nn.py 382.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29
from .tensor import concat, assign
30
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
C
ceci3 已提交
35 36
from .control_flow import equal
from .ops import square
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
49
    'bpr_loss',
X
Xin Pan 已提交
50 51 52 53 54 55 56 57 58 59
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
60 61
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
62
    'batch_norm',
H
heqiaozhi 已提交
63
    'data_norm',
X
Xin Pan 已提交
64 65 66 67 68 69
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
70
    'sequence_unpad',
X
Xin Pan 已提交
71 72 73 74 75 76 77 78
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
79
    'sequence_slice',
X
Xin Pan 已提交
80 81 82 83 84 85 86 87 88 89 90 91
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
92
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
93 94 95 96 97
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
98
    'group_norm',
D
dengkaipeng 已提交
99
    'spectral_norm',
X
Xin Pan 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
113
    'roi_align',
X
Xin Pan 已提交
114 115 116 117
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
118
    'resize_nearest',
X
Xin Pan 已提交
119 120 121 122 123 124
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
125
    'selu',
X
Xin Pan 已提交
126 127 128
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
129
    'margin_rank_loss',
X
Xin Pan 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
173
    'space_to_depth',
W
whs 已提交
174
    'affine_grid',
S
sneaxiy 已提交
175
    'sequence_reverse',
176
    'affine_channel',
B
barrierye 已提交
177
    'similarity_focus',
M
minqiyang 已提交
178
    'hash',
D
dengkaipeng 已提交
179
    'grid_sampler',
G
gmcather 已提交
180 181
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
182
    'bilinear_tensor_product',
C
chengduo 已提交
183 184
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
185
    'lstm',
S
shippingwang 已提交
186
    'shuffle_channel',
S
sneaxiy 已提交
187
    'py_func',
188
    'psroi_pool',
H
heqiaozhi 已提交
189
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
190
    'huber_loss',
Z
zhaozhehao 已提交
191
    'tree_conv',
C
ceci3 已提交
192
    'npair_loss',
Y
Yu Yang 已提交
193 194
]

J
jerrywgz 已提交
195 196
kIgnoreIndex = -100

Y
Yu Yang 已提交
197 198 199 200 201 202 203

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
204
       is_test=False,
205
       name=None):
Y
Yu Yang 已提交
206
    """
207
    **Fully Connected Layer**
Y
Yu Yang 已提交
208

209 210 211 212 213 214 215 216
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
217
    to the output as well.
C
caoying03 已提交
218

C
caoying03 已提交
219
    This process can be formulated as follows:
220 221 222

    .. math::

223
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
224 225 226

    In the above equation:

C
caoying03 已提交
227 228 229 230
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
231
    * :math:`Act`: The activation function.
C
caoying03 已提交
232
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
233 234

    Args:
R
ranqiu 已提交
235 236 237 238 239 240 241 242 243 244
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
245
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
246 247 248 249
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
250 251
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
252
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
253
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
254
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
255

256
    Returns:
F
fengjiayi 已提交
257
        Variable: The transformation result.
258 259

    Raises:
C
caoying03 已提交
260
        ValueError: If rank of the input tensor is less than 2.
261 262 263 264

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
265
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
266
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
267
    """
C
caoying03 已提交
268

C
caoying03 已提交
269
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
270 271 272 273

    dtype = helper.input_dtype()

    mul_results = []
274 275
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
276 277 278
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
279

Y
Yu Yang 已提交
280
        w = helper.create_parameter(
281
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
282
        tmp = helper.create_variable_for_type_inference(dtype)
283
        helper.append_op(
284 285 286
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
287
            outputs={"Out": tmp},
M
mozga-intel 已提交
288 289
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
290 291 292 293
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
294
    else:
X
Xin Pan 已提交
295
        pre_bias = helper.create_variable_for_type_inference(dtype)
296
        helper.append_op(
297 298 299
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
300
            attrs={"use_mkldnn": False})
301 302 303 304
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
305 306


307 308 309
def embedding(input,
              size,
              is_sparse=False,
310
              is_distributed=False,
311 312 313
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
314
    """
315 316
    **Embedding Layer**

317
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
318 319
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
320 321 322

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
323 324

    Args:
325 326 327 328 329
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
330
        is_distributed(bool): Whether to run lookup table from remote parameter server.
331 332
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
333
            with zeros whenever lookup encounters it in :attr:`input`. If
334
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
335 336
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
337
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
338

339 340 341
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
342

343 344
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
345

C
chengduoZH 已提交
346
          dict_size = len(dataset.ids)
347
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
348
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
349 350 351
    """

    helper = LayerHelper('embedding', **locals())
352
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
353 354
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
355 356
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
357
    tmp = helper.create_variable_for_type_inference(dtype)
358 359
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
360 361 362 363 364
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
365 366 367
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
368
            'remote_prefetch': remote_prefetch,
369 370
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
371 372 373
    return tmp


W
wopeizl 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
390

W
wopeizl 已提交
391 392 393 394 395 396 397 398 399 400 401
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
402

W
wopeizl 已提交
403 404 405 406
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
407

W
wopeizl 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
494 495


P
phlrain 已提交
496 497 498 499 500 501
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
502
         dropout_prob=0.0,
P
phlrain 已提交
503 504 505 506 507
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
508
    """
P
phlrain 已提交
509
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
510 511

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
512
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
513 514
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
515
    .. math::
M
minqiyang 已提交
516 517 518 519 520 521 522

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
523
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
524 525 526 527

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
528 529

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
530 531 532 533 534 535
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
536 537 538
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
539
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
540

M
minqiyang 已提交
541
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
542 543 544 545 546
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
547
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
548 549 550 551 552
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
553
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
554 555
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
556 557
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
558 559 560 561 562 563
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
564
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
565

L
liuhongyu 已提交
566 567

    Returns:
M
minqiyang 已提交
568 569
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
570
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
571

H
haowang101779990 已提交
572 573 574 575
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
576
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
577 578
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
579
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
595
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
596 597 598 599 600 601
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
602 603 604
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
664 665 666 667 668 669 670 671 672 673
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
674
                  proj_activation='tanh',
675
                  dtype='float32',
X
xuezhong 已提交
676 677 678 679 680
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
681 682 683
    """
    **Dynamic LSTMP Layer**

684 685 686 687 688 689
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
690 691 692 693 694

    The formula is as follows:

    .. math::

695
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
696

697
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
698

699
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
700

701
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
702

703
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
704

705
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
706

707
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
708

Y
Yibing Liu 已提交
709 710 711 712 713 714
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
715
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
716
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
717
          bias vector).
Y
Yibing Liu 已提交
718 719 720
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
721
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
722
    * :math:`h`: The hidden state.
723
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
724 725
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
726
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
727
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
728
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
729 730
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
731 732 733 734

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
735

Y
Yibing Liu 已提交
736 737 738 739 740 741 742 743 744 745 746 747
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
748
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
749 750
                               hidden-hidden weight and projection weight.

751 752
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
753 754
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
755 756
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
757
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
758 759 760 761 762

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
763
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
764 765 766 767 768 769
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
770
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
771 772 773
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
774
                                - The shape is (1 x 7D).
C
chengduo 已提交
775 776 777 778 779

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
780 781 782 783 784 785 786 787 788
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
789
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
790 791
                              default "tanh".
        proj_activation(str): The activation for projection output.
792
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
793
                              default "tanh".
Y
Yibing Liu 已提交
794
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
795 796
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
797 798 799 800 801 802 803 804 805 806 807
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
808 809

    Returns:
810 811 812 813
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
814 815

    Examples:
816

Y
Yibing Liu 已提交
817 818
        .. code-block:: python

819 820 821 822
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
823
            hidden_dim, proj_dim = 512, 256
824
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
825
                                     act=None, bias_attr=None)
826 827 828
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
829 830 831 832
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
833
    """
834

C
chengduo 已提交
835
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
836
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
837
    size = size // 4
Y
Yibing Liu 已提交
838 839 840 841 842 843 844 845 846 847
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
848 849 850 851 852 853
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
869

X
xuezhong 已提交
870 871 872 873 874
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
875 876
    helper.append_op(
        type='lstmp',
877
        inputs=inputs,
Y
Yibing Liu 已提交
878 879 880 881 882 883 884 885 886
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
887 888
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
889 890 891 892 893 894 895 896 897
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
898 899 900 901 902 903 904
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
905 906
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
907
    """
908
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
909

910 911 912
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
913

G
guosheng 已提交
914 915 916 917 918 919 920 921 922
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
923

G
guosheng 已提交
924
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
925

Q
Qiao Longfei 已提交
926 927 928

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
929 930 931 932 933 934 935 936 937 938 939 940
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
941
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
942 943
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
944 945 946 947
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
948
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
949 950

    Args:
951 952
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
953
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
954
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
955 956
            is the hidden size.
        size(int): The dimension of the gru cell.
957
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
958 959
            hidden-hidden weight matrix. Note:

960
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
961
              :math:`D` is the hidden size.
962
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
963
              The first part are weights of the update gate and reset gate with
964
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
965
              candidate hidden state with shape :math:`(D \\times D)`.
966 967 968 969 970

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
971
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
972
            the bias in the update gate, reset gate and candidate calculations.
973 974 975
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
976 977
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
978
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
979 980 981
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
982
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
983
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
984 985 986 987
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
988 989

    Returns:
G
guosheng 已提交
990
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
991
            and sequence length is the same with the input.
992

G
guosheng 已提交
993
    Examples:
994

G
guosheng 已提交
995 996
        .. code-block:: python

997 998 999 1000
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1001
            hidden_dim = 512
1002
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1003
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1013
    batch_size = input.shape[0]
G
guosheng 已提交
1014
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1015
    if h_0:
G
guosheng 已提交
1016
        assert h_0.shape == (
Y
Yancey 已提交
1017 1018 1019
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1020

X
Xin Pan 已提交
1021 1022 1023 1024
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1038 1039
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1040 1041 1042 1043
        })
    return hidden


Y
Yu Yang 已提交
1044 1045 1046
def gru_unit(input,
             hidden,
             size,
1047 1048
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1049
             activation='tanh',
Q
Qiao Longfei 已提交
1050 1051
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1052
    """
1053 1054 1055
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1056
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1057
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1058

1059 1060
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1061

1062
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1063

1064
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1065

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1081 1082

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1083 1084 1085
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1086 1087
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1088 1089
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1090 1091 1092
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1093 1094 1095

    Args:
        input (Variable): The fc transformed input value of current step.
1096
        hidden (Variable): The hidden value of gru unit from previous step.
1097
        size (integer): The input dimension value.
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1112
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1113
            the bias in the update gate, reset gate and candidate calculations.
1114 1115 1116
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1117 1118
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1119 1120 1121 1122
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1123

1124 1125 1126 1127 1128 1129
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1130

1131
             # assuming we have x_t_data and prev_hidden of size=10
1132
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1133 1134
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1147
    size = size // 3
Y
Yu Yang 已提交
1148 1149

    # create weight
1150 1151
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1152

X
Xin Pan 已提交
1153 1154 1155
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1156
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1157
    # create bias
1158
    if helper.bias_attr:
Y
Yu Yang 已提交
1159 1160 1161
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1162
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1163 1164 1165

    helper.append_op(
        type='gru_unit',
1166
        inputs=inputs,
Y
Yu Yang 已提交
1167 1168 1169 1170 1171 1172
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1173 1174
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1175 1176 1177 1178 1179
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1180
@templatedoc()
1181
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1182 1183 1184 1185 1186 1187 1188
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1189
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1190 1191 1192 1193
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1194 1195 1196
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1197 1198

    """
Y
Yu Yang 已提交
1199 1200 1201 1202 1203 1204
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1205 1206 1207 1208 1209 1210 1211 1212
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1228 1229 1230 1231
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1232

W
wopeizl 已提交
1233 1234
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1235

W
wopeizl 已提交
1236
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1237

W
wopeizl 已提交
1238
        label(${label_type}): ${label_comment}
1239

W
wopeizl 已提交
1240 1241
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1242

W
wopeizl 已提交
1243 1244
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1245

W
wopeizl 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1256
                "Transition": transition,
W
wopeizl 已提交
1257 1258
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1259

W
wopeizl 已提交
1260
    return viterbi_path
Y
Yu Yang 已提交
1261 1262


Y
yi.wu 已提交
1263
@templatedoc()
F
fengjiayi 已提交
1264
def cos_sim(X, Y):
Y
Yu Yang 已提交
1265
    """
Y
yi.wu 已提交
1266 1267 1268
    ${comment}

    Args:
1269 1270
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1271

Y
yi.wu 已提交
1272
    Returns:
1273
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1274
    """
F
fengjiayi 已提交
1275
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1276 1277 1278
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1289 1290 1291 1292 1293
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1294
            dropout_implementation="downgrade_in_infer"):
1295 1296 1297 1298 1299
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1300
    training. The dropout operator randomly sets (according to the given dropout
1301 1302 1303
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1304 1305
    dropout op can be removed from the program to make the program more efficient.

1306
    Args:
1307 1308
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1309 1310 1311 1312 1313 1314 1315
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1316 1317
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1318
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1319 1320 1321 1322 1323 1324

                                           - train: out = input * mask
                                           - inference: out = input * dropout_prob

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1325
                                        2. upscale_in_train, upscale the outcome at training time
1326

H
haowang101779990 已提交
1327 1328
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1329

H
haowang101779990 已提交
1330 1331
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1332

M
minqiyang 已提交
1333

1334
    Returns:
1335
        Variable: A tensor variable is the shape with `x`.
1336 1337

    Examples:
1338

1339 1340
        .. code-block:: python

1341 1342
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1343 1344
    """

F
fengjiayi 已提交
1345
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1346 1347 1348
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1349 1350 1351 1352

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1353 1354 1355 1356 1357
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1358 1359 1360 1361
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1362 1363
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1364
        })
1365 1366 1367
    return out


J
jerrywgz 已提交
1368
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1369
    """
Y
Yibing Liu 已提交
1370 1371
    **Cross Entropy Layer**

1372 1373 1374
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1375 1376

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1377
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1378

Y
Yibing Liu 已提交
1379
        .. math::
Y
yangyaming 已提交
1380

Y
Yibing Liu 已提交
1381 1382 1383
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1384 1385
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1386 1387 1388 1389 1390

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1391
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1392 1393 1394
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1395 1396
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1397
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1398

Y
Yibing Liu 已提交
1399
    Args:
Y
yangyaming 已提交
1400
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1401 1402 1403 1404
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1405
        label (Variable|list): the ground truth which is a 2-D tensor. When
1406 1407 1408 1409
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1410
        soft_label (bool): a flag indicating whether to
1411
                                           interpretate the given labels as soft
1412
                                           labels. Default: `False`.
M
minqiyang 已提交
1413 1414
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1415
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1416 1417 1418 1419 1420

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1421 1422 1423
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1424

H
haowang101779990 已提交
1425 1426
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1427

H
haowang101779990 已提交
1428 1429
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1430 1431 1432 1433 1434 1435

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1436
    """
F
fengjiayi 已提交
1437
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1438
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1439 1440 1441 1442 1443
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1444 1445
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1446 1447 1448
    return out


F
frankwhzhang 已提交
1449
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1450 1451 1452
    """
    Bayesian Personalized Ranking Loss Operator.

1453
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1454 1455 1456 1457 1458 1459
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1460 1461 1462 1463 1464 1465
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1466 1467
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1468 1469 1470
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1471 1472 1473
    Examples:
        .. code-block:: python

1474
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1475
    """
1476 1477 1478 1479 1480 1481

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1482
                'Label': [label]},
1483 1484 1485 1486
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1487
def square_error_cost(input, label):
Y
Yu Yang 已提交
1488
    """
1489 1490
    **Square error cost layer**

1491 1492
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1493

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1507 1508
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1509 1510

    Returns:
G
guosheng 已提交
1511
        Variable: The tensor variable storing the element-wise squared error \
1512
                  difference of input and label.
1513 1514 1515 1516 1517 1518 1519 1520

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1521
    """
F
fengjiayi 已提交
1522
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1523
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1524 1525 1526 1527 1528 1529
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1530
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1531
    helper.append_op(
F
fengjiayi 已提交
1532 1533
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1534 1535 1536
    return square_out


Y
yi.wu 已提交
1537
@templatedoc()
Y
Yu Yang 已提交
1538 1539 1540 1541
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1542
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1543
    """
Y
yi.wu 已提交
1544
    **Chunk Evaluator**
Y
yi.wu 已提交
1545

Y
yangyaming 已提交
1546
    This function computes and outputs the precision, recall and
1547
    F1-score of chunk detection.
Y
yi.wu 已提交
1548

M
minqiyang 已提交
1549
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1550
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1551 1552 1553 1554 1555 1556

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1557

Y
yi.wu 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1583

Y
yi.wu 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1608
    Args:
1609 1610 1611 1612 1613
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1614

Y
yi.wu 已提交
1615
    Returns:
Y
update  
yi.wu 已提交
1616 1617 1618
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1619

Y
yi.wu 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1632
    """
F
fengjiayi 已提交
1633
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1634 1635

    # prepare output
X
Xin Pan 已提交
1636 1637 1638 1639 1640 1641 1642
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1643 1644 1645 1646 1647 1648 1649 1650

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1651 1652 1653 1654
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1655 1656 1657
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1658 1659
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1660
        })
1661 1662
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1663 1664


1665
@templatedoc()
Y
Yu Yang 已提交
1666 1667 1668 1669 1670 1671 1672
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1673 1674
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1675 1676 1677 1678
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1679 1680 1681 1682 1683 1684 1685

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1699

1700 1701
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1702 1703 1704 1705 1706 1707 1708
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1709
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1720
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1721 1722 1723 1724 1725 1726
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1727
def sequence_softmax(input, use_cudnn=False, name=None):
1728 1729 1730
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1731
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1748 1749 1750
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1751

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1763 1764
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1765
    softmax_out = helper.create_variable_for_type_inference(dtype)
1766 1767 1768 1769 1770 1771 1772 1773
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1774
def softmax(input, use_cudnn=False, name=None):
Q
qiaolongfei 已提交
1775
    """
1776
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1777
    has the same shape as the input.
Q
qiaolongfei 已提交
1778

1779 1780 1781 1782 1783 1784
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1785
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1786 1787 1788 1789 1790 1791 1792

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1793
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1794 1795 1796 1797 1798 1799 1800 1801

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1802 1803
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1804 1805
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1818 1819
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1820
    softmax_out = helper.create_variable_for_type_inference(dtype)
1821 1822 1823 1824 1825 1826 1827 1828
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1829 1830 1831
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1832 1833
           stride=1,
           padding=0,
1834
           dilation=1,
Y
Yu Yang 已提交
1835 1836 1837
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1838
           use_cudnn=True,
1839 1840
           act=None,
           name=None):
Y
Yu Yang 已提交
1841
    """
C
chengduoZH 已提交
1842
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1843 1844
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1845
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1846 1847 1848 1849 1850 1851 1852
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1853 1854 1855
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1856

1857
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1858

C
chengduoZH 已提交
1859 1860
    .. math::

C
refine  
chengduoZH 已提交
1861
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1862

T
tensor-tang 已提交
1863
    Where:
C
chengduoZH 已提交
1864

1865 1866 1867 1868 1869
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1870
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1871 1872 1873

    Example:

1874 1875
        - Input:

W
weixing02 已提交
1876
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1877

W
weixing02 已提交
1878
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1879

1880
        - Output:
T
tensor-tang 已提交
1881

W
weixing02 已提交
1882
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1883

C
chengduoZH 已提交
1884
        Where
1885 1886

        .. math::
C
chengduoZH 已提交
1887

W
weixing02 已提交
1888 1889
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1890 1891

    Args:
1892
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1893
        num_filters(int): The number of filter. It is as same as the output
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1911 1912 1913 1914 1915
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1916
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1917 1918 1919 1920 1921
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1922 1923
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1924 1925
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1926
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1927
            will be named automatically. Default: None
C
chengduoZH 已提交
1928 1929

    Returns:
G
guosheng 已提交
1930
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1931 1932
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1933
    Raises:
1934 1935
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1936

C
chengduoZH 已提交
1937 1938 1939
    Examples:
        .. code-block:: python

1940 1941
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1942 1943 1944
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1945
    assert param_attr is not False, "param_attr should not be False here."
1946
    l_type = 'conv2d'
X
xzl 已提交
1947 1948
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1949
        l_type = 'depthwise_conv2d'
1950 1951 1952 1953

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1954 1955 1956 1957 1958
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1959
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1960

C
chengduoZH 已提交
1961 1962 1963
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1964
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1965

C
chengduoZH 已提交
1966 1967
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1968 1969

    input_shape = input.shape
M
minqiyang 已提交
1970
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1971 1972

    def _get_default_param_initializer():
C
chengduo 已提交
1973 1974
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1975 1976 1977 1978 1979 1980 1981 1982
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1983
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1984

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1999
    helper.append_op(
2000
        type=l_type,
Y
Yu Yang 已提交
2001 2002 2003 2004 2005
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2006 2007 2008
        attrs={
            'strides': stride,
            'paddings': padding,
2009
            'dilations': dilation,
C
chengduoZH 已提交
2010
            'groups': groups,
2011
            'use_cudnn': use_cudnn,
2012
            'use_mkldnn': False,
2013
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2014
        })
Y
Yu Yang 已提交
2015 2016 2017 2018 2019 2020

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2038 2039 2040 2041 2042 2043
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2053 2054
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2055 2056 2057
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2058
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2084
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2085 2086
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2087
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2088 2089
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2090
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2091 2092
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2093
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2094 2095 2096 2097 2098 2099
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2110 2111
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2112 2113
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2114
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2115
            will be named automatically. Default: None.
C
chengduoZH 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2128 2129
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2130 2131 2132
    """

    l_type = 'conv3d'
C
chengduo 已提交
2133
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2144
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2158 2159 2160
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2161 2162 2163 2164 2165 2166 2167 2168
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2169
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2184
            'use_mkldnn': False
C
chengduoZH 已提交
2185 2186
        })

2187
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2188 2189 2190 2191

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2192
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2193
    """
Y
yangyaming 已提交
2194 2195 2196
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2208
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2209 2210 2211 2212 2213
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2214
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2215 2216 2217 2218 2219 2220 2221

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2222 2223
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2224

L
Luo Tao 已提交
2225 2226
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2227
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2228
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2229
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2230 2231 2232 2233 2234 2235 2236

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2237

Y
yangyaming 已提交
2238
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2239 2240 2241 2242 2243
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2244 2245
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2246
    """
F
fengjiayi 已提交
2247
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2248
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2249 2250
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2251 2252 2253 2254 2255 2256

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2257 2258
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2259

Y
yangyaming 已提交
2260 2261 2262 2263 2264
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2265 2266 2267
    return pool_out


C
add doc  
chengduoZH 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2287
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2288 2289 2290 2291 2292
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2293
def sequence_first_step(input):
L
Luo Tao 已提交
2294
    """
L
Luo Tao 已提交
2295
    This function gets the first step of sequence.
L
Luo Tao 已提交
2296 2297 2298 2299

    .. code-block:: text

       x is a 1-level LoDTensor:
2300
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2301 2302 2303 2304 2305
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2306
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2307
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2308

L
Luo Tao 已提交
2309 2310 2311 2312 2313 2314 2315 2316 2317
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2318

Y
yangyaming 已提交
2319
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2320 2321 2322
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2323 2324 2325
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2326
def sequence_last_step(input):
L
Luo Tao 已提交
2327
    """
L
Luo Tao 已提交
2328
    This function gets the last step of sequence.
L
Luo Tao 已提交
2329 2330 2331 2332

    .. code-block:: text

       x is a 1-level LoDTensor:
2333
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2334 2335 2336 2337 2338
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2339
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2340
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2341

L
Luo Tao 已提交
2342 2343 2344 2345 2346 2347 2348 2349 2350
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2351

Y
yangyaming 已提交
2352
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2353 2354 2355
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2356 2357 2358
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2359 2360 2361 2362
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2363
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2364 2365 2366 2367 2368
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2369

H
haowang101779990 已提交
2370
              - Case:
Y
Yibing Liu 已提交
2371

2372
            Given the input Variable **input**:
2373

2374 2375 2376
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2377

2378
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2379

2380
            the output Variable will be
2381

2382 2383 2384
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2385

M
minqiyang 已提交
2386
    Note:
H
haowang101779990 已提交
2387
          The first dimension size of **input**, **offset** and **length**
2388
          should be equal. The **offset** should start from 0.
2389

Y
Yibing Liu 已提交
2390
    Args:
2391
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2392
                         sequences.
Y
Yibing Liu 已提交
2393 2394 2395 2396 2397 2398
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2399
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2410
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2411 2412 2413 2414
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2415
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2430
@templatedoc()
Y
Yu Yang 已提交
2431
def pool2d(input,
C
chengduoZH 已提交
2432 2433
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2434 2435
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2436
           global_pooling=False,
C
chengduoZH 已提交
2437
           use_cudnn=True,
2438
           ceil_mode=False,
2439 2440
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2441
    """
F
fengjiayi 已提交
2442
    ${comment}
2443 2444

    Args:
2445 2446 2447
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2448
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2449
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2450 2451
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2452
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2453 2454 2455 2456 2457 2458
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2459 2460 2461
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2462
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2463
                        layer will be named automatically.
2464
        exclusive (bool): Whether to exclude padding points in average pooling
2465
                          mode, default is true
F
fengjiayi 已提交
2466

2467
    Returns:
F
fengjiayi 已提交
2468
        Variable: The pooling result.
F
fengjiayi 已提交
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2481
          pool2d = fluid.layers.pool2d(
2482 2483 2484 2485
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2486
                            global_pooling=False)
Y
Yu Yang 已提交
2487 2488 2489 2490 2491
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2492

C
chengduoZH 已提交
2493 2494 2495 2496 2497
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2498 2499 2500 2501
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2502 2503
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2504

C
Add doc  
chengduoZH 已提交
2505
    l_type = 'pool2d'
2506 2507

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2508
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2509
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2510 2511

    helper.append_op(
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2523 2524
            "use_mkldnn": False,
            "exclusive": exclusive,
2525 2526 2527 2528 2529
        })

    return pool_out


D
dengkaipeng 已提交
2530
@templatedoc()
2531 2532 2533 2534 2535 2536 2537 2538
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2539 2540
           name=None,
           exclusive=True):
2541
    """
2542
    ${comment}
2543 2544

    Args:
D
dengkaipeng 已提交
2545 2546 2547 2548 2549
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2550 2551 2552 2553 2554
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2555 2556 2557 2558 2559 2560 2561
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2562
        exclusive (bool): Whether to exclude padding points in average pooling
2563
                          mode, default is true
2564

2565
    Returns:
2566
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2580 2581 2582 2583 2584
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2585

C
chengduoZH 已提交
2586 2587 2588 2589 2590
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2591 2592 2593
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2594

C
chengduoZH 已提交
2595 2596
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2597

2598 2599
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2600
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2601
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2602 2603

    helper.append_op(
2604
        type=l_type,
Y
Yu Yang 已提交
2605 2606 2607 2608 2609 2610 2611
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2612
            "paddings": pool_padding,
2613
            "use_cudnn": use_cudnn,
2614
            "ceil_mode": ceil_mode,
2615 2616
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2617 2618 2619 2620 2621
        })

    return pool_out


2622 2623 2624 2625 2626 2627 2628
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2629 2630 2631 2632 2633 2634 2635
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2636

2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2650 2651 2652 2653 2654 2655 2656 2657 2658

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2659 2660
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2675
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2676
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2677
          # of input data into m * n grids averagely and performs poolings in each
2678 2679
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2680
          #
2681 2682 2683 2684 2685 2686 2687 2688
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2689 2690
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2691
          pool_out = fluid.layers.adaptive_pool2d(
2692 2693
                            input=data,
                            pool_size=[3, 3],
2694
                            pool_type='avg')
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2705
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2731
    return (pool_out, mask) if require_index else pool_out
2732 2733 2734 2735 2736 2737 2738 2739 2740


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2741 2742 2743 2744 2745 2746 2747
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2748

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2766 2767 2768

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2769 2770 2771
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2772
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2773
            it must contain three integers, (Depth, Height, Width).
2774
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2775 2776
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2791 2792
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2793
          # of input data into l * m * n grids averagely and performs poolings in each
2794 2795
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2796
          #
2797 2798 2799 2800 2801 2802 2803 2804 2805
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2806
          #                 output[:, :, i, j, k] =
2807 2808
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2809 2810
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2811
          pool_out, mask = fluid.layers.adaptive_pool3d(
2812
                            input=data,
D
dengkaipeng 已提交
2813
                            pool_size=[3, 3, 3],
2814
                            pool_type='avg')
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2825
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2851
    return (pool_out, mask) if require_index else pool_out
2852 2853


Y
Yu Yang 已提交
2854 2855 2856 2857 2858 2859 2860
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2861
               data_layout='NCHW',
Y
Yang Yang 已提交
2862
               in_place=False,
2863 2864
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2865
               moving_variance_name=None,
2866
               do_model_average_for_mean_and_var=False,
2867 2868
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2869
    """
Q
qiaolongfei 已提交
2870 2871 2872 2873
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2874

Q
qiaolongfei 已提交
2875
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2876

Q
qiaolongfei 已提交
2877 2878
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2879 2880 2881
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2894

2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2908
    Args:
Q
qiaolongfei 已提交
2909
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2910 2911 2912 2913
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2914 2915 2916 2917 2918 2919 2920 2921
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2922
        data_layout(string, default NCHW): NCHW|NHWC
2923
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2924 2925 2926 2927
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2928
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2929
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2930 2931 2932 2933 2934
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2935 2936

    Returns:
Q
qiaolongfei 已提交
2937
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2938 2939 2940 2941 2942 2943 2944

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2945
    """
C
chengduo 已提交
2946
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2947 2948 2949
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
2950 2951 2952 2953
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2971 2972 2973
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2974 2975

    bias = helper.create_parameter(
2976
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2977 2978
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
M
minqiyang 已提交
2979
        bias.stop_gradient = True
Y
Yu Yang 已提交
2980

2981 2982
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2983 2984 2985
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2986
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2987
        shape=param_shape,
W
Wu Yi 已提交
2988
        dtype=dtype)
2989 2990 2991 2992 2993 2994
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2995
            trainable=False,
W
wanghaoshuang 已提交
2996
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2997
        shape=param_shape,
W
Wu Yi 已提交
2998
        dtype=dtype)
2999
    variance.stop_gradient = True
Y
Yu Yang 已提交
3000 3001 3002 3003 3004 3005

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3006 3007 3008 3009
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3010

X
Xin Pan 已提交
3011 3012
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3030 3031 3032 3033
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3034
            "data_layout": data_layout,
X
Xin Pan 已提交
3035
            "use_mkldnn": False,
3036 3037
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3038
        })
Y
Yu Yang 已提交
3039 3040 3041 3042

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3162
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3163 3164 3165 3166

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3167
@templatedoc()
G
guosheng 已提交
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3178
    ${comment}
G
guosheng 已提交
3179 3180 3181

    The formula is as follows:

Y
yuyang18 已提交
3182
    ..  math::
G
guosheng 已提交
3183 3184 3185 3186 3187 3188 3189

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3190 3191 3192 3193 3194 3195 3196 3197
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3198

G
guosheng 已提交
3199 3200
    Args:
        input(Variable): The input tensor variable.
3201
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3202
            normalization. Default True.
3203
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3204 3205
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3206
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3207
            Default 1.
3208
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3209
            division by zero. Default 1e-05.
G
guosheng 已提交
3210
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3211 3212
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3213 3214
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3215
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3216 3217
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3218
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3219
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3220
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3221 3222 3223
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3224 3225

    Returns:
Y
yuyang18 已提交
3226
        ${y_comment}
G
guosheng 已提交
3227 3228 3229

    Examples:

Y
yuyang18 已提交
3230 3231 3232
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3248
    if shift:
G
guosheng 已提交
3249 3250 3251 3252 3253 3254
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3255 3256 3257 3258 3259
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3287
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3335 3336
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3354
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3355 3356 3357
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3358
    This layer calculates the spectral normalization value of weight parameters of
3359
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3360
    Parameters. Calculations are showed as follows.
3361

D
dengkaipeng 已提交
3362 3363 3364
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3365
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3378
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3379 3380 3381 3382

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3383

D
dengkaipeng 已提交
3384
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3385 3386
                

D
dengkaipeng 已提交
3387 3388 3389 3390
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3391 3392 3393
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3394 3395 3396
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3397
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3398 3399 3400 3401 3402 3403 3404 3405

    Examples:

        >>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
    """
    helper = LayerHelper('spectral_norm', **locals())
3406
    dtype = weight.dtype
D
dengkaipeng 已提交
3407 3408 3409

    # create intput and parameters
    inputs = {'Weight': weight}
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3428 3429

    # create output
3430
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3431 3432

    helper.append_op(
3433
        type="spectral_norm",
D
Dun 已提交
3434
        inputs=inputs,
3435 3436 3437 3438 3439 3440
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3441

3442
    return out
D
Dun 已提交
3443 3444


Y
Yu Yang 已提交
3445 3446 3447 3448
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3449 3450 3451
                     padding=0,
                     stride=1,
                     dilation=1,
3452
                     groups=None,
C
caoying03 已提交
3453
                     param_attr=None,
3454
                     bias_attr=None,
C
chengduoZH 已提交
3455
                     use_cudnn=True,
3456
                     act=None,
C
caoying03 已提交
3457
                     name=None):
Y
Yu Yang 已提交
3458
    """
3459 3460 3461 3462 3463 3464 3465 3466
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3467 3468
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3469 3470 3471
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3472 3473 3474 3475 3476

    For each input :math:`X`, the equation is:

    .. math::

3477
        Out = \sigma (W \\ast X + b)
3478

3479
    Where:
3480 3481 3482

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3483 3484 3485 3486
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3487

3488 3489 3490 3491
    Example:

        - Input:

3492
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3493

3494
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3495 3496 3497

        - Output:

3498
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3499 3500

        Where
Y
Yu Yang 已提交
3501

3502 3503
        .. math::

3504 3505
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3506 3507
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3508 3509

    Args:
3510 3511 3512 3513
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3514 3515 3516 3517
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3546
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3547 3548 3549
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3550
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3551
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3552 3553

    Returns:
3554
        Variable: The tensor variable storing the convolution transpose result.
3555 3556

    Raises:
3557 3558
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3559 3560 3561 3562

    Examples:
       .. code-block:: python

3563 3564
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3565
    """
C
chengduo 已提交
3566
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3567 3568 3569 3570 3571 3572 3573 3574
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3575 3576 3577
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3578 3579 3580
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3581

C
chengduoZH 已提交
3582 3583
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3584

Y
Yu Yang 已提交
3585 3586 3587 3588 3589
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3590

Y
Yu Yang 已提交
3591 3592
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3593

C
chengduoZH 已提交
3594
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3595
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3596
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3597
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3598
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3599 3600 3601
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3602

3603 3604 3605 3606 3607 3608 3609
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3610
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3611
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3612

Y
Yu Yang 已提交
3613 3614 3615
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3616
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3617
    helper.append_op(
3618
        type=op_type,
Y
Yu Yang 已提交
3619 3620
        inputs={'Input': [input],
                'Filter': [img_filter]},
3621
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3622
        attrs={
3623
            'output_size': output_size,
3624 3625 3626 3627 3628
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3629 3630
        })

3631 3632 3633
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3634 3635


3636
def conv3d_transpose(input,
Y
Yu Yang 已提交
3637 3638 3639
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3640 3641 3642
                     padding=0,
                     stride=1,
                     dilation=1,
3643
                     groups=None,
C
caoying03 已提交
3644
                     param_attr=None,
3645
                     bias_attr=None,
C
chengduoZH 已提交
3646
                     use_cudnn=True,
3647
                     act=None,
C
caoying03 已提交
3648
                     name=None):
Y
Yu Yang 已提交
3649
    """
3650
    **Convlution3D transpose layer**
3651

3652
    The convolution3D transpose layer calculates the output based on the input,
3653
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3654 3655 3656 3657 3658 3659
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3660 3661 3662
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3663 3664 3665 3666 3667

    For each input :math:`X`, the equation is:

    .. math::

3668
        Out = \sigma (W \\ast X + b)
3669 3670 3671

    In the above equation:

3672 3673
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3674 3675 3676 3677
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3678

3679 3680 3681 3682
    Example:

        - Input:

3683
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3684

3685
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3686 3687 3688

        - Output:

3689
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3690 3691

        Where
Y
Yu Yang 已提交
3692

3693 3694
        .. math::

3695 3696 3697
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3698 3699

    Args:
3700
        input(Variable): The input image with [N, C, D, H, W] format.
3701 3702 3703
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3704
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3705 3706
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3707
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3708 3709 3710
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3711 3712
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3713
        stride(int|tuple): The stride size. If stride is a tuple, it must
3714 3715
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3716
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3717 3718 3719
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3720 3721 3722 3723 3724
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3725 3726 3727 3728 3729 3730 3731 3732 3733
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3734 3735
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3736 3737
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3738 3739
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3740 3741

    Returns:
3742
        Variable: The tensor variable storing the convolution transpose result.
3743 3744

    Raises:
3745 3746
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3747 3748 3749 3750

    Examples:
       .. code-block:: python

3751 3752
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3753
    """
C
chengduo 已提交
3754
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3755 3756
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3757
    if not isinstance(input, Variable):
3758
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3759 3760
    input_channel = input.shape[1]

3761 3762 3763
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3764

C
chengduoZH 已提交
3765 3766 3767
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3768 3769 3770 3771 3772 3773
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3774 3775 3776
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3777

3778
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3779
                         padding[0] - 1) // dilation[0] + 1
3780
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3781
                         padding[1] - 1) // dilation[1] + 1
3782
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3783
                         padding[2] - 1) // dilation[2] + 1
3784
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3785
    else:
3786 3787
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3788

3789
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3790
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3791 3792 3793
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3794
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3795
    helper.append_op(
3796
        type=l_type,
Y
Yu Yang 已提交
3797 3798
        inputs={'Input': [input],
                'Filter': [img_filter]},
3799
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3800 3801 3802 3803
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3804
            'groups': groups,
C
chengduoZH 已提交
3805 3806
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3807

3808 3809
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3810
    return out
Y
yangyaming 已提交
3811 3812


Y
yangyaming 已提交
3813
def sequence_expand(x, y, ref_level=-1, name=None):
3814
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3815 3816 3817 3818
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3819 3820 3821 3822 3823

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3824
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3825
                x.data = [[a], [b], [c], [d]]
3826 3827 3828
                x.dims = [4, 1]

            y is a LoDTensor:
3829 3830
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3831

Y
yangyaming 已提交
3832
            ref_level: 0
3833

Y
yangyaming 已提交
3834
            then output is a 1-level LoDTensor:
3835
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3836
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3837 3838 3839 3840
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3841
                x.data = [[a], [b], [c]]
3842 3843 3844
                x.dims = [3, 1]

            y is a LoDTensor:
3845
                y.lod = [[2, 0, 3]]
3846

Y
yangyaming 已提交
3847
            ref_level: -1
3848

Y
yangyaming 已提交
3849 3850 3851
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3852 3853 3854
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3855 3856
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3857
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3858
                        will be named automatically.
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3869
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3870
    """
Y
yangyaming 已提交
3871
    helper = LayerHelper('sequence_expand', input=x, **locals())
3872
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3873
    tmp = helper.create_variable_for_type_inference(dtype)
3874
    helper.append_op(
Y
yangyaming 已提交
3875 3876 3877 3878 3879
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3880
    return tmp
3881 3882


C
chengduo 已提交
3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3939
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3940 3941 3942 3943 3944 3945 3946 3947
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3948
@templatedoc()
3949
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3950 3951 3952 3953 3954
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3955 3956 3957
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3958
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3959 3960 3961 3962
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3963 3964 3965
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3966

F
fengjiayi 已提交
3967
    Returns:
M
minqiyang 已提交
3968
        Variable: The padded sequence batch and the original lengths before
3969
                  padding. All sequences has the same length.
M
minqiyang 已提交
3970

F
fengjiayi 已提交
3971 3972 3973 3974 3975 3976 3977
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3978
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3979
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3980 3981 3982 3983 3984
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3985 3986
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3987 3988 3989 3990

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3991 3992 3993 3994 3995 3996
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3997 3998
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3999
        attrs={'padded_length': maxlen})
4000
    return out, length
F
fengjiayi 已提交
4001 4002


4003
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4004
    """
4005
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4006

4007 4008
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4009 4010 4011 4012 4013 4014 4015 4016 4017
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4018 4019 4020
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4021
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4022 4023 4024 4025 4026 4027

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4028
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4029 4030 4031 4032 4033 4034

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4035 4036
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4051
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4063 4064 4065 4066 4067 4068 4069
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4070
                is_accumulated=True,
4071 4072
                name=None,
                return_parent_idx=False):
4073
    """
4074 4075
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4076 4077 4078

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4079 4080

    This layer does the search in beams for one time step. Specifically, it
4081 4082 4083
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4095 4096 4097 4098

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4099

4100
    Args:
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4124 4125
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4126 4127
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4128 4129 4130 4131
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4132

4133
    Returns:
4134 4135 4136 4137
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4138 4139 4140 4141

    Examples:
        .. code-block:: python

4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4159
    helper = LayerHelper('beam_search', **locals())
4160 4161 4162 4163 4164 4165
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4166

X
Xin Pan 已提交
4167 4168 4169
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4170 4171 4172 4173 4174
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4175 4176 4177

    helper.append_op(
        type='beam_search',
4178
        inputs=inputs,
Q
Qiao Longfei 已提交
4179 4180 4181
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4182
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4183 4184 4185 4186 4187 4188
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4189
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4190
        })
4191 4192 4193 4194
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4195 4196


4197 4198 4199 4200 4201 4202 4203
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4204

4205 4206 4207 4208 4209 4210 4211 4212 4213
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4214

4215 4216 4217 4218 4219 4220
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4221

4222 4223
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4224

4225 4226 4227 4228 4229 4230
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4231 4232
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4248 4249 4250 4251
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4252
              param_attr=None,
C
caoying03 已提交
4253 4254
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4255 4256 4257 4258
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4259
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4260

4261
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4262

4263
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4264

4265
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4266 4267 4268

            h_t & = o_t tanh(c_t)

4269 4270 4271 4272 4273 4274
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4275 4276 4277

        .. math::

4278
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4279 4280 4281 4282 4283 4284 4285 4286

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4287
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4288 4289

    Args:
Y
yangyaming 已提交
4290 4291 4292 4293 4294 4295
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4296
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4309 4310
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4311 4312

    Returns:
Y
yangyaming 已提交
4313
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4314 4315

    Raises:
4316 4317 4318 4319
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4320 4321 4322 4323 4324 4325

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4326
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4327
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4328
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4345
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4346 4347 4348 4349
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4350 4351
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4352 4353 4354
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4355
    size = cell_t_prev.shape[1]
4356
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4357 4358
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4359
                param_attr=param_attr,
4360
                bias_attr=bias_attr)
Y
yangyaming 已提交
4361
    dtype = x_t.dtype
X
Xin Pan 已提交
4362 4363
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4364 4365 4366 4367 4368 4369 4370 4371 4372

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4373
    return h, c
G
guosheng 已提交
4374 4375


C
caoying03 已提交
4376
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4377
    """
Y
yangyaming 已提交
4378
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4379 4380 4381

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4382
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4383 4384
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4385 4386
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4387
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4388
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4389
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4390 4391
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4392 4393 4394

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4395

G
guosheng 已提交
4396 4397 4398 4399 4400 4401
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4402
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4403 4404 4405 4406
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4407 4408 4409 4410

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4411
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4412 4413 4414
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4415 4416
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4417
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4418 4419
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4420 4421 4422 4423 4424
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4425
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4426 4427 4428 4429
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4430 4431


C
caoying03 已提交
4432
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4433
    """
Y
Yibing Liu 已提交
4434
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4435 4436 4437

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4438 4439 4440
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4441
            must be in the range :math:`[-rank(input), rank(input))`. If
4442
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4443
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4444 4445
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4446
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4447
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4448
                       will be named automatically.
G
guosheng 已提交
4449 4450

    Returns:
Y
Yibing Liu 已提交
4451
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4452

G
guosheng 已提交
4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4463 4464
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4465 4466 4467 4468 4469 4470 4471

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4472 4473
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4474
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4475 4476
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4477 4478 4479 4480 4481
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4482
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4483 4484 4485 4486
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4487 4488


C
caoying03 已提交
4489
def reduce_max(input, dim=None, keep_dim=False, name=None):
4490
    """
Y
yangyaming 已提交
4491
    Computes the maximum of tensor elements over the given dimension.
4492 4493 4494

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4495
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4496 4497 4498
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4499
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4500 4501
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4502
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4503 4504
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4505 4506 4507

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4508

4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4520 4521 4522 4523 4524 4525 4526

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4527 4528
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4529
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4530 4531
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4532 4533 4534 4535 4536
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4537
            'dim': dim if dim != None else [0],
4538 4539 4540 4541 4542 4543
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4544
def reduce_min(input, dim=None, keep_dim=False, name=None):
4545
    """
Y
yangyaming 已提交
4546
    Computes the minimum of tensor elements over the given dimension.
4547 4548 4549

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4550
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4551 4552 4553
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4554
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4555 4556
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4557
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4558 4559
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4560 4561 4562

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4563

4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4575 4576 4577 4578 4579 4580 4581

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4582 4583
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4584
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4585 4586
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4587 4588 4589 4590 4591
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4592
            'dim': dim if dim != None else [0],
4593 4594 4595 4596
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4597 4598


4599 4600 4601 4602 4603 4604
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4605
        dim (list|int|None): The dimensions along which the product is performed. If
4606 4607
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4608 4609
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4610 4611 4612
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4613
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4614
            layer will be named automatically.
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4629
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4630
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4631 4632 4633 4634 4635 4636 4637

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4638 4639
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4640
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4641 4642
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4643 4644 4645 4646 4647
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4648
            'dim': dim if dim != None else [0],
4649 4650 4651 4652 4653 4654
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4655
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4656
    """
C
caoying03 已提交
4657
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4658 4659 4660

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4661 4662 4663 4664 4665
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4666
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4667
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4668
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4669 4670
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4671 4672

    Returns:
D
dzhwinter 已提交
4673
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4674 4675 4676 4677 4678 4679 4680 4681 4682

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4683 4684
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4700
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4714 4715 4716 4717 4718 4719 4720 4721 4722


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4723
    .. math::
4724 4725

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4726 4727 4728 4729 4730

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4731
        x(Variable|list): The input tensor to l2_normalize layer.
4732
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4733 4734
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4735
        epsilon(float): The epsilon value is used to avoid division by zero, \
4736
            the defalut value is 1e-10.
4737
        name(str|None): A name for this layer(optional). If set None, the layer \
4738
            will be named automatically.
C
caoying03 已提交
4739 4740

    Returns:
4741
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4742 4743

    Examples:
4744

C
caoying03 已提交
4745 4746
        .. code-block:: python

4747 4748 4749 4750
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4751 4752
    """

F
fengjiayi 已提交
4753 4754
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4755 4756
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4757 4758
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4759
    helper.append_op(
4760 4761 4762 4763
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4764
        attrs={
4765 4766
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4767 4768
        })
    return out
4769 4770


S
sneaxiy 已提交
4771
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4772
    """
Y
ying 已提交
4773 4774 4775 4776
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4777

C
chengduoZH 已提交
4778
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4779
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4780

4781 4782 4783 4784 4785
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4786
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4787

C
chengduoZH 已提交
4788
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4789
      performs in the following way.
G
guosheng 已提交
4790

4791
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4792
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4793
        last two dimensions and a batched matrix multiply supporting broadcast
4794
        applies on the two tensors.
G
guosheng 已提交
4795

Y
ying 已提交
4796 4797
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4798
    removed after matrix multiplication.
G
guosheng 已提交
4799 4800 4801

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4802 4803 4804
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4805
        alpha (float): The scale of output. Default 1.0.
4806
        name(str|None): A name for this layer(optional). If set None, the layer
4807
            will be named automatically.
G
guosheng 已提交
4808 4809

    Returns:
4810
        Variable: The product Tensor variable.
G
guosheng 已提交
4811

G
guosheng 已提交
4812 4813 4814
    Examples:
        .. code-block:: python

4815
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4816 4817
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4818

4819 4820
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4821

4822 4823
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4824

4825 4826
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4827 4828 4829 4830

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4831 4832
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4833

Y
ying 已提交
4834
            # x: [M], y: [N]
4835
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4836
    """
Y
ying 已提交
4837 4838 4839 4840 4841 4842 4843

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4844
            y_shape = y_shape + [1]
Y
ying 已提交
4845 4846 4847 4848 4849 4850 4851 4852 4853

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

C
chengduo 已提交
4854
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
4855 4856
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
C
chengduo 已提交
4857 4858
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
4859 4860 4861

    __check_input(x, y)

4862
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4863
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4864
    helper.append_op(
4865 4866 4867 4868
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4869 4870 4871
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4872
            'alpha': float(alpha),
S
sneaxiy 已提交
4873
        })
4874
    return out
4875 4876


4877
def topk(input, k, name=None):
Q
qingqing01 已提交
4878 4879 4880 4881
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4882
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4883 4884 4885 4886 4887 4888
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4910 4911 4912
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4913
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4914
                 of input.
4915
        name(str|None): A name for this layer(optional). If set None, the layer
4916
                       will be named automatically.
F
fengjiayi 已提交
4917
                       Default: None
Q
qingqing01 已提交
4918 4919

    Returns:
4920 4921 4922
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4923
        within the last dimension of input.
Q
qingqing01 已提交
4924

F
fengjiayi 已提交
4925 4926
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4927 4928 4929 4930 4931 4932 4933

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4934 4935
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4936 4937 4938 4939 4940 4941
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4942 4943
    helper.append_op(
        type="top_k",
W
whs 已提交
4944
        inputs=inputs,
Q
qingqing01 已提交
4945 4946
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4947
        attrs=attrs)
Q
qingqing01 已提交
4948 4949 4950 4951 4952
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4953
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4954
    """
Y
ying 已提交
4955 4956 4957 4958 4959 4960 4961 4962 4963
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4964

Y
ying 已提交
4965
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4966

4967
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4968 4969
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4970
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4971

4972
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4973 4974
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4975

4976 4977 4978
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4979
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4980
                          the length of reference string.
4981
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4982
                                     calculating edit distance.
4983
        name (str): The name of this layer. It is optional.
4984

W
wanghaoshuang 已提交
4985
    Returns:
W
wanghaoshuang 已提交
4986
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4987 4988 4989 4990

    Examples:
        .. code-block:: python

T
tink2123 已提交
4991 4992
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4993
            cost = fluid.layers.edit_distance(input=x,label=y)
4994
    """
4995
    helper = LayerHelper("edit_distance", **locals())
4996

4997
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4998
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4999 5000
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5001 5002 5003 5004 5005

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5006
            attrs={"tokens": ignored_tokens})
5007 5008 5009 5010 5011
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5012
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5013
            attrs={"tokens": ignored_tokens})
5014 5015
        label = erased_label

5016
    # edit distance op
X
Xin Pan 已提交
5017 5018
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5019 5020 5021 5022
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5023 5024
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5025 5026
        attrs={"normalized": normalized})

5027
    return edit_distance_out, sequence_num
5028 5029 5030 5031 5032


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5033

Y
ying 已提交
5034 5035 5036 5037
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5055
        input.lod = [[4, 4]]
M
minqiyang 已提交
5056

W
whs 已提交
5057
        Computation:
5058

W
whs 已提交
5059 5060 5061 5062 5063 5064
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5065 5066 5067 5068 5069

        output.data = [[2],
                       [1],
                       [3]]

5070
        output.lod = [[2, 1]]
5071

W
whs 已提交
5072

5073 5074
    Args:

Y
ying 已提交
5075 5076 5077 5078 5079 5080 5081 5082 5083
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5084
        name (str): The name of this layer. It is optional.
5085 5086

    Returns:
H
haowang101779990 已提交
5087 5088 5089
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5090
                  LoD [[]] and dims [1, 1].
5091 5092 5093 5094 5095

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
5096

5097
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5098
    """
5099
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5100
    _, topk_indices = topk(input, k=1)
5101 5102

    # ctc align op
X
Xin Pan 已提交
5103
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5104 5105 5106
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5107
        outputs={"Output": [ctc_out]},
5108 5109
        attrs={"merge_repeated": True,
               "blank": blank})
5110
    return ctc_out
5111 5112


W
Wu Yi 已提交
5113
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5114
    """
5115 5116
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5117
    to compute Connectionist Temporal Classification (CTC) loss.
5118 5119
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5120 5121 5122
    input tensor.

    Args:
5123
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5124 5125 5126 5127
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5128
       label (Variable): The ground truth of variable-length sequence,
5129 5130 5131
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5132 5133
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5134 5135 5136
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5137
         follewed by a mean_op.
W
Wu Yi 已提交
5138
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5139 5140

    Returns:
5141 5142
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5143 5144

    Examples:
5145

W
wanghaoshuang 已提交
5146
        .. code-block:: python
5147

5148 5149 5150
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5151 5152

    """
F
fengjiayi 已提交
5153
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5154 5155
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5156 5157 5158 5159 5160 5161
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5162 5163 5164 5165 5166
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5167
    return loss_out
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5183 5184 5185
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5186 5187 5188 5189 5190
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5191

5192
            out.lod  = [[0, 1, 3]]
5193 5194 5195 5196

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5197 5198 5199 5200 5201 5202 5203
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5204 5205 5206

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5207 5208

    Returns:
5209

5210 5211 5212 5213 5214
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5215
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5216
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5217 5218
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5219
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5220 5221 5222 5223 5224 5225
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5226 5227


5228 5229 5230 5231
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5232 5233 5234 5235 5236 5237
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5238
        num_neg_samples=None,
5239 5240 5241
        name=None,
        sampler="uniform",
        custom_dist=None,
5242 5243
        seed=0,
        is_sparse=False):
5244 5245 5246 5247 5248 5249 5250
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5251 5252
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5253
            sample is 1.0.
C
chengduo 已提交
5254 5255 5256 5257 5258 5259 5260 5261 5262
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5263
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5264 5265
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5266 5267 5268
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5269
        custom_dist (float[]): A float[] with size=num_total_classes.
5270 5271 5272 5273
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5274
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5275

5276
    Returns:
Y
Yibing Liu 已提交
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5304 5305 5306 5307 5308 5309 5310 5311 5312

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5313

5314
    """
Y
Yang Yu 已提交
5315 5316 5317
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5318 5319

    dim = input.shape[1]
Y
Yang Yu 已提交
5320 5321 5322 5323 5324 5325
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5326
    inputs = {}
C
chengduo 已提交
5327 5328 5329 5330 5331 5332 5333
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5334 5335 5336
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5337

5338 5339 5340 5341
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5342 5343 5344 5345 5346 5347 5348

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5349 5350 5351 5352 5353 5354 5355 5356 5357
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5358
            if normal_prob - 1.0 > 0:
5359
                bigs.append((i, normal_prob))
5360
            elif 1.0 - normal_prob > 0:
5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5376
            if big_left - 1.0 > 0:
5377
                bigs.append((big_idx, big_left))
5378
            elif 1.0 - big_left > 0:
5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5408 5409 5410 5411
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5412 5413 5414 5415 5416
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5417 5418 5419 5420
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5421

Y
Yang Yu 已提交
5422 5423
    attrs = {
        'num_total_classes': int(num_total_classes),
5424 5425
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5426
        'sampler': sampler,
5427 5428
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5429
    }
Y
Yang Yu 已提交
5430 5431 5432

    helper.append_op(
        type='nce',
C
chengduo 已提交
5433
        inputs=inputs,
Y
Yang Yu 已提交
5434 5435 5436 5437 5438 5439
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5440
    return cost / (num_neg_samples + 1)
5441 5442


C
chengduo 已提交
5443 5444
def hsigmoid(input,
             label,
5445
             num_classes,
C
chengduo 已提交
5446 5447
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5448
             name=None,
5449 5450 5451
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5452
             is_sparse=False):
W
weixing02 已提交
5453 5454
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5455
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5456
    complete binary tree, or you can use is_custom to pass your own tree to
5457
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5458 5459 5460 5461 5462 5463
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5464
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5465
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5466

5467 5468
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5469 5470 5471 5472
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5473
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5474
       related to the same batch of inputs.
5475

W
weixing02 已提交
5476
    Args:
M
minqiyang 已提交
5477
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5478 5479 5480 5481
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5482 5483
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5484
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5496
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5497
            it should be in leaf -> root order
M
minqiyang 已提交
5498 5499 5500
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5501
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5502
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5503
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5504
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5505
             of W and input will be sparse.
W
weixing02 已提交
5506 5507

    Returns:
J
JiabinYang 已提交
5508
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5509 5510 5511 5512 5513

    Examples:

        .. code-block:: python

G
guosheng 已提交
5514 5515 5516
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5517 5518 5519 5520
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5521 5522
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5523
    dim = input.shape[1]
5524
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5525 5526 5527
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5528 5529 5530 5531
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5532 5533
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5534 5535 5536
    else:
        pass

J
JiabinYang 已提交
5537
    weights = None
5538 5539 5540 5541
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5542
    if not is_custom:
J
JiabinYang 已提交
5543 5544 5545 5546 5547 5548 5549 5550
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5551
            shape=[num_classes, dim],
J
JiabinYang 已提交
5552 5553
            is_bias=False,
            dtype=input.dtype)
5554 5555 5556
    inputs = {
        "X": input,
        "W": weights,
5557
        "PathTable": path_table,
5558
        "PathCode": path_code,
5559 5560
        "Label": label
    }
W
weixing02 已提交
5561
    if helper.bias_attr:
5562
        if not is_custom:
J
JiabinYang 已提交
5563 5564
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5565
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5566 5567 5568 5569 5570 5571
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5572
                shape=[num_classes, 1],
J
JiabinYang 已提交
5573 5574 5575
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5576 5577
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5578
        inputs=inputs,
W
weixing02 已提交
5579
        outputs={"Out": out,
5580 5581 5582 5583 5584 5585 5586
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5587 5588 5589
    return out


Y
fix ci.  
ying 已提交
5590
def transpose(x, perm, name=None):
Y
ying 已提交
5591 5592 5593 5594 5595 5596 5597
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5598 5599 5600
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5601 5602 5603 5604 5605 5606 5607

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5608
            # use append_batch_size=False to avoid prepending extra
5609
            # batch size in shape
5610
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5611
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5612
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5613 5614
    """

Y
fix ci.  
ying 已提交
5615
    if len(perm) != len(x.shape):
Y
ying 已提交
5616 5617 5618
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5619 5620 5621 5622 5623 5624
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5625 5626

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5627 5628
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5629
    helper.append_op(
5630
        type='transpose2',
Y
fix ci.  
ying 已提交
5631
        inputs={'X': [x]},
5632 5633
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5634 5635
        attrs={'axis': perm})
    return out
5636 5637


5638 5639 5640 5641 5642 5643 5644
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5645
    """
5646 5647 5648 5649 5650 5651 5652
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5653 5654 5655 5656 5657 5658 5659 5660 5661 5662

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5681 5682 5683 5684 5685 5686 5687 5688 5689
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5690 5691 5692
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5693 5694 5695 5696 5697
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5725 5726 5727
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5740
            output.dims = {8, 8}
5741

5742
            output.lod = [[4, 4]]
5743

T
Tink_Y 已提交
5744
    Examples:
5745 5746 5747

        .. code-block:: python

5748 5749
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5750 5751

    """
W
wanghaoshuang 已提交
5752 5753 5754 5755 5756 5757 5758 5759 5760 5761

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5762 5763 5764 5765 5766 5767 5768
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5769
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5770
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5771
    helper.append_op(
5772
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5773
    return out
5774 5775


Y
yuyang18 已提交
5776
@templatedoc()
5777
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5778 5779
    """
    ${comment}
5780 5781

    Args:
Y
yuyang18 已提交
5782
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5783 5784
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5785 5786 5787 5788 5789
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5790
        ${out_comment}.
5791 5792

    Examples:
Y
yuyang18 已提交
5793 5794 5795 5796
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5797 5798 5799 5800 5801 5802
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5803
    out = helper.create_variable_for_type_inference(dtype)
5804 5805 5806 5807 5808
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5809
    return helper.append_activation(out)
5810 5811


Y
yuyang18 已提交
5812
@templatedoc()
5813 5814
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5815 5816 5817 5818 5819 5820 5821
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5822 5823

    Args:
Y
yuyang18 已提交
5824 5825
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5826 5827

    Returns:
Y
yuyang18 已提交
5828
        ${out_comment}.
5829 5830
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5831 5832 5833 5834 5835

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5836
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5837 5838 5839 5840 5841 5842
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5843 5844


5845 5846 5847
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5848
                               ignore_index=kIgnoreIndex,
5849
                               numeric_stable_mode=True,
5850
                               return_softmax=False):
5851 5852
    """
    **Softmax With Cross Entropy Operator.**
5853

5854 5855 5856 5857
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5858

5859 5860 5861
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5862

5863 5864 5865
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5866

5867
    The equation is as follows:
5868

5869
    1) Hard label (one-hot label, so every sample has exactly one class)
5870

5871 5872 5873 5874
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5875

5876 5877 5878
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5879

5880 5881 5882 5883
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5884 5885 5886
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5887

H
haowang101779990 已提交
5888
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5889

H
haowang101779990 已提交
5890
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5891

H
haowang101779990 已提交
5892
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5893 5894 5895

    and then cross entropy loss is calculated by softmax and label.

5896 5897 5898 5899 5900 5901 5902 5903
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5904 5905
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5906
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5907 5908 5909
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5910 5911 5912
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
5913
                                    stable algorithm. Default: True
5914
        return_softmax (bool): A flag indicating whether to return the softmax
5915
                               along with the cross entropy loss. Default: False
5916

5917
    Returns:
H
haowang101779990 已提交
5918 5919 5920 5921 5922
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
5923 5924 5925 5926 5927 5928 5929

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5930 5931
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5932 5933
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5934 5935
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5936 5937 5938 5939 5940 5941
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5942 5943 5944 5945 5946
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5947 5948 5949 5950

    if return_softmax:
        return loss, softmax

5951 5952 5953
    return loss


5954 5955 5956
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
5957
                                       num_true=1,
5958
                                       remove_accidental_hits=True,
X
xuezhong 已提交
5959 5960 5961
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
5962
                                       seed=0):
X
xuezhong 已提交
5963 5964 5965 5966 5967
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
5968
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
5969 5970 5971 5972 5973 5974 5975 5976
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
5977
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
5978 5979 5980 5981 5982 5983 5984 5985
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
5986
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
5998
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
5999 6000 6001 6002 6003
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6004
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6005
            logits.
X
xuezhong 已提交
6006 6007 6008 6009 6010
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6011 6012 6013
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6034 6035
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
X
xuezhong 已提交
6036 6037 6038 6039 6040

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6041
            'Labels': label,
X
xuezhong 已提交
6042 6043
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6044 6045 6046 6047
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6048
            'SampledLabels': sampled_label,
X
xuezhong 已提交
6049 6050 6051
            'SampledLogits': sampled_logits
        },
        attrs={
X
xuezhong 已提交
6052
            'use_customized_samples': use_customized_samples,
6053
            'uniq': True,
X
xuezhong 已提交
6054 6055 6056 6057
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6058 6059
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6060 6061 6062 6063 6064 6065
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6066 6067
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6068
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6069
                'Label': sampled_softlabel},
X
xuezhong 已提交
6070 6071 6072
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6073
            'soft_label': True,
X
xuezhong 已提交
6074 6075 6076
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6077
    return loss / num_true
X
xuezhong 已提交
6078 6079


6080 6081
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6082 6083
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6084
    For each instance, it computes the smooth L1 loss element by element first
6085
    and then sums all the losses. So the shape of ouput Variable is
6086
    [batch_size, 1].
6087

6088 6089
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6090
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6091
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6092
            L1 loss op with same shape as :attr:`x`.
6093
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6094 6095
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6096
            by this tensor element by element.
6097
        outside_weight (Variable|None): A tensor with rank at least 2. This
6098 6099
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6100
            element by element.
6101
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6102 6103
           scalar with default value 1.0.

6104
    Returns:
6105
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6106 6107 6108 6109 6110

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6111 6112
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6113
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6114
            out = fluid.layers.smooth_l1(x=fc, y=label)
6115
    """
6116

6117
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6118 6119
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
6132 6133 6134 6135


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6136
    This layer creates the one-hot representations for input indices.
6137 6138

    Args:
Y
Yibing Liu 已提交
6139 6140
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6141 6142

    Returns:
Y
Yibing Liu 已提交
6143
        Variable: The one-hot representations of input.
6144 6145

    Examples:
C
caoying03 已提交
6146
        .. code-block:: python
6147

Y
Yibing Liu 已提交
6148 6149
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
6150 6151
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6152
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6153 6154 6155 6156 6157 6158
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
6159 6160


Y
Yu Yang 已提交
6161
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6162
    """
Y
yi.wu 已提交
6163 6164 6165
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6166 6167 6168 6169 6170 6171

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6172 6173
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6174 6175 6176 6177 6178 6179

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
6180 6181
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6182 6183
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6184 6185 6186 6187 6188
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6189
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6190
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6191 6192
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6193
            outputs={'Out': [counter]},
M
minqiyang 已提交
6194 6195
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6196 6197 6198
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6199 6200


6201
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6202
    """
C
caoying03 已提交
6203 6204
    Gives a new shape to the input Tensor without changing its data.

6205 6206 6207 6208 6209
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6210

6211
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6212

6213 6214 6215 6216
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6217
    2. 0 means the actual dimension value is going to be copied from the
6218 6219 6220 6221
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6222 6223

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6224
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6225
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6226

6227
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6228 6229
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6230 6231
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6232
    dimensions.
C
caoying03 已提交
6233

6234
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6235 6236 6237 6238
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6239 6240

    Args:
6241
        x(variable): The input tensor.
C
caoying03 已提交
6242 6243
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6244 6245 6246 6247 6248
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6249 6250
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6251 6252 6253
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6254
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6255
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6256

6257
    Returns:
G
guosheng 已提交
6258 6259 6260 6261
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6262

X
Xin Pan 已提交
6263 6264 6265
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6266 6267
    Examples:
        .. code-block:: python
G
guosheng 已提交
6268

6269
            data = fluid.layers.data(
6270
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6271
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6272
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6273 6274 6275
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6276
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6277 6278 6279 6280 6281
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6282

6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6298
    helper = LayerHelper("reshape2", **locals())
6299 6300
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6301
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6302
    helper.append_op(
6303
        type="reshape2",
X
Xin Pan 已提交
6304
        inputs=inputs,
D
dzhwinter 已提交
6305
        attrs={"shape": shape},
6306 6307
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6308

D
dzhwinter 已提交
6309
    return helper.append_activation(out)
6310

6311

6312
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6313
    """
M
minqiyang 已提交
6314 6315 6316
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6317
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6318

H
haowang101779990 已提交
6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6340

Y
Yibing Liu 已提交
6341
    Args:
6342
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6343
        axes (list): List of integers, indicating the dimensions to be squeezed.
6344
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6345 6346 6347 6348 6349 6350 6351 6352

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6353
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6354 6355
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6356 6357
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6358
    helper.append_op(
6359
        type="squeeze2",
6360
        inputs={"X": input},
Y
Yibing Liu 已提交
6361
        attrs={"axes": axes},
6362 6363
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6364

6365 6366 6367
    return out


6368
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6369
    """
M
minqiyang 已提交
6370 6371 6372
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6373

M
minqiyang 已提交
6374
    For example:
H
haowang101779990 已提交
6375 6376 6377

    .. code-block:: text

M
minqiyang 已提交
6378
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6379
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6380

Y
Yibing Liu 已提交
6381
    Args:
6382
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6383
        axes (list): List of integers, indicating the dimensions to be inserted.
6384
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6385 6386 6387 6388 6389 6390 6391 6392

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6393
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6394 6395
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6396 6397
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6398
    helper.append_op(
6399
        type="unsqueeze2",
6400
        inputs={"X": input},
Y
Yibing Liu 已提交
6401
        attrs={"axes": axes},
6402 6403
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6404

6405 6406
    return out

6407

Y
yangyaming 已提交
6408
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6409
    """
Y
Yibing Liu 已提交
6410
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6411 6412 6413 6414
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6415
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6416 6417 6418 6419 6420 6421

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6422
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6423 6424 6425
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6426
            target_lod: [4, 2]
Y
yangyaming 已提交
6427 6428

            then we get a 1-level LoDTensor:
6429
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6430 6431 6432 6433 6434 6435
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6436
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6437 6438 6439 6440
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6441
                y.data = [[2, 4]]
Y
yangyaming 已提交
6442 6443 6444
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6445
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6446 6447 6448 6449 6450 6451
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6452
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6453 6454 6455 6456
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6457
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6458 6459 6460 6461
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6462
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6463 6464 6465 6466 6467
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6468
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6469
                           from :attr:`y`.
Y
yangyaming 已提交
6470
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6471
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6472 6473

    Returns:
Y
Yibing Liu 已提交
6474
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6475 6476

    Raises:
Y
Yibing Liu 已提交
6477
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6478 6479 6480 6481 6482 6483 6484 6485 6486

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6487
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6513
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6542 6543
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6556 6557 6558
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6572 6573 6574 6575


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6576
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6577
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6578

G
guosheng 已提交
6579 6580 6581 6582
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6605
                         The length of :attr:paddings must be
G
guosheng 已提交
6606 6607 6608 6609 6610 6611 6612 6613 6614 6615
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6616

G
guosheng 已提交
6617 6618 6619 6620 6621 6622
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6623
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6624 6625 6626 6627 6628 6629 6630
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6631 6632


C
chengduo 已提交
6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6664 6665
		And
            pad_value = -1,
C
chengduo 已提交
6666

T
Tink_Y 已提交
6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6702
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6703 6704 6705 6706 6707 6708 6709 6710 6711
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6712 6713 6714 6715 6716 6717 6718
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6719 6720
    called label-smoothing regularization (LSR).

6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6744
                              be :math:`(1, class\_num)`.
6745 6746
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6747
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6767
    smooth_label = helper.create_variable_for_type_inference(dtype)
6768 6769 6770 6771 6772 6773 6774
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6775 6776


W
wopeizl 已提交
6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6813 6814


J
jerrywgz 已提交
6815 6816 6817 6818 6819 6820
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6821 6822
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6839 6840 6841
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6842 6843 6844 6845 6846 6847
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6848
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6889 6890
        .. code-block:: python

W
whs 已提交
6891 6892 6893 6894
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6895
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6896 6897 6898 6899 6900 6901
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6902 6903


6904 6905 6906 6907
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6908
                 resample='BILINEAR',
6909 6910
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
6911
                 align_mode=1):
6912
    """
Q
qiaolongfei 已提交
6913
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6914

6915
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6916 6917 6918
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6919

6920
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6921

6922
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6923

6924 6925 6926 6927 6928 6929 6930 6931 6932 6933
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
6934
    Align_corners and align_mode are optinal parameters,the calculation method 
6935 6936 6937 6938
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
6939
    .. code-block:: text
6940

T
Tink_Y 已提交
6941
        For scale:
6942
          
T
Tink_Y 已提交
6943
            if align_corners = True && out_size > 1 :
6944

T
Tink_Y 已提交
6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
6956

T
Tink_Y 已提交
6957 6958
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6959

T
Tink_Y 已提交
6960 6961
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
6962

T
Tink_Y 已提交
6963 6964
          else:
              align_corners = True
6965

T
Tink_Y 已提交
6966 6967
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6968

T
Tink_Y 已提交
6969 6970
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
6971

T
Tink_Y 已提交
6972 6973 6974 6975 6976 6977 6978 6979 6980 6981
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
6982

T
Tink_Y 已提交
6983 6984 6985 6986
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6987

T
Tink_Y 已提交
6988 6989
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
6990 6991 6992 6993 6994 6995 6996 6997 6998

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



6999
    Args:
7000
        input (Variable): The input tensor of image resize layer,
7001 7002
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7003
        out_shape(list|tuple|Variable|None): Output shape of image resize
7004 7005
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
7006
        scale(float|None): The multiplier for the input height or width.
7007 7008 7009
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
7010 7011
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7012
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7013
                       currently.
7014
                       Default: 'BILINEAR'
7015 7016 7017
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7018
                                :attr:`out_shape` and :attr:`scale` specifying
7019 7020 7021 7022 7023 7024 7025
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7026 7027
                                constructing stage.
                                Default: None
7028 7029 7030 7031
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7032
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7033 7034
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7035 7036

    Returns:
Q
update  
qiaolongfei 已提交
7037 7038
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7039

7040 7041 7042
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7043
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7044 7045 7046
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
7047 7048
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7049

7050 7051 7052
    Examples:
        .. code-block:: python

7053
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7054
    """
7055 7056 7057 7058
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7059 7060
    if resample not in resample_methods:
        raise ValueError(
7061
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7062
        )
7063
    resample_type = resample_methods[resample]
7064 7065 7066 7067 7068 7069

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7070
    if out_shape is None and scale is None:
7071
        raise ValueError("One of out_shape and scale must not be None.")
7072
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7073
    dtype = helper.input_dtype()
7074 7075 7076 7077

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7078 7079 7080
    out_h = 0
    out_w = 0
    inputs = {"X": input}
7081
    if out_shape is not None:
7082 7083 7084 7085
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7086
            inputs['OutSize'] = out_shape
7087 7088 7089 7090 7091 7092 7093 7094
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
7095 7096 7097 7098
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

7099 7100 7101 7102 7103
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7104
    out = helper.create_variable_for_type_inference(dtype)
7105
    helper.append_op(
7106
        type='{}_interp'.format(resample_type),
7107
        inputs=inputs,
7108
        outputs={"Out": out},
7109 7110 7111 7112 7113 7114 7115
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_type,
            "align_corners": align_corners,
            "align_mode": align_mode
        })
7116
    return out
F
stash  
fengjiayi 已提交
7117 7118


7119
@templatedoc(op_type="bilinear_interp")
7120 7121 7122 7123
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7124 7125
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7126
                    align_mode=1):
7127
    """
7128 7129
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7130 7131
    in priority order.

7132 7133 7134 7135
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7136 7137
    again in the other direction.

7138
    For details of bilinear interpolation, please refer to Wikipedia:
7139
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7140

T
tink2123 已提交
7141
    Align_corners and align_mode are optinal parameters,the calculation 
7142 7143 7144 7145
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7146
    .. code-block:: text
7147

T
Tink_Y 已提交
7148
        For scale:
7149
          
T
Tink_Y 已提交
7150
            if align_corners = True && out_size > 1 :
7151

T
Tink_Y 已提交
7152 7153 7154 7155 7156
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7157

T
Tink_Y 已提交
7158 7159 7160 7161 7162 7163 7164 7165 7166 7167
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7168 7169


T
Tink_Y 已提交
7170
          else:
T
tink2123 已提交
7171

T
Tink_Y 已提交
7172 7173
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7174

T
Tink_Y 已提交
7175 7176
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7177 7178 7179



Y
yuyang18 已提交
7180 7181 7182 7183
    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7184

Y
yuyang18 已提交
7185 7186 7187 7188 7189
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7190 7191 7192
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7193
                                :attr:`out_shape` and :attr:`scale` specifying
7194 7195 7196 7197 7198 7199 7200
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7201 7202
                                constructing stage.
                                Default: None
7203 7204
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7205 7206 7207

    Returns:
        ${out_comment}.
7208 7209 7210 7211 7212

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7213 7214
    """

7215 7216
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7217 7218


7219
@templatedoc(op_type="nearest_interp")
7220 7221 7222 7223
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7224 7225
                   actual_shape=None,
                   align_corners=True):
7226
    """
7227
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7228 7229
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7230 7231
    out_shape and scale in priority order.

7232 7233
    Example:

T
Tink_Y 已提交
7234 7235 7236 7237 7238
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7239

T
Tink_Y 已提交
7240 7241 7242 7243 7244 7245 7246 7247
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7248
          
T
Tink_Y 已提交
7249 7250
          if:
              align_corners = False
7251

T
Tink_Y 已提交
7252 7253
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7254

T
Tink_Y 已提交
7255 7256
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7257

T
Tink_Y 已提交
7258 7259
          else:
              align_corners = True
7260

T
Tink_Y 已提交
7261 7262
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7263

T
Tink_Y 已提交
7264 7265
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7266 7267


7268
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7269
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7270 7271 7272 7273 7274

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7275

Y
yuyang18 已提交
7276 7277 7278 7279 7280
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7281 7282 7283
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7284
                                :attr:`out_shape` and :attr:`scale` specifying
7285 7286 7287 7288 7289 7290 7291
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7292 7293
                                constructing stage.
                                Default: None
7294
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7295 7296 7297

    Returns:
        ${out_comment}.
7298 7299 7300 7301 7302

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7303 7304
    """

7305 7306
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7307 7308 7309 7310


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7311 7312 7313
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7314 7315 7316 7317 7318 7319 7320
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7321
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7322

7323
    Returns:
Q
update  
qiaolongfei 已提交
7324
        Variable: The output is a 4-D tensor of the shape
7325
        (num_batches, channls, out_h, out_w).
7326 7327 7328 7329 7330 7331 7332 7333 7334 7335
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7336 7337 7338
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7339 7340 7341
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7342 7343
def gather(input, index):
    """
Q
qiaolongfei 已提交
7344 7345
    **Gather Layer**

7346
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7347 7348 7349 7350
    of X indexed by `index` and concatenate them together.

    .. math::

7351
        Out = X[Index]
W
whs 已提交
7352 7353 7354 7355 7356 7357 7358


    .. code-block:: text


                Given:

7359 7360
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7361 7362 7363 7364 7365 7366 7367 7368 7369 7370
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7371
        input (Variable): The source input with rank>=1.
W
whs 已提交
7372 7373 7374 7375 7376 7377
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7378

W
whs 已提交
7379 7380 7381 7382 7383 7384
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7385
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7386 7387 7388 7389 7390 7391 7392 7393
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7425
    out = helper.create_variable_for_type_inference(dtype)
7426 7427 7428 7429 7430 7431 7432 7433 7434
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7435 7436 7437 7438 7439 7440 7441 7442 7443
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7444

Q
Qingsheng Li 已提交
7445
    Given the following input:
H
haowang101779990 已提交
7446

Q
Qingsheng Li 已提交
7447
    .. code-block:: text
H
haowang101779990 已提交
7448

Q
Qingsheng Li 已提交
7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7461

Q
Qingsheng Li 已提交
7462
    .. code-block:: text
H
haowang101779990 已提交
7463

Q
Qingsheng Li 已提交
7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7479
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7480 7481 7482 7483 7484 7485 7486 7487 7488 7489

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7490
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7491 7492 7493 7494 7495 7496 7497 7498 7499
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7513

7514 7515 7516
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7517
    """
F
stash  
fengjiayi 已提交
7518
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7519
    dtype = x.dtype
X
Xin Pan 已提交
7520
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7521
    if seed is None:
7522
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7523
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7524
    if isinstance(seed, int):
F
fengjiayi 已提交
7525 7526 7527 7528 7529
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7530 7531 7532 7533
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7534
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7535 7536
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7537 7538
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7539
    return out
W
whs 已提交
7540 7541


7542
def log(x, name=None):
W
wanghaoshuang 已提交
7543 7544 7545 7546 7547
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7548
        Out = \\ln(x)
W
wanghaoshuang 已提交
7549 7550

    Args:
7551
        x (Variable): Input tensor.
7552 7553
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7554 7555 7556 7557 7558 7559 7560 7561

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7562
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7563 7564
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7565
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7566
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7567
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7568 7569 7570
    return out


7571
def relu(x, name=None):
W
wanghaoshuang 已提交
7572 7573
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7574
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7575 7576 7577 7578
    the tensor elementwise.

    .. math::

7579
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7580 7581

    Args:
7582
        x (Variable): The input tensor.
7583 7584
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7585 7586 7587 7588 7589 7590 7591 7592

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7593
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7594 7595
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7596
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7597
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7598 7599
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7600
    return out
7601 7602


C
chengduo 已提交
7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7644 7645 7646
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7647 7648 7649 7650
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7651
    .. math::
7652

H
haowang101779990 已提交
7653
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7654

7655
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7656 7657 7658 7659 7660
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7661
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7662
                           Its shape should be the same as input.
7663
        num_classes (int): The possible number of labels.
W
whs 已提交
7664 7665

    Returns:
M
minqiyang 已提交
7666 7667
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7668
                     Three variables:
M
minqiyang 已提交
7669

H
haowang101779990 已提交
7670 7671 7672
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7673 7674 7675 7676

    Examples:

        .. code-block:: python
7677

W
whs 已提交
7678 7679 7680 7681
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7682 7683 7684
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7685 7686
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7687 7688
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7689
        outputs={
W
whs 已提交
7690 7691 7692
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7693 7694 7695
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7764
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7765 7766 7767 7768 7769

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7770
            isinstance(shape, Variable)):
7771 7772 7773 7774 7775
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7776
    out = helper.create_variable_for_type_inference(x.dtype)
7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7794 7795


W
whs 已提交
7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7813

W
whs 已提交
7814
              out_shape = [2, 3, 5, 5]
7815

W
whs 已提交
7816
          Step 1:
7817

W
whs 已提交
7818 7819 7820
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7821

W
whs 已提交
7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7867
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7868
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7881

W
whs 已提交
7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7893
            isinstance(out_shape, Variable)):
W
whs 已提交
7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7915 7916
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
7917

7918 7919
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
7920
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
7921 7922 7923
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7924

7925 7926
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7927

H
haowang101779990 已提交
7928 7929
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
7930 7931
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7932

H
haowang101779990 已提交
7933 7934 7935 7936 7937 7938 7939 7940
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
7941 7942 7943

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7978
    out = helper.create_variable_for_type_inference("float32")
7979 7980 7981 7982 7983 7984 7985 7986

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7987 7988


M
minqiyang 已提交
7989 7990
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7991
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7992
    which compares left score and right score passed in.
M
minqiyang 已提交
7993
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7994 7995 7996

    .. math::

H
haowang101779990 已提交
7997
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
7998 7999

    Args:
M
minqiyang 已提交
8000
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8001 8002
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8003
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8004 8005
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8006

M
minqiyang 已提交
8007
    Returns:
M
minqiyang 已提交
8008
       Variable: The ranking loss.
H
haowang101779990 已提交
8009

M
minqiyang 已提交
8010
    Raises:
M
minqiyang 已提交
8011
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8012

M
minqiyang 已提交
8013
    Examples:
H
haowang101779990 已提交
8014

M
minqiyang 已提交
8015
        .. code-block:: python
H
haowang101779990 已提交
8016

M
minqiyang 已提交
8017 8018 8019 8020 8021
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8022
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8023 8024 8025 8026 8027 8028
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8029 8030
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8054
        .. code-block:: text
W
whs 已提交
8055

T
Tink_Y 已提交
8056
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8057

T
Tink_Y 已提交
8058 8059
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8060

T
Tink_Y 已提交
8061
	      Case 0:
M
minqiyang 已提交
8062

T
Tink_Y 已提交
8063 8064 8065
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8066

T
Tink_Y 已提交
8067 8068 8069
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8070

T
Tink_Y 已提交
8071
	      Case 1:
M
minqiyang 已提交
8072

T
Tink_Y 已提交
8073 8074
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8075

T
Tink_Y 已提交
8076 8077 8078
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8079

T
Tink_Y 已提交
8080
	      Case 2:
M
minqiyang 已提交
8081

T
Tink_Y 已提交
8082 8083
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8084

T
Tink_Y 已提交
8085 8086 8087
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8088 8089


W
whs 已提交
8090 8091
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8092
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8116
    out = helper.create_variable_for_type_inference(dtype)
8117 8118 8119 8120 8121 8122 8123 8124 8125
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8126
    helper.append_op(
8127
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8128 8129 8130 8131

    return out


8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8144 8145 8146 8147 8148

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8149 8150
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8151 8152
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8153
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8174 8175 8176 8177 8178

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8179 8180
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8181 8182
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8183
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8204 8205 8206 8207 8208

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8209 8210
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8211 8212
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8213
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8235 8236 8237 8238 8239

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8240
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8241
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8242 8243
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8244
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8267 8268 8269 8270 8271

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8272 8273
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8274 8275
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8276
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8298 8299 8300 8301 8302

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8303 8304
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8305 8306
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8307
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8308 8309 8310 8311 8312 8313 8314 8315
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8316 8317 8318 8319
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8320 8321
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8322 8323 8324

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8325
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8326
          weight (alpha).
J
jerrywgz 已提交
8327
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8328 8329 8330
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8331
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8332
          will be named automatically.
J
jerrywgz 已提交
8333 8334 8335 8336 8337 8338 8339 8340

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8341
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8355
        attr=helper.param_attr,
J
jerrywgz 已提交
8356 8357 8358 8359
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8360
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8361 8362 8363 8364 8365 8366 8367 8368 8369
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8370 8371 8372 8373 8374 8375 8376 8377 8378 8379
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8380
    Returns:
8381
        output(${out_type}): ${out_comment}
8382 8383 8384

    Examples:

8385
    .. code-block:: python
8386

H
haowang101779990 已提交
8387 8388
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8389 8390
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8391
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8410
    Returns:
8411
        output(${out_type}): ${out_comment}
8412 8413 8414 8415 8416

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8417 8418
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8419 8420
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8421
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8439
    Returns:
8440
        output(${out_type}): ${out_comment}
8441 8442 8443 8444 8445

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8446 8447
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8448 8449
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8450
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8451 8452 8453 8454 8455 8456 8457 8458
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8459 8460 8461 8462
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8463

H
haowang101779990 已提交
8464
    For Example:
M
minqiyang 已提交
8465

H
haowang101779990 已提交
8466
    .. code-block:: text
8467

H
haowang101779990 已提交
8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8489 8490 8491

    Args:
        x (Variable): A tensor of rank >= axis.
8492 8493
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8494 8495 8496 8497 8498 8499 8500 8501
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8502 8503 8504
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8505 8506 8507 8508
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8509
        ValueError: If axis is not in range [0, rank(x)].
8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8526 8527
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8528
    helper.append_op(
8529
        type='flatten2',
8530
        inputs={"X": x},
8531 8532
        outputs={'Out': out,
                 'XShape': x_shape},
8533 8534
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8535 8536


C
chenweihang 已提交
8537
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8538
    """
C
chenweihang 已提交
8539
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8540
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8541 8542
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8543

H
haowang101779990 已提交
8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8561 8562

    Args:
C
chenweihang 已提交
8563 8564 8565
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8577 8578
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8579 8580 8581 8582 8583 8584
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8585
    return out
8586

8587

S
sneaxiy 已提交
8588 8589 8590 8591 8592 8593 8594 8595 8596
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8597

S
sneaxiy 已提交
8598
    .. math::
8599

S
sneaxiy 已提交
8600 8601 8602
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8603
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8604 8605 8606 8607
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8608 8609 8610
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8611 8612
    Returns:
        Variable: The output sequence mask.
8613

S
sneaxiy 已提交
8614 8615
    """

Q
qingqing01 已提交
8616
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8617
    if name is None:
X
Xin Pan 已提交
8618
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8619
    else:
X
Xin Pan 已提交
8620
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8621

Q
qingqing01 已提交
8622 8623 8624
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8625 8626
        outputs={'Y': out},
        attrs={
8627
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8628 8629 8630
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8631 8632


X
Xin Pan 已提交
8633
def stack(x, axis=0):
S
sneaxiy 已提交
8634 8635 8636 8637
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8638 8639 8640 8641 8642 8643 8644

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8645
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8646
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8647

C
chengduozh 已提交
8648 8649
    For Example:

C
chengduozh 已提交
8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
8688
    Args:
8689
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8690
        axis (int|None): The axis along which all inputs are stacked.
8691

S
sneaxiy 已提交
8692 8693
    Returns:
        Variable: The stacked variable.
8694

S
sneaxiy 已提交
8695 8696
    """

X
Xin Pan 已提交
8697 8698 8699 8700 8701 8702
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8703
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8704
    helper.append_op(
S
sneaxiy 已提交
8705 8706
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8707

X
Xin Pan 已提交
8708
    return out
D
dzhwinter 已提交
8709 8710 8711 8712 8713 8714 8715


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8716

D
dzhwinter 已提交
8717 8718 8719
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8720
    raised.
D
dzhwinter 已提交
8721 8722

    Args:
M
minqiyang 已提交
8723
        x (Variable): Input variable.
D
dzhwinter 已提交
8724 8725
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8726

D
dzhwinter 已提交
8727 8728
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8729

D
dzhwinter 已提交
8730 8731 8732 8733 8734 8735 8736 8737 8738 8739
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8740
    for _ in range(num):
X
Xin Pan 已提交
8741
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8742 8743 8744 8745 8746 8747 8748 8749

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8762

W
whs 已提交
8763 8764 8765 8766
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8767

W
whs 已提交
8768
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8769

W
whs 已提交
8770
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8771

W
whs 已提交
8772 8773 8774 8775
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8776

W
whs 已提交
8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8793
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8794 8795 8796 8797 8798 8799
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8800 8801


G
fix  
gongweibao 已提交
8802 8803 8804
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8805
@templatedoc()
G
fix  
gongweibao 已提交
8806 8807 8808 8809 8810 8811 8812 8813 8814
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8815
    ${comment}
G
fix  
gongweibao 已提交
8816 8817

    Args:
G
gongweibao 已提交
8818 8819 8820
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8821
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8822 8823 8824
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8825 8826
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8827
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8828

8829 8830 8831 8832 8833
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8834 8835 8836
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8837
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8854 8855


G
gongweibao 已提交
8856
@templatedoc()
X
Xin Pan 已提交
8857
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8858
    """
G
gongweibao 已提交
8859
    ${comment}
G
fix  
gongweibao 已提交
8860 8861

    Args:
G
gongweibao 已提交
8862 8863 8864 8865
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8866 8867 8868
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8869
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8870

8871 8872 8873 8874
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8875 8876 8877
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8878
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8879 8880 8881 8882 8883 8884 8885 8886 8887 8888
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8889
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8890 8891 8892 8893 8894
        })

    return out


G
gongweibao 已提交
8895
@templatedoc()
G
fix  
gongweibao 已提交
8896
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8897
    """
G
gongweibao 已提交
8898
    ${comment}
G
fix  
gongweibao 已提交
8899 8900

    Args:
G
gongweibao 已提交
8901 8902 8903 8904
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8905
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8906 8907

    Returns:
G
gongweibao 已提交
8908
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8909

8910 8911 8912 8913 8914 8915 8916 8917 8918 8919
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8920 8921 8922
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8923
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8935
@templatedoc()
G
fix  
gongweibao 已提交
8936 8937 8938 8939 8940 8941 8942 8943 8944
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8945
    ${comment}
G
fix  
gongweibao 已提交
8946 8947

    Args:
G
gongweibao 已提交
8948 8949
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8950
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8951 8952 8953 8954
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8955
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8956 8957

    Returns:
G
gongweibao 已提交
8958
        out (Variable): ${out_comment}
8959 8960 8961 8962 8963 8964 8965 8966

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8967 8968 8969
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8970
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8989
@templatedoc()
X
Xin Pan 已提交
8990
def sum(x):
G
fix  
gongweibao 已提交
8991
    """
G
gongweibao 已提交
8992
    ${comment}
G
fix  
gongweibao 已提交
8993 8994

    Args:
G
gongweibao 已提交
8995
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8996 8997

    Returns:
G
gongweibao 已提交
8998
        out (Variable): ${out_comment}
8999 9000 9001 9002 9003 9004

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9005 9006 9007
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9008 9009
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9010 9011 9012 9013
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9014
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9015 9016 9017 9018

    return out


G
gongweibao 已提交
9019
@templatedoc()
G
fix  
gongweibao 已提交
9020 9021
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9022
    ${comment}
G
fix  
gongweibao 已提交
9023 9024

    Args:
G
gongweibao 已提交
9025 9026 9027 9028
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9029 9030

    Returns:
G
gongweibao 已提交
9031
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9032

9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9044 9045 9046
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9047 9048
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9062 9063
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9064
    Get the shape of the input.
G
fix  
gongweibao 已提交
9065 9066

    Args:
C
chengduozh 已提交
9067
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9068 9069

    Returns:
C
fix doc  
chengduozh 已提交
9070
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9071

9072 9073 9074 9075 9076 9077
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9078 9079 9080
    """

    helper = LayerHelper('shape', **locals())
9081
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9082
    helper.append_op(
G
fix  
gongweibao 已提交
9083
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9084 9085

    return out
G
merge  
gongweibao 已提交
9086 9087


S
sneaxiy 已提交
9088 9089 9090 9091 9092 9093 9094 9095
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9096 9097
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9098
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9099 9100 9101
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9102

S
sneaxiy 已提交
9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9114
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9115 9116 9117 9118 9119 9120 9121 9122
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9123
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9124
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9125 9126 9127 9128 9129 9130

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9131
    if name is None:
X
Xin Pan 已提交
9132
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9133 9134 9135
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9136 9137 9138 9139 9140 9141 9142 9143 9144 9145

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9146
    return helper.append_activation(out)
S
sneaxiy 已提交
9147 9148


X
Xin Pan 已提交
9149
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9150 9151 9152
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9153
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9154 9155 9156
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9157
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9158 9159 9160
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9161
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9162 9163 9164
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9165
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9166 9167 9168
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9169
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9170 9171 9172
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9173
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9185 9186
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9187
        ])
M
minqiyang 已提交
9188 9189


9190
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9191 9192
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9193 9194
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9195 9196 9197

    if out is None:
        if name is None:
X
Xin Pan 已提交
9198
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9214
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9226 9227 9228 9229 9230 9231 9232 9233 9234

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9235 9236 9237 9238 9239 9240 9241
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9242
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9254 9255 9256 9257 9258 9259 9260 9261 9262

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9263 9264 9265 9266 9267 9268 9269
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9270
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9282 9283 9284 9285 9286 9287 9288 9289 9290

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9291 9292 9293 9294 9295 9296 9297
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9298
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9299 9300 9301 9302 9303 9304 9305 9306 9307 9308
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9309 9310 9311 9312 9313 9314 9315

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9316 9317 9318 9319
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9335 9336 9337 9338 9339 9340 9341

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9342 9343 9344 9345 9346
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9347 9348 9349 9350
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9374 9375 9376 9377 9378 9379 9380

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9381 9382 9383 9384 9385
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9386 9387 9388 9389
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9390 9391 9392 9393 9394 9395 9396 9397

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9416
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9417 9418 9419 9420 9421 9422 9423 9424 9425 9426
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9469
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9470 9471 9472 9473 9474 9475 9476 9477 9478
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9479 9480
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9481 9482 9483 9484 9485 9486
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9487 9488 9489
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9490 9491
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9492 9493 9494 9495 9496 9497
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9498
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9499
        name(basestring|None): Name of the output.
9500 9501
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9502 9503 9504

    Returns:
        out(${out_type}): ${out_comment}
9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9519 9520 9521 9522 9523
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9524
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9525 9526 9527 9528 9529 9530 9531 9532
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9533 9534
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9555
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9556 9557 9558 9559 9560 9561 9562 9563 9564 9565
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9566 9567


J
JiabinYang 已提交
9568
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9569
    """
J
JiabinYang 已提交
9570
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9571 9572 9573

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9574
    The attr blocksize indicates the input block size.
9575 9576

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9577
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9578 9579

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9580
    (but keeping all data)
J
JiabinYang 已提交
9581

J
JiabinYang 已提交
9582
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9583
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9584 9585 9586 9587 9588
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9589
    Args:
J
JiabinYang 已提交
9590
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9591
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9592 9593

    Returns:
J
JiabinYang 已提交
9594
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9595 9596

    Raises:
J
JiabinYang 已提交
9597
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9598 9599 9600 9601 9602 9603

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
9604
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9605
                x=data, blocksize=2)
J
JiabinYang 已提交
9606 9607
    """

J
JiabinYang 已提交
9608
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9609

J
JiabinYang 已提交
9610 9611
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9612 9613

    if name is None:
J
JiabinYang 已提交
9614 9615
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9616 9617 9618 9619 9620
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9621
        type="space_to_depth",
J
JiabinYang 已提交
9622
        inputs={"X": x},
J
JiabinYang 已提交
9623
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9624
        outputs={"Out": out})
J
JiabinYang 已提交
9625 9626
    return out

J
JiabinYang 已提交
9627

S
sneaxiy 已提交
9628 9629
@templatedoc()
def sequence_reverse(x, name=None):
9630
    """
S
sneaxiy 已提交
9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9642
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9643 9644 9645 9646 9647 9648 9649 9650 9651 9652
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9653 9654


9655 9656 9657 9658 9659 9660
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9661

9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9681
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
9694 9695


B
barrierye 已提交
9696
def similarity_focus(input, axis, indexes, name=None):
9697
    """
B
barrierye 已提交
9698
    SimilarityFocus Operator
B
barrierye 已提交
9699 9700

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9701

9702 9703 9704
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9705
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9706 9707 9708 9709 9710 9711 9712
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9713
       each index.
B
barrierye 已提交
9714 9715 9716 9717
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9767
    Args:
9768
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9769
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9770
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9771
            1, 2 or 3.
B
barrierye 已提交
9772
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9773 9774

    Returns:
H
haowang101779990 已提交
9775 9776
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9777

B
barrierye 已提交
9778 9779
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9780

B
barrierye 已提交
9781
            data = fluid.layers.data(
B
barrierye 已提交
9782 9783
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9784

B
barrierye 已提交
9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9797 9798 9799 9800 9801
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9802 9803 9804 9805 9806 9807 9808
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9809 9810


M
minqiyang 已提交
9811 9812
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9813 9814
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9815 9816
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9855
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9856
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9857 9858 9859 9860 9861 9862

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9863

M
minqiyang 已提交
9864 9865 9866
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9867 9868
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9869 9870
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9871 9872 9873 9874 9875 9876 9877
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9878 9879


D
dengkaipeng 已提交
9880
@templatedoc()
9881 9882
def grid_sampler(x, grid, name=None):
    """
9883
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
9884
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
9885 9886 9887 9888
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9889
    interpolation value of 4 nearest corner points.
9890

H
haowang101779990 已提交
9891
    .. code-block:: text
9892

H
haowang101779990 已提交
9893 9894
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
9895

H
haowang101779990 已提交
9896 9897
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
9898

H
haowang101779990 已提交
9899 9900 9901
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
9902

H
haowang101779990 已提交
9903 9904 9905 9906 9907 9908 9909 9910 9911
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
9912

H
haowang101779990 已提交
9913 9914 9915 9916
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
9917

H
haowang101779990 已提交
9918 9919 9920 9921
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
9922

H
haowang101779990 已提交
9923 9924 9925 9926
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
9927

H
haowang101779990 已提交
9928 9929
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9930 9931

    Args:
9932 9933 9934
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9935 9936

    Returns:
H
haowang101779990 已提交
9937
        Variable: Output of shape [N, C, H, W] data samples input X
9938 9939
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
9940 9941 9942 9943 9944 9945 9946 9947
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
9948

D
dengkaipeng 已提交
9949 9950 9951 9952 9953 9954 9955 9956 9957
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9958
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9959 9960
    ipts = {'X': x, 'Grid': grid}

9961
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9962 9963 9964
    return out


G
gmcather 已提交
9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10031
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10032 10033 10034 10035 10036 10037 10038
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
H
heqiaozhi 已提交
10039

H
heqiaozhi 已提交
10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10054 10055 10056 10057
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10058
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10059 10060
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10061
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10062 10063

    .. math::
H
haowang101779990 已提交
10064 10065 10066
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10067 10068

    Where:
H
haowang101779990 已提交
10069 10070
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
10085

G
gmcather 已提交
10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10102 10103 10104 10105 10106 10107 10108 10109 10110 10111


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10112
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10113

Q
Qiao Longfei 已提交
10114
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10115 10116 10117
    For example:

    .. math::
H
haowang101779990 已提交
10118
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10119

Q
Qiao Longfei 已提交
10120
    In this formula:
10121 10122
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10123
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10124
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10125 10126 10127
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10128 10129
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10130 10131 10132
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10133
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10134
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10135
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10136 10137 10138 10139
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10140
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10141 10142 10143 10144

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
10145
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10146 10147
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10148
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10149 10150 10151 10152

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10153
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10194 10195


S
shippingwang 已提交
10196
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10197 10198
    """
    **Shuffle Channel Operator**
10199

S
shippingwang 已提交
10200 10201 10202 10203 10204 10205
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10206
    
S
shippingwang 已提交
10207
    .. code-block:: text
10208

S
shippingwang 已提交
10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10237
    Args: 
S
shippingwang 已提交
10238 10239
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10240 10241

    Returns:
S
shippingwang 已提交
10242 10243
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10244 10245

    Raises:
S
shippingwang 已提交
10246
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10247 10248 10249

    Examples:
        .. code-block:: python
10250 10251

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10252
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10253 10254 10255
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10256
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10257 10258 10259 10260 10261 10262 10263 10264 10265

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10266
    return out
S
Add  
shippingwang 已提交
10267 10268


S
sneaxiy 已提交
10269
class PyFuncRegistry(object):
S
sneaxiy 已提交
10270 10271 10272
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10273
        if func is None or not callable(func):
S
sneaxiy 已提交
10274 10275 10276
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10277
        # find named args using reflection
S
sneaxiy 已提交
10278 10279 10280 10281 10282 10283 10284
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10285 10286 10287
        '''
        Why record self here?

M
minqiyang 已提交
10288 10289
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10290
           to find the registered function corresponding
M
minqiyang 已提交
10291
           to :code:`idx`.
S
sneaxiy 已提交
10292

M
minqiyang 已提交
10293 10294
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10295
           whose reference count is 1 would cause
M
minqiyang 已提交
10296
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10297 10298
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10299
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10314 10315 10316 10317 10318 10319 10320 10321 10322
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10323

S
sneaxiy 已提交
10324 10325
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10326 10327

        ret = []
S
sneaxiy 已提交
10328 10329 10330
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10331 10332
                continue

S
sneaxiy 已提交
10333 10334
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10335

S
sneaxiy 已提交
10336 10337 10338
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10339

S
sneaxiy 已提交
10340
        return tuple(ret)
S
sneaxiy 已提交
10341 10342


S
sneaxiy 已提交
10343 10344 10345 10346
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10347

S
sneaxiy 已提交
10348 10349 10350 10351 10352 10353 10354 10355
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10356
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10357

S
sneaxiy 已提交
10358 10359
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10360 10361 10362 10363
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10364
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10365
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10366 10367
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10368 10369 10370 10371 10372
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10373
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10374
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10375
                                       None means no backward. Default None.
S
sneaxiy 已提交
10376
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10377
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10378 10379
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10380
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10381 10382 10383

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10384 10385

    Examples:
M
minqiyang 已提交
10386

S
sneaxiy 已提交
10387 10388 10389 10390 10391
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10392
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10393 10394
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10395
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10396 10397 10398
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10399
        >>>
S
sneaxiy 已提交
10400 10401 10402 10403 10404
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10405
        >>>     print(x)
S
sneaxiy 已提交
10406 10407 10408 10409 10410 10411
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10412
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10413 10414
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10415 10416
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10417 10418 10419 10420 10421 10422 10423 10424
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10425
    """
S
sneaxiy 已提交
10426
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10427 10428 10429
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10430
        x = [x]
S
sneaxiy 已提交
10431 10432
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10433

S
sneaxiy 已提交
10434 10435 10436
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10437
        out_list = [out]
S
sneaxiy 已提交
10438
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10439
        out_list = out
S
sneaxiy 已提交
10440 10441 10442
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10443

S
sneaxiy 已提交
10444 10445
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10446
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10447 10448

    for each_out in out_list:
S
sneaxiy 已提交
10449 10450
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10451 10452
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10453

S
sneaxiy 已提交
10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10469 10470 10471 10472

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10473 10474
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10475 10476 10477
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10478
        })
S
sneaxiy 已提交
10479
    return out
S
sneaxiy 已提交
10480 10481 10482


# For debug usage
S
sneaxiy 已提交
10483 10484 10485 10486
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10539

M
minqiyang 已提交
10540

M
minqiyang 已提交
10541
def huber_loss(input, label, delta):
10542
    """
M
minqiyang 已提交
10543 10544 10545
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10546 10547 10548 10549

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10550
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10551 10552 10553 10554

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10555
        huber\_loss = 0.5 * (label - input) * (label - input)
10556 10557 10558 10559 10560 10561 10562


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10563
        delta (float): The parameter of huber loss, which controls
10564 10565 10566
                       the range of outliers

    Returns:
M
minqiyang 已提交
10567
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10568 10569 10570 10571 10572

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10573
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10574
    """
M
minqiyang 已提交
10575
    helper = LayerHelper('huber_loss', **locals())
10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656


@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
10657 10658 10659 10660 10661


def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
10662

C
ceci3 已提交
10663
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
10664 10665

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
10666
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
10667 10668 10669 10670 10671
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
10672 10673
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
10674 10675 10676 10677 10678 10679 10680

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
10681 10682 10683 10684 10685 10686 10687 10688
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
    softmax_value = softmax(similarity_matrix)
    cross_entropy = -1 * reduce_sum(labels * log(softmax_value), 0)
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss