312 7313 7314
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

7315 7316
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7317 7318 7319 7320 7321 7322 7323 7324

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
    else:
        attrs['target_lod'] = level
7325
    helper.append_op(
7326
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out})
Y
yangyaming 已提交
7327
    return out
D
dragonwarrior 已提交
7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
7339
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

7368
          import paddle.fluid as fluid
F
stash  
fengjiayi 已提交
7369 7370
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
7383 7384 7385
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
7399 7400 7401 7402


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
7403
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
7404
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
7405

G
guosheng 已提交
7406
    Specifically, the number of values padded before the contents of :attr:`x`
7407
    in dimension :attr:`i` is indicated by :attr:`paddings[2i]`, and the number
G
guosheng 已提交
7408
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
7409
    indicated by :attr:`paddings[2i+1]`.
G
guosheng 已提交
7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
7432
                         The length of :attr:paddings must be
G
guosheng 已提交
7433 7434 7435 7436 7437 7438 7439 7440 7441 7442
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
7443

G
guosheng 已提交
7444
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
7445 7446
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
7447 7448 7449 7450 7451
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7452
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
7453 7454 7455 7456 7457 7458 7459
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
7460 7461


C
chengduo 已提交
7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7493 7494
		And
            pad_value = -1,
C
chengduo 已提交
7495

T
Tink_Y 已提交
7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7526 7527 7528
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7529 7530 7531 7532 7533
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7534
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7535 7536 7537 7538 7539 7540 7541 7542 7543
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7544 7545 7546 7547 7548 7549 7550
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7551 7552
    called label-smoothing regularization (LSR).

7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7576
                              be :math:`(1, class\_num)`.
7577 7578
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7579
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7580 7581 7582 7583 7584 7585 7586 7587 7588
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
7589
            
7590
            import paddle.fluid as fluid
7591
            import paddle.fluid.layers as layers
7592 7593 7594 7595 7596 7597 7598 7599 7600 7601

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7602
    smooth_label = helper.create_variable_for_type_inference(dtype)
7603 7604 7605 7606 7607 7608 7609
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7610 7611


W
wopeizl 已提交
7612 7613 7614 7615 7616 7617 7618
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
7619 7620 7621 7622 7623
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
W
wopeizl 已提交
7624 7625 7626 7627 7628 7629 7630 7631 7632 7633
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7664 7665


J
jerrywgz 已提交
7666 7667 7668 7669 7670 7671
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7672 7673
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7674 7675 7676 7677 7678
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
7679 7680 7681 7682 7683
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates. 
J
jerrywgz 已提交
7684 7685 7686 7687 7688 7689 7690 7691 7692 7693
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

7694
            import paddle.fluid as fluid
J
jerrywgz 已提交
7695 7696 7697 7698
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7699 7700 7701
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7702 7703 7704 7705 7706 7707
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7708
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7749 7750
        .. code-block:: python

S
SunGaofeng 已提交
7751 7752 7753
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7754
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7755
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7756 7757
    """
    label = one_hot(label, depth=input.shape[-1])
7758
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7759 7760 7761 7762 7763 7764
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7765 7766


7767 7768 7769 7770
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7771
                 resample='BILINEAR',
7772 7773
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7774
                 align_mode=1):
7775
    """
Q
qiaolongfei 已提交
7776
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7777

K
Kaipeng Deng 已提交
7778 7779 7780
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w)
    or (num_batches, channels, in_d, in_h, in_w), and the resizing only applies 
    on the last two/three dimensions(depth, hight and width).
7781 7782

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7783

7784
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7785

K
Kaipeng Deng 已提交
7786 7787
        'TRILINEAR' : Trilinear interpolation

7788
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7789

7790 7791 7792 7793 7794 7795 7796 7797 7798 7799
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

K
Kaipeng Deng 已提交
7800 7801 7802 7803 7804
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

T
tink2123 已提交
7805
    Align_corners and align_mode are optinal parameters,the calculation method 
7806 7807 7808 7809
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7810
    .. code-block:: text
7811

T
Tink_Y 已提交
7812
        For scale:
7813
          
T
Tink_Y 已提交
7814
            if align_corners = True && out_size > 1 :
7815

T
Tink_Y 已提交
7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7827

T
Tink_Y 已提交
7828 7829
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7830

T
Tink_Y 已提交
7831 7832
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7833

T
Tink_Y 已提交
7834 7835
          else:
              align_corners = True
7836

T
Tink_Y 已提交
7837 7838
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7839

T
Tink_Y 已提交
7840 7841
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7842

T
Tink_Y 已提交
7843 7844 7845 7846 7847 7848 7849 7850 7851 7852
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7853

T
Tink_Y 已提交
7854 7855 7856 7857
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7858

T
Tink_Y 已提交
7859 7860
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7861

K
Kaipeng Deng 已提交
7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
           
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
          
7884 7885 7886 7887 7888 7889
    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

K
Kaipeng Deng 已提交
7890 7891 7892
    For details of trilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Trilinear_interpolation.

7893 7894


7895
    Args:
7896
        input (Variable): The input tensor of image resize layer,
7897
                          This is a 4-D tensor of the shape
K
Kaipeng Deng 已提交
7898 7899 7900
                          (num_batches, channels, in_h, in_w) or a
                          5-D tensor of the shape
                          (num_batches, channls, in_d, in_h, in_w).
7901
        out_shape(list|tuple|Variable|None): Output shape of image resize
K
Kaipeng Deng 已提交
7902 7903 7904 7905
                                    layer, the shape is (out_h, out_w) when
                                    input is a 4-D tensor and is
                                    (out_d, out_h, out_w) when input is a
                                    5-D tensor. Default: None
D
dengkaipeng 已提交
7906
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7907
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7908
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7909
             Default: None.
7910 7911
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
K
Kaipeng Deng 已提交
7912 7913
        resample(str): The resample method. It supports 'BILINEAR', 'TRILINEAR'
                       and 'NEAREST' currently. Default: 'BILINEAR'
7914 7915 7916
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7917
                                :attr:`out_shape` and :attr:`scale` specifying
7918 7919 7920 7921 7922 7923 7924
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7925 7926
                                constructing stage.
                                Default: None
7927 7928 7929 7930
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7931
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7932 7933
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7934 7935

    Returns:
Q
update  
qiaolongfei 已提交
7936
        Variable: The output is a 4-D tensor of the shape
K
Kaipeng Deng 已提交
7937 7938
        (num_batches, channls, out_h, out_w) or a 5-D tensor of the shape
        (num_batches, channels, out_d, out_h, out_w).
F
stash  
fengjiayi 已提交
7939

7940 7941 7942
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
K
Kaipeng Deng 已提交
7943 7944 7945 7946
        ValueError: The 'resample' of image_resize can only be 'BILINEAR',
                    'TRILINEAR' or 'NEAREST' currently.
        ValueError: 'BILINEAR' and 'NEAREST' only support 4-D tensor.
        ValueError: 'TRILINEAR' only support 5-D tensor.
7947
        ValueError: One of out_shape and scale must not be None.
K
Kaipeng Deng 已提交
7948 7949
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
7950
        ValueError: scale should be greater than zero.
7951 7952
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7953

7954 7955 7956
    Examples:
        .. code-block:: python

7957
            import paddle.fluid as fluid
R
ruri 已提交
7958
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7959
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7960
    """
7961 7962
    resample_methods = {
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
7963
        'TRILINEAR': 'trilinear',
7964 7965
        'NEAREST': 'nearest',
    }
7966 7967
    if resample not in resample_methods:
        raise ValueError(
K
Kaipeng Deng 已提交
7968 7969
            "The 'resample' of image_resize can only be 'BILINEAR', 'TRILINEAR' "
            "or 'NEAREST' currently.")
7970
    resample_type = resample_methods[resample]
7971

K
Kaipeng Deng 已提交
7972 7973 7974 7975 7976
    if resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
    if resample == 'TRILINEAR' and len(input.shape) != 5:
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

7977 7978 7979 7980 7981
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7982
    if out_shape is None and scale is None:
7983
        raise ValueError("One of out_shape and scale must not be None.")
7984
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7985
    dtype = helper.input_dtype()
7986 7987 7988 7989

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7990
    inputs = {"X": input}
D
dengkaipeng 已提交
7991
    attrs = {
K
Kaipeng Deng 已提交
7992
        "out_d": 0,
D
dengkaipeng 已提交
7993 7994
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7995 7996 7997 7998 7999
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

8000
    if out_shape is not None:
8001 8002 8003 8004
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
8005
            inputs['OutSize'] = out_shape
8006 8007
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
8008 8009
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
K
Kaipeng Deng 已提交
8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024
            if len(input.shape) == 4:
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
                out_shape = list(map(int, out_shape))
                attrs['out_h'] = out_shape[0]
                attrs['out_w'] = out_shape[1]
            if len(input.shape) == 5:
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
                out_shape = list(map(int, out_shape))
                attrs['out_d'] = out_shape[0]
                attrs['out_h'] = out_shape[1]
                attrs['out_w'] = out_shape[2]
8025

8026
    else:
D
dengkaipeng 已提交
8027 8028
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
8029
        attrs['scale'] = float(scale)
8030

8031 8032 8033 8034 8035
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
8036
    out = helper.create_variable_for_type_inference(dtype)
8037
    helper.append_op(
8038
        type='{}_interp'.format(resample_type),
8039
        inputs=inputs,
8040
        outputs={"Out": out},
D
dengkaipeng 已提交
8041
        attrs=attrs)
8042
    return out
F
stash  
fengjiayi 已提交
8043 8044


8045
@templatedoc(op_type="bilinear_interp")
8046 8047 8048 8049
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
8050 8051
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
8052
                    align_mode=1):
8053
    """
8054 8055
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
8056 8057
    in priority order.

8058 8059 8060 8061
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
8062 8063
    again in the other direction.

8064
    For details of bilinear interpolation, please refer to Wikipedia:
8065
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
8066

T
tink2123 已提交
8067
    Align_corners and align_mode are optinal parameters,the calculation 
8068 8069 8070 8071
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
8072
    .. code-block:: text
8073

T
Tink_Y 已提交
8074
        For scale:
8075
          
T
Tink_Y 已提交
8076
            if align_corners = True && out_size > 1 :
8077

T
Tink_Y 已提交
8078 8079 8080 8081 8082
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
8083

T
Tink_Y 已提交
8084 8085 8086 8087 8088 8089 8090 8091 8092 8093
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
8094 8095


T
Tink_Y 已提交
8096
          else:
T
tink2123 已提交
8097

T
Tink_Y 已提交
8098 8099
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8100

T
Tink_Y 已提交
8101 8102
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
8103 8104 8105



Y
yuyang18 已提交
8106
    Args:
K
Kaipeng Deng 已提交
8107
        input(${x_type}): input should be a 4-D tensor.
Y
yuyang18 已提交
8108

D
dengkaipeng 已提交
8109 8110 8111
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
8112

Y
yuyang18 已提交
8113
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
8114
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
8115
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
8116
             Default: None.
Y
yuyang18 已提交
8117 8118

        name(str|None): The output variable name.
8119 8120 8121
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8122
                                :attr:`out_shape` and :attr:`scale` specifying
8123 8124 8125 8126 8127 8128 8129
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
8130 8131
                                constructing stage.
                                Default: None
8132 8133
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
8134 8135

    Returns:
K
Kaipeng Deng 已提交
8136
        A 4-D tensor in shape of (num_batches, channels, out_h, out_w)
8137 8138 8139 8140

    Examples:
        .. code-block:: python

8141
            import paddle.fluid as fluid
R
ruri 已提交
8142
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
8143
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
8144 8145
    """

8146 8147
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
8148 8149


K
Kaipeng Deng 已提交
8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255
@templatedoc(op_type="trilinear_interp")
def resize_trilinear(input,
                     out_shape=None,
                     scale=None,
                     name=None,
                     actual_shape=None,
                     align_corners=True,
                     align_mode=1):
    """
    Resize input by performing trilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

    Align_corners and align_mode are optinal parameters,the calculation 
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     

        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}



    Args:
        input(${x_type}): input should be a 4-D tensor.

        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_d, out_h, out_w).
                                    Default: None

        scale(float|None): The multiplier for the input depth, height or width.
             At least one of :attr:`out_shape` or :attr:`scale` must be set. 
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
             Default: None.

        name(str|None): The output variable name.
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
                                constructing stage.
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}

    Returns:
        A 5-D tensor in shape (num_batches, channels, out_d, out_h, out_w)

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            input = fluid.layers.data(name="input", shape=[3,6,9,11], dtype="float32")
            out = fluid.layers.resize_trilinear(input, out_shape=[12, 12, 12])
    """

    return image_resize(input, out_shape, scale, name, 'TRILINEAR',
                        actual_shape, align_corners, align_mode)


8256
@templatedoc(op_type="nearest_interp")
8257 8258 8259 8260
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
8261 8262
                   actual_shape=None,
                   align_corners=True):
8263
    """
8264
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
8265 8266
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
8267 8268
    out_shape and scale in priority order.

8269 8270
    Example:

T
Tink_Y 已提交
8271 8272 8273 8274 8275
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
8276

T
Tink_Y 已提交
8277 8278 8279 8280 8281 8282 8283 8284
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
8285
          
T
Tink_Y 已提交
8286 8287
          if:
              align_corners = False
8288

T
Tink_Y 已提交
8289 8290
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8291

T
Tink_Y 已提交
8292 8293
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
8294

T
Tink_Y 已提交
8295 8296
          else:
              align_corners = True
8297

T
Tink_Y 已提交
8298 8299
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8300

T
Tink_Y 已提交
8301 8302
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
8303 8304


8305
    For details of nearest neighbor interpolation, please refer to Wikipedia:
8306
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
8307 8308

    Args:
K
Kaipeng Deng 已提交
8309
        input(${x_type}): input should be a 4-D tensor.
Y
yuyang18 已提交
8310

D
dengkaipeng 已提交
8311 8312 8313
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
8314

Y
yuyang18 已提交
8315
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
8316
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
8317
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
8318
             Default: None.
Y
yuyang18 已提交
8319 8320

        name(str|None): The output variable name.
8321 8322 8323
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8324
                                :attr:`out_shape` and :attr:`scale` specifying
8325 8326 8327 8328 8329 8330 8331
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
8332 8333
                                constructing stage.
                                Default: None
8334
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
8335 8336

    Returns:
K
Kaipeng Deng 已提交
8337
        A 4-D tensor in shape of (num_batches, channels, out_h, out_w)
8338 8339 8340 8341

    Examples:
        .. code-block:: python

8342
            import paddle.fluid as fluid
R
ruri 已提交
8343
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
8344
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
8345 8346
    """

8347 8348
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
8349 8350 8351 8352


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
8353 8354 8355
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
8356 8357 8358 8359 8360 8361 8362
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
8363
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
8364

8365
    Returns:
Q
update  
qiaolongfei 已提交
8366
        Variable: The output is a 4-D tensor of the shape
8367
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
8368 8369 8370 8371

    Examples:
        .. code-block:: python

8372
            import paddle.fluid as fluid
R
ruri 已提交
8373 8374
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
8375 8376 8377 8378 8379 8380 8381 8382 8383 8384
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
8385 8386 8387
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
8388 8389 8390
    return image_resize(input=input, out_shape=out_shape, resample=resample)


8391
def gather(input, index, overwrite=True):
W
whs 已提交
8392
    """
Q
qiaolongfei 已提交
8393 8394
    **Gather Layer**

8395
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
8396 8397 8398 8399
    of X indexed by `index` and concatenate them together.

    .. math::

8400
        Out = X[Index]
W
whs 已提交
8401 8402 8403 8404 8405 8406 8407


    .. code-block:: text


                Given:

8408 8409
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
8410 8411 8412 8413 8414 8415 8416 8417 8418 8419
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
8420
        input (Variable): The source input with rank>=1.
W
whs 已提交
8421
        index (Variable): The index input with rank=1.
8422 8423 8424 8425 8426 8427
        overwrite (bool): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
8428 8429 8430 8431 8432

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
8433

W
whs 已提交
8434 8435
        .. code-block:: python

8436
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
8437 8438
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
8439 8440 8441 8442
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8443
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8444 8445 8446 8447
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
8448 8449
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
8450 8451 8452
    return out


8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537
def gather_nd(input, index, name=None):
    """
    **Gather Nd Layer**

    This function is actually a high-dimensional extension of :code:`gather` 
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a 
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional 
    tensor of :attr:`index` into :attr:`input`, where each element defines 
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
                input = [[[ 0,  1,  2,  3],
                          [ 4,  5,  6,  7],
                          [ 8,  9, 10, 11]],
                         [[12, 13, 14, 15],
                          [16, 17, 18, 19],
                          [20, 21, 22, 23]]]
                input.shape = (2, 3, 4)

            * Case 1:
                index = [[1]]
                
                gather_nd(input, index)  
                         = [input[1, :, :]] 
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

                gather_nd(input, index)
                         = [input[0, 2, :]]
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

                gather_nd(input, index)
                         = [input[1, 2, 3]]
                         = [23]

    Args:
        input (Variable): The source input
        index (Variable): The index input with rank > 1, index.shape[-1] <= input.rank
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically

    Returns:
        output (Variable): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[3, 4, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[2, 2], dtype='int32')
            output = fluid.layers.gather_nd(x, index)

    """
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type="gather_nd",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": output})
    return output


8538
def scatter(input, index, updates, name=None, overwrite=True):
8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.
8556 8557 8558 8559
        overwrite (bool): The mode that updating the output when has same index.
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
	    Default value is True.You can set overwrite=False to implement scatter_add.
8560 8561 8562 8563 8564 8565 8566 8567

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

8568 8569 8570 8571 8572
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
8573

8574
            output = fluid.layers.scatter(input, index, updates)
8575 8576 8577
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8578
    out = helper.create_variable_for_type_inference(dtype)
8579 8580 8581 8582 8583
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
8584
        attrs={'overwrite': overwrite},
8585 8586 8587 8588
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
8589 8590 8591 8592 8593 8594 8595 8596 8597
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
8598

Q
Qingsheng Li 已提交
8599
    Given the following input:
H
haowang101779990 已提交
8600

Q
Qingsheng Li 已提交
8601
    .. code-block:: text
H
haowang101779990 已提交
8602

Q
Qingsheng Li 已提交
8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
8615

Q
Qingsheng Li 已提交
8616
    .. code-block:: text
H
haowang101779990 已提交
8617

Q
Qingsheng Li 已提交
8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
8633
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
8634 8635 8636 8637

    Examples:

        .. code-block:: python
8638
	
8639
            import paddle.fluid as fluid
8640
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
8641

8642 8643 8644
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
8645 8646 8647
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
8648
    assert not in_dygraph_mode(), (
8649
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
8650 8651
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8652
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
8653 8654 8655 8656 8657 8658 8659 8660 8661
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
8675

8676
    Examples:
8677
        >>> import paddle.fluid as fluid
8678 8679
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
8680
    """
F
stash  
fengjiayi 已提交
8681
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
8682
    dtype = x.dtype
X
Xin Pan 已提交
8683
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
8684
    if seed is None:
8685
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
8686
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
8687
    if isinstance(seed, int):
F
fengjiayi 已提交
8688 8689 8690 8691 8692
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
8693 8694 8695 8696
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
8697
        inputs={"X": x,
F
stash  
fengjiayi 已提交
8698 8699
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
8700 8701
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
8702
    return out
W
whs 已提交
8703 8704


8705
def log(x, name=None):
W
wanghaoshuang 已提交
8706 8707 8708 8709 8710
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

8711
        Out = \\ln(x)
W
wanghaoshuang 已提交
8712 8713

    Args:
8714
        x (Variable): Input tensor.
8715 8716
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8717 8718 8719 8720 8721 8722 8723 8724

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

8725
            import paddle.fluid as fluid
8726
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8727
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
8728 8729
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
8730
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8731
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
8732
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
8733 8734 8735
    return out


8736
def relu(x, name=None):
W
wanghaoshuang 已提交
8737 8738
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
8739
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
8740 8741 8742 8743
    the tensor elementwise.

    .. math::

8744
        Out = \\max(0, x)
W
wanghaoshuang 已提交
8745 8746

    Args:
8747
        x (Variable): The input tensor.
8748 8749
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8750 8751 8752 8753 8754 8755 8756 8757

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

8758
            import paddle.fluid as fluid
8759
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8760
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
8761 8762
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8763
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8764
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8765 8766
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8767
    return out
8768 8769


C
chengduo 已提交
8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python
8794 8795 8796 8797 8798 8799
             
            import paddle.fluid as fluid
          
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")
            output = fluid.layers.selu(input)
C
chengduo 已提交
8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8815 8816 8817
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8818 8819 8820 8821
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8822
    .. math::
8823

H
haowang101779990 已提交
8824
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8825

8826
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8827 8828 8829 8830 8831
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
8832
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8833
                           Its shape should be the same as input.
8834
        num_classes (int): The possible number of labels.
W
whs 已提交
8835 8836

    Returns:
M
minqiyang 已提交
8837 8838
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
8839
                     Three variables:
M
minqiyang 已提交
8840

H
haowang101779990 已提交
8841 8842 8843
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
8844 8845 8846 8847

    Examples:

        .. code-block:: python
8848

B
Bai Yifan 已提交
8849
            import paddle.fluid as fluid
8850 8851 8852 8853
            iou_shape = [32, 32]
            num_classes = 5
            predict = fluid.layers.data(name='predict', shape=iou_shape)
            label = fluid.layers.data(name='label', shape=iou_shape)
B
Bai Yifan 已提交
8854
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
8855
                                                          num_classes)
W
whs 已提交
8856 8857 8858
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8859 8860 8861
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8862 8863
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8864 8865
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8866
        outputs={
W
whs 已提交
8867 8868 8869
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8870 8871 8872
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8915
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8916
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8917
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8935
            import paddle.fluid as fluid
8936 8937 8938 8939 8940 8941
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8942
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8943 8944 8945 8946 8947

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8948
            isinstance(shape, Variable)):
8949 8950 8951 8952 8953
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8954
    out = helper.create_variable_for_type_inference(x.dtype)
8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8972 8973


W
whs 已提交
8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8991

W
whs 已提交
8992
              out_shape = [2, 3, 5, 5]
8993

W
whs 已提交
8994
          Step 1:
8995

W
whs 已提交
8996 8997 8998
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8999

W
whs 已提交
9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
9045
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
9046
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
9059

S
SunGaofeng 已提交
9060
            import paddle.fluid as fluid
W
whs 已提交
9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
9072
            isinstance(out_shape, Variable)):
W
whs 已提交
9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


9094 9095
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
9096

9097 9098
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
9099
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
9100 9101 9102
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
9103

9104 9105
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
9106

H
haowang101779990 已提交
9107 9108
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
9109 9110
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
9111

H
haowang101779990 已提交
9112 9113 9114 9115 9116 9117 9118 9119
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
9120 9121 9122

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

9140
            import paddle.fluid as fluid
9141 9142 9143
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
9158
    out = helper.create_variable_for_type_inference("float32")
9159 9160 9161 9162 9163 9164 9165 9166

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
9167 9168


M
minqiyang 已提交
9169 9170
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
9171
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
9172
    which compares left score and right score passed in.
M
minqiyang 已提交
9173
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
9174 9175 9176

    .. math::

H
haowang101779990 已提交
9177
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
9178 9179

    Args:
M
minqiyang 已提交
9180
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
9181 9182
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
9183
       margin (float): Indicates the given margin.
M
minqiyang 已提交
9184 9185
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
9186

M
minqiyang 已提交
9187
    Returns:
M
minqiyang 已提交
9188
       Variable: The ranking loss.
H
haowang101779990 已提交
9189

M
minqiyang 已提交
9190
    Raises:
M
minqiyang 已提交
9191
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
9192

M
minqiyang 已提交
9193
    Examples:
H
haowang101779990 已提交
9194

M
minqiyang 已提交
9195
        .. code-block:: python
H
haowang101779990 已提交
9196

9197
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
9198 9199 9200
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
9201 9202
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
9203
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
9204 9205 9206 9207 9208 9209
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
9210 9211
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
9235
        .. code-block:: text
W
whs 已提交
9236

T
Tink_Y 已提交
9237
	      Given that X is a channel of image from input:
M
minqiyang 已提交
9238

T
Tink_Y 已提交
9239 9240
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
9241

T
Tink_Y 已提交
9242
	      Case 0:
M
minqiyang 已提交
9243

T
Tink_Y 已提交
9244 9245 9246
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
9247

T
Tink_Y 已提交
9248 9249 9250
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
9251

T
Tink_Y 已提交
9252
	      Case 1:
M
minqiyang 已提交
9253

T
Tink_Y 已提交
9254 9255
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
9256

T
Tink_Y 已提交
9257 9258 9259
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
9260

T
Tink_Y 已提交
9261
	      Case 2:
M
minqiyang 已提交
9262

T
Tink_Y 已提交
9263 9264
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
9265

T
Tink_Y 已提交
9266 9267 9268
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
9269 9270


W
whs 已提交
9271 9272
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
9273
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
9291 9292 9293 9294 9295
          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
9296 9297 9298 9299
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
9300
    out = helper.create_variable_for_type_inference(dtype)
9301 9302 9303 9304 9305 9306 9307 9308 9309
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
9310
    helper.append_op(
9311
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
9312 9313 9314 9315

    return out


9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9328 9329 9330 9331 9332

    Examples:

        .. code-block:: python

9333
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9334 9335
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
9336 9337
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
9338
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9359 9360 9361 9362 9363

    Examples:

        .. code-block:: python

9364
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9365 9366
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
9367 9368
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
9369
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9390 9391 9392 9393 9394

    Examples:

        .. code-block:: python

9395
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9396 9397
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
9398 9399
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
9400
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9422 9423 9424 9425 9426

    Examples:

        .. code-block:: python

9427
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9428
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
9429
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
9430 9431
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
9432
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9455 9456 9457 9458 9459

    Examples:

        .. code-block:: python

9460
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9461 9462
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
9463 9464
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
9465
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9487 9488 9489 9490 9491

    Examples:

        .. code-block:: python

9492
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9493 9494
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
9495 9496
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
9497
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9498 9499 9500 9501 9502 9503 9504 9505
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
9506 9507 9508 9509
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
9510 9511
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
9512

J
jerrywgz 已提交
9513 9514 9515 9516 9517 9518 9519 9520
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
9521 9522
    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
9523
        mode (string): The mode for weight sharing. 
J
jerrywgz 已提交
9524
        param_attr(ParamAttr|None): The parameter attribute for the learnable
J
jerrywgz 已提交
9525
          weight (alpha), it can be create by ParamAttr.
J
jerrywgz 已提交
9526
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
9527
          will be named automatically.
J
jerrywgz 已提交
9528 9529 9530 9531 9532 9533 9534 9535

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
9536 9537 9538
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
            x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
J
jerrywgz 已提交
9539
            mode = 'channel'
J
jerrywgz 已提交
9540 9541 9542
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
9554
        attr=helper.param_attr,
J
jerrywgz 已提交
9555 9556 9557 9558
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
9559
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
9560 9561 9562 9563 9564 9565 9566 9567 9568
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


9569 9570 9571 9572 9573 9574 9575 9576 9577 9578
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9579
    Returns:
9580
        output(${out_type}): ${out_comment}
9581 9582 9583

    Examples:

9584
    .. code-block:: python
9585

9586
            import paddle.fluid as fluid
H
haowang101779990 已提交
9587 9588
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
9589 9590
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
9591
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9610
    Returns:
9611
        output(${out_type}): ${out_comment}
9612 9613 9614 9615 9616

    Examples:

        .. code-block:: python

9617
            import paddle.fluid as fluid
H
haowang101779990 已提交
9618 9619
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
9620 9621
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
9622
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9640
    Returns:
9641
        output(${out_type}): ${out_comment}
9642 9643 9644

    Examples:

9645 9646 9647 9648 9649
        .. code-block:: python 
 
            import paddle.fluid as fluid
   
            x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
H
haowang101779990 已提交
9650
            y = fluid.layers.soft_relu(x, threshold=20.0)
9651 9652
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
9653
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9654 9655 9656 9657 9658 9659 9660 9661
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


9662 9663 9664 9665
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
9666

H
haowang101779990 已提交
9667
    For Example:
M
minqiyang 已提交
9668

H
haowang101779990 已提交
9669
    .. code-block:: text
9670

H
haowang101779990 已提交
9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9692 9693 9694

    Args:
        x (Variable): A tensor of rank >= axis.
9695 9696
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9697 9698 9699 9700 9701 9702 9703 9704
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
9705 9706 9707
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9708 9709 9710 9711
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
9712
        ValueError: If axis is not in range [0, rank(x)].
9713 9714 9715 9716 9717

    Examples:

        .. code-block:: python

9718
            import paddle.fluid as fluid
9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729
            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9730 9731
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9732
    helper.append_op(
9733
        type='flatten2',
9734
        inputs={"X": x},
9735 9736
        outputs={'Out': out,
                 'XShape': x_shape},
9737 9738
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9739 9740


C
chenweihang 已提交
9741
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
9742
    """
C
chenweihang 已提交
9743
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
9744
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
9745 9746
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
9747

H
haowang101779990 已提交
9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
9765 9766

    Args:
C
chenweihang 已提交
9767 9768 9769
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
9770 9771 9772 9773 9774 9775 9776

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

9777 9778 9779
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
9780 9781
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
9782
    assert not in_dygraph_mode(), (
9783
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
9784
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
9785 9786
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
9787 9788 9789 9790 9791 9792
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
9793
    return out
9794

9795

S
sneaxiy 已提交
9796 9797 9798 9799 9800 9801 9802 9803 9804
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
9805

S
sneaxiy 已提交
9806
    .. math::
9807

S
sneaxiy 已提交
9808 9809 9810
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
9811
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
9812 9813 9814 9815
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
9816 9817 9818
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
9819 9820
    Returns:
        Variable: The output sequence mask.
9821

9822 9823 9824
    Examples:
        .. code-block:: python
	
9825
            import paddle.fluid as fluid
9826 9827 9828 9829 9830
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
9831
    """
Q
qingqing01 已提交
9832
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
9833
    if name is None:
X
Xin Pan 已提交
9834
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
9835
    else:
X
Xin Pan 已提交
9836
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
9837

9838 9839 9840 9841 9842 9843 9844 9845
    inputs = {'X': [x]}
    attrs = {'out_dtype': out.dtype}
    if maxlen is not None:
        if isinstance(maxlen, Variable):
            inputs['MaxLenTensor'] = maxlen
        else:
            attrs['maxlen'] = maxlen

Q
qingqing01 已提交
9846
    helper.append_op(
9847 9848 9849
        type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs)

    out.stop_gradient = True
S
sneaxiy 已提交
9850
    return out
S
sneaxiy 已提交
9851 9852


X
Xin Pan 已提交
9853
def stack(x, axis=0):
S
sneaxiy 已提交
9854 9855 9856 9857
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
9858 9859 9860 9861 9862 9863 9864

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
9865
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
9866
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
9867

C
chengduozh 已提交
9868 9869
    For Example:

C
chengduozh 已提交
9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9908
    Args:
9909
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9910
        axis (int|None): The axis along which all inputs are stacked.
9911

S
sneaxiy 已提交
9912 9913
    Returns:
        Variable: The stacked variable.
9914

9915 9916 9917
    Examples:
        .. code-block:: python

9918
            import paddle.fluid as fluid
9919
            import paddle.fluid.layers as layers
9920 9921
            x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
9922 9923
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
9924 9925
    """

X
Xin Pan 已提交
9926 9927 9928 9929 9930 9931
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9932
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9933
    helper.append_op(
S
sneaxiy 已提交
9934 9935
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9936

X
Xin Pan 已提交
9937
    return out
D
dzhwinter 已提交
9938 9939


J
Jiawei Wang 已提交
9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009
@templatedoc(op_type="filter_by_instag")
def filter_by_instag(ins, ins_tag, filter_tag, is_lod):
    """
    **Filter By Instag Layer**
   
    This function filter a batch of ins by instag, 
    There are multiple ins, and every ins belongs to some tags. 
    We can specify some tags we want. So the ins which belongs to that tags
    remains in the output, and others removed.
 
    For example, one batch has 4 ins. Every ins has its tag list. 
     
       | Ins   |   Ins_Tag |
       |:-----:|:------:|
       |  0    |   0, 1 |
       |  1    |   1, 3 |
       |  2    |   0, 3 |
       |  3    |   2, 6 |

    And Lod is [1,1,1,1]

    And the filter tags [1]

    From the definition above, ins which has tag 1 can pass the filter
    So Ins 0 and Ins 1 can pass and be seen in the output,
    Ins 2 and 3 cannot pass because they do not has tag 1.

    Actually, if is_lod is false, it is normal tensor that equals to 
    lod_tensor with all 1, similar to the example above.

    Args:
        ins (Variable): Input Variable (LoDTensor), usually it is 2D tensor
                        And first dimension can have lod info or not.
        ins_tag (Variable): Input Variable (LoDTensor), usually it is 1D list
                        And split them by lod info
        filter_tag (Variable): Input Variable (1D Tensor/List), usually it is 
                        list that holds the tags.
        is_lod (Bool): Boolean value to indicate ins is lod tensor or not.

    Returns:
        Variable: filtered ins (LoDTensor) and loss weight (Tensor)

    Examples:
        .. code-block:: python

          import paddle.fluid.layers as layers
          ins = layers.data(name='Ins', shape=[-1,32], lod_level=0, dtype='float64')
          ins_tag = layers.data(name='Ins_tag', shape=[-1,16], lod_level=0, dtype='int64')
          filter_tag = layers.data(name='Filter_tag', shape=[-1,16], dtype='int64')
          out, loss_weight = layers.filter_by_instag(ins,  ins_tag,  filter_tag, True)
        		
    """
    helper = LayerHelper('filter_by_instag', **locals())

    out = helper.create_variable_for_type_inference(dtype=ins.dtype)
    loss_weight = helper.create_variable_for_type_inference(dtype=np.float64)
    mmap = helper.create_variable_for_type_inference(dtype=ins_tag.dtype)
    helper.append_op(
        type='filter_by_instag',
        inputs={'Ins': ins,
                'Ins_tag': ins_tag,
                'Filter_tag': filter_tag},
        outputs={'Out': out,
                 'LossWeight': loss_weight,
                 'IndexMap': mmap},
        attrs={'is_lod': is_lod})

    return [out, loss_weight]


D
dzhwinter 已提交
10010 10011 10012 10013 10014
def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
10015

D
dzhwinter 已提交
10016 10017 10018
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
10019
    raised.
D
dzhwinter 已提交
10020 10021

    Args:
M
minqiyang 已提交
10022
        x (Variable): Input variable.
D
dzhwinter 已提交
10023 10024
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
10025

D
dzhwinter 已提交
10026 10027
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
10028

10029 10030 10031 10032 10033 10034
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
            y = fluid.layers.unstack(x, axis=1)
D
dzhwinter 已提交
10035 10036 10037 10038 10039 10040 10041 10042 10043 10044
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
10045
    for _ in range(num):
X
Xin Pan 已提交
10046
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
10047 10048 10049 10050 10051 10052 10053 10054

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
10067

W
whs 已提交
10068 10069 10070 10071
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
10072

W
whs 已提交
10073
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
10074

W
whs 已提交
10075
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
10076

W
whs 已提交
10077 10078 10079 10080
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
10081

W
whs 已提交
10082 10083 10084 10085 10086 10087 10088 10089 10090 10091
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python
W
wangchaochaohu 已提交
10092 10093 10094
          
            import paddle.fluid as fluid
            x = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
W
whs 已提交
10095 10096 10097 10098
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
10099
    out = helper.create_variable_for_type_inference(dtype)
10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116
    # check expand_times have tensor

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:

        def contain_tensor(expand_times):
            for ele in expand_times:
                if isinstance(ele, Variable):
                    return True
            return False

        if contain_tensor(expand_times):
            new_expand_times = []
            for ele in expand_times:
                if isinstance(ele, Variable):
H
Hongyu Liu 已提交
10117
                    ele.stop_gradient = True
10118 10119 10120
                    new_expand_times.append(ele)
                else:
                    assert (isinstance(ele, int))
10121 10122
                    temp_out = helper.create_variable_for_type_inference(
                        "int32")
10123 10124 10125 10126 10127 10128 10129 10130 10131
                    fill_constant(
                        [1], 'int32', ele, force_cpu=True, out=temp_out)
                    new_expand_times.append(temp_out)
            inputs = {'X': x, 'expand_times_tensor': new_expand_times}
            attrs = {}
        else:
            inputs = {'X': x}
            attrs = {'expand_times': expand_times}

W
whs 已提交
10132
    helper.append_op(
10133
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
10134
    return out
S
sneaxiy 已提交
10135 10136


G
fix  
gongweibao 已提交
10137 10138 10139
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
10140
@templatedoc()
G
fix  
gongweibao 已提交
10141 10142 10143 10144 10145 10146 10147 10148 10149
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
10150
    ${comment}
G
fix  
gongweibao 已提交
10151 10152

    Args:
G
gongweibao 已提交
10153 10154 10155
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
10156
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
10157 10158 10159
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
10160 10161
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
10162
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10163

10164 10165 10166
    Examples:
        .. code-block:: python

10167
            import paddle.fluid as fluid
10168 10169
            import paddle.fluid.layers as layers 

10170 10171
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
10172 10173 10174
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
10175
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
10192 10193


G
gongweibao 已提交
10194
@templatedoc()
X
Xin Pan 已提交
10195
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
10196
    """
G
gongweibao 已提交
10197
    ${comment}
G
fix  
gongweibao 已提交
10198 10199

    Args:
G
gongweibao 已提交
10200 10201 10202 10203
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
10204 10205 10206
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
10207
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10208

10209 10210 10211
    Examples:
        .. code-block:: python

10212
            import paddle.fluid as fluid
J
JesseyXujin 已提交
10213
            import paddle.fluid.layers as layers
10214
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
10215 10216 10217
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
10218
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10219 10220 10221 10222 10223 10224 10225 10226 10227 10228
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
10229
            'use_mkldnn': False
G
fix  
gongweibao 已提交
10230 10231 10232 10233 10234
        })

    return out


G
gongweibao 已提交
10235
@templatedoc()
G
fix  
gongweibao 已提交
10236
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
10237
    """
G
gongweibao 已提交
10238
    ${comment}
G
fix  
gongweibao 已提交
10239 10240

    Args:
G
gongweibao 已提交
10241 10242 10243 10244
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
10245
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
10246 10247

    Returns:
G
gongweibao 已提交
10248
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10249

10250 10251 10252
    Examples:
        .. code-block:: python

10253
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
10254
            x = fluid.layers.data(
10255 10256 10257 10258 10259
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
10260
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
10261 10262 10263
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
10264
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
10276
@templatedoc()
G
fix  
gongweibao 已提交
10277 10278 10279 10280 10281 10282 10283 10284 10285
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
10286
    ${comment}
G
fix  
gongweibao 已提交
10287 10288

    Args:
G
gongweibao 已提交
10289 10290
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
10291
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
10292 10293 10294 10295
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
10296
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
10297 10298

    Returns:
G
gongweibao 已提交
10299
        out (Variable): ${out_comment}
10300 10301 10302 10303

    Examples:
        .. code-block:: python

10304
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
10305
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
10306

Y
Yibing Liu 已提交
10307
            out = fluid.layers.gaussian_random_batch_size_like(
10308
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
10309 10310 10311
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
10312
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
10331
@templatedoc()
X
Xin Pan 已提交
10332
def sum(x):
G
fix  
gongweibao 已提交
10333
    """
G
gongweibao 已提交
10334
    ${comment}
G
fix  
gongweibao 已提交
10335 10336

    Args:
G
gongweibao 已提交
10337
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
10338 10339

    Returns:
G
gongweibao 已提交
10340
        out (Variable): ${out_comment}
10341 10342 10343 10344

    Examples:
        .. code-block:: python

10345
            import paddle.fluid as fluid
10346 10347 10348 10349
            import paddle.fluid.layers as layers
            input0 = layers.data(name="input0", shape=[13, 11], dtype='float32')
            input1 = layers.data(name="input1", shape=[13, 11], dtype='float32')
            out = layers.sum([input0,input1])
G
fix  
gongweibao 已提交
10350 10351 10352
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
10353 10354
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
10355 10356 10357 10358
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
10359
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
10360 10361 10362 10363

    return out


G
gongweibao 已提交
10364
@templatedoc()
G
fix  
gongweibao 已提交
10365 10366
def slice(input, axes, starts, ends):
    """
10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
10382

10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]
G
fix  
gongweibao 已提交
10400
    Args:
G
gongweibao 已提交
10401 10402 10403 10404
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
10405 10406

    Returns:
G
gongweibao 已提交
10407
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10408

10409 10410 10411
    Examples:
        .. code-block:: python

10412 10413
            import paddle.fluid as fluid
 
10414 10415 10416 10417
            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

10418
            input = fluid.layers.data(
10419 10420
                name="input", shape=[3, 4, 5, 6], dtype='float32')

10421
            out = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
10422 10423 10424
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
10425 10426
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
10440 10441
    **Shape Layer**

C
fix doc  
chengduozh 已提交
10442
    Get the shape of the input.
G
fix  
gongweibao 已提交
10443 10444

    Args:
C
chengduozh 已提交
10445
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
10446 10447

    Returns:
C
fix doc  
chengduozh 已提交
10448
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
10449

10450 10451 10452
    Examples:
        .. code-block:: python

10453 10454 10455
            import paddle.fluid as fluid

            input = fluid.layers.data(
10456
                name="input", shape=[3, 100, 100], dtype="float32")
10457
            out = fluid.layers.shape(input)
G
fix  
gongweibao 已提交
10458 10459 10460
    """

    helper = LayerHelper('shape', **locals())
10461
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
10462
    helper.append_op(
G
fix  
gongweibao 已提交
10463
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
10464 10465

    return out
G
merge  
gongweibao 已提交
10466 10467


Z
zhoukunsheng 已提交
10468 10469 10470 10471
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
10472
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
10473 10474 10475 10476 10477 10478 10479 10480 10481 10482

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

10483 10484 10485 10486
            import paddle.fluid as fluid

            input = fluid.layers.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # 4
Z
zhoukunsheng 已提交
10487 10488 10489 10490 10491 10492 10493 10494
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
10524 10525 10526 10527
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
10528
    if in_dygraph_mode():
X
Xin Pan 已提交
10529 10530 10531
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
10532 10533 10534 10535
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
10536 10537
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
10538
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10539 10540 10541
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10542

S
sneaxiy 已提交
10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
10554
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
10555 10556 10557 10558 10559 10560 10561 10562
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
10563
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
10564
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
10565 10566 10567

    Returns:
        out(${out_type}): ${out_comment}
10568 10569 10570 10571 10572 10573 10574 10575

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
            y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
S
sneaxiy 已提交
10576 10577 10578
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
10579
    if name is None:
X
Xin Pan 已提交
10580
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10581 10582 10583
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10584 10585 10586 10587 10588 10589 10590 10591 10592 10593

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
10594
    return helper.append_activation(out)
S
sneaxiy 已提交
10595 10596


X
Xin Pan 已提交
10597
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10598 10599 10600
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
10601
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10602 10603 10604
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
10605
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10606 10607 10608
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
10609
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10610 10611 10612
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
10613
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10614 10615 10616
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
10617
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10618 10619 10620
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
10621
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10622 10623 10624
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


10625 10626 10627 10628 10629 10630 10631 10632
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
10633
for func in [
10634 10635 10636 10637 10638 10639 10640 10641 10642
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
10643 10644 10645 10646 10647
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
10648 10649
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
10650
        ])
10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
10688 10689


10690
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
10691 10692
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
10693 10694
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
10695 10696 10697

    if out is None:
        if name is None:
X
Xin Pan 已提交
10698
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
10714
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10726 10727 10728 10729

    Examples:
        .. code-block:: python

10730
            import paddle.fluid as fluid
10731
            left = fluid.layers.data(
石晓伟 已提交
10732
                name='left', shape=[1], dtype='bool')
10733
            right = fluid.layers.data(
石晓伟 已提交
10734
                name='right', shape=[1], dtype='bool')
10735
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
10736 10737 10738 10739 10740 10741 10742
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10743
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10755 10756 10757 10758

    Examples:
        .. code-block:: python

10759
            import paddle.fluid as fluid
10760
            left = fluid.layers.data(
石晓伟 已提交
10761
                name='left', shape=[1], dtype='bool')
10762
            right = fluid.layers.data(
石晓伟 已提交
10763
                name='right', shape=[1], dtype='bool')
10764
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
10765 10766 10767 10768 10769 10770 10771
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10772
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10784 10785 10786 10787

    Examples:
        .. code-block:: python

10788
            import paddle.fluid as fluid
10789
            left = fluid.layers.data(
石晓伟 已提交
10790
                name='left', shape=[1], dtype='bool')
10791
            right = fluid.layers.data(
石晓伟 已提交
10792
                name='right', shape=[1], dtype='bool')
10793
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
10794 10795 10796 10797 10798 10799 10800
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10801
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
10802 10803 10804 10805 10806 10807 10808 10809 10810 10811
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10812 10813 10814 10815

    Examples:
        .. code-block:: python

10816
            import paddle.fluid as fluid
10817
            left = fluid.layers.data(
石晓伟 已提交
10818
                name='left', shape=[1], dtype='bool')
10819
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
10820 10821 10822 10823
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10839 10840 10841 10842

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
10843
            import paddle.fluid as fluid
10844 10845 10846
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
10847 10848 10849 10850 10851
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
10852 10853
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10854 10855 10856

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10880 10881 10882 10883

    Examples:
        .. code-block:: python

10884
            import paddle.fluid as fluid
10885 10886 10887
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
10888 10889 10890 10891 10892
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
10893 10894
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10895 10896 10897

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10898 10899 10900 10901 10902 10903 10904 10905

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10919 10920 10921 10922

    Examples:
        .. code-block:: python

10923
            import paddle.fluid as fluid
10924 10925 10926
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
10927 10928 10929 10930 10931
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
10932
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10933 10934 10935 10936 10937 10938 10939 10940 10941 10942
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10954 10955 10956 10957

    Examples:
        .. code-block:: python

10958
            import paddle.fluid as fluid
10959 10960 10961 10962 10963
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
11002 11003 11004 11005 11006
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
11007
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11008 11009 11010 11011 11012 11013 11014 11015 11016
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
11017 11018
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
11019 11020 11021 11022 11023 11024
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
11025 11026 11027
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
11028 11029
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
11030 11031 11032 11033 11034 11035
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
11036
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
11037
        name(basestring|None): Name of the output.
11038 11039
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
11040 11041 11042

    Returns:
        out(${out_type}): ${out_comment}
11043 11044 11045 11046

    Examples:
        .. code-block:: python

11047
            import paddle.fluid as fluid
11048 11049 11050 11051 11052 11053 11054 11055 11056 11057
            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
11058 11059 11060 11061 11062
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
11063
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11064 11065 11066 11067 11068 11069 11070 11071
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
11072 11073
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
11090 11091 11092 11093

    Examples:
        .. code-block:: python

11094
            import paddle.fluid as fluid
J
jerrywgz 已提交
11095 11096 11097 11098 11099
            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
11100 11101 11102 11103
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
11104
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11105 11106 11107 11108 11109 11110 11111 11112 11113 11114
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
11115 11116


J
JiabinYang 已提交
11117
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
11118
    """
J
JiabinYang 已提交
11119
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
11120 11121 11122

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
11123
    The attr blocksize indicates the input block size.
11124 11125

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
11126
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
11127 11128

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
11129
    (but keeping all data)
J
JiabinYang 已提交
11130

J
JiabinYang 已提交
11131
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
11132
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
11133 11134 11135 11136 11137
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
11138
    Args:
J
JiabinYang 已提交
11139
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
11140
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
11141 11142

    Returns:
J
JiabinYang 已提交
11143
        Variable: The output LoDtensor.
J
JiabinYang 已提交
11144 11145

    Raises:
J
JiabinYang 已提交
11146
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
11147 11148 11149

    Examples:
        .. code-block:: python
11150 11151 11152
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
11153 11154

            data = fluid.layers.data(
11155
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
11156
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
11157
                x=data, blocksize=2)
11158

11159
            exe = fluid.Executor(fluid.CPUPlace())
11160 11161 11162 11163
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
11164

J
JiabinYang 已提交
11165 11166
    """

J
JiabinYang 已提交
11167
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
11168

J
JiabinYang 已提交
11169 11170
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
11171 11172

    if name is None:
J
JiabinYang 已提交
11173 11174
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
11175 11176 11177 11178 11179
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
11180
        type="space_to_depth",
J
JiabinYang 已提交
11181
        inputs={"X": x},
J
JiabinYang 已提交
11182
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
11183
        outputs={"Out": out})
J
JiabinYang 已提交
11184 11185
    return out

J
JiabinYang 已提交
11186

S
sneaxiy 已提交
11187 11188
@templatedoc()
def sequence_reverse(x, name=None):
11189
    """
S
sneaxiy 已提交
11190 11191 11192 11193 11194 11195 11196 11197
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
B
bdzhuxiaoning 已提交
11198 11199 11200 11201 11202 11203 11204

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
            x_reversed = fluid.layers.sequence_reverse(x)
S
sneaxiy 已提交
11205
    """
L
lujun 已提交
11206
    assert not in_dygraph_mode(), (
11207
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
11208 11209
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
11210
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
11211 11212 11213 11214 11215 11216 11217 11218 11219 11220
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
11221 11222


11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289
def sequence_topk_avg_pooling(input, row, col, topks, channel_num):
    """
    The :attr:`topks` is a list with incremental values in this function. For each topk,
    it will average the topk features as an output feature for each channel of every 
    input sequence. Both :attr:`row` and :attr:`col` are LodTensor, which provide height 
    and width information for :attr:`input` tensor. If feature size of input sequence is less 
    than topk, it will padding 0 at the back.

    .. code-block:: text

            If channel_num is 2 and given row LoDTensor and col LoDTensor as follows:
                row.lod = [[5, 4]]
                col.lod = [[6, 7]]

            input is a LoDTensor with input.lod[0][i] = channel_num * row.lod[0][i] * col.lod[0][i] 
                input.lod = [[60, 56]]  # where 60 = channel_num * 5 * 6
                input.dims = [116, 1]   # where 116 = 60 + 56

            If topks is [1, 3, 5], then we get a 1-level LoDTensor:
                out.lod =  [[5, 4]] 	# share Lod info with row LodTensor
                out.dims = [9, 6]   	# where 6 = len(topks) * channel_num

    Args:
        input (Variable): The input should be 2D LodTensor with dims[1] equals 1.
        row (Variable): The row shoud be 1-level LodTensor to provide the height information
                        of the input tensor data.
        col (Variable): The col shoud be 1-level LodTensor to provide the width information
                        of the input tensor data.
        topks (list): A list of incremental value to average the topk feature.
        channel_num (int): The number of input channel.

    Returns:
        Variable: output LodTensor specified by this layer.

    Examples:

        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers

            x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
            row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
            col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
            out = layers.sequence_topk_avg_pooling(input=x_lod_tensor,
                                                   row=row_lod_tensor,
                                                   col=col_lod_tensor,
                                                   topks=[1, 3, 5],
                                                   channel_num=5)
    """
    helper = LayerHelper('sequence_topk_avg_pooling', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    pos = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype(), stop_gradient=True)
    helper.append_op(
        type='sequence_topk_avg_pooling',
        inputs={'X': input,
                'ROW': row,
                'COLUMN': col},
        outputs={'Out': out,
                 'pos': pos},
        attrs={'topks': topks,
               'channel_num': channel_num})

    return out


11290 11291 11292 11293 11294 11295
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
11296 11297 11298 11299 11300
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
11301

11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
11314
        act (str, default None): Activation to be applied to the output of this layer.
11315 11316 11317

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
B
Bai Yifan 已提交
11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            input_bias = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            out = fluid.layers.affine_channel(data,scale=input_scale,
                                     bias=input_bias)

11332 11333 11334 11335
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
11336
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
11348
    return helper.append_activation(out)
11349 11350


B
barrierye 已提交
11351
def similarity_focus(input, axis, indexes, name=None):
11352
    """
B
barrierye 已提交
11353
    SimilarityFocus Operator
B
barrierye 已提交
11354 11355

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
11356

11357 11358 11359
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
11360
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
11361 11362 11363 11364 11365 11366 11367
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
11368
       each index.
B
barrierye 已提交
11369 11370 11371 11372
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
11422
    Args:
11423
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
11424
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
11425
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
11426
            1, 2 or 3.
B
barrierye 已提交
11427
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
11428 11429

    Returns:
H
haowang101779990 已提交
11430 11431
        Variable: A tensor variable with the same shape and same type \
                  as the input.
11432

B
barrierye 已提交
11433 11434
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
11435

11436
            import paddle.fluid as fluid
B
barrierye 已提交
11437
            data = fluid.layers.data(
Y
Yibing Liu 已提交
11438 11439
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
11452 11453 11454 11455 11456
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
11457 11458 11459 11460 11461 11462 11463
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
11464 11465


M
minqiyang 已提交
11466 11467
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
11468 11469
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
11470 11471
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
11472 11473 11474 11475 11476 11477 11478 11479

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
11480
        input.data = 
11481
            [[1, 2],
11482
             [3, 4]]
M
minqiyang 已提交
11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
11496 11497
            [[9662, 9217, 1129, 8487],
             [8310, 1327, 1654, 4567]],
M
minqiyang 已提交
11498 11499 11500 11501
        ]

    Args:
        input (Variable): The input variable which is a one-hot word. The
11502
            dimensions of the input variable must be 2. Both Tensor and LoDTensor are supported.
M
minqiyang 已提交
11503 11504
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
11505
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
11506
        name (str, default None): The name of this layer.
M
minqiyang 已提交
11507 11508

    Returns:
11509
       Variable: The hash result variable, which the same variable type as `input`.
M
minqiyang 已提交
11510 11511 11512

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
11513

11514 11515
            import paddle.fluid as fluid

11516 11517 11518 11519
            # titles has shape [batch, 1]
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=0)
            # hash_r has shape [batch, 2]
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
11520 11521


11522 11523 11524 11525
            # titles has shape [batch, 1] and lod information
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
            # hash_r has shape [batch, 2] and inherits lod information from titles
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
M
minqiyang 已提交
11526 11527
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
11528 11529
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
11530 11531 11532 11533 11534 11535 11536
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
11537 11538


D
dengkaipeng 已提交
11539
@templatedoc()
11540 11541
def grid_sampler(x, grid, name=None):
    """
11542
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
11543
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
11544 11545 11546 11547
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
11548
    interpolation value of 4 nearest corner points.
11549

H
haowang101779990 已提交
11550
    .. code-block:: text
11551

H
haowang101779990 已提交
11552 11553
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
11554

H
haowang101779990 已提交
11555 11556
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
11557

H
haowang101779990 已提交
11558 11559 11560
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
11561

H
haowang101779990 已提交
11562 11563 11564 11565 11566 11567 11568 11569 11570
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
11571

H
haowang101779990 已提交
11572 11573 11574 11575
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
11576

H
haowang101779990 已提交
11577 11578 11579 11580
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
11581

H
haowang101779990 已提交
11582 11583 11584 11585
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
11586

H
haowang101779990 已提交
11587 11588
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
11589 11590

    Args:
11591 11592 11593
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
11594 11595

    Returns:
H
haowang101779990 已提交
11596
        Variable: Output of shape [N, C, H, W] data samples input X
11597 11598
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
11599 11600 11601 11602
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
11603 11604 11605 11606 11607
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
11608
            out = fluid.layers.grid_sampler(x=x, grid=grid)
11609

D
dengkaipeng 已提交
11610 11611 11612 11613 11614 11615 11616 11617 11618
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

11619
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
11620 11621
    ipts = {'X': x, 'Grid': grid}

11622
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
11623 11624 11625
    return out


G
gmcather 已提交
11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

11653
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
11654 11655
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
11694
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
11695 11696 11697 11698 11699 11700 11701
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
11702 11703
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
11704

11705 11706 11707 11708 11709
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
11710
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
11711

H
heqiaozhi 已提交
11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
11725 11726 11727 11728
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
11729
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
11730 11731
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
11732
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
11733 11734

    .. math::
H
haowang101779990 已提交
11735 11736 11737
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
11738 11739

    Where:
H
haowang101779990 已提交
11740 11741
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

11755 11756 11757 11758 11759 11760 11761 11762 11763
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
11764

G
gmcather 已提交
11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
11781 11782 11783 11784 11785 11786 11787 11788 11789 11790


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
11791
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
11792

Q
Qiao Longfei 已提交
11793
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
11794 11795 11796
    For example:

    .. math::
H
haowang101779990 已提交
11797
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
11798

Q
Qiao Longfei 已提交
11799
    In this formula:
11800 11801
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
11802
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
11803
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
11804 11805 11806
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
11807 11808
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
11809 11810 11811
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
11812
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
11813
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
11814
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
11815 11816 11817 11818
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
11819
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
11820 11821 11822 11823

    Examples:
        .. code-block:: python

11824
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
11825 11826 11827
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
11828 11829
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
11830
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
11831 11832 11833 11834

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
11835
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
B
bdzhuxiaoning 已提交
11866 11867 11868 11869 11870 11871 11872 11873

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
11874 11875 11876 11877 11878 11879 11880 11881 11882 11883
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
11884 11885


S
shippingwang 已提交
11886
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
11887 11888
    """
    **Shuffle Channel Operator**
11889

S
shippingwang 已提交
11890 11891 11892 11893 11894 11895
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
11896
    
S
shippingwang 已提交
11897
    .. code-block:: text
11898

S
shippingwang 已提交
11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
11927
    Args: 
S
shippingwang 已提交
11928 11929
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
11930 11931

    Returns:
S
shippingwang 已提交
11932 11933
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
11934 11935

    Raises:
S
shippingwang 已提交
11936
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
11937 11938 11939

    Examples:
        .. code-block:: python
11940

11941
            import paddle.fluid as fluid
11942
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
11943
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
11944 11945 11946
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
11947
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
11948 11949 11950 11951 11952 11953 11954 11955 11956

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
11957
    return out
S
Add  
shippingwang 已提交
11958 11959


11960
@templatedoc()
D
dengkaipeng 已提交
11961
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
11962 11963 11964 11965 11966 11967 11968 11969
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
11970
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
11971
        name (str, default None): The name of this layer.
11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

11983
            import paddle.fluid as fluid
11984
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
11985
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
11998 11999
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
12000 12001 12002
    return out


S
sneaxiy 已提交
12003
class PyFuncRegistry(object):
S
sneaxiy 已提交
12004 12005 12006
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
12007
        if func is None or not callable(func):
S
sneaxiy 已提交
12008 12009 12010
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
12011
        # find named args using reflection
S
sneaxiy 已提交
12012 12013 12014 12015 12016 12017 12018
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
12019 12020 12021
        '''
        Why record self here?

M
minqiyang 已提交
12022 12023
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
12024
           to find the registered function corresponding
M
minqiyang 已提交
12025
           to :code:`idx`.
S
sneaxiy 已提交
12026

M
minqiyang 已提交
12027 12028
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
12029
           whose reference count is 1 would cause
M
minqiyang 已提交
12030
           segmentation fault error in C++ side.
S
sneaxiy 已提交
12031 12032
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
12033
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
12048 12049 12050 12051 12052 12053 12054 12055 12056
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
12057

S
sneaxiy 已提交
12058 12059
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
12060 12061

        ret = []
S
sneaxiy 已提交
12062 12063 12064
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
12065 12066
                continue

S
sneaxiy 已提交
12067 12068
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
12069

S
sneaxiy 已提交
12070 12071 12072
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
12073

S
sneaxiy 已提交
12074
        return tuple(ret)
S
sneaxiy 已提交
12075 12076


S
sneaxiy 已提交
12077 12078 12079 12080
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
12081

S
sneaxiy 已提交
12082 12083 12084 12085 12086 12087 12088 12089
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
12090
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
12091

S
sneaxiy 已提交
12092 12093
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
12094 12095 12096 12097
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
12098
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
12099
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
12100 12101
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
12102 12103 12104 12105 12106
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
12107
            should create :code:`out` beforehand.
S
sneaxiy 已提交
12108
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
12109
                                       None means no backward. Default None.
S
sneaxiy 已提交
12110
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
12111
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
12112 12113
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
12114
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
12115 12116 12117

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
12118 12119

    Examples:
M
minqiyang 已提交
12120

S
sneaxiy 已提交
12121 12122 12123 12124 12125
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
12126
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
12127 12128
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
12129
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
12130 12131 12132
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
12133
        >>>
S
sneaxiy 已提交
12134 12135 12136 12137 12138
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
12139
        >>>     print(x)
S
sneaxiy 已提交
12140 12141 12142 12143 12144 12145
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
12146
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
12147 12148
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
12149 12150
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
12151 12152 12153 12154 12155 12156 12157 12158
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
12159
    """
S
sneaxiy 已提交
12160
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
12161 12162 12163
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
12164
        x = [x]
S
sneaxiy 已提交
12165 12166
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12167

S
sneaxiy 已提交
12168 12169 12170
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
12171
        out_list = [out]
S
sneaxiy 已提交
12172
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
12173
        out_list = out
S
sneaxiy 已提交
12174 12175 12176
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12177

S
sneaxiy 已提交
12178 12179
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
12180
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
12181 12182

    for each_out in out_list:
S
sneaxiy 已提交
12183 12184
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
12185 12186
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
12187

S
sneaxiy 已提交
12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
12203 12204 12205 12206

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
12207 12208
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
12209 12210 12211
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
12212
        })
S
sneaxiy 已提交
12213
    return out
S
sneaxiy 已提交
12214 12215 12216


# For debug usage
S
sneaxiy 已提交
12217 12218 12219 12220
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
12234 12235 12236 12237 12238
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
12251 12252 12253 12254
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
12280

M
minqiyang 已提交
12281

M
minqiyang 已提交
12282
def huber_loss(input, label, delta):
12283
    """
M
minqiyang 已提交
12284 12285 12286
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
12287 12288 12289 12290

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
12291
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
12292 12293 12294 12295

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
12296
        huber\_loss = 0.5 * (label - input) * (label - input)
12297 12298 12299 12300 12301 12302 12303


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
12304
        delta (float): The parameter of huber loss, which controls
12305 12306 12307
                       the range of outliers

    Returns:
M
minqiyang 已提交
12308
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
12309 12310 12311 12312

    Examples:
        .. code-block:: python

12313 12314 12315 12316 12317 12318 12319 12320 12321
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

12322
    """
M
minqiyang 已提交
12323
    helper = LayerHelper('huber_loss', **locals())
12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
12335 12336


D
dengkaipeng 已提交
12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

12354
            import paddle.fluid as fluid
D
dengkaipeng 已提交
12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369
            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

12400
          import paddle.fluid as fluid
T
Tao Luo 已提交
12401 12402 12403
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
12404
          # edges must be directional
T
Tao Luo 已提交
12405 12406 12407 12408
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
12409
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
12410 12411
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
12412
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
12413
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
12437 12438


C
ceci3 已提交
12439
from .ops import square
C
ceci3 已提交
12440
from .control_flow import equal
C
ceci3 已提交
12441 12442


C
ceci3 已提交
12443 12444 12445
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
12446

C
ceci3 已提交
12447
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
12448 12449

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
12450
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
12451 12452 12453 12454 12455
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
12456 12457
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
12458 12459 12460 12461 12462 12463 12464

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

12465
       import paddle.fluid as fluid
C
ceci3 已提交
12466 12467 12468 12469 12470 12471 12472 12473
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
12474 12475 12476 12477 12478 12479 12480
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
12481
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
12482 12483
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
12484 12485
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
12486 12487 12488 12489
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
12490 12491 12492
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
12493 12494 12495
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
12496 12497


R
ruri 已提交
12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

12527
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
12528 12529 12530 12531 12532 12533 12534 12535 12536

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

12537
            import paddle.fluid as fluid
R
ruri 已提交
12538
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
12589 12590 12591 12592 12593 12594
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32])
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
12595 12596 12597 12598 12599 12600 12601 12602
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
12603 12604 12605 12606


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
12607

H
heqiaozhi 已提交
12608
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
12609

H
fix doc  
heqiaozhi 已提交
12610
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
12611 12612 12613
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
12614
    
H
fix doc  
heqiaozhi 已提交
12615
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
12616

H
heqiaozhi 已提交
12617
    Args:
H
fix doc  
heqiaozhi 已提交
12618 12619

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
12620 12621
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
12622
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
12623
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
12624

H
heqiaozhi 已提交
12625
    Returns:
H
fix doc  
heqiaozhi 已提交
12626 12627 12628

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
12629
    Examples:
H
fix doc  
heqiaozhi 已提交
12630

H
heqiaozhi 已提交
12631
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
12632

12633
          import paddle.fluid as fluid
H
heqiaozhi 已提交
12634 12635 12636 12637 12638 12639 12640 12641 12642 12643
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
12644

H
heqiaozhi 已提交
12645 12646 12647 12648 12649 12650 12651 12652 12653
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
12654
    return out
Z
zhoukunsheng 已提交
12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

12673
             import paddle.fluid as fluid
12674 12675 12676
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
12677
             # condition is a tensor [True, False, True]
12678 12679 12680
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
12681 12682

             # condition is a tensor [[True, False], [False, True]]
12683 12684 12685
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
12686 12687

             # condition is a tensor [False, False, False]
12688 12689 12690 12691
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
12692 12693 12694 12695 12696 12697 12698 12699 12700
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

12718 12719 12720
          import paddle.fluid as fluid
          import numpy as np

Z
zhoukunsheng 已提交
12721
          # [1, 0, -1]
12722 12723
          data = fluid.layers.sign(np.array([3, 0, -2], dtype='int32')) 

Z
zhoukunsheng 已提交
12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
12736 12737


Z
zhoukunsheng 已提交
12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828
def unique_with_counts(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index, count). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor, \
            `count` is count of unqiue element in the `x`.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
    """
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
            "Op unique_with_counts, index dtype must be int32 or int64")

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index],
                 'Count': [count]})

    return out, index, count


12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
                    name=None):
    """
    **Deformable Convolution Layer**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, respectively.
    Refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ .
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Variable): The input image with [N, C, H, W] format.
        offset (Variable): The input coord offset of deformable convolution layer.
        Mask (Variable): The input mask of deformable covolution layer.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the deformable convolution \
                  result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

12931
          import paddle.fluid as fluid
12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
                                             num_filters=2, filter_size=3, padding=1)
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")
    if not isinstance(mask, Variable):
        raise TypeError("Input Mask of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='deformable_conv',
        inputs={
            'Input': input,
            'Filter': filter_param,
            'Offset': offset,
            'Mask': mask,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'deformable_groups': deformable_groups,
            'im2col_step': im2col_step,
        })

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

    This function returns a col buffer of sliding local blocks of input x, also known
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter silding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`X` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


    Args:
        x(Varaible):              The input tensor of format [N, C, H, W].
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, shold be
                                  [dilation_h, dilation_w], or an integer dialtion treated as
                                  [dilation, dilation]. For default, it will be [1, 1].

    
    Returns:
        Variable: The tensor variable corresponding to the sliding local blocks. The output shape is [N, Cout, Lout] as decribled above. Cout is the  total number of values within each block, and Lout is the total number of such blocks.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name = 'data', shape = [3, 224, 224], dtype = 'float32')
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
    Deformable PSROI Pooling Layer
    
    Args:
       input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is 
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H 
                        is height of the feature, and W is the width of the feature.
       rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
       trans (Variable): Offset of features on ROIs while pooling.The format is NCHW, where 
                         N is number of ROIs, C is number of channels, which indicate the offset distance 
                         in the x and y directions, H is pooled height, and W is pooled width.
       no_trans (bool): Whether to add offset to get new value or not while roi pooling, which 
                          value is True or False. Default: False.
       spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
       group_size (list|tuple): The number of groups which input channels are divided.(eg.number of input channels 
                         is k1*k2*(C+1), which k1 and k2 are group width and height and C+1 is number of output
                         chanels. eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
       pooled_height (integer): The pooled output height. Default: 1.
       pooled_width (integer): The pooled output width. Default: 1.
       part_size (list|tuple): The height and width of offset, eg.(4, 6), which height is 4 and width is 6, Default: 
                        if None, default value is [pooled_height, pooled_width].
       sample_per_part (integer): The number of samples in each bin. Default: 1.
       trans_std (float): Coefficient of offset. Default: 0.1.
       position_sensitive (bool): Whether to choose deformable psroi pooling mode or not. Default: False.
       name (str): Name of layer. Default: None.
    Returns:
        Variable: The tensor variable storing the deformable psroi pooling \
                  result.


    Examples:
      .. code-block:: python

13163
        import paddle.fluid as fluid
C
cjt222 已提交
13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224
        input = fluid.layers.data(name="input",
                                  shape=[2, 192, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False)                   
        rois = fluid.layers.data(name="rois",
                                 shape=[4],
                                 dtype='float32', 
                                 lod_level=1)
        trans = fluid.layers.data(name="trans",
                                  shape=[2, 384, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False) 
        x = fluid.layers.nn.deformable_roi_pooling(input=input, 
                                                     rois=rois, 
                                                     trans=trans, 
                                                     no_trans=False,
                                                     spatial_scale=1.0, 
                                                     group_size=(1, 1),
                                                     pooled_height=8,
                                                     pooled_width=8,
                                                     part_size=(8, 8),
                                                     sample_per_part=4, 
                                                     trans_std=0.1,
                                                     position_sensitive=False)
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output
13225 13226


K
Kevin 已提交
13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341
def var_conv_2d(input,
                row,
                col,
                input_channel,
                output_channel,
                filter_size,
                stride=1,
                param_attr=None,
                act=None,
                dtype='float32',
                name=None):
    """
    The var_conv_2d layer calculates the output base on the :attr:`input` with variable length,
    row, col, input channel, filter size and strides. Both :attr:`input`, :attr:`row`,
    and :attr:`col` are 1-level LodTensor. The covolution operation is same as conv2d layer with 
    padding. Besides, input.dims[1] should be 1. 

    .. code-block:: text
            
            If input_channel is 2 and given row lodTensor and col lodTensor as follows:
                row.lod = [[5, 4]]
                col.lod = [[6, 7]]
            input is a lodTensor: 
                input.lod = [[60, 56]]	# where 60 = input_channel * 5 * 6
                input.dims = [116, 1]	# where 116 = 60 + 56
            
            If set output_channel is 3, filter_size is [3, 3], stride is [1, 1]:
                output.lod = [[90, 84]] # where 90 = output_channel * [(5-1)/stride + 1] * [(6-1)/stride + 1]
                output.dims = [174, 1]  # where 174 = 90 + 84

    Args:
        input (Variable): The input shoud be 1-level LodTensor with dims[1] equals 1.
        row (Variable): The row shoud be 1-level LodTensor to provide height information.
        col (Variable): The col shoud be 1-level LodTensor to provide width information.
        input_channel (int): The number of input channel.
        output_channel (int): The number of output channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of var_conv2d. If it is set to None or one attribute of ParamAttr, var_conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
        dtype ('float32'): The data type of parameter and output.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None

    Returns:
        Variable: Output variable with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers

            x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
            row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
            col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
            out = layers.var_conv_2d(input=x_lod_tensor, 
                                     row=row_lod_tensor,
                                     col=col_lod_tensor,
                                     input_channel=3,
                                     output_channel=5,
                                     filter_size=[3, 3],
                                     stride=1)
    """
    helper = LayerHelper('var_conv_2d', **locals())
    x_shape = list(input.shape)
    assert len(x_shape) == 2

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')

    filter_shape = [
        int(output_channel),
        int(input_channel) * filter_size[0] * filter_size[1]
    ]
    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype, )

    conv_res = helper.create_variable_for_type_inference(dtype)
    tmp_res = helper.create_variable_for_type_inference(
        dtype, stop_gradient=True)

    helper.append_op(
        type='var_conv_2d',
        inputs={
            'X': input,
            'ROW': row,
            'COLUMN': col,
            'W': filter_param,
        },
        outputs={"Out": conv_res,
                 "Col": tmp_res},
        attrs={
            'InputChannel': input_channel,
            'OutputChannel': output_channel,
            'StrideH': stride[0],
            'StrideW': stride[1],
            'KernelH': filter_size[0],
            'KernelW': filter_size[1],
        })

    return helper.append_activation(conv_res)


A
Aurelius84 已提交
13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423
def match_matrix_tensor(x,
                        y,
                        channel_num,
                        act=None,
                        param_attr=None,
                        dtype='float32',
                        name=None):
    """
    Calculate the semantic matching matrix of two word sequences with variable length.
    Given a query A of length `n` and a title B of length `m`, the input shape are respectively
    [n, h] and [m, h], which h is hidden_size. If :attr:`channel_num` is set to 3,
    it will generate a learnable parameter matrix W with shape [h, 3, h].
    Then the semantic matching matrix of query A and title B is calculated by 
    A * W * B.T = [n, h]*[h, 3, h]*[h, m] = [n, 3, m]. The learnable parameter matrix `W` 
    is equivalent to a fully connected layer in the calculation process. If :attr:`act` is provided, 
    the corresponding activation function will be applied to output matrix.
    The :attr:`x` and :attr:`y` should be LodTensor and only one level LoD is supported.

    .. code-block:: text

            Given a 1-level LoDTensor x:
                x.lod =  [[2,                     3,                               ]]
                x.data = [[0.3, 0.1], [0.2, 0.3], [0.5, 0.6], [0.7, 0.1], [0.3, 0.4]]
                x.dims = [5, 2]
            y is a Tensor:
                y.lod =  [[3,                                 1,       ]]
                y.data = [[0.1, 0.2], [0.3, 0.7], [0.9, 0.2], [0.4, 0.1]]
                y.dims = [4, 2]
            set channel_num 2, then we get a 1-level LoDTensor:
                out.lod =  [[12, 6]]   # where 12 = channel_num * x.lod[0][0] * y.lod[0][0]
                out.dims = [18, 1]     # where 18 = 12 + 6

    Args:
        x (Variable): Input variable x which should be 1-level LodTensor.
        y (Variable): Input variable y which should be 1-level LodTensor.
        channel_num (int): The channel number of learnable parameter W.
        act (str, default None): Activation to be applied to the output of this layer.
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        dtype ('float32'): The data type of w data.
        name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. Default: None

    Returns:
        Variable: output with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers

            x_lod_tensor = layers.data(name='x', shape=[10], lod_level=1)
            y_lod_tensor = layers.data(name='y', shape=[10], lod_level=1)
            out, out_tmp = layers.match_matrix_tensor(x=x_lod_tensor, y=y_lod_tensor, channel_num=3)
    """
    helper = LayerHelper('match_matrix_tensor', **locals())

    x_shape = list(x.shape)
    y_shape = list(y.shape)
    assert len(x_shape) == 2 and len(y_shape) == 2 and x_shape[-1] == y_shape[
        -1]

    weight_shape = [x_shape[-1], channel_num, y_shape[-1]]
    w = helper.create_parameter(
        attr=helper.param_attr, shape=weight_shape, dtype=dtype, is_bias=False)
    mm_res = helper.create_variable_for_type_inference(dtype)
    tmp_res = helper.create_variable_for_type_inference(
        dtype, stop_gradient=True)
    helper.append_op(
        type='match_matrix_tensor',
        inputs={
            'X': x,
            'Y': y,
            'W': w,
        },
        outputs={"Out": mm_res,
                 "Tmp": tmp_res},
        attrs={'dim_t': channel_num})

    return helper.append_activation(mm_res), tmp_res


13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505
def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    This layer creates the sharded index for input. This layers is used in
    model- and data- parallel mixed training generally, in which the index
    data (usually the label) should be recaculated in each trainer according
    to 

    .. math::
        
        assert index_num % nshards == 0

        shard_size = index_num / nshards

        y = x % shard_size if x / shard_size == shard_id else ignore_value

    We take the distributed one-hot representation to show what this layer is
    used for. The distributed one-hot representation is seperated into multiple
    shards, and each shard is filling zeros except the one with the index
    inside. In order to create these sharded representation in each trainer,
    the original index should be recalculated (i.e. sharded) before.

    Examples:
    
        X is a Tensor of integer values:
          X.shape = [4, 1]
          X.data = [[1], [6], [12], [19]]
        
        suppose index_num = 20 and nshards = 2, then we get shard_size = 10
        
        if shard_id == 0, we get the Out:
          Out.shape = [4, 1]
          Out.data = [[1], [6], [-1], [-1]]
        
        if shard_id == 1, we get the Out:
          Out.shape = [4, 1]
          Out.data = [[-1], [-1], [2], [9]]
    
        the default `ignore_value` -1 is used in this example.
    
    Args:
        input(Variable): Input indices, last dimension must be 1.
        index_num(scalar): An interger defining the range of the index.
        nshards(scalar): The number of shards
        shard_id(scalar): The index of the current shard
        ignore_value(scalar): An ingeter value out of sharded index range

    Returns:
        Variable: The shard index of input.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            shard_label = fluid.layers.shard_index(input=label,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
    """
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if index_num % nshards != 0:
        raise ValueError(
            'The index_num(%d) cannot be evenly divided by nshards(%d)' %
            (index_num, nshards))
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out
H
huangjun12 已提交
13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
    """
    ${comment}
    Args:
        x(Varaible): Input of HardSwish operator.
        threshold(float): The threshold parameter of HardSwish operator. Default:threshold=6.0
        scale(float): The scale parameter of HardSwish operator. Default:scale=6.0
        offset(float): The offset parameter of HardSwish operator. Default:offset=3.0
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_swish(x)
    """
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold,
               'scale': scale,
               'offset': offset})
    return out