nn.py 172.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network. 
Y
Yu Yang 已提交
16 17 18 19 20
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
21
from ..param_attr import ParamAttr
Y
yuyang18 已提交
22
from layer_function_generator import autodoc, templatedoc
Y
yangyaming 已提交
23
from tensor import concat
C
chengduoZH 已提交
24
import utils
Y
yuyang18 已提交
25
import random
Y
Yu Yang 已提交
26 27

__all__ = [
Y
ying 已提交
28 29 30
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
31
    'dynamic_lstmp',
G
guosheng 已提交
32
    'dynamic_gru',
Y
ying 已提交
33 34 35 36 37 38 39 40 41
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
42
    'conv3d',
Y
ying 已提交
43
    'sequence_pool',
44 45
    'sequence_softmax',
    'softmax',
Y
ying 已提交
46
    'pool2d',
47
    'pool3d',
Y
ying 已提交
48 49 50
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
51
    'conv3d_transpose',
Y
ying 已提交
52 53 54 55 56 57
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
58
    'reduce_prod',
Y
ying 已提交
59 60 61 62
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
63 64
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
65 66
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
67
    'topk',
Y
ying 已提交
68 69
    'warpctc',
    'sequence_reshape',
70
    'transpose',
71
    'im2sequence',
72
    'nce',
Q
Qiao Longfei 已提交
73
    'beam_search',
74
    'row_conv',
75
    'multiplex',
G
guosheng 已提交
76
    'layer_norm',
77 78
    'softmax_with_cross_entropy',
    'smooth_l1',
79
    'one_hot',
Y
Yu Yang 已提交
80
    'autoincreased_step_counter',
C
caoying03 已提交
81
    'reshape',
Y
yangyaming 已提交
82
    'lod_reset',
D
dragonwarrior 已提交
83
    'lrn',
G
guosheng 已提交
84
    'pad',
85
    'label_smooth',
86
    'roi_pool',
W
whs 已提交
87
    'dice_loss',
F
fengjiayi 已提交
88 89
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
90
    'resize_bilinear',
W
whs 已提交
91
    'gather',
92
    'random_crop',
93
    'mean_iou',
Y
Yu Yang 已提交
94 95 96 97 98 99 100 101
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
102
       use_mkldnn=False,
Y
Yu Yang 已提交
103
       act=None,
J
Jacek Czaja 已提交
104
       is_test=False,
105
       name=None):
Y
Yu Yang 已提交
106
    """
107
    **Fully Connected Layer**
Y
Yu Yang 已提交
108

C
caoying03 已提交
109
    The fully connected layer can take multiple tensors as its inputs. It
R
ranqiu 已提交
110 111 112 113 114 115
    creates a variable called weights for each input tensor, which represents
    a fully connected weight matrix from each input unit to each output unit.
    The fully connected layer multiplies each input tensor with its coresponding
    weight to produce an output Tensor. If multiple input tensors are given,
    the results of multiple multiplications will be sumed up. If bias_attr is
    not None, a bias variable will be created and added to the output. Finally,
Y
ying 已提交
116
    if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
117

C
caoying03 已提交
118
    This process can be formulated as follows:
119 120 121

    .. math::

122
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
123 124 125

    In the above equation:

C
caoying03 已提交
126 127 128 129
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
130
    * :math:`Act`: The activation function.
C
caoying03 已提交
131
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
132 133

    Args:
R
ranqiu 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
            of this layer. If it is set to None, no bias will be added to the output units.
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
151
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
152 153
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
154
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
155

156
    Returns:
R
ranqiu 已提交
157
        A tensor variable storing the transformation result.
158 159

    Raises:
C
caoying03 已提交
160
        ValueError: If rank of the input tensor is less than 2.
161 162 163 164

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
165 166
          data = fluid.layers.data(
              name="data", shape=[32, 32], dtype="float32")
167
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
168
    """
C
caoying03 已提交
169

C
caoying03 已提交
170
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
171 172 173 174

    dtype = helper.input_dtype()

    mul_results = []
175 176
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
177 178 179
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
180

Y
Yu Yang 已提交
181
        w = helper.create_parameter(
182 183
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
184
        helper.append_op(
185 186 187
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
188
            outputs={"Out": tmp},
M
mozga-intel 已提交
189 190
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
191 192 193 194
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
195
    else:
196 197 198 199 200 201 202
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
203 204


205 206 207
def embedding(input,
              size,
              is_sparse=False,
208
              is_distributed=False,
209 210 211
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
212
    """
213 214
    **Embedding Layer**

215
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
216 217
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
218 219 220

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
221 222

    Args:
223 224 225 226 227
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
228
        is_distributed (bool): Whether to run lookup table from remote parameter server.
229 230
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
231 232
            with zeros whenever lookup encounters it in :attr:`input`. If
            :math:`padding_idx < 0`, the padding_idx to use in lookup is
233 234
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
235
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
236

237 238 239
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
240

241 242
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
243

C
chengduoZH 已提交
244
          dict_size = len(dataset.ids)
245
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
246
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
247 248 249 250 251 252
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
253 254
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
255 256 257 258 259
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
260 261 262 263 264
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
265 266 267 268 269
    return tmp


def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
270 271
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
272 273 274 275 276 277 278
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
279 280
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
281 282 283 284 285 286
    """
    **Dynamic LSTM Layer**

    The defalut implementation is diagonal/peephole connection
    (https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:

Y
Yibing Liu 已提交
287
    .. math::
Y
Yibing Liu 已提交
288

289
        i_t & = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
290

291
        f_t & = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
292

293
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c)
Y
Yibing Liu 已提交
294

295 296 297
        o_t & = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o)

        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
298

Y
Yibing Liu 已提交
299
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
300

301
    where the :math:`W` terms denote weight matrices (e.g. :math:`W_{xi}` is
302
    the matrix of weights from the input gate to the input), :math:`W_{ic}, \
303 304 305
    W_{fc}, W_{oc}` are diagonal weight matrices for peephole connections. In
    our implementation, we use vectors to reprenset these diagonal weight
    matrices. The :math:`b` terms denote bias vectors (:math:`b_i` is the input
Y
Yibing Liu 已提交
306
    gate bias vector), :math:`\sigma` is the non-linear activations, such as
307 308
    logistic sigmoid function, and :math:`i, f, o` and :math:`c` are the input
    gate, forget gate, output gate, and cell activation vectors, respectively,
309 310
    all of which have the same size as the cell output activation vector :math:`h`.

311 312 313 314
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
    and :math:`act_h` are the cell input and cell output activation functions
    and `tanh` is usually used for them. :math:`\\tilde{c_t}` is also called
    candidate hidden state, which is computed based on the current input and
315 316 317
    the previous hidden state.

    Set `use_peepholes` to `False` to disable peephole connection. The formula
Y
Yibing Liu 已提交
318 319 320
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.

Y
Yibing Liu 已提交
321 322 323
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connect layer before LSTM layer.
Y
Yibing Liu 已提交
324 325

    Args:
326 327 328 329
        input(Variable): The input of dynamic_lstm layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
Y
Yibing Liu 已提交
330 331
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
Y
Yancey 已提交
332 333 334 335 336 337 338
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

339
        param_attr(ParamAttr|None): The parameter attribute for the learnable
340
                               hidden-hidden weights.
Y
Yibing Liu 已提交
341 342 343

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
344 345 346
                               - The shape is (D x 4D), where D is the hidden
                                 size.
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
347 348 349
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
350

351
                              1. `use_peepholes = False`
Y
Yibing Liu 已提交
352
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
353
                                - The shape is (1 x 4D).
354
                              2. `use_peepholes = True`
Y
Yibing Liu 已提交
355 356
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
357
                                - The shape is (1 x 7D).
358
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
Y
Yibing Liu 已提交
359 360
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
361 362
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
Y
Yibing Liu 已提交
363
                              "identity"], default "sigmoid".
364
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
Y
Yibing Liu 已提交
365 366
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
F
stash  
fengjiayi 已提交
367 368
                              Choices = ["sigmoid", "tanh",
                                  "relu", "identity"],
Y
Yibing Liu 已提交
369 370
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
371 372
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
373 374

    Returns:
Y
Yibing Liu 已提交
375 376
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
377

Y
Yibing Liu 已提交
378
    Examples:
Y
Yibing Liu 已提交
379 380
        .. code-block:: python

Y
Yibing Liu 已提交
381 382
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
383
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
384 385
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
386
    """
387

Y
Yu Yang 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
402 403 404 405 406 407 408 409 410 411
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
412 413 414

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
415
        inputs=inputs,
Y
Yu Yang 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
432 433 434 435 436 437 438 439 440 441 442
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
443 444
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
445 446 447
    """
    **Dynamic LSTMP Layer**

448 449 450 451 452 453
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
454 455 456 457 458

    The formula is as follows:

    .. math::

459
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
460

461
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
462

463
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
464

465
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
466

467
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
468

469
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
470

471
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
472

Y
Yibing Liu 已提交
473 474 475 476 477 478
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
479
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
480
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
481
          bias vector).
Y
Yibing Liu 已提交
482 483 484
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
485
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
486
    * :math:`h`: The hidden state.
487
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
488 489
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
490
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
491
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
492
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
493 494
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
495 496 497 498

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
499

Y
Yibing Liu 已提交
500 501 502 503 504 505 506 507 508 509 510 511
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
512
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
513 514
                               hidden-hidden weight and projection weight.

515 516
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
517 518
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
519 520
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
521 522
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
523 524 525 526 527 528
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
529
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
530 531 532
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
533
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
534 535 536 537 538 539 540 541 542
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
F
stash  
fengjiayi 已提交
543 544
                              Choices = ["sigmoid", "tanh",
                                  "relu", "identity"],
Y
Yibing Liu 已提交
545 546
                              default "tanh".
        proj_activation(str): The activation for projection output.
F
stash  
fengjiayi 已提交
547 548
                              Choices = ["sigmoid", "tanh",
                                  "relu", "identity"],
Y
Yibing Liu 已提交
549 550
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
551 552
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
553 554

    Returns:
555 556
        tuple: The projection of hidden state, and cell state of LSTMP. The \
               shape of projection is (T x P), for the cell state which is \
Y
Yibing Liu 已提交
557 558 559 560 561
               (T x D), and both LoD is the same with the `input`.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
562
            hidden_dim, proj_dim = 512, 256
Y
Yibing Liu 已提交
563 564
            fc_out = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                     act=None, bias_attr=None)
565 566 567
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
568 569 570 571
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
572
    """
573

Y
Yibing Liu 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
    helper = LayerHelper('lstmp', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
620 621 622 623 624 625 626 627 628 629 630
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
    **Dynamic GRU Layer**

631
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
G
guosheng 已提交
632
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_
633

G
guosheng 已提交
634 635 636 637 638 639 640 641 642
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
643

G
guosheng 已提交
644
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
645

G
guosheng 已提交
646
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
647 648
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
649 650 651 652
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
653
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
654 655

    Args:
656 657
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
658
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
659
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
660 661
            is the hidden size.
        size(int): The dimension of the gru cell.
662
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
663 664
            hidden-hidden weight matrix. Note:

665
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
666
              :math:`D` is the hidden size.
667
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
668
              The first part are weights of the update gate and reset gate with
669
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
670
              candidate hidden state with shape :math:`(D \\times D)`.
671
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
672
            hidden-hidden bias.
673
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
674 675 676
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
677
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
678
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
679
        h_0 (Variable): The hidden output of the first time step.
G
guosheng 已提交
680 681

    Returns:
G
guosheng 已提交
682 683
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
            and lod is the same with the input.
684

G
guosheng 已提交
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
    Examples:
        .. code-block:: python

            hidden_dim = 512
            x = fluid.layers.fc(input=data, size=hidden_dim * 3)
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
700
    batch_size = input.shape[0]
G
guosheng 已提交
701 702 703
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
704 705 706
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
730 731 732
def gru_unit(input,
             hidden,
             size,
733 734
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
735
             activation='tanh',
736
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
737
    """
738
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
739

740 741
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
742

743
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
744

745
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
746

747
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
748 749

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
750 751 752
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
753 754
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

755 756
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
757 758 759
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
760 761 762 763 764

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
765 766
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
767 768 769 770
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
771

772 773 774 775 776 777
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
778

779
             # assuming we have x_t_data and prev_hidden of size=10
780
             x_t = fluid.layers.fc(input=x_t_data, size=30)
781 782
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
798 799
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
800

801 802 803 804
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
805
    # create bias
806
    if helper.bias_attr:
Y
Yu Yang 已提交
807 808 809
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
810
        inputs['Bias'] = bias
Y
Yu Yang 已提交
811 812 813

    helper.append_op(
        type='gru_unit',
814
        inputs=inputs,
Y
Yu Yang 已提交
815 816 817 818 819 820
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
821 822
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
823 824 825 826 827
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
828
@templatedoc()
829
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
        ${log_likelihood_comment}

    """
Y
Yu Yang 已提交
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
869
@templatedoc()
870
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
871 872 873 874 875 876 877 878 879 880 881
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
        param_attr(ParamAttr): The parameter attribute for training.
        label(${label_type}): ${label_comment}

    Returns:
        ${viterbi_path_comment}
    """
Y
Yu Yang 已提交
882 883 884 885 886 887 888 889 890 891 892 893 894
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


F
fengjiayi 已提交
895
def cos_sim(X, Y):
Y
Yu Yang 已提交
896 897 898
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
899 900 901 902 903 904 905

    Args:
        X (Variable): The input X.
        Y (Variable): The input Y.
    
    Returns:
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
906
    """
F
fengjiayi 已提交
907
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
908 909 910 911 912 913 914 915 916 917 918 919 920
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


921
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
922 923 924 925 926 927 928 929 930 931
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
    training. The dropout operator randomly set (according to the given dropout
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
932 933 934 935 936 937 938 939 940
        x (Variable): The input tensor.
         dropout_prob (float): Probability of setting units to zero.
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
941 942 943 944 945 946 947 948 949 950 951

    Returns:
        Variable: A tensor variable.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
          droped = fluid.layers.dropout(input=x, dropout_rate=0.5)
    """

F
fengjiayi 已提交
952
    helper = LayerHelper('dropout', **locals())
953 954 955 956 957 958 959
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
960 961 962 963 964 965
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
966 967 968
    return out


F
fengjiayi 已提交
969
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
970
    """
Y
Yibing Liu 已提交
971 972
    **Cross Entropy Layer**

973 974 975
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
976 977

    1) One-hot cross-entropy:
F
fengjiayi 已提交
978
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
979

Y
Yibing Liu 已提交
980
        .. math::
Y
yangyaming 已提交
981

Y
Yibing Liu 已提交
982 983 984
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
985 986
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
987 988 989 990 991

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
992
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
993 994 995
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
996 997
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
998
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
999

Y
Yibing Liu 已提交
1000
    Args:
Y
yangyaming 已提交
1001
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1002 1003 1004 1005
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1006
        label (Variable|list): the ground truth which is a 2-D tensor. When
1007 1008 1009 1010
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1011
        soft_label (bool): a flag indicating whether to
1012 1013
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
1014 1015 1016 1017 1018

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1019 1020 1021 1022 1023
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1024 1025 1026 1027 1028 1029

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1030
    """
F
fengjiayi 已提交
1031
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1032 1033 1034 1035 1036 1037
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
1038
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
1039 1040 1041
    return out


F
fengjiayi 已提交
1042
def square_error_cost(input, label):
Y
Yu Yang 已提交
1043
    """
1044 1045
    **Square error cost layer**

1046 1047
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1048

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1062 1063
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1064 1065

    Returns:
G
guosheng 已提交
1066
        Variable: The tensor variable storing the element-wise squared error \
1067
                  difference of input and label.
1068 1069 1070 1071 1072 1073 1074 1075

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1076
    """
F
fengjiayi 已提交
1077
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1087 1088
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1089 1090 1091
    return square_out


1092
@templatedoc()
Y
Yu Yang 已提交
1093 1094 1095 1096
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1097
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1098
    """
Y
yangyaming 已提交
1099
    This function computes and outputs the precision, recall and
1100
    F1-score of chunk detection.
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

    Args:
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
    
    Returns:
        tuple: tuple containing: (precision, recall, f1_score,
               num_infer_chunks, num_label_chunks,
               num_correct_chunks)
Y
Yu Yang 已提交
1113
    """
F
fengjiayi 已提交
1114
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1115 1116 1117 1118 1119

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1120 1121 1122
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1123 1124 1125 1126 1127 1128 1129 1130

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1131 1132 1133 1134
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1135 1136 1137
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1138 1139
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1140
        })
1141 1142
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1143 1144


1145
@templatedoc()
Y
Yu Yang 已提交
1146 1147 1148 1149 1150 1151 1152
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1153
                  act=None):
Y
Yu Yang 已提交
1154 1155 1156 1157
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
    
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
    """

    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1212
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1224 1225 1226
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1227 1228
           stride=1,
           padding=0,
1229
           dilation=1,
Y
Yu Yang 已提交
1230 1231 1232
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1233
           use_cudnn=True,
1234
           use_mkldnn=False,
1235 1236
           act=None,
           name=None):
Y
Yu Yang 已提交
1237
    """
C
chengduoZH 已提交
1238 1239 1240
    **Convlution2D Layer**

    The convolution2D layer calculates the output based on the input, filter
1241 1242 1243
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCHW format. Where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
C
chengduoZH 已提交
1244 1245
    The details of convolution layer, please refer UFLDL's `convolution,
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ .
1246 1247 1248
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1249

1250
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1251

C
chengduoZH 已提交
1252 1253
    .. math::

C
refine  
chengduoZH 已提交
1254
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1255

C
chengduoZH 已提交
1256
    In the above equation:
C
chengduoZH 已提交
1257

1258 1259 1260 1261 1262
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1263 1264
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
                   different.
C
chengduoZH 已提交
1265 1266 1267

    Example:

1268 1269
        - Input:

W
weixing02 已提交
1270
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1271

W
weixing02 已提交
1272
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1273

1274
        - Output:
W
weixing02 已提交
1275
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1276

C
chengduoZH 已提交
1277
        Where
1278 1279

        .. math::
C
chengduoZH 已提交
1280

W
weixing02 已提交
1281 1282
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1283 1284

    Args:
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
        input (Variable): The input image with [N, C, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1313 1314

    Returns:
G
guosheng 已提交
1315
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1316 1317
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1318
    Raises:
1319 1320
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1321

C
chengduoZH 已提交
1322 1323 1324
    Examples:
        .. code-block:: python

1325 1326 1327 1328
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(
              input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1329 1330 1331
    """

    num_channels = input.shape[1]
1332 1333

    l_type = 'conv2d'
X
xzl 已提交
1334 1335
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1336
        l_type = 'depthwise_conv2d'
1337 1338 1339 1340

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1341 1342 1343 1344 1345 1346 1347
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

C
chengduoZH 已提交
1348 1349 1350
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1351
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1352

C
chengduoZH 已提交
1353 1354
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1372
        type=l_type,
Y
Yu Yang 已提交
1373 1374 1375 1376 1377
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1378 1379 1380
        attrs={
            'strides': stride,
            'paddings': padding,
1381
            'dilations': dilation,
C
chengduoZH 已提交
1382
            'groups': groups,
1383 1384
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1385
        })
Y
Yu Yang 已提交
1386 1387 1388 1389 1390 1391

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1410 1411 1412 1413 1414 1415
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1425 1426
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
                   different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1457
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1458 1459
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1460
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1461 1462
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1463
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1464 1465
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1466
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv3d(
              input=data, num_filters=2, filter_size=3, act="relu")
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1552
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1553 1554 1555 1556

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1557
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1558
    """
Y
yangyaming 已提交
1559 1560 1561
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1587 1588
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1589

L
Luo Tao 已提交
1590 1591
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1592
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1593 1594 1595 1596 1597 1598 1599 1600
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1601

Y
yangyaming 已提交
1602
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1603 1604 1605 1606 1607
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1608 1609
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1610
    """
F
fengjiayi 已提交
1611
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1623 1624 1625 1626 1627
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1628 1629 1630
    return pool_out


F
fengjiayi 已提交
1631
def sequence_first_step(input):
L
Luo Tao 已提交
1632
    """
L
Luo Tao 已提交
1633
    This function gets the first step of sequence.
L
Luo Tao 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1646

L
Luo Tao 已提交
1647 1648 1649 1650 1651 1652 1653 1654 1655
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1656

Y
yangyaming 已提交
1657
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1658 1659 1660
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1661 1662 1663
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1664
def sequence_last_step(input):
L
Luo Tao 已提交
1665
    """
L
Luo Tao 已提交
1666
    This function gets the last step of sequence.
L
Luo Tao 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1679

L
Luo Tao 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1689

Y
yangyaming 已提交
1690
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1691 1692 1693
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1694 1695 1696
    return sequence_pool(input=input, pool_type="last")


Y
Yu Yang 已提交
1697
def pool2d(input,
C
chengduoZH 已提交
1698 1699
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1700 1701
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1702
           global_pooling=False,
C
chengduoZH 已提交
1703
           use_cudnn=True,
1704
           ceil_mode=False,
1705
           use_mkldnn=False,
C
caoying03 已提交
1706
           name=None):
Y
Yu Yang 已提交
1707 1708 1709
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
    
    Returns:
        Variable: output of pool2d layer.
Y
Yu Yang 已提交
1726 1727 1728 1729 1730
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1731

C
chengduoZH 已提交
1732 1733 1734 1735 1736
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1737 1738 1739 1740
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1741 1742
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1743

C
Add doc  
chengduoZH 已提交
1744
    l_type = 'pool2d'
1745 1746

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1747 1748 1749 1750
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
    pooling configurations mentioned in input parameters.

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: output of pool3d layer.
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1817 1818 1819 1820
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1821
        type=l_type,
Y
Yu Yang 已提交
1822 1823 1824 1825 1826 1827 1828
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1829
            "paddings": pool_padding,
1830
            "use_cudnn": use_cudnn,
1831 1832
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
1845
               data_layout='NCHW',
Y
Yang Yang 已提交
1846
               in_place=False,
1847
               use_mkldnn=False,
1848 1849
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
1850
               moving_variance_name=None,
W
wanghaoshuang 已提交
1851
               do_model_average_for_mean_and_var=False):
Y
Yu Yang 已提交
1852 1853 1854
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873

    Args:
        input (Variable): the input variable.
        act (str): activation type
        is_test (bool): whether to run batch_norm as test mode.
        momentum (float): momentum
        epsilon (float): epsilon, default 1e-05
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        data_layout (str): data layout, default NCHW
        in_place (bool): if True, do not create tmp variable
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): The name of this layer. It is optional.
        moving_mean_name (str): The name of moving mean variable name, optional.
        moving_variance_name (str): The name of moving variance name, optional.
        do_model_average_for_mean_and_var (bool):

    Returns:
        Variable: output of batch_norm layer.
Y
Yu Yang 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
1897
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
1898

1899 1900
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
1901 1902 1903
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
1904
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
1905
        shape=param_shape,
1906 1907 1908 1909 1910 1911 1912
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
1913
            trainable=False,
W
wanghaoshuang 已提交
1914
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
1915
        shape=param_shape,
1916 1917
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
1918 1919 1920 1921 1922 1923

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
1924 1925
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
1926

Y
Yang Yang 已提交
1927
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
1945 1946 1947 1948 1949 1950
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
            "use_mkldnn": use_mkldnn
        })
Y
Yu Yang 已提交
1951 1952 1953 1954

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
1955
@templatedoc()
G
guosheng 已提交
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
1966
    ${comment}
G
guosheng 已提交
1967 1968 1969

    The formula is as follows:

Y
yuyang18 已提交
1970
    ..  math::
G
guosheng 已提交
1971 1972 1973 1974 1975 1976 1977

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
1978 1979 1980 1981 1982 1983 1984 1985
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
1986

G
guosheng 已提交
1987 1988
    Args:
        input(Variable): The input tensor variable.
1989
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
1990
            normalization.
1991
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
1992
            normalization.
1993
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
1994
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
1995
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
1996 1997 1998 1999 2000 2001
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2002
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2003 2004

    Returns:
Y
yuyang18 已提交
2005
        ${y_comment}
G
guosheng 已提交
2006 2007 2008

    Examples:

Y
yuyang18 已提交
2009 2010 2011
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2027
    if shift:
G
guosheng 已提交
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


C
caoying03 已提交
2052
def beam_search_decode(ids, scores, name=None):
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
    """
    ${beam_search_decode}

    Args:
        ids (Variable): ${ids_comment}
        scores (Variable): ${scores_comment}
        name (str): The name of this layer. It is optional.
    
    Returns:
        tuple: a tuple of two output variable: sentence_ids, sentence_scores
    """
Y
Yu Yang 已提交
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        })

    return sentence_ids, sentence_scores


def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2084 2085 2086
                     padding=0,
                     stride=1,
                     dilation=1,
2087
                     groups=None,
C
caoying03 已提交
2088
                     param_attr=None,
2089
                     bias_attr=None,
C
chengduoZH 已提交
2090
                     use_cudnn=True,
2091
                     act=None,
C
caoying03 已提交
2092
                     name=None):
Y
Yu Yang 已提交
2093
    """
2094 2095 2096 2097 2098 2099 2100 2101
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2102 2103
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115

    For each input :math:`X`, the equation is:

    .. math::

        Out = W \\ast X

    In the above equation:

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast` : Convolution transpose operation.
2116 2117
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
                   different.
Y
Yu Yang 已提交
2118

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
    Example:

        - Input:

          Input shape: $(N, C_{in}, H_{in}, W_{in})$

          Filter shape: $(C_{in}, C_{out}, H_f, W_f)$

        - Output:

          Output shape: $(N, C_{out}, H_{out}, W_{out})$

        Where
Y
Yu Yang 已提交
2132

2133 2134 2135 2136
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
2137 2138

    Args:
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2172 2173

    Returns:
2174
        Variable: The tensor variable storing the convolution transpose result.
2175 2176

    Raises:
2177 2178
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2179 2180 2181 2182

    Examples:
       .. code-block:: python

2183 2184 2185 2186
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(
              input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2187 2188 2189 2190 2191 2192
    """
    helper = LayerHelper("conv2d_transpose", **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")
    input_channel = input.shape[1]

C
chengduoZH 已提交
2193 2194 2195
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2196

C
chengduoZH 已提交
2197 2198 2199
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2200 2201 2202 2203 2204 2205 2206 2207
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        h_in = input.shape[2]
        w_in = input.shape[3]
C
chengduoZH 已提交
2208 2209 2210 2211 2212

        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
2213
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2214 2215 2216
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
Y
Yu Yang 已提交
2217

2218 2219
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
2220 2221 2222
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2223
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2224 2225 2226 2227
    helper.append_op(
        type='conv2d_transpose',
        inputs={'Input': [input],
                'Filter': [img_filter]},
2228
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2229 2230 2231 2232
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2233
            'groups': groups,
C
chengduoZH 已提交
2234 2235
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2236

2237 2238
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2239
    return out
Y
yangyaming 已提交
2240 2241


2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
def conv3d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
                     padding=0,
                     stride=1,
                     dilation=1,
                     groups=None,
                     param_attr=None,
                     bias_attr=None,
                     use_cudnn=True,
                     act=None,
                     name=None):
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.

    For each input :math:`X`, the equation is:

    .. math::

        Out = W \\ast X

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast` : Convolution transpose operation.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
                   different.

    Example:

        - Input:

          Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$

          Filter shape: $(C_{in}, C_{out}, D_f, H_f, W_f)$

        - Output:

          Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$

        Where

        .. math::

           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1

    Args:
        input(Variable): The input image with [N, C, D, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain three integers, (image_D, image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution transpose result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv3d_transpose(
              input=data, num_filters=2, filter_size=3)
    """
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv3d_transpose must be Variable")
    input_channel = input.shape[1]

    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]

        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
                         padding[2] - 1) / dilation[2] + 1
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
    else:
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')

    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type=l_type,
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': pre_bias},
        attrs={
C
chengduoZH 已提交
2397 2398 2399
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2400
            'groups': groups,
C
chengduoZH 已提交
2401 2402
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2403

2404 2405
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2406
    return out
Y
yangyaming 已提交
2407 2408


Y
yangyaming 已提交
2409
def sequence_expand(x, y, ref_level=-1, name=None):
2410
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2411 2412 2413 2414
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2415 2416 2417 2418 2419

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
Y
yangyaming 已提交
2420 2421
                x.lod  = [[0,   2,        4]]
                x.data = [[a], [b], [c], [d]]
2422 2423 2424 2425 2426 2427
                x.dims = [4, 1]

            y is a LoDTensor:
                y.lod = [[0,    2,    4],
                         [0, 3, 6, 7, 8]]

Y
yangyaming 已提交
2428
            ref_level: 0
2429

Y
yangyaming 已提交
2430 2431 2432
            then output is a 1-level LoDTensor:
                out.lod =  [[0,   2,        4,        6,        8]]
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2433 2434 2435 2436
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2437
                x.data = [[a], [b], [c]]
2438 2439 2440
                x.dims = [3, 1]

            y is a LoDTensor:
Y
yangyaming 已提交
2441
                y.lod = [[0, 2, 2, 5]]
2442

Y
yangyaming 已提交
2443
            ref_level: -1
2444

Y
yangyaming 已提交
2445 2446 2447
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2448 2449 2450
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2451 2452
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2453
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2454
                        will be named automatically.
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2465
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2466
    """
Y
yangyaming 已提交
2467
    helper = LayerHelper('sequence_expand', input=x, **locals())
2468 2469 2470
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2471 2472 2473 2474 2475
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2476
    return tmp
2477 2478


Q
Qiao Longfei 已提交
2479 2480 2481
def beam_search(pre_ids, ids, scores, beam_size, end_id, level=0):
    '''
    This function implements the beam search algorithm.
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492

    Args:
        pre_ids (Variable): ${pre_ids_comment}
        ids (Variable): ${ids_comment}
        scores (Variable): ${scores_comment}
        beam_size (int): ${beam_size_comment}
        end_id (int): ${end_id_comment}
        level (int): ${level_comment}
    
    Returns:
        tuple: a tuple of beam_search output variables: selected_ids, selected_scores
Q
Qiao Longfei 已提交
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
    '''
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


Y
yangyaming 已提交
2522 2523 2524 2525
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2526
              param_attr=None,
C
caoying03 已提交
2527 2528
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2529 2530 2531 2532
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2533
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2534

2535
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2536

2537
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2538

2539
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2540 2541 2542

            h_t & = o_t tanh(c_t)

2543 2544 2545 2546 2547 2548
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2549 2550 2551

        .. math::

2552
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2553 2554 2555 2556 2557 2558 2559 2560

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2561
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2562 2563

    Args:
Y
yangyaming 已提交
2564 2565 2566 2567 2568 2569
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2570
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2571 2572
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2573 2574
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2575 2576
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2577 2578

    Returns:
Y
yangyaming 已提交
2579
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2580 2581

    Raises:
2582 2583 2584 2585
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2586 2587 2588 2589 2590 2591

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2592
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2593
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2594
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2611
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2612 2613 2614 2615
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2616 2617
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2618 2619 2620
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2621
    size = cell_t_prev.shape[1]
2622
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2623 2624
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2625
                param_attr=param_attr,
2626
                bias_attr=bias_attr)
Y
yangyaming 已提交
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2639
    return h, c
G
guosheng 已提交
2640 2641


C
caoying03 已提交
2642
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2643
    """
Y
yangyaming 已提交
2644
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2645 2646 2647

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2648
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2649 2650
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2651 2652
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2653
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2654
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2655
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2656 2657
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2658 2659 2660

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2661

G
guosheng 已提交
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2673 2674 2675 2676 2677 2678 2679 2680

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
2681 2682 2683
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2684 2685
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2686 2687 2688 2689 2690
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2691
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2692 2693 2694 2695
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2696 2697


C
caoying03 已提交
2698
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2699
    """
Y
Yibing Liu 已提交
2700
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
2701 2702 2703

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
2704 2705 2706
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
2707
            must be in the range :math:`[-rank(input), rank(input))`. If
Y
Yibing Liu 已提交
2708 2709
            :math:`dim[i] < 0`, the dimension to reduce is 
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
2710 2711
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2712
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
2713
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
2714
                       will be named automatically.
G
guosheng 已提交
2715 2716

    Returns:
Y
Yibing Liu 已提交
2717
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
2718

G
guosheng 已提交
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
2729 2730
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
2731 2732 2733 2734 2735 2736 2737

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
2738 2739 2740
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2741 2742
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2743 2744 2745 2746 2747
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2748
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2749 2750 2751 2752
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
2753 2754


C
caoying03 已提交
2755
def reduce_max(input, dim=None, keep_dim=False, name=None):
2756
    """
Y
yangyaming 已提交
2757
    Computes the maximum of tensor elements over the given dimension.
2758 2759 2760

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2761
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
2762 2763 2764
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
2765
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2766 2767
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2768
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2769 2770
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2771 2772 2773

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2774

2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
2786 2787 2788 2789 2790 2791 2792

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
2793 2794 2795
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2796 2797
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2798 2799 2800 2801 2802
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2803
            'dim': dim if dim != None else [0],
2804 2805 2806 2807 2808 2809
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
2810
def reduce_min(input, dim=None, keep_dim=False, name=None):
2811
    """
Y
yangyaming 已提交
2812
    Computes the minimum of tensor elements over the given dimension.
2813 2814 2815

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2816
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
2817 2818 2819
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
2820
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2821 2822
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2823
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2824 2825
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2826 2827 2828

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2829

2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
2841 2842 2843 2844 2845 2846 2847

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
2848 2849 2850
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2851 2852
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2853 2854 2855 2856 2857
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2858
            'dim': dim if dim != None else [0],
2859 2860 2861 2862
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2863 2864


2865 2866 2867 2868 2869 2870
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2871
        dim (list|int|None): The dimensions along which the product is performed. If
2872 2873
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2874 2875
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2876 2877 2878
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
2879
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
2880
            layer will be named automatically.
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
2895
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
2896
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
2897 2898 2899 2900 2901 2902 2903

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
2904 2905 2906
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2907 2908
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2909 2910 2911 2912 2913
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2914
            'dim': dim if dim != None else [0],
2915 2916 2917 2918 2919 2920
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
2921
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
2922
    """
C
caoying03 已提交
2923
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
2924 2925 2926

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
2927 2928 2929 2930 2931
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
2932
            :attr:`dim` dimension orderly.
C
caoying03 已提交
2933
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
2934
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
2935 2936
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948

    Returns:
        List: The list of segmented tensor variables.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
2949 2950
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
2980 2981 2982 2983 2984 2985 2986 2987 2988


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

2989 2990
    .. math::
    y = \frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
2991 2992 2993 2994 2995

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
2996 2997 2998 2999 3000 3001 3002 3003
        x(Variable|list): The input tensor to l2_normalize layer.
        axis(int): The axis on which to apply normalization. If `axis < 0`,
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
        epsilon(float): The epsilon value is used to avoid division by zero,
            the defalut value is 1e-10.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
caoying03 已提交
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014


    Returns:
        Variable: The output tensor variable.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name="data",
                                   shape=(3, 17, 13),
                                   dtype="float32")
Y
ying 已提交
3015
          normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3016 3017
    """

F
fengjiayi 已提交
3018 3019
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3020 3021
    helper = LayerHelper("l2_normalize", **locals())

3022 3023
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3024
    helper.append_op(
3025 3026 3027 3028
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3029
        attrs={
3030 3031
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3032 3033
        })
    return out
3034 3035


3036
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
3037
    """
Y
ying 已提交
3038 3039 3040 3041
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3042

C
chengduoZH 已提交
3043
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3044
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3045

3046 3047 3048 3049 3050
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3051
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3052

C
chengduoZH 已提交
3053
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3054
      performs in the following way.
G
guosheng 已提交
3055

3056
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3057
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3058
        last two dimensions and a batched matrix multiply supporting broadcast
3059
        applies on the two tensors.
G
guosheng 已提交
3060

Y
ying 已提交
3061 3062
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3063
    removed after matrix multiplication.
G
guosheng 已提交
3064 3065 3066

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3067 3068 3069
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
3070
        name(str|None): A name for this layer(optional). If set None, the layer
3071
            will be named automatically.
G
guosheng 已提交
3072 3073

    Returns:
3074
        Variable: The product Tensor variable.
G
guosheng 已提交
3075

G
guosheng 已提交
3076 3077 3078
    Examples:
        .. code-block:: python

3079
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3080 3081
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3082

3083 3084
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3085

3086 3087
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3088

3089 3090
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3091 3092 3093 3094

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3095 3096
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3097

Y
ying 已提交
3098
            # x: [M], y: [N]
3099
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3100
    """
Y
ying 已提交
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3113
            y_shape = y_shape + [1]
Y
ying 已提交
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3130
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3131
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3132
    helper.append_op(
3133 3134 3135 3136 3137 3138 3139
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
3140 3141


3142
def topk(input, k, name=None):
Q
qingqing01 已提交
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

    If the input is a vector (rank=1), finds the k largest entries in the vector
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
        k(int): An integer value to specify the top k largest elements.
3158 3159
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Q
qingqing01 已提交
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190

    Returns:
        values(Variable): The k largest elements along each last dimensional
            slice.
        indices(Variable): The indices of values within the last dimension of
            input.

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
    if k < 1 and k >= shape[-1]:
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


W
wanghaoshuang 已提交
3191
def edit_distance(input, label, normalized=True, ignored_tokens=None,
W
wanghaoshuang 已提交
3192
                  name=None):
3193
    """
Y
ying 已提交
3194 3195 3196 3197 3198 3199 3200 3201 3202
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3203

Y
ying 已提交
3204
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3205

Y
ying 已提交
3206 3207 3208 3209
    Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
    in order in the same way in the LoDTensor Input(Refs).
W
wanghaoshuang 已提交
3210

Y
ying 已提交
3211 3212 3213
    Output(Out) contains the `batch_size` results and each stands for the edit
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3214

3215 3216 3217
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
Y
ying 已提交
3218 3219 3220 3221
        normalized(bool): Indicated whether to normalize the edit distance by
                          the length of reference string.
        ignored_tokens(list of int): Tokens that should be removed before
                                     calculating edit distance.
3222
        name (str): The name of this layer. It is optional.
3223

W
wanghaoshuang 已提交
3224
    Returns:
W
wanghaoshuang 已提交
3225
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3226 3227 3228 3229 3230

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3231 3232
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')

3233
            cost = fluid.layers.edit_distance(input=x,label=y)
3234
    """
3235
    helper = LayerHelper("edit_distance", **locals())
3236

3237
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3238
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3239 3240 3241 3242 3243 3244 3245
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3246
            attrs={"tokens": ignored_tokens})
3247 3248 3249 3250 3251
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3252
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3253
            attrs={"tokens": ignored_tokens})
3254 3255
        label = erased_label

3256 3257
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3258
    sequence_num = helper.create_tmp_variable(dtype="int64")
3259 3260 3261 3262
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3263 3264
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3265 3266
        attrs={"normalized": normalized})

3267
    return edit_distance_out, sequence_num
3268 3269 3270 3271 3272


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
ying 已提交
3273 3274 3275 3276
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

        input.lod = [[0, 4, 8]]

        Then:

        output.data = [[2],
                       [1],
                       [3]]

        output.lod = [[0, 2, 3]]

    Args:

Y
ying 已提交
3306 3307 3308 3309 3310 3311 3312 3313 3314
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3315
        name (str): The name of this layer. It is optional.
3316 3317

    Returns:
3318
        Variable: CTC greedy decode result. If all the sequences in result were
3319
        empty, the result LoDTensor will be [-1] with LoD [[0]] and dims [1, 1].
3320 3321 3322 3323 3324

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3325

3326
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3327
    """
3328
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3329
    _, topk_indices = topk(input, k=1)
3330 3331 3332 3333 3334 3335

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3336
        outputs={"Output": [ctc_out]},
3337 3338
        attrs={"merge_repeated": True,
               "blank": blank})
3339
    return ctc_out
3340 3341


F
fengjiayi 已提交
3342
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3343
    """
3344 3345
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3346
    to compute Connectionist Temporal Classification (CTC) loss.
3347 3348
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3349 3350 3351
    input tensor.

    Args:
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
        input(Variable): (LodTensor, default: LoDTensor<float>),
            the unscaled probabilities of variable-length sequences,
            which is a 2-D Tensor with LoD information.
            It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
            sequences' length and num_classes is the true number of classes.
            (not including the blank label).
        label(Variable): (LodTensor, default: LoDTensor<int>), the ground truth
            of variable-length sequence, which is a 2-D Tensor with LoD
            information. It is of the shape [Lg, 1], where Lg is th sum of
            all labels' length.
        blank (int): default 0, the blank label index of Connectionist
            Temporal Classification (CTC) loss, which is in the
            half-opened interval [0, num_classes + 1).
        norm_by_times (bool): default false, whether to normalize
            the gradients by the number of time-step, which is also the
            sequence's length. There is no need to normalize the gradients
            if warpctc layer was follewed by a mean_op.
W
wanghaoshuang 已提交
3369 3370

    Returns:
3371 3372
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3373 3374 3375

    Examples:
        .. code-block:: python
3376 3377 3378 3379
            y = layers.data(
                name='y', shape=[11, 8], dtype='float32', lod_level=1)
            y_predict = layers.data(
                name='y_predict', shape=[11, 1], dtype='float32')
W
wanghaoshuang 已提交
3380 3381 3382
            cost = layers.warpctc(input=y_predict, label=y)

    """
F
fengjiayi 已提交
3383
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
            x.data = [[1, 2], [3, 4],
                      [5, 6], [7, 8], [9, 10], [11, 12]]
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
            out.lod  = [[0, 1, 3]]
            out.data = [[1, 2, 3, 4],
                        [5, 6, 7, 8], [9, 10, 11, 12]]
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3427 3428 3429
        input (Variable): (LodTensor, default: LoDTensor<float>), a 2-D LoDTensor
            with shape being [N, M] where M for dimension.
        new_dim (int): New dimension which the input LoDTensor is reshaped to.
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448

    Returns:
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 20],
                              dtype='float32', lod_level=1)
            x_reshaped = layers.sequence_reshape(input=x, new_dim=10)
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3449 3450


3451 3452 3453 3454
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3455 3456 3457 3458 3459 3460 3461
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
        sample_weight (int): ${sample_weight_comment}
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
    
    Returns:
Y
Yibing Liu 已提交
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3502
    """
Y
Yang Yu 已提交
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3522 3523 3524 3525 3526 3527 3528 3529 3530
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3547
    return cost / (num_neg_samples + 1)
3548 3549


Y
fix ci.  
ying 已提交
3550
def transpose(x, perm, name=None):
Y
ying 已提交
3551 3552 3553 3554 3555 3556 3557 3558 3559
    """
    **transpose Layer**

    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
3560 3561 3562
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
3563 3564 3565 3566 3567 3568 3569 3570

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
3571
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
3572 3573
    """

Y
fix ci.  
ying 已提交
3574
    if len(perm) != len(x.shape):
Y
ying 已提交
3575 3576 3577
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
3578 3579 3580 3581 3582 3583
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
3584 3585

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
3586
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
3587 3588
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
3589
        inputs={'X': [x]},
Y
ying 已提交
3590 3591 3592
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
3593 3594


3595
def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
3596
    """
3597 3598 3599 3600 3601 3602 3603
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

3632 3633 3634
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
3635 3636 3637 3638 3639
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668

    Examples:

    As an example:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
3669 3670 3671
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

            output.dims = {8, 9}

            output.lod = [[0, 4, 8]]

        The simple usage is:

        .. code-block:: python

3692 3693
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
3694 3695

    """
W
wanghaoshuang 已提交
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])

3707
    helper = LayerHelper('im2sequence', **locals())
3708 3709
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
3710
        type='im2sequence',
3711 3712 3713
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
wanghaoshuang 已提交
3714 3715 3716
            'kernels': filter_size,
            'strides': stride,
            'paddings': padding,
3717 3718
        })
    return out
3719 3720


Y
yuyang18 已提交
3721
@templatedoc()
3722
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
3723 3724
    """
    ${comment}
3725 3726

    Args:
Y
yuyang18 已提交
3727
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
3728 3729
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
3730 3731 3732 3733 3734
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
3735
        ${out_comment}.
3736 3737

    Examples:
Y
yuyang18 已提交
3738 3739 3740 3741
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
3754
    return helper.append_activation(out)
3755 3756


Y
yuyang18 已提交
3757
@templatedoc()
3758 3759
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
3760 3761 3762 3763 3764 3765 3766
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
3767 3768

    Args:
Y
yuyang18 已提交
3769 3770
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
3771 3772

    Returns:
Y
yuyang18 已提交
3773
        ${out_comment}.
3774 3775
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
3776 3777 3778 3779 3780 3781

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
3782 3783 3784 3785 3786 3787
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
3788 3789 3790 3791 3792


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
3793

3794 3795 3796 3797
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
3798

3799 3800 3801
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
3802

3803 3804 3805
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
3806

3807
    The equation is as follows:
3808

3809
    1) Hard label (one-hot label, so every sample has exactly one class)
3810

3811 3812 3813 3814
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
3815

3816 3817 3818
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
3819

3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
3841 3842
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
3859 3860
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
3861
    For each instance, it computes the smooth L1 loss element by element first
3862 3863
    and then sums all the losses. So the shape of ouput Variable is 
    [batch_size, 1].
3864

3865 3866
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
3867
            L1 loss op with shape [batch_size, dim1, ..., dimN].
3868
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
3869
            L1 loss op with same shape as :attr:`x`.
3870
        inside_weight (Variable|None):  A tensor with rank at least 2. This
Y
Yibing Liu 已提交
3871 3872 3873
            input is optional and should have same shape with :attr:`x`. If 
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied 
            by this tensor element by element.
3874
        outside_weight (Variable|None): A tensor with rank at least 2. This
Y
Yibing Liu 已提交
3875 3876 3877
            input is optional and should have same shape with :attr:`x`. If 
            provided, the out smooth L1 loss will be multiplied by this tensor 
            element by element.
3878 3879 3880
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float 
           scalar with default value 1.0.

3881
    Returns:
3882
        Variable: The output smooth L1 loss with shape [batch_size, 1].
3883 3884 3885 3886 3887

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
3888 3889
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
3890
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
3891
            out = fluid.layers.smooth_l1(x=fc, y=label)
3892
    """
3893

3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
3909 3910 3911 3912


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
3913
    This layer creates the one-hot representations for input indices.
3914 3915

    Args:
Y
Yibing Liu 已提交
3916 3917
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
3918 3919

    Returns:
Y
Yibing Liu 已提交
3920
        Variable: The one-hot representations of input.
3921 3922

    Examples:
C
caoying03 已提交
3923
        .. code-block:: python
Y
Yibing Liu 已提交
3924 3925 3926
        
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
3927 3928 3929 3930 3931 3932 3933 3934 3935
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
3936 3937


Y
Yu Yang 已提交
3938
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
3939
    """
Y
Yu Yang 已提交
3940
    NOTE: The counter will be automatically increased by 1 every mini-batch
Y
Yu Yang 已提交
3941
    Return the run counter of the main program, which is started with 1.
Y
Yu Yang 已提交
3942 3943 3944 3945 3946 3947

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

3948 3949
    Returns:
        Variable: The global run counter.
Y
Yu Yang 已提交
3950 3951
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
3952 3953
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
3954 3955 3956 3957 3958
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
3959
                value=begin - 1, force_cpu=True))
Y
Yu Yang 已提交
3960 3961 3962
        helper.main_program.global_block().prepend_op(
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
3963 3964
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
3965 3966 3967
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
3968 3969


3970
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
3971
    """
C
caoying03 已提交
3972 3973
    Gives a new shape to the input Tensor without changing its data.

3974 3975 3976 3977 3978
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
3979

3980
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
3981

3982 3983 3984 3985
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

3986
    2. 0 means the actual dimension value is going to be copied from the
3987 3988 3989 3990
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
3991 3992

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
3993
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
3994
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
3995

3996
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
3997 3998
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
3999 4000
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4001
    dimensions.
C
caoying03 已提交
4002

4003
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4004 4005 4006 4007
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4008 4009

    Args:
4010
        x(variable): The input tensor.
C
caoying03 已提交
4011 4012
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4013 4014 4015 4016 4017
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4018 4019 4020 4021
        act (str): The non-linear activation to be applied to output variable.
        inplace(bool): If this flag is set true, a new output tensor is created
                       whose data is copied from input x, otherwise the output
                       shares data with input without copying.
4022
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4023

4024 4025
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4026 4027 4028

    Examples:
        .. code-block:: python
G
guosheng 已提交
4029

4030
            data = fluid.layers.data(
4031
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4032
            reshaped = fluid.layers.reshape(
4033
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4034 4035 4036 4037 4038
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")

4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
4054 4055 4056 4057
    helper = LayerHelper("reshape", **locals())
    reshaped = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reshape",
4058 4059 4060
        inputs={"X": x,
                "Shape": actual_shape}
        if isinstance(actual_shape, Variable) else {"X": x},
C
caoying03 已提交
4061 4062 4063 4064 4065
        attrs={"shape": shape,
               "inplace": inplace},
        outputs={"Out": reshaped})

    return helper.append_activation(reshaped)
4066 4067


Y
yangyaming 已提交
4068
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4069
    """
Y
Yibing Liu 已提交
4070 4071 4072 4073 4074 4075
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be 
    considered as target LoD first, otherwise :attr:`y.data` would be 
    considered as target LoD. If :attr:`y` is not provided, target LoD should 
    be specified by :attr:`target_lod`. If target LoD is specified by 
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,     2,                   5      6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            target_lod: [0, 4, 6]

            then we get a 1-level LoDTensor:
                out.lod =  [[ 0,                   4,            6 ]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,     2,                   5      6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
                y.data = [[0, 2, 6]]
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
                out.lod =  [[ 0,     2,                          6 ]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,      2,                   5     6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
                y.lod =  [[0, 2, 4], [0, 2, 5, 6]]
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
                out.lod =  [[0, 2, 4], [0, 2, 5, 6]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
Y
Yibing Liu 已提交
4128 4129
        y (Variable|None): If provided, output's LoD would be derived 
                           from :attr:`y`.
Y
yangyaming 已提交
4130
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4131
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4132 4133

    Returns:
Y
Yibing Liu 已提交
4134
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4135 4136

    Raises:
Y
Yibing Liu 已提交
4137
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

        Output(i, x, y) = Input(i, x, y) / \left(
        k + \alpha \sum\limits^{\min(C, c + n/2)}_{j = \max(0, c - n/2)}
        (Input(j, x, y))^2 \right)^{\beta}

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4204 4205
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4233 4234 4235 4236


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4237
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4238
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4239

G
guosheng 已提交
4240 4241 4242 4243
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4266
                         The length of :attr:paddings must be
G
guosheng 已提交
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4277

G
guosheng 已提交
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4292 4293 4294 4295 4296 4297 4298 4299 4300


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4301 4302
    called label-smoothing regularization (LSR).

4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
4326
                              be :math:`(1, class\_num)`.
4327 4328
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
4329
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
4357 4358 4359 4360


def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
4361
    Region of interest pooling (also known as RoI pooling) is to perform
4362 4363
        is to perform max pooling on inputs of nonuniform sizes to obtain
        fixed-size feature maps (e.g. 7*7).
4364 4365 4366 4367
    The operator has three steps:
        1. Dividing each region proposal into equal-sized sections with
           the pooled_width and pooled_height
        2. Finding the largest value in each section
4368 4369 4370 4371 4372 4373 4374
        3. Copying these max values to the output buffer

    Args:
        input (Variable): The input for ROI pooling.
        rois (Variable): ROIs (Regions of Interest) to pool over. It should
                         be a 2-D one level LoTensor of shape [num_rois, 4].
                         The layout is [x1, y1, x2, y2], where (x1, y1)
4375 4376
                         is the top left coordinates, and (x2, y2) is the
                         bottom right coordinates. The num_rois is the
4377 4378 4379 4380 4381 4382 4383 4384
                         total number of ROIs in this batch data.
        pooled_height (integer): The pooled output height. Default: 1
        pooled_width (integer): The pooled output width. Default: 1
        spatial_scale (float): Multiplicative spatial scale factor. To
                               translate ROI coords from their input scale
                               to the scale used when pooling. Default: 1.0

    Returns:
4385
        pool_out (Variable): The output is a 4-D tensor of the shape
4386 4387 4388
                             (num_rois, channels, pooled_h, pooled_w).

    Examples:
4389 4390
        .. code-block:: python

4391
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
4437 4438
        .. code-block:: python

W
whs 已提交
4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
    reduce_dim = range(1, len(input.shape))
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
4450 4451


4452 4453 4454 4455 4456
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
4457
    """
4458
    Resize a batch of images.
F
stash  
fengjiayi 已提交
4459

4460 4461 4462 4463 4464
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w), 
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
4465

4466
    Args:
4467
        input (Variable): The input tensor of image resize layer,
4468 4469
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
4470
        out_shape(list|tuple|Variable|None): Output shape of image resize
4471 4472
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
4473
        scale(float|None): The multiplier for the input height or width.
4474 4475 4476
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
4477 4478
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4479 4480
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
4481 4482 4483 4484

    Returns:
        out (Variable): The output is a 4-D tensor of the shape
                        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
4485

4486 4487 4488
    Examples:
        .. code-block:: python

4489
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
4490
    """
4491 4492 4493 4494
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
4495 4496
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
4497 4498
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
4499 4500 4501 4502

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

4503 4504 4505
    out_h = 0
    out_w = 0
    inputs = {"X": input}
4506
    if out_shape is not None:
B
baiyf 已提交
4507 4508 4509
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
4510 4511 4512 4513 4514 4515
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
4516 4517 4518 4519
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

4520 4521
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
4522
        type=resample_methods[resample],
4523
        inputs=inputs,
4524 4525 4526 4527
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
4528 4529


Y
yuyang18 已提交
4530
@templatedoc(op_type="bilinear_interp")
4531 4532
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
4533 4534 4535 4536 4537 4538
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
4539

Y
yuyang18 已提交
4540 4541 4542 4543 4544 4545 4546 4547
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
    Resize a batch of images. The short edge of input images will be 
    resized to the given 'out_short_len'. The long edge of input images 
    will be resized proportionately to make images' length-width ratio 
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
4565
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
4566

4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
    Returns:
        out (Variable): The output is a 4-D tensor of the shape
                        (num_batches, channls, out_h, out_w).
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
4580 4581 4582
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
4583 4584 4585
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
4586 4587 4588 4589 4590 4591 4592
def gather(input, index):
    """
    Output is obtained by gathering entries of the outer-most dimension 
    of X indexed by `index` and concatenate them together.

    .. math::

4593
        Out = X[Index]
W
whs 已提交
4594 4595 4596 4597 4598 4599 4600


    .. code-block:: text


                Given:

4601 4602
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
        input (Variable): The source input with rank>=1. 
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
4620

W
whs 已提交
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}

    """
F
stash  
fengjiayi 已提交
4655 4656 4657
    helper = LayerHelper("random_crop", **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
4658 4659 4660
    if seed is None:
        seed = random.randint(-65536, 65535)

F
stash  
fengjiayi 已提交
4661
    if isinstance(seed, int):
F
fengjiayi 已提交
4662
        seed_value = seed
F
fengjiayi 已提交
4663 4664 4665 4666 4667 4668 4669 4670
        seed = helper.create_tmp_variable(dtype="int64")
        helper.append_op(
            type="fill_constant",
            inputs={},
            outputs={"Out": seed},
            attrs={
                "dtype": seed.dtype,
                "shape": [1],
F
fengjiayi 已提交
4671 4672
                "value": float(seed_value),
                "force_cpu": True
F
fengjiayi 已提交
4673
            })
F
stash  
fengjiayi 已提交
4674 4675
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
F
fengjiayi 已提交
4676
    seed_out = helper.create_tmp_variable(dtype="int64")
F
stash  
fengjiayi 已提交
4677 4678
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
4679
        inputs={"X": x,
F
stash  
fengjiayi 已提交
4680 4681 4682 4683 4684
                "Seed": seed},
        outputs={"Out": out,
                 "SeedOut": seed_out},
        attrs={"shape": shape})
    return out
W
whs 已提交
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734


def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
    semantic image segmentation, which first computes the IOU for each 
    semantic class and then computes the average over classes. 
    IOU is defined as follows: 
    
    .. math::
        
        IOU = true_positive / (true_positive + false_positive + false_negative). 

    The predictions are accumulated in a confusion matrix and mean-IOU 
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
        label (Variable):  A Tensor of ground truth labels with type int32 or int64. 
                           Its shape should be the same as input.

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class. 


    Examples:

        .. code-block:: python

            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
        inputs={"predictions": input,
                "labels": label},
        outputs={
            "out_mean_iou": out_mean_iou,
            "out_wrong": out_wrong,
            "out_correct": out_correct
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct