Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
70351de1
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
70351de1
编写于
10月 22, 2018
作者:
J
JiabinYang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test=develop
上级
5428cb99
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
440 addition
and
0 deletion
+440
-0
paddle/fluid/operators/reorg_op.cc
paddle/fluid/operators/reorg_op.cc
+127
-0
paddle/fluid/operators/reorg_op.cu
paddle/fluid/operators/reorg_op.cu
+29
-0
paddle/fluid/operators/reorg_op.h
paddle/fluid/operators/reorg_op.h
+126
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+52
-0
python/paddle/fluid/op.py
python/paddle/fluid/op.py
+2
-0
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+11
-0
python/paddle/fluid/tests/unittests/test_reorg_op.py
python/paddle/fluid/tests/unittests/test_reorg_op.py
+93
-0
未找到文件。
paddle/fluid/operators/reorg_op.cc
0 → 100644
浏览文件 @
70351de1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/reorg_op.h"
#include <string>
#include <vector>
namespace
paddle
{
namespace
operators
{
class
ReorgOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of reorgOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of reorgOp should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
4
,
"input should be a 4D tensor"
);
auto
stride
=
ctx
->
Attrs
().
Get
<
int64_t
>
(
"stride"
);
PADDLE_ENFORCE_GT
(
stride
,
0
,
"The stride should be Greater than 0"
);
PADDLE_ENFORCE_GT
(
x_dims
[
1
],
0
,
"input channel should be Greater than 0"
);
PADDLE_ENFORCE_GT
(
x_dims
[
2
],
0
,
"input Height should be Greater than 0"
);
PADDLE_ENFORCE_GT
(
x_dims
[
3
],
0
,
"input Width should be Greater than 0"
);
PADDLE_ENFORCE_EQ
(
x_dims
[
1
]
%
(
stride
*
stride
),
0
,
"input channel should be dvisible of the square of reorg stride"
);
PADDLE_ENFORCE_EQ
(
x_dims
[
2
]
%
(
stride
),
0
,
"input Height should be dvisible of the square of reorg stride"
);
PADDLE_ENFORCE_EQ
(
x_dims
[
3
]
%
(
stride
),
0
,
"input Width should be dvisible of the square of reorg stride"
);
VLOG
(
3
)
<<
"reorg operator x.shape="
<<
x_dims
<<
"Attribute stride"
<<
stride
<<
std
::
endl
;
std
::
vector
<
int64_t
>
output_shape
(
4
,
0
);
// [B,C,H,W]
output_shape
[
0
]
=
x_dims
[
0
];
output_shape
[
1
]
=
x_dims
[
1
]
*
stride
*
stride
;
output_shape
[
2
]
=
x_dims
[
2
]
/
stride
;
output_shape
[
3
]
=
x_dims
[
3
]
/
stride
;
auto
out_dims
=
framework
::
make_ddim
(
output_shape
);
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
if
(
x_dims
[
0
]
==
out_dims
[
0
])
{
// Only pass LoD when the first dimension of output and Input(X)
// are the same.
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
}
};
class
ReorgOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor). The input should be a 4D tensor B * C * W * H of reorg "
"operator."
);
AddOutput
(
"Out"
,
"(Tensor), The output should be a 4D tensor B * C2 * W2 * H2 of "
"reorg operator."
);
AddAttr
<
int64_t
>
(
"stride"
,
"(int64_t, default 1) stride used to do reorgnization."
)
.
SetDefault
(
1
)
.
EqualGreaterThan
(
1
);
AddComment
(
R"DOC(
reorg operator used in Yolo v2.
The equation is: C2 = C1/stride * stride, W2 = W1 ∗ stride + offset % stride, H2 = H1 ∗ stride + offset / stride,
Reshape Input(X) into the shape according to Attr(stride). The
data in Input(X) are unchanged.
Examples:
1. Given a 3-D tensor Input(X) with a shape [2048, 26, 26], and the stride is 2, the reorg operator will transform Input(X)
into a 3-D tensor with shape [2048, 13, 13] and leaving Input(X)'s data unchanged.
)DOC"
);
}
};
class
ReorgGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) shouldn't be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) shouldn't be null."
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
reorg
,
ops
::
ReorgOp
,
ops
::
ReorgOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
reorg_grad
,
ops
::
ReorgGradOp
);
REGISTER_OP_CPU_KERNEL
(
reorg
,
ops
::
ReorgKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
ReorgKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
ReorgKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
REGISTER_OP_CPU_KERNEL
(
reorg_grad
,
ops
::
ReorgGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
ReorgGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
ReorgGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
paddle/fluid/operators/reorg_op.cu
0 → 100644
浏览文件 @
70351de1
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reorg_op.h"
namespace
plat
=
paddle
::
platform
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
reorg
,
ops
::
ReorgKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
ReorgKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
ReorgKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
REGISTER_OP_CUDA_KERNEL
(
reorg_grad
,
ops
::
ReorgGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
ReorgGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
ReorgGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
paddle/fluid/operators/reorg_op.h
0 → 100644
浏览文件 @
70351de1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef PADDLE_FLUID_OPERATORS_REORG_OP_H_
#define PADDLE_FLUID_OPERATORS_REORG_OP_H_
#endif // PADDLE_FLUID_OPERATORS_REORG_OP_H_
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/for_range.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
reorg_cpu
{
public:
HOSTDEVICE
reorg_cpu
(
const
T
*
x
,
int64_t
w
,
int64_t
h
,
int64_t
c
,
int64_t
batch
,
int64_t
stride
,
int64_t
forward
,
T
*
out
)
:
x_
(
x
),
w_
(
w
),
h_
(
h
),
c_
(
c
),
batch_
(
batch
),
stride_
(
stride
),
forward_
(
forward
),
out_
(
out
)
{}
HOSTDEVICE
void
operator
()(
int64_t
in_index
)
{
int64_t
out_c
=
c_
/
(
stride_
*
stride_
);
// calculate each dim position with index of tensor
int64_t
b
=
in_index
/
(
c_
*
h_
*
w_
);
int64_t
k
=
(
in_index
%
(
c_
*
h_
*
w_
))
/
(
h_
*
w_
);
int64_t
j
=
((
in_index
%
(
c_
*
h_
*
w_
))
%
(
h_
*
w_
))
/
w_
;
int64_t
i
=
((
in_index
%
(
c_
*
h_
*
w_
))
%
(
h_
*
w_
))
%
w_
;
int64_t
c2
=
k
%
out_c
;
int64_t
offset
=
k
/
out_c
;
int64_t
w2
=
i
*
stride_
+
offset
%
stride_
;
int64_t
h2
=
j
*
stride_
+
offset
/
stride_
;
int64_t
out_index
=
w2
+
w_
*
stride_
*
(
h2
+
h_
*
stride_
*
(
c2
+
out_c
*
b
));
if
(
forward_
)
out_
[
out_index
]
=
x_
[
in_index
];
else
out_
[
in_index
]
=
x_
[
out_index
];
}
private:
const
T
*
x_
;
int64_t
w_
,
h_
,
c_
,
batch_
,
stride_
,
forward_
;
T
*
out_
;
};
template
<
typename
DeviceContext
,
typename
T
>
class
ReorgKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
out
=
context
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
x
=
context
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
stride
=
context
.
Attr
<
int64_t
>
(
"stride"
);
auto
in_dims
=
x
->
dims
();
out
->
mutable_data
(
context
.
GetPlace
(),
x
->
type
());
auto
out_dims
=
out
->
dims
();
auto
B
=
in_dims
[
0
];
auto
C
=
in_dims
[
1
];
auto
H
=
in_dims
[
2
];
auto
W
=
in_dims
[
3
];
platform
::
ForRange
<
DeviceContext
>
for_range
(
context
.
template
device_context
<
DeviceContext
>(),
static_cast
<
size_t
>
(
x
->
numel
()));
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
out_data
=
out
->
data
<
T
>
();
paddle
::
operators
::
reorg_cpu
<
T
>
reorg
(
x_data
,
W
,
H
,
C
,
B
,
stride
,
1
,
out_data
);
for_range
(
reorg
);
out
->
Resize
(
out_dims
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
ReorgGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
d_out
=
context
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_x
=
context
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
stride
=
context
.
Attr
<
int64_t
>
(
"stride"
);
auto
in_dims
=
d_x
->
dims
();
d_x
->
mutable_data
(
context
.
GetPlace
(),
d_out
->
type
());
auto
B
=
in_dims
[
0
];
auto
C
=
in_dims
[
1
];
auto
H
=
in_dims
[
2
];
auto
W
=
in_dims
[
3
];
platform
::
ForRange
<
DeviceContext
>
for_range
(
context
.
template
device_context
<
DeviceContext
>(),
static_cast
<
size_t
>
(
d_x
->
numel
()));
auto
*
dx_data
=
d_x
->
data
<
T
>
();
auto
*
dout_data
=
d_out
->
data
<
T
>
();
paddle
::
operators
::
reorg_cpu
<
T
>
reorg
(
dout_data
,
W
,
H
,
C
,
B
,
stride
,
0
,
dx_data
);
for_range
(
reorg
);
d_x
->
Resize
(
in_dims
);
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/layers/nn.py
浏览文件 @
70351de1
...
...
@@ -150,6 +150,7 @@ __all__ = [
'mul'
,
'sigmoid_cross_entropy_with_logits'
,
'maxout'
,
'reorg'
,
]
...
...
@@ -7084,3 +7085,54 @@ def maxout(x, groups, name=None):
attrs
=
{
"groups"
:
groups
},
outputs
=
{
"Out"
:
out
})
return
out
def
reorg
(
x
,
stride
,
name
=
None
):
"""
Gives a stride to reorg the input tensor
Here are some example:
input is 4D LoDtensor with shape [batch, channel, height, width] and has an attrs stride = 2
reorg will do some math work to reorder the elements of input according to stride to construt
put with shape [batch, channel * stride * stride, height/stride, width/stride]
reorg is used to reorgnization the output of pre_layer and change the tensor to fit the shape
Args:
x(variable): The input tensor.
stride(variable): The stride to reorg
Returns:
Variable: The output tensor.
Raises:
TypeError: stride type must be a long.
Examples:
.. code-block:: python
data = fluid.layers.data(
name='data', shape=[1, 4, 2, 2], dtype='float32')
reorged = fluid.layers.reorged(
x=data, stride=2)
"""
if
not
(
isinstance
(
stride
,
long
)):
raise
ValueError
(
"stride must be a python long"
)
helper
=
LayerHelper
(
"reorg"
,
**
locals
())
if
name
is
None
:
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
helper
.
append_op
(
type
=
"reorg"
,
inputs
=
{
"X"
:
x
},
attrs
=
{
"stride"
:
stride
},
outputs
=
{
"Out"
:
out
})
return
out
python/paddle/fluid/op.py
浏览文件 @
70351de1
...
...
@@ -108,6 +108,8 @@ class OpDescCreationMethod(object):
new_attr
.
i
=
user_defined_attr
elif
attr
.
type
==
framework_pb2
.
FLOAT
:
new_attr
.
f
=
user_defined_attr
elif
attr
.
type
==
framework_pb2
.
LONG
:
new_attr
.
l
=
user_defined_attr
elif
attr
.
type
==
framework_pb2
.
STRING
:
new_attr
.
s
=
user_defined_attr
elif
attr
.
type
==
framework_pb2
.
BOOLEAN
:
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
70351de1
...
...
@@ -240,6 +240,17 @@ class TestBook(unittest.TestCase):
self
.
assertIsNotNone
(
layers
.
softmax
(
hid
))
print
(
str
(
program
))
def
test_reorg
(
self
):
program
=
Program
()
with
program_guard
(
program
):
data
=
layers
.
data
(
name
=
"data"
,
shape
=
[
32
,
9
,
6
,
6
],
append_batch_size
=
False
,
dtype
=
'float32'
)
self
.
assertIsNotNone
(
layers
.
reorg
(
data
,
long
(
3
)))
print
(
str
(
program
))
def
test_sequence_unsqueeze
(
self
):
program
=
Program
()
with
program_guard
(
program
):
...
...
python/paddle/fluid/tests/unittests/test_reorg_op.py
0 → 100644
浏览文件 @
70351de1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
from
op_test
import
OpTest
class
TestReorgOp
(
OpTest
):
@
staticmethod
def
helper
(
in_
,
width
,
height
,
channel
,
batch
,
stride
,
forward
,
out_
):
channel_out
=
channel
/
(
stride
*
stride
)
for
b
in
range
(
batch
):
for
k
in
range
(
channel
):
for
j
in
range
(
height
):
for
i
in
range
(
width
):
in_index
=
i
+
width
*
(
j
+
height
*
(
k
+
channel
*
b
))
channel2
=
k
%
channel_out
offset
=
k
/
channel_out
width2
=
i
*
stride
+
offset
%
stride
height2
=
j
*
stride
+
offset
/
stride
out_index
=
width2
+
width
*
stride
*
(
height2
+
height
*
stride
*
(
channel2
+
channel_out
*
b
))
if
forward
:
out_
[
out_index
]
=
in_
[
in_index
]
else
:
out_
[
in_index
]
=
in_
[
out_index
]
def
setUp
(
self
):
self
.
init_data
()
self
.
op_type
=
"reorg"
self
.
inputs
=
{
"X"
:
self
.
x
}
self
.
helper
(
self
.
x_1d
,
self
.
x
.
shape
[
3
],
self
.
x
.
shape
[
2
],
self
.
x
.
shape
[
1
],
self
.
x
.
shape
[
0
],
self
.
stride
,
self
.
forward
,
self
.
out_1d
)
self
.
out
=
np
.
reshape
(
self
.
out_1d
,
self
.
infered_shape
)
self
.
attrs
=
{
"stride"
:
long
(
self
.
stride
)}
self
.
outputs
=
{
"Out"
:
self
.
out
}
def
init_data
(
self
):
self
.
ori_shape
=
(
32
,
12
,
6
,
6
)
self
.
infered_shape
=
(
32
,
48
,
3
,
3
)
self
.
one_d_len
=
32
*
48
*
3
*
3
self
.
stride
=
2
self
.
x
=
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
'float32'
)
self
.
x_1d
=
np
.
reshape
(
self
.
x
,
self
.
one_d_len
)
self
.
out
=
np
.
zeros
(
self
.
infered_shape
).
astype
(
'float32'
)
self
.
out_1d
=
np
.
reshape
(
self
.
out
,
self
.
one_d_len
)
self
.
forward
=
1
def
test_check_output
(
self
):
place
=
fluid
.
core
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
)
else
fluid
.
core
.
CPUPlace
()
self
.
check_output_with_place
(
place
,
1e-5
,
None
,
False
)
def
test_check_grad
(
self
):
place
=
fluid
.
core
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
)
else
fluid
.
core
.
CPUPlace
()
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
)
class
TestReorgOp2
(
TestReorgOp
):
def
init_data
(
self
):
self
.
ori_shape
=
(
32
,
9
,
6
,
6
)
self
.
infered_shape
=
(
32
,
81
,
2
,
2
)
self
.
one_d_len
=
32
*
81
*
2
*
2
self
.
stride
=
3
self
.
x
=
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
'float32'
)
self
.
x_1d
=
np
.
reshape
(
self
.
x
,
self
.
one_d_len
)
self
.
out
=
np
.
zeros
(
self
.
infered_shape
).
astype
(
'float32'
)
self
.
out_1d
=
np
.
reshape
(
self
.
out
,
self
.
one_d_len
)
self
.
forward
=
1
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录