nn.py 271.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
59
    'sequence_unpad',
X
Xin Pan 已提交
60 61 62 63 64 65 66 67
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
68
    'sequence_slice',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
99
    'roi_align',
X
Xin Pan 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
113
    'margin_rank_loss',
X
Xin Pan 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
S
sneaxiy 已提交
157
    'sequence_reverse',
158
    'affine_channel',
M
minqiyang 已提交
159
    'hash',
D
dengkaipeng 已提交
160
    'grid_sampler',
Y
Yu Yang 已提交
161 162 163 164 165 166 167 168 169
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
170
       is_test=False,
171
       name=None):
Y
Yu Yang 已提交
172
    """
173
    **Fully Connected Layer**
Y
Yu Yang 已提交
174

175 176 177 178 179 180 181 182
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
183
    to the output as well.
C
caoying03 已提交
184

C
caoying03 已提交
185
    This process can be formulated as follows:
186 187 188

    .. math::

189
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
190 191 192

    In the above equation:

C
caoying03 已提交
193 194 195 196
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
197
    * :math:`Act`: The activation function.
C
caoying03 已提交
198
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
199 200

    Args:
R
ranqiu 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
216 217
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
218
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
219
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
220
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
221

222
    Returns:
F
fengjiayi 已提交
223
        Variable: The transformation result.
224 225

    Raises:
C
caoying03 已提交
226
        ValueError: If rank of the input tensor is less than 2.
227 228 229 230

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
231
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
232
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
233
    """
C
caoying03 已提交
234

C
caoying03 已提交
235
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
236 237 238 239

    dtype = helper.input_dtype()

    mul_results = []
240 241
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
242 243 244
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
245

Y
Yu Yang 已提交
246
        w = helper.create_parameter(
247
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
248
        tmp = helper.create_variable_for_type_inference(dtype)
249
        helper.append_op(
250 251 252
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
253
            outputs={"Out": tmp},
M
mozga-intel 已提交
254 255
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
256 257 258 259
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
260
    else:
X
Xin Pan 已提交
261
        pre_bias = helper.create_variable_for_type_inference(dtype)
262
        helper.append_op(
263 264 265
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
266
            attrs={"use_mkldnn": False})
267 268 269 270
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
271 272


273 274 275
def embedding(input,
              size,
              is_sparse=False,
276
              is_distributed=False,
277 278 279
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
280
    """
281 282
    **Embedding Layer**

283
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
284 285
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
286 287 288

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
289 290

    Args:
291 292 293 294 295
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
296
        is_distributed(bool): Whether to run lookup table from remote parameter server.
297 298
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
299
            with zeros whenever lookup encounters it in :attr:`input`. If
300
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
301 302
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
303
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
304

305 306 307
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
308

309 310
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
311

C
chengduoZH 已提交
312
          dict_size = len(dataset.ids)
313
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
314
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
315 316 317 318 319
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
320
    tmp = helper.create_variable_for_type_inference(dtype)
321 322
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
323 324 325 326 327
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
328 329 330 331 332
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
333 334 335
    return tmp


Y
yi.wu 已提交
336
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
337 338
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
339 340
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
341 342 343 344 345 346 347
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
348 349
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
350
    """
Y
yi.wu 已提交
351
    ${comment}
Y
Yibing Liu 已提交
352 353

    Args:
Y
yi.wu 已提交
354 355
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
356 357 358 359 360 361
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
362
        param_attr(ParamAttr|None): The parameter attribute for the learnable
363
                               hidden-hidden weights.
Y
Yibing Liu 已提交
364 365 366

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
367 368
                               - The shape is (D x 4D), where D is the hidden
                                 size.
C
chengduo 已提交
369 370 371 372 373

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
Y
yi.wu 已提交
374
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
375 376 377
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
378

379
                              1. `use_peepholes = False`
Y
yi.wu 已提交
380 381
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
382
                              2. `use_peepholes = True`
Y
yi.wu 已提交
383
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
384
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
385
                                 - The shape is (1 x 7D).
C
chengduo 已提交
386 387 388 389 390

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
yi.wu 已提交
391 392 393 394 395 396 397 398
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
399 400

    Returns:
Y
Yibing Liu 已提交
401 402
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
403

Y
Yibing Liu 已提交
404
    Examples:
Y
Yibing Liu 已提交
405 406
        .. code-block:: python

Y
Yibing Liu 已提交
407 408
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
C
chengduo 已提交
409
                                           bias_attr=False)
Y
Yibing Liu 已提交
410 411
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
412
    """
C
chengduo 已提交
413
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yu Yang 已提交
414
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
415
    size = size // 4
Y
Yu Yang 已提交
416 417 418 419 420 421 422 423
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
424 425 426 427
    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yancey 已提交
428 429 430 431 432 433 434 435 436 437
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
438 439 440

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
441
        inputs=inputs,
Y
Yu Yang 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
458 459 460 461 462 463 464 465 466 467 468
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
469 470
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
471 472 473
    """
    **Dynamic LSTMP Layer**

474 475 476 477 478 479
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
480 481 482 483 484

    The formula is as follows:

    .. math::

485
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
486

487
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
488

489
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
490

491
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
492

493
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
494

495
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
496

497
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
498

Y
Yibing Liu 已提交
499 500 501 502 503 504
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
505
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
506
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
507
          bias vector).
Y
Yibing Liu 已提交
508 509 510
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
511
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
512
    * :math:`h`: The hidden state.
513
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
514 515
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
516
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
517
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
518
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
519 520
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
521 522 523 524

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
525

Y
Yibing Liu 已提交
526 527 528 529 530 531 532 533 534 535 536 537
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
538
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
539 540
                               hidden-hidden weight and projection weight.

541 542
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
543 544
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
545 546
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
547
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
548 549 550 551 552

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
553
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
554 555 556 557 558 559
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
560
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
561 562 563
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
564
                                - The shape is (1 x 7D).
C
chengduo 已提交
565 566 567 568 569

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
570 571 572 573 574 575 576 577 578
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
579
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
580 581
                              default "tanh".
        proj_activation(str): The activation for projection output.
582
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
583 584
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
585 586
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
587 588

    Returns:
589 590 591 592
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
593 594

    Examples:
595

Y
Yibing Liu 已提交
596 597
        .. code-block:: python

598 599 600 601
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
602
            hidden_dim, proj_dim = 512, 256
603
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
604
                                     act=None, bias_attr=None)
605 606 607
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
608 609 610 611
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
612
    """
613

C
chengduo 已提交
614
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
615
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
616
    size = size // 4
Y
Yibing Liu 已提交
617 618 619 620 621 622 623 624 625 626
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
627 628 629 630 631 632
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
661 662 663 664 665 666 667 668 669
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
670
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
671

672
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
673
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
674

G
guosheng 已提交
675 676 677 678 679 680 681 682 683
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
684

G
guosheng 已提交
685
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
686

G
guosheng 已提交
687
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
688 689
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
690 691 692 693
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
694
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
695 696

    Args:
697 698
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
699
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
700
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
701 702
            is the hidden size.
        size(int): The dimension of the gru cell.
703
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
704 705
            hidden-hidden weight matrix. Note:

706
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
707
              :math:`D` is the hidden size.
708
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
709
              The first part are weights of the update gate and reset gate with
710
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
711
              candidate hidden state with shape :math:`(D \\times D)`.
712
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
713
            hidden-hidden bias.
714
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
715 716 717
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
718
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
719
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
720 721 722 723
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
724 725

    Returns:
G
guosheng 已提交
726
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
727
            and sequence length is the same with the input.
728

G
guosheng 已提交
729
    Examples:
730

G
guosheng 已提交
731 732
        .. code-block:: python

733 734 735 736
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
737
            hidden_dim = 512
738
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
739 740 741 742 743 744 745 746 747 748
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
749
    batch_size = input.shape[0]
G
guosheng 已提交
750 751 752
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
753 754 755
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
756

X
Xin Pan 已提交
757 758 759 760
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
779 780 781
def gru_unit(input,
             hidden,
             size,
782 783
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
784
             activation='tanh',
785
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
786
    """
787
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
788

789 790
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
791

792
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
793

794
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
795

796
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
797 798

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
799 800 801
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
802 803
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

804 805
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
806 807 808
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
809 810 811 812 813

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
814 815
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
816 817 818 819
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
820

821 822 823 824 825 826
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
827

828
             # assuming we have x_t_data and prev_hidden of size=10
829
             x_t = fluid.layers.fc(input=x_t_data, size=30)
830 831
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
832 833 834 835 836 837 838 839 840 841 842 843

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
844
    size = size // 3
Y
Yu Yang 已提交
845 846

    # create weight
847 848
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
849

X
Xin Pan 已提交
850 851 852
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
853
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
854
    # create bias
855
    if helper.bias_attr:
Y
Yu Yang 已提交
856 857 858
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
859
        inputs['Bias'] = bias
Y
Yu Yang 已提交
860 861 862

    helper.append_op(
        type='gru_unit',
863
        inputs=inputs,
Y
Yu Yang 已提交
864 865 866 867 868 869
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
870 871
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
872 873 874 875 876
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
877
@templatedoc()
878
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
879 880 881 882 883 884 885
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
886
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
887 888 889 890
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
891 892 893
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
894 895

    """
Y
Yu Yang 已提交
896 897 898 899 900 901
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
902 903 904 905 906 907 908 909
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
925
@templatedoc()
926
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
927 928 929 930 931
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
932

Y
yuyang18 已提交
933
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
934

Y
yuyang18 已提交
935 936 937
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
938
        Variable: ${viterbi_path_comment}
939

Y
yi.wu 已提交
940 941 942 943 944
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
945
    """
Y
Yu Yang 已提交
946 947
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
X
Xin Pan 已提交
948 949
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
950 951 952 953 954 955 956 957 958 959
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
960
@templatedoc()
F
fengjiayi 已提交
961
def cos_sim(X, Y):
Y
Yu Yang 已提交
962
    """
Y
yi.wu 已提交
963 964 965
    ${comment}

    Args:
966 967
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
968

Y
yi.wu 已提交
969
    Returns:
970
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
971
    """
F
fengjiayi 已提交
972
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
973 974 975
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
976 977 978 979 980 981 982 983 984 985
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
986 987 988 989 990
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
991
            dropout_implementation="downgrade_in_infer"):
992 993 994 995 996
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
997
    training. The dropout operator randomly sets (according to the given dropout
998 999 1000 1001
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1002 1003
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1004 1005 1006 1007 1008 1009 1010
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                           dropout op can be removed from the program. 
                                           the program will be efficient
                                        
P
phlrain 已提交
1025

1026 1027

    Returns:
1028
        Variable: A tensor variable is the shape with `x`.
1029 1030

    Examples:
1031

1032 1033
        .. code-block:: python

1034 1035
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1036 1037
    """

F
fengjiayi 已提交
1038
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1039 1040 1041
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1042 1043 1044 1045

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1046 1047 1048 1049 1050
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1051 1052 1053 1054
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1055 1056
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1057
        })
1058 1059 1060
    return out


1061
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1062
    """
Y
Yibing Liu 已提交
1063 1064
    **Cross Entropy Layer**

1065 1066 1067
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1068 1069

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1070
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1071

Y
Yibing Liu 已提交
1072
        .. math::
Y
yangyaming 已提交
1073

Y
Yibing Liu 已提交
1074 1075 1076
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1077 1078
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1079 1080 1081 1082 1083

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1084
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1085 1086 1087
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1088 1089
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1090
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1091

Y
Yibing Liu 已提交
1092
    Args:
Y
yangyaming 已提交
1093
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1094 1095 1096 1097
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1098
        label (Variable|list): the ground truth which is a 2-D tensor. When
1099 1100 1101 1102
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1103
        soft_label (bool): a flag indicating whether to
1104
                                           interpretate the given labels as soft
1105
                                           labels. Default: `False`.
M
minqiyang 已提交
1106 1107
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1108
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1109 1110 1111 1112 1113

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1114 1115 1116 1117 1118
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1119 1120 1121 1122 1123 1124

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1125
    """
F
fengjiayi 已提交
1126
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1127
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1128 1129 1130 1131 1132
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1133 1134
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1135 1136 1137
    return out


F
fengjiayi 已提交
1138
def square_error_cost(input, label):
Y
Yu Yang 已提交
1139
    """
1140 1141
    **Square error cost layer**

1142 1143
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1144

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1158 1159
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1160 1161

    Returns:
G
guosheng 已提交
1162
        Variable: The tensor variable storing the element-wise squared error \
1163
                  difference of input and label.
1164 1165 1166 1167 1168 1169 1170 1171

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1172
    """
F
fengjiayi 已提交
1173
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1174
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1175 1176 1177 1178 1179 1180
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1181
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1182
    helper.append_op(
F
fengjiayi 已提交
1183 1184
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1185 1186 1187
    return square_out


Y
yi.wu 已提交
1188
@templatedoc()
Y
Yu Yang 已提交
1189 1190 1191 1192
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1193
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1194
    """
Y
yi.wu 已提交
1195
    **Chunk Evaluator**
Y
yi.wu 已提交
1196

Y
yangyaming 已提交
1197
    This function computes and outputs the precision, recall and
1198
    F1-score of chunk detection.
Y
yi.wu 已提交
1199

Y
yi.wu 已提交
1200 1201 1202 1203 1204 1205 1206 1207
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1208

Y
yi.wu 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1234

Y
yi.wu 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1259
    Args:
1260 1261 1262 1263 1264
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1265

Y
yi.wu 已提交
1266
    Returns:
Y
update  
yi.wu 已提交
1267 1268 1269
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1270

Y
yi.wu 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1283
    """
F
fengjiayi 已提交
1284
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1285 1286

    # prepare output
X
Xin Pan 已提交
1287 1288 1289 1290 1291 1292 1293
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1294 1295 1296 1297 1298 1299 1300 1301

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1302 1303 1304 1305
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1306 1307 1308
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1309 1310
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1311
        })
1312 1313
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1314 1315


1316
@templatedoc()
Y
Yu Yang 已提交
1317 1318 1319 1320 1321 1322 1323
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1324 1325
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1326 1327 1328 1329
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1330 1331 1332 1333 1334 1335 1336

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1350

1351 1352
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1353 1354 1355 1356 1357 1358 1359
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1360
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1371
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1372 1373 1374 1375 1376 1377
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1378
def sequence_softmax(input, use_cudnn=False, name=None):
1379 1380 1381
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1382
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1399 1400 1401
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1402

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1414 1415
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1416
    softmax_out = helper.create_variable_for_type_inference(dtype)
1417 1418 1419 1420 1421 1422 1423 1424
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1425
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1426
    """
1427
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1428
    has the same shape as the input.
Q
qiaolongfei 已提交
1429

1430 1431 1432 1433 1434 1435
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1436
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1437 1438 1439 1440 1441 1442 1443

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1444
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1445 1446 1447 1448 1449 1450 1451 1452

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1453 1454 1455
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1468 1469
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1470
    softmax_out = helper.create_variable_for_type_inference(dtype)
1471 1472 1473 1474 1475 1476 1477 1478
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1479 1480 1481
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1482 1483
           stride=1,
           padding=0,
1484
           dilation=1,
Y
Yu Yang 已提交
1485 1486 1487
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1488
           use_cudnn=True,
1489 1490
           act=None,
           name=None):
Y
Yu Yang 已提交
1491
    """
C
chengduoZH 已提交
1492
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1493 1494
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1495
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1496 1497 1498 1499 1500 1501 1502
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1503 1504 1505
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1506

1507
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1508

C
chengduoZH 已提交
1509 1510
    .. math::

C
refine  
chengduoZH 已提交
1511
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1512

T
tensor-tang 已提交
1513
    Where:
C
chengduoZH 已提交
1514

1515 1516 1517 1518 1519
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1520
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1521 1522 1523

    Example:

1524 1525
        - Input:

W
weixing02 已提交
1526
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1527

W
weixing02 已提交
1528
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1529

1530
        - Output:
T
tensor-tang 已提交
1531

W
weixing02 已提交
1532
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1533

C
chengduoZH 已提交
1534
        Where
1535 1536

        .. math::
C
chengduoZH 已提交
1537

W
weixing02 已提交
1538 1539
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1540 1541

    Args:
1542
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1543
        num_filters(int): The number of filter. It is as same as the output
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1572 1573
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1574 1575
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1576
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1577
            will be named automatically. Default: None
C
chengduoZH 已提交
1578 1579

    Returns:
G
guosheng 已提交
1580
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1581 1582
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1583
    Raises:
1584 1585
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1586

C
chengduoZH 已提交
1587 1588 1589
    Examples:
        .. code-block:: python

1590 1591
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1592 1593 1594
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1595
    assert param_attr is not False, "param_attr should not be False here."
1596
    l_type = 'conv2d'
X
xzl 已提交
1597 1598
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1599
        l_type = 'depthwise_conv2d'
1600 1601 1602 1603

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1604 1605 1606 1607 1608
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1609
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1610

C
chengduoZH 已提交
1611 1612 1613
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1614
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1615

C
chengduoZH 已提交
1616 1617
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1618 1619

    input_shape = input.shape
M
minqiyang 已提交
1620
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1621 1622

    def _get_default_param_initializer():
C
chengduo 已提交
1623 1624
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1625 1626 1627 1628 1629 1630 1631 1632
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1633
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1634 1635

    helper.append_op(
1636
        type=l_type,
Y
Yu Yang 已提交
1637 1638 1639 1640 1641
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1642 1643 1644
        attrs={
            'strides': stride,
            'paddings': padding,
1645
            'dilations': dilation,
C
chengduoZH 已提交
1646
            'groups': groups,
1647
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1648
            'use_mkldnn': False
C
chengduoZH 已提交
1649
        })
Y
Yu Yang 已提交
1650 1651 1652 1653 1654 1655

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1673 1674 1675 1676 1677 1678
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1679 1680 1681 1682 1683 1684 1685 1686 1687

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1688 1689
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1690 1691 1692
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1693
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1719
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1720 1721
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1722
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1723 1724
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1725
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1726 1727
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1728
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1729 1730 1731 1732 1733 1734
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1745 1746
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1747 1748
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1749
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1750
            will be named automatically. Default: None.
C
chengduoZH 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1763 1764
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1765 1766 1767
    """

    l_type = 'conv3d'
C
chengduo 已提交
1768
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1779
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1793 1794 1795
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1796 1797 1798 1799 1800 1801 1802 1803
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1804
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1819
            'use_mkldnn': False
C
chengduoZH 已提交
1820 1821
        })

1822
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1823 1824 1825 1826

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1827
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1828
    """
Y
yangyaming 已提交
1829 1830 1831
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1843
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1844 1845 1846 1847 1848
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1849
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1850 1851 1852 1853 1854 1855 1856

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1857 1858
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1859

L
Luo Tao 已提交
1860 1861
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1862
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1863 1864 1865 1866 1867 1868 1869 1870
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1871

Y
yangyaming 已提交
1872
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1873 1874 1875 1876 1877
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1878 1879
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1880
    """
F
fengjiayi 已提交
1881
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1882
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1883 1884
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1885 1886 1887 1888 1889 1890 1891 1892

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1893 1894 1895 1896 1897
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1898 1899 1900
    return pool_out


C
add doc  
chengduoZH 已提交
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1920
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1921 1922 1923 1924 1925
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1926
def sequence_first_step(input):
L
Luo Tao 已提交
1927
    """
L
Luo Tao 已提交
1928
    This function gets the first step of sequence.
L
Luo Tao 已提交
1929 1930 1931 1932

    .. code-block:: text

       x is a 1-level LoDTensor:
1933
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1934 1935 1936 1937 1938
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1939
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1940
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1941

L
Luo Tao 已提交
1942 1943 1944 1945 1946 1947 1948 1949 1950
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1951

Y
yangyaming 已提交
1952
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1953 1954 1955
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1956 1957 1958
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1959
def sequence_last_step(input):
L
Luo Tao 已提交
1960
    """
L
Luo Tao 已提交
1961
    This function gets the last step of sequence.
L
Luo Tao 已提交
1962 1963 1964 1965

    .. code-block:: text

       x is a 1-level LoDTensor:
1966
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1967 1968 1969 1970 1971
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1972
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1973
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1974

L
Luo Tao 已提交
1975 1976 1977 1978 1979 1980 1981 1982 1983
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1984

Y
yangyaming 已提交
1985
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1986 1987 1988
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1989 1990 1991
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
1992 1993 1994 1995
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

1996
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
1997 1998 1999 2000 2001
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2002

Y
Yibing Liu 已提交
2003 2004
	- Case:

2005
            Given the input Variable **input**:
2006

2007 2008 2009
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2010

2011
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2012

2013
            the output Variable will be
2014

2015 2016 2017
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2018 2019

    NOTE: The first dimension size of **input**, **offset** and **length**
2020
          should be equal. The **offset** should start from 0.
2021

Y
Yibing Liu 已提交
2022
    Args:
2023
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2024
                         sequences.
Y
Yibing Liu 已提交
2025 2026 2027 2028 2029 2030
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2031
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2042
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2043 2044 2045 2046
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2047
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2062
@templatedoc()
Y
Yu Yang 已提交
2063
def pool2d(input,
C
chengduoZH 已提交
2064 2065
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2066 2067
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2068
           global_pooling=False,
C
chengduoZH 已提交
2069
           use_cudnn=True,
2070
           ceil_mode=False,
C
caoying03 已提交
2071
           name=None):
Y
Yu Yang 已提交
2072
    """
F
fengjiayi 已提交
2073
    ${comment}
2074 2075

    Args:
2076 2077 2078
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2079
                          feature, and W is the width of the feature.
2080
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2081
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2082
        pool_type: ${pooling_type_comment}
2083 2084
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
2085 2086 2087
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
2088
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2089 2090
                        layer will be named automatically.

2091
    Returns:
F
fengjiayi 已提交
2092
        Variable: The pooling result.
F
fengjiayi 已提交
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2106 2107 2108 2109
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2110
                            global_pooling=False)
Y
Yu Yang 已提交
2111 2112 2113 2114 2115
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2116

C
chengduoZH 已提交
2117 2118 2119 2120 2121
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2122 2123 2124 2125
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2126 2127
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2128

C
Add doc  
chengduoZH 已提交
2129
    l_type = 'pool2d'
2130 2131

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2132
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2133
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2134 2135

    helper.append_op(
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2147
            "use_mkldnn": False
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2164
    pooling configurations mentioned in input parameters.
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2177

2178
    Returns:
2179
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2180 2181 2182 2183 2184
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2185

C
chengduoZH 已提交
2186 2187 2188 2189 2190
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2191 2192 2193
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2194

C
chengduoZH 已提交
2195 2196
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2197

2198 2199
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2200
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2201
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2202 2203

    helper.append_op(
2204
        type=l_type,
Y
Yu Yang 已提交
2205 2206 2207 2208 2209 2210 2211
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2212
            "paddings": pool_padding,
2213
            "use_cudnn": use_cudnn,
2214
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2215
            "use_mkldnn": False
Y
Yu Yang 已提交
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2228
               data_layout='NCHW',
Y
Yang Yang 已提交
2229
               in_place=False,
2230 2231
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2232
               moving_variance_name=None,
2233 2234
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2235
    """
Q
qiaolongfei 已提交
2236 2237 2238 2239
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2240

Q
qiaolongfei 已提交
2241
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2242

Q
qiaolongfei 已提交
2243 2244
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2245 2246 2247
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2260 2261

    Args:
Q
qiaolongfei 已提交
2262
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2263 2264 2265 2266
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2267 2268 2269 2270 2271 2272 2273 2274
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2275
        data_layout(string, default NCHW): NCHW|NHWC
2276
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2277 2278 2279 2280
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2281
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2282
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2283 2284

    Returns:
Q
qiaolongfei 已提交
2285
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2286 2287 2288 2289 2290 2291 2292

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2293
    """
C
chengduo 已提交
2294
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2317
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2318

2319 2320
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2321 2322 2323
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2324
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2325
        shape=param_shape,
2326 2327 2328 2329 2330 2331 2332
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2333
            trainable=False,
W
wanghaoshuang 已提交
2334
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2335
        shape=param_shape,
2336 2337
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2338 2339 2340 2341 2342 2343

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2344 2345 2346 2347
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2348

X
Xin Pan 已提交
2349 2350
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2368 2369 2370 2371
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2372
            "use_mkldnn": False,
2373
            "fuse_with_relu": fuse_with_relu
2374
        })
Y
Yu Yang 已提交
2375 2376 2377 2378

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2379
@templatedoc()
G
guosheng 已提交
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2390
    ${comment}
G
guosheng 已提交
2391 2392 2393

    The formula is as follows:

Y
yuyang18 已提交
2394
    ..  math::
G
guosheng 已提交
2395 2396 2397 2398 2399 2400 2401

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2402 2403 2404 2405 2406 2407 2408 2409
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2410

G
guosheng 已提交
2411 2412
    Args:
        input(Variable): The input tensor variable.
2413
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2414
            normalization. Default True.
2415
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2416 2417
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2418
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2419
            Default 1.
2420
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2421
            division by zero. Default 1e-05.
G
guosheng 已提交
2422
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2423 2424
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2425 2426
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2427
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2428 2429
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2430
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2431
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2432
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2433 2434 2435
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2436 2437

    Returns:
Y
yuyang18 已提交
2438
        ${y_comment}
G
guosheng 已提交
2439 2440 2441

    Examples:

Y
yuyang18 已提交
2442 2443 2444
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2460
    if shift:
G
guosheng 已提交
2461 2462 2463 2464 2465 2466
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2467 2468 2469 2470 2471
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2487 2488 2489 2490
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2491 2492 2493
                     padding=0,
                     stride=1,
                     dilation=1,
2494
                     groups=None,
C
caoying03 已提交
2495
                     param_attr=None,
2496
                     bias_attr=None,
C
chengduoZH 已提交
2497
                     use_cudnn=True,
2498
                     act=None,
C
caoying03 已提交
2499
                     name=None):
Y
Yu Yang 已提交
2500
    """
2501 2502 2503 2504 2505 2506 2507 2508
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2509 2510
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2511 2512 2513
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2514 2515 2516 2517 2518

    For each input :math:`X`, the equation is:

    .. math::

2519
        Out = \sigma (W \\ast X + b)
2520

2521
    Where:
2522 2523 2524

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2525 2526 2527 2528
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2529

2530 2531 2532 2533
    Example:

        - Input:

2534
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2535

2536
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2537 2538 2539

        - Output:

2540
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2541 2542

        Where
Y
Yu Yang 已提交
2543

2544 2545
        .. math::

2546 2547 2548 2549
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2550 2551

    Args:
2552 2553 2554 2555
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2556 2557 2558 2559
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2588
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2589 2590 2591
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2592
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2593
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2594 2595

    Returns:
2596
        Variable: The tensor variable storing the convolution transpose result.
2597 2598

    Raises:
2599 2600
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2601 2602 2603 2604

    Examples:
       .. code-block:: python

2605 2606
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2607
    """
C
chengduo 已提交
2608
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2609 2610 2611 2612 2613 2614 2615 2616
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2617 2618 2619
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2620 2621 2622
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2623

C
chengduoZH 已提交
2624 2625
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2626

Y
Yu Yang 已提交
2627 2628 2629 2630 2631
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2632

Y
Yu Yang 已提交
2633 2634
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2635

C
chengduoZH 已提交
2636
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2637
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2638
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2639
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2640
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2641 2642 2643
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2644

2645 2646 2647 2648 2649 2650 2651
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2652
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2653
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2654

Y
Yu Yang 已提交
2655 2656 2657
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2658
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2659
    helper.append_op(
2660
        type=op_type,
Y
Yu Yang 已提交
2661 2662
        inputs={'Input': [input],
                'Filter': [img_filter]},
2663
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2664
        attrs={
2665
            'output_size': output_size,
2666 2667 2668 2669 2670
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2671 2672
        })

2673 2674 2675
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2676 2677


2678
def conv3d_transpose(input,
Y
Yu Yang 已提交
2679 2680 2681
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2682 2683 2684
                     padding=0,
                     stride=1,
                     dilation=1,
2685
                     groups=None,
C
caoying03 已提交
2686
                     param_attr=None,
2687
                     bias_attr=None,
C
chengduoZH 已提交
2688
                     use_cudnn=True,
2689
                     act=None,
C
caoying03 已提交
2690
                     name=None):
Y
Yu Yang 已提交
2691
    """
2692
    **Convlution3D transpose layer**
2693

2694
    The convolution3D transpose layer calculates the output based on the input,
2695
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2696 2697 2698 2699 2700 2701
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2702 2703 2704
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2705 2706 2707 2708 2709

    For each input :math:`X`, the equation is:

    .. math::

2710
        Out = \sigma (W \\ast X + b)
2711 2712 2713

    In the above equation:

2714 2715
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2716 2717 2718 2719
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2720

2721 2722 2723 2724
    Example:

        - Input:

2725
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2726

2727
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2728 2729 2730

        - Output:

2731
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2732 2733

        Where
Y
Yu Yang 已提交
2734

2735 2736
        .. math::

2737 2738 2739
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2740 2741

    Args:
2742
        input(Variable): The input image with [N, C, D, H, W] format.
2743 2744 2745
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2746
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2747 2748
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2749
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2750 2751 2752
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2753 2754
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2755
        stride(int|tuple): The stride size. If stride is a tuple, it must
2756 2757
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2758
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2759 2760 2761
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2762 2763 2764 2765 2766
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2767 2768 2769 2770 2771 2772 2773 2774 2775
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2776 2777
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2778 2779
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2780 2781
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2782 2783

    Returns:
2784
        Variable: The tensor variable storing the convolution transpose result.
2785 2786

    Raises:
2787 2788
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2789 2790 2791 2792

    Examples:
       .. code-block:: python

2793 2794
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2795
    """
C
chengduo 已提交
2796
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2797 2798
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2799
    if not isinstance(input, Variable):
2800
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2801 2802
    input_channel = input.shape[1]

2803 2804 2805
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2806

C
chengduoZH 已提交
2807 2808 2809
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2810 2811 2812 2813 2814 2815
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2816 2817 2818
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2819

2820
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2821
                         padding[0] - 1) // dilation[0] + 1
2822
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2823
                         padding[1] - 1) // dilation[1] + 1
2824
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2825
                         padding[2] - 1) // dilation[2] + 1
2826
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2827
    else:
2828 2829
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2830

2831
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2832
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2833 2834 2835
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2836
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2837
    helper.append_op(
2838
        type=l_type,
Y
Yu Yang 已提交
2839 2840
        inputs={'Input': [input],
                'Filter': [img_filter]},
2841
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2842 2843 2844 2845
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2846
            'groups': groups,
C
chengduoZH 已提交
2847 2848
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2849

2850 2851
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2852
    return out
Y
yangyaming 已提交
2853 2854


Y
yangyaming 已提交
2855
def sequence_expand(x, y, ref_level=-1, name=None):
2856
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2857 2858 2859 2860
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2861 2862 2863 2864 2865

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2866
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2867
                x.data = [[a], [b], [c], [d]]
2868 2869 2870
                x.dims = [4, 1]

            y is a LoDTensor:
2871 2872
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2873

Y
yangyaming 已提交
2874
            ref_level: 0
2875

Y
yangyaming 已提交
2876
            then output is a 1-level LoDTensor:
2877
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2878
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2879 2880 2881 2882
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2883
                x.data = [[a], [b], [c]]
2884 2885 2886
                x.dims = [3, 1]

            y is a LoDTensor:
2887
                y.lod = [[2, 0, 3]]
2888

Y
yangyaming 已提交
2889
            ref_level: -1
2890

Y
yangyaming 已提交
2891 2892 2893
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2894 2895 2896
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2897 2898
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2899
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2900
                        will be named automatically.
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2911
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2912
    """
Y
yangyaming 已提交
2913
    helper = LayerHelper('sequence_expand', input=x, **locals())
2914
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2915
    tmp = helper.create_variable_for_type_inference(dtype)
2916
    helper.append_op(
Y
yangyaming 已提交
2917 2918 2919 2920 2921
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2922
    return tmp
2923 2924


C
chengduo 已提交
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2981
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
2982 2983 2984 2985 2986 2987 2988 2989
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2990
@templatedoc()
2991
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
2992 2993 2994 2995 2996
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
2997 2998 2999
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3000
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3001 3002 3003 3004
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3005 3006 3007
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3008

F
fengjiayi 已提交
3009
    Returns:
M
minqiyang 已提交
3010
        Variable: The padded sequence batch and the original lengths before
3011
                  padding. All sequences has the same length.
M
minqiyang 已提交
3012

F
fengjiayi 已提交
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3026 3027
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3028 3029 3030 3031

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3032 3033 3034 3035 3036 3037
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3038 3039
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3040
        attrs={'padded_length': maxlen})
3041
    return out, length
F
fengjiayi 已提交
3042 3043


3044
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3045
    """
3046
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3047

3048 3049
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3050 3051 3052 3053 3054 3055 3056 3057 3058
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3059 3060 3061
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3062
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3063 3064 3065 3066 3067 3068

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3069
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3070 3071 3072 3073 3074 3075

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3076 3077
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3092
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3104 3105 3106 3107 3108 3109 3110 3111 3112
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3113 3114
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3115 3116 3117

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3118 3119

    This layer does the search in beams for one time step. Specifically, it
3120 3121 3122 3123 3124 3125
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3126

3127 3128 3129 3130 3131 3132 3133 3134
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3135

3136
    Args:
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3162

3163
    Returns:
3164 3165
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3166 3167 3168 3169

    Examples:
        .. code-block:: python

3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3187 3188 3189 3190
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3191 3192 3193
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3194 3195 3196 3197 3198

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3199
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3217 3218 3219 3220 3221 3222 3223
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3224

3225 3226 3227 3228 3229 3230 3231 3232 3233
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3234

3235 3236 3237 3238 3239 3240
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3241

3242 3243 3244 3245 3246 3247 3248 3249
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3250 3251
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3267 3268 3269 3270
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3271
              param_attr=None,
C
caoying03 已提交
3272 3273
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3274 3275 3276 3277
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3278
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3279

3280
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3281

3282
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3283

3284
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3285 3286 3287

            h_t & = o_t tanh(c_t)

3288 3289 3290 3291 3292 3293
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3294 3295 3296

        .. math::

3297
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3298 3299 3300 3301 3302 3303 3304 3305

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3306
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3307 3308

    Args:
Y
yangyaming 已提交
3309 3310 3311 3312 3313 3314
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3315
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3328 3329
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3330 3331

    Returns:
Y
yangyaming 已提交
3332
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3333 3334

    Raises:
3335 3336 3337 3338
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3339 3340 3341 3342 3343 3344

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3345
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3346
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3347
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3364
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3365 3366 3367 3368
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3369 3370
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3371 3372 3373
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3374
    size = cell_t_prev.shape[1]
3375
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3376 3377
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3378
                param_attr=param_attr,
3379
                bias_attr=bias_attr)
Y
yangyaming 已提交
3380
    dtype = x_t.dtype
X
Xin Pan 已提交
3381 3382
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3383 3384 3385 3386 3387 3388 3389 3390 3391

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3392
    return h, c
G
guosheng 已提交
3393 3394


C
caoying03 已提交
3395
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3396
    """
Y
yangyaming 已提交
3397
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3398 3399 3400

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3401
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3402 3403
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3404 3405
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3406
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3407
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3408
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3409 3410
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3411 3412 3413

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3414

G
guosheng 已提交
3415 3416 3417 3418 3419 3420
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3421
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3422 3423 3424 3425
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3426 3427 3428 3429

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3430
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3431 3432 3433
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3434 3435
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3436
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3437 3438
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3439 3440 3441 3442 3443
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3444
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3445 3446 3447 3448
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3449 3450


C
caoying03 已提交
3451
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3452
    """
Y
Yibing Liu 已提交
3453
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3454 3455 3456

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3457 3458 3459
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3460
            must be in the range :math:`[-rank(input), rank(input))`. If
3461
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3462
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3463 3464
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3465
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3466
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3467
                       will be named automatically.
G
guosheng 已提交
3468 3469

    Returns:
Y
Yibing Liu 已提交
3470
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3471

G
guosheng 已提交
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3482 3483
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3484 3485 3486 3487 3488 3489 3490

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3491 3492
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3493
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3494 3495
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3496 3497 3498 3499 3500
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3501
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3502 3503 3504 3505
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3506 3507


C
caoying03 已提交
3508
def reduce_max(input, dim=None, keep_dim=False, name=None):
3509
    """
Y
yangyaming 已提交
3510
    Computes the maximum of tensor elements over the given dimension.
3511 3512 3513

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3514
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3515 3516 3517
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3518
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3519 3520
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3521
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3522 3523
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3524 3525 3526

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3527

3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3539 3540 3541 3542 3543 3544 3545

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3546 3547
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3548
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3549 3550
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3551 3552 3553 3554 3555
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3556
            'dim': dim if dim != None else [0],
3557 3558 3559 3560 3561 3562
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3563
def reduce_min(input, dim=None, keep_dim=False, name=None):
3564
    """
Y
yangyaming 已提交
3565
    Computes the minimum of tensor elements over the given dimension.
3566 3567 3568

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3569
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3570 3571 3572
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3573
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3574 3575
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3576
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3577 3578
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3579 3580 3581

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3582

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3594 3595 3596 3597 3598 3599 3600

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3601 3602
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3603
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3604 3605
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3606 3607 3608 3609 3610
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3611
            'dim': dim if dim != None else [0],
3612 3613 3614 3615
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3616 3617


3618 3619 3620 3621 3622 3623
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3624
        dim (list|int|None): The dimensions along which the product is performed. If
3625 3626
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3627 3628
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3629 3630 3631
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3632
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3633
            layer will be named automatically.
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3648
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3649
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3650 3651 3652 3653 3654 3655 3656

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3657 3658
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3659
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3660 3661
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3662 3663 3664 3665 3666
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3667
            'dim': dim if dim != None else [0],
3668 3669 3670 3671 3672 3673
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3674
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3675
    """
C
caoying03 已提交
3676
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3677 3678 3679

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3680 3681 3682 3683 3684
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3685
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3686
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3687
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3688 3689
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3690 3691

    Returns:
D
dzhwinter 已提交
3692
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3693 3694 3695 3696 3697 3698 3699 3700 3701

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3702 3703
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3719
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3733 3734 3735 3736 3737 3738 3739 3740 3741


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3742
    .. math::
3743 3744

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3745 3746 3747 3748 3749

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3750
        x(Variable|list): The input tensor to l2_normalize layer.
3751
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3752 3753
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3754
        epsilon(float): The epsilon value is used to avoid division by zero, \
3755
            the defalut value is 1e-10.
3756
        name(str|None): A name for this layer(optional). If set None, the layer \
3757
            will be named automatically.
C
caoying03 已提交
3758 3759

    Returns:
3760
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3761 3762

    Examples:
3763

C
caoying03 已提交
3764 3765
        .. code-block:: python

3766 3767 3768 3769
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3770 3771
    """

F
fengjiayi 已提交
3772 3773
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3774 3775
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3776 3777
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3778
    helper.append_op(
3779 3780 3781 3782
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3783
        attrs={
3784 3785
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3786 3787
        })
    return out
3788 3789


S
sneaxiy 已提交
3790
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3791
    """
Y
ying 已提交
3792 3793 3794 3795
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3796

C
chengduoZH 已提交
3797
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3798
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3799

3800 3801 3802 3803 3804
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3805
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3806

C
chengduoZH 已提交
3807
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3808
      performs in the following way.
G
guosheng 已提交
3809

3810
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3811
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3812
        last two dimensions and a batched matrix multiply supporting broadcast
3813
        applies on the two tensors.
G
guosheng 已提交
3814

Y
ying 已提交
3815 3816
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3817
    removed after matrix multiplication.
G
guosheng 已提交
3818 3819 3820

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3821 3822 3823
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3824
        alpha (float): The scale of output. Default 1.0.
3825
        name(str|None): A name for this layer(optional). If set None, the layer
3826
            will be named automatically.
G
guosheng 已提交
3827 3828

    Returns:
3829
        Variable: The product Tensor variable.
G
guosheng 已提交
3830

G
guosheng 已提交
3831 3832 3833
    Examples:
        .. code-block:: python

3834
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3835 3836
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3837

3838 3839
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3840

3841 3842
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3843

3844 3845
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3846 3847 3848 3849

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3850 3851
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3852

Y
ying 已提交
3853
            # x: [M], y: [N]
3854
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3855
    """
Y
ying 已提交
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3868
            y_shape = y_shape + [1]
Y
ying 已提交
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3885
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
3886
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
3887
    helper.append_op(
3888 3889 3890 3891
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3892 3893 3894
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3895
            'alpha': float(alpha),
S
sneaxiy 已提交
3896
        })
3897
    return out
3898 3899


3900
def topk(input, k, name=None):
Q
qingqing01 已提交
3901 3902 3903 3904
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3905
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3906 3907 3908 3909 3910 3911
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3933 3934 3935
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3936
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3937
                 of input.
3938
        name(str|None): A name for this layer(optional). If set None, the layer
3939
                       will be named automatically.
F
fengjiayi 已提交
3940
                       Default: None
Q
qingqing01 已提交
3941 3942

    Returns:
3943 3944 3945
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3946
        within the last dimension of input.
Q
qingqing01 已提交
3947

F
fengjiayi 已提交
3948 3949
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3950 3951 3952 3953 3954 3955 3956

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
3957 3958
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3970
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3971
    """
Y
ying 已提交
3972 3973 3974 3975 3976 3977 3978 3979 3980
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3981

Y
ying 已提交
3982
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3983

3984
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3985 3986
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3987
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3988

3989
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3990 3991
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3992

3993 3994 3995
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3996
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3997
                          the length of reference string.
3998
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3999
                                     calculating edit distance.
4000
        name (str): The name of this layer. It is optional.
4001

W
wanghaoshuang 已提交
4002
    Returns:
W
wanghaoshuang 已提交
4003
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4004 4005 4006 4007 4008

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
4009
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
4010
            cost = fluid.layers.edit_distance(input=x,label=y)
4011
    """
4012
    helper = LayerHelper("edit_distance", **locals())
4013

4014
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4015
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4016 4017
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4018 4019 4020 4021 4022

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4023
            attrs={"tokens": ignored_tokens})
4024 4025 4026 4027 4028
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4029
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4030
            attrs={"tokens": ignored_tokens})
4031 4032
        label = erased_label

4033
    # edit distance op
X
Xin Pan 已提交
4034 4035
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4036 4037 4038 4039
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4040 4041
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4042 4043
        attrs={"normalized": normalized})

4044
    return edit_distance_out, sequence_num
4045 4046 4047 4048 4049


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4050

Y
ying 已提交
4051 4052 4053 4054
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4072
        input.lod = [[4, 4]]
4073 4074 4075 4076 4077 4078 4079

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4080
        output.lod = [[2, 1]]
4081 4082 4083

    Args:

Y
ying 已提交
4084 4085 4086 4087 4088 4089 4090 4091 4092
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4093
        name (str): The name of this layer. It is optional.
4094 4095

    Returns:
4096
        Variable: CTC greedy decode result. If all the sequences in result were
4097
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4098 4099 4100 4101 4102

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4103

4104
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4105
    """
4106
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4107
    _, topk_indices = topk(input, k=1)
4108 4109

    # ctc align op
X
Xin Pan 已提交
4110
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4111 4112 4113
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4114
        outputs={"Output": [ctc_out]},
4115 4116
        attrs={"merge_repeated": True,
               "blank": blank})
4117
    return ctc_out
4118 4119


F
fengjiayi 已提交
4120
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
4121
    """
4122 4123
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4124
    to compute Connectionist Temporal Classification (CTC) loss.
4125 4126
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4127 4128 4129
    input tensor.

    Args:
4130
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4131 4132 4133 4134
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4135
       label (Variable): The ground truth of variable-length sequence,
4136 4137 4138
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4139 4140
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4141 4142 4143
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4144
         follewed by a mean_op.
W
wanghaoshuang 已提交
4145 4146

    Returns:
4147 4148
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4149 4150

    Examples:
4151

W
wanghaoshuang 已提交
4152
        .. code-block:: python
4153

4154 4155 4156
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4157 4158

    """
F
fengjiayi 已提交
4159
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4160 4161
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4162 4163 4164 4165 4166 4167 4168 4169 4170
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4186 4187 4188
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4189 4190 4191 4192 4193
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4194

4195
            out.lod  = [[0, 1, 3]]
4196 4197 4198 4199

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4200 4201 4202 4203 4204 4205 4206
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4207 4208 4209

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4210 4211

    Returns:
4212

4213 4214 4215 4216 4217
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4218
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4219
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4220 4221
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4222
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4223 4224 4225 4226 4227 4228
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4229 4230


4231 4232 4233 4234
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4235 4236 4237 4238 4239 4240
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4241 4242
        num_neg_samples=None,
        name=None):
4243 4244 4245 4246 4247 4248 4249
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4250 4251
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4252
            sample is 1.0.
C
chengduo 已提交
4253 4254 4255 4256 4257 4258 4259 4260 4261
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4262
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4263 4264
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4265

4266
    Returns:
Y
Yibing Liu 已提交
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4294
    """
Y
Yang Yu 已提交
4295 4296 4297
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4298 4299

    dim = input.shape[1]
Y
Yang Yu 已提交
4300 4301 4302 4303 4304 4305
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4319 4320 4321
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4322

Y
Yang Yu 已提交
4323 4324 4325 4326 4327 4328 4329 4330 4331
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4332 4333 4334

    helper.append_op(
        type='nce',
C
chengduo 已提交
4335
        inputs=inputs,
Y
Yang Yu 已提交
4336 4337 4338 4339 4340 4341
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4342
    return cost / (num_neg_samples + 1)
4343 4344


C
chengduo 已提交
4345 4346 4347 4348 4349 4350
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4351 4352
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4353
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4354 4355 4356 4357 4358 4359 4360 4361 4362
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4363

W
weixing02 已提交
4364
    Args:
M
minqiyang 已提交
4365
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4366 4367 4368 4369 4370
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4382 4383 4384 4385 4386 4387 4388 4389

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4390 4391 4392
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4393 4394 4395 4396
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4397 4398
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4399 4400
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4401
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4402 4403 4404 4405 4406
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4407 4408 4409 4410 4411 4412 4413 4414
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4415 4416
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4417
        inputs=inputs,
W
weixing02 已提交
4418 4419 4420 4421 4422 4423
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4424
def transpose(x, perm, name=None):
Y
ying 已提交
4425 4426 4427 4428 4429 4430 4431
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4432 4433 4434
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4435 4436 4437 4438 4439 4440 4441 4442

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4443
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4444 4445
    """

Y
fix ci.  
ying 已提交
4446
    if len(perm) != len(x.shape):
Y
ying 已提交
4447 4448 4449
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4450 4451 4452 4453 4454 4455
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4456 4457

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4458 4459
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4460
    helper.append_op(
4461
        type='transpose2',
Y
fix ci.  
ying 已提交
4462
        inputs={'X': [x]},
4463 4464
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4465 4466
        attrs={'axis': perm})
    return out
4467 4468


4469 4470 4471 4472 4473 4474 4475
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4476
    """
4477 4478 4479 4480 4481 4482 4483
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4512 4513 4514 4515 4516 4517 4518 4519 4520
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4521 4522 4523
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4524 4525 4526 4527 4528
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4556 4557 4558
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4571
            output.dims = {8, 8}
4572

4573
            output.lod = [[4, 4]]
4574

D
dzhwinter 已提交
4575
     Examples:
4576 4577 4578

        .. code-block:: python

4579 4580
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4581 4582

    """
W
wanghaoshuang 已提交
4583 4584 4585 4586 4587 4588 4589 4590 4591 4592

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4593 4594 4595 4596 4597 4598 4599
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4600
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4601
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4602
    helper.append_op(
4603
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4604
    return out
4605 4606


Y
yuyang18 已提交
4607
@templatedoc()
4608
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4609 4610
    """
    ${comment}
4611 4612

    Args:
Y
yuyang18 已提交
4613
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4614 4615
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4616 4617 4618 4619 4620
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4621
        ${out_comment}.
4622 4623

    Examples:
Y
yuyang18 已提交
4624 4625 4626 4627
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4628 4629 4630 4631 4632 4633
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4634
    out = helper.create_variable_for_type_inference(dtype)
4635 4636 4637 4638 4639
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4640
    return helper.append_activation(out)
4641 4642


Y
yuyang18 已提交
4643
@templatedoc()
4644 4645
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4646 4647 4648 4649 4650 4651 4652
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4653 4654

    Args:
Y
yuyang18 已提交
4655 4656
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4657 4658

    Returns:
Y
yuyang18 已提交
4659
        ${out_comment}.
4660 4661
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4662 4663 4664 4665 4666

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4667
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4668 4669 4670 4671 4672 4673
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4674 4675


4676 4677 4678 4679
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4680 4681
    """
    **Softmax With Cross Entropy Operator.**
4682

4683 4684 4685 4686
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4687

4688 4689 4690
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4691

4692 4693 4694
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4695

4696
    The equation is as follows:
4697

4698
    1) Hard label (one-hot label, so every sample has exactly one class)
4699

4700 4701 4702 4703
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4704

4705 4706 4707
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4708

4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4721 4722
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4723 4724
                            if soft_label is set to False. Default: -100

4725 4726 4727 4728 4729 4730 4731 4732 4733
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4734 4735
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4736 4737
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
4738 4739
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
4740 4741 4742 4743 4744 4745
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4746 4747
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4748 4749 4750 4751 4752
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4753 4754
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4755
    For each instance, it computes the smooth L1 loss element by element first
4756
    and then sums all the losses. So the shape of ouput Variable is
4757
    [batch_size, 1].
4758

4759 4760
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4761
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4762
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4763
            L1 loss op with same shape as :attr:`x`.
4764
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4765 4766
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4767
            by this tensor element by element.
4768
        outside_weight (Variable|None): A tensor with rank at least 2. This
4769 4770
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4771
            element by element.
4772
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4773 4774
           scalar with default value 1.0.

4775
    Returns:
4776
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4777 4778 4779 4780 4781

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4782 4783
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4784
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4785
            out = fluid.layers.smooth_l1(x=fc, y=label)
4786
    """
4787

4788
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
4789 4790
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4803 4804 4805 4806


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4807
    This layer creates the one-hot representations for input indices.
4808 4809

    Args:
Y
Yibing Liu 已提交
4810 4811
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4812 4813

    Returns:
Y
Yibing Liu 已提交
4814
        Variable: The one-hot representations of input.
4815 4816

    Examples:
C
caoying03 已提交
4817
        .. code-block:: python
4818

Y
Yibing Liu 已提交
4819 4820
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4821 4822
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
4823
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4824 4825 4826 4827 4828 4829
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4830 4831


Y
Yu Yang 已提交
4832
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4833
    """
Y
yi.wu 已提交
4834 4835 4836
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4837 4838 4839 4840 4841 4842

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4843 4844
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4845 4846 4847 4848 4849 4850

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4851 4852
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4853 4854
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4855 4856 4857 4858 4859
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4860
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4861
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4862 4863
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4864 4865
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4866 4867 4868
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4869 4870


4871
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
4872
    """
C
caoying03 已提交
4873 4874
    Gives a new shape to the input Tensor without changing its data.

4875 4876 4877 4878 4879
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4880

4881
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4882

4883 4884 4885 4886
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4887
    2. 0 means the actual dimension value is going to be copied from the
4888 4889 4890 4891
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4892 4893

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4894
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4895
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4896

4897
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4898 4899
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4900 4901
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4902
    dimensions.
C
caoying03 已提交
4903

4904
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4905 4906 4907 4908
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4909 4910

    Args:
4911
        x(variable): The input tensor.
C
caoying03 已提交
4912 4913
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4914 4915 4916 4917 4918
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
4919 4920
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
4921 4922 4923 4924 4925 4926 4927
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
4928
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4929

4930
    Returns:
G
guosheng 已提交
4931 4932 4933 4934
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
4935

X
Xin Pan 已提交
4936 4937 4938
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4939 4940
    Examples:
        .. code-block:: python
G
guosheng 已提交
4941

4942
            data = fluid.layers.data(
4943
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4944
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
4945
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
4946 4947 4948
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4949
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4950 4951 4952 4953 4954
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4955

4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4971
    helper = LayerHelper("reshape2", **locals())
4972 4973
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
4974
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4975
    helper.append_op(
4976
        type="reshape2",
X
Xin Pan 已提交
4977
        inputs=inputs,
D
dzhwinter 已提交
4978
        attrs={"shape": shape},
4979 4980
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4981

D
dzhwinter 已提交
4982
    return helper.append_activation(out)
4983

4984

4985
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4986
    """
M
minqiyang 已提交
4987 4988 4989
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
4990
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
4991

Y
Yibing Liu 已提交
4992 4993
    Examples:
    Case 1:
M
minqiyang 已提交
4994
      Given
Y
Yibing Liu 已提交
4995 4996 4997 4998 4999 5000 5001 5002
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5003
        and
Y
Yibing Liu 已提交
5004 5005 5006
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5007

Y
Yibing Liu 已提交
5008
    Args:
5009
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5010
        axes (list): List of integers, indicating the dimensions to be squeezed.
5011
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5012 5013 5014 5015 5016 5017 5018 5019

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5020
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5021 5022
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5023 5024
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5025
    helper.append_op(
5026
        type="squeeze2",
5027
        inputs={"X": input},
Y
Yibing Liu 已提交
5028
        attrs={"axes": axes},
5029 5030
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5031

5032 5033 5034
    return out


5035
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5036
    """
M
minqiyang 已提交
5037 5038 5039
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5040

M
minqiyang 已提交
5041 5042
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5043
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5044

Y
Yibing Liu 已提交
5045
    Args:
5046
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5047
        axes (list): List of integers, indicating the dimensions to be inserted.
5048
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5049 5050 5051 5052 5053 5054 5055 5056

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5057
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5058 5059
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5060 5061
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5062
    helper.append_op(
5063
        type="unsqueeze2",
5064
        inputs={"X": input},
Y
Yibing Liu 已提交
5065
        attrs={"axes": axes},
5066 5067
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5068

5069 5070
    return out

5071

Y
yangyaming 已提交
5072
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5073
    """
Y
Yibing Liu 已提交
5074
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5075 5076 5077 5078
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5079
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5080 5081 5082 5083 5084 5085

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5086
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5087 5088 5089
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5090
            target_lod: [4, 2]
Y
yangyaming 已提交
5091 5092

            then we get a 1-level LoDTensor:
5093
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5094 5095 5096 5097 5098 5099
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5100
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5101 5102 5103 5104
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5105
                y.data = [[2, 4]]
Y
yangyaming 已提交
5106 5107 5108
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5109
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5110 5111 5112 5113 5114 5115
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5116
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5117 5118 5119 5120
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5121
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5122 5123 5124 5125
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5126
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5127 5128 5129 5130 5131
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5132
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5133
                           from :attr:`y`.
Y
yangyaming 已提交
5134
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5135
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5136 5137

    Returns:
Y
Yibing Liu 已提交
5138
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5139 5140

    Raises:
Y
Yibing Liu 已提交
5141
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5142 5143 5144 5145 5146 5147 5148 5149 5150

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5151
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5177
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5206 5207
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5220 5221 5222
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5236 5237 5238 5239


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5240
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5241
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5242

G
guosheng 已提交
5243 5244 5245 5246
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5269
                         The length of :attr:paddings must be
G
guosheng 已提交
5270 5271 5272 5273 5274 5275 5276 5277 5278 5279
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5280

G
guosheng 已提交
5281 5282 5283 5284 5285 5286
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5287
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5288 5289 5290 5291 5292 5293 5294
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5295 5296


C
chengduo 已提交
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5367
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5368 5369 5370 5371 5372 5373 5374 5375 5376
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5377 5378 5379 5380 5381 5382 5383
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5384 5385
    called label-smoothing regularization (LSR).

5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5409
                              be :math:`(1, class\_num)`.
5410 5411
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5412
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5432
    smooth_label = helper.create_variable_for_type_inference(dtype)
5433 5434 5435 5436 5437 5438 5439
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5440 5441


Y
yi.wu 已提交
5442
@templatedoc()
5443 5444
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5445
    ${comment}
5446 5447

    Args:
Y
yi.wu 已提交
5448 5449
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5450 5451 5452
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5453 5454

    Returns:
Y
update  
yi.wu 已提交
5455
        Variable: ${out_comment}.
5456 5457

    Examples:
5458 5459
        .. code-block:: python

5460
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5461 5462 5463
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5464 5465
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5478 5479


J
jerrywgz 已提交
5480 5481 5482 5483 5484 5485
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5486 5487
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5504 5505 5506
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5507 5508 5509 5510 5511 5512
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5513
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5554 5555
        .. code-block:: python

W
whs 已提交
5556 5557 5558 5559
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5560
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5561 5562 5563 5564 5565 5566
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5567 5568


5569 5570 5571 5572 5573
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5574
    """
Q
qiaolongfei 已提交
5575
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5576

5577
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5578 5579 5580
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5581

5582
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5583

5584
    Args:
5585
        input (Variable): The input tensor of image resize layer,
5586 5587
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5588
        out_shape(list|tuple|Variable|None): Output shape of image resize
5589 5590
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5591
        scale(float|None): The multiplier for the input height or width.
5592 5593 5594
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5595 5596
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5597 5598
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5599 5600

    Returns:
Q
update  
qiaolongfei 已提交
5601 5602
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5603

5604 5605 5606
    Examples:
        .. code-block:: python

5607
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5608
    """
5609 5610 5611 5612
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5613 5614
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5615 5616
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5617 5618 5619 5620

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5621 5622 5623
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5624
    if out_shape is not None:
B
baiyf 已提交
5625 5626 5627
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5628 5629 5630 5631 5632 5633
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5634 5635 5636 5637
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

X
Xin Pan 已提交
5638
    out = helper.create_variable_for_type_inference(dtype)
5639
    helper.append_op(
5640
        type=resample_methods[resample],
5641
        inputs=inputs,
5642 5643 5644 5645
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5646 5647


Y
yuyang18 已提交
5648
@templatedoc(op_type="bilinear_interp")
5649 5650
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5651 5652 5653 5654 5655 5656
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5657

Y
yuyang18 已提交
5658 5659 5660 5661 5662 5663 5664 5665
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5666 5667 5668 5669 5670 5671 5672
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5673 5674 5675
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5676 5677 5678 5679 5680 5681 5682
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5683
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5684

5685
    Returns:
Q
update  
qiaolongfei 已提交
5686
        Variable: The output is a 4-D tensor of the shape
5687
        (num_batches, channls, out_h, out_w).
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5698 5699 5700
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5701 5702 5703
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5704 5705
def gather(input, index):
    """
Q
qiaolongfei 已提交
5706 5707
    **Gather Layer**

5708
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5709 5710 5711 5712
    of X indexed by `index` and concatenate them together.

    .. math::

5713
        Out = X[Index]
W
whs 已提交
5714 5715 5716 5717 5718 5719 5720


    .. code-block:: text


                Given:

5721 5722
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5723 5724 5725 5726 5727 5728 5729 5730 5731 5732
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5733
        input (Variable): The source input with rank>=1.
W
whs 已提交
5734 5735 5736 5737 5738 5739
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5740

W
whs 已提交
5741 5742 5743 5744 5745 5746
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5747
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
5748 5749 5750 5751 5752 5753 5754 5755
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5787
    out = helper.create_variable_for_type_inference(dtype)
5788 5789 5790 5791 5792 5793 5794 5795 5796
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5847
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
5848 5849 5850 5851 5852 5853 5854 5855 5856
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5870

5871 5872 5873
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5874
    """
F
stash  
fengjiayi 已提交
5875
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5876
    dtype = x.dtype
X
Xin Pan 已提交
5877
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
5878
    if seed is None:
5879
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5880
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5881
    if isinstance(seed, int):
F
fengjiayi 已提交
5882 5883 5884 5885 5886
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5887 5888 5889 5890
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5891
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5892 5893
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5894 5895
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5896
    return out
W
whs 已提交
5897 5898


5899
def log(x, name=None):
W
wanghaoshuang 已提交
5900 5901 5902 5903 5904
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5905
        Out = \\ln(x)
W
wanghaoshuang 已提交
5906 5907

    Args:
5908
        x (Variable): Input tensor.
5909 5910
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5911 5912 5913 5914 5915 5916 5917 5918

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5919
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5920 5921
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5922
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5923
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5924
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5925 5926 5927
    return out


5928
def relu(x, name=None):
W
wanghaoshuang 已提交
5929 5930
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5931
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5932 5933 5934 5935
    the tensor elementwise.

    .. math::

5936
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5937 5938

    Args:
5939
        x (Variable): The input tensor.
5940 5941
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5942 5943 5944 5945 5946 5947 5948 5949

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5950
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5951 5952
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5953
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5954
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5955
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5956
    return out
5957 5958


W
whs 已提交
5959 5960 5961
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5962 5963 5964 5965
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5966
    .. math::
5967 5968

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5969

5970
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5971 5972 5973 5974 5975
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5976
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5977
                           Its shape should be the same as input.
5978
        num_classes (int): The possible number of labels.
W
whs 已提交
5979 5980 5981 5982

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5983
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5984 5985 5986 5987

    Examples:

        .. code-block:: python
5988

W
whs 已提交
5989 5990 5991 5992
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5993 5994 5995
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
5996 5997
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5998 5999
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6000
        outputs={
W
whs 已提交
6001 6002 6003
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6004 6005 6006
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6081
                    isinstance(shape, Variable)):
6082 6083 6084 6085 6086
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6087
    out = helper.create_variable_for_type_inference(x.dtype)
6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6105 6106 6107 6108 6109 6110 6111 6112 6113 6114


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6115

6116 6117
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6118

6119 6120 6121 6122
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6123

6124 6125 6126 6127 6128
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6129 6130 6131

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6167
    out = helper.create_variable_for_type_inference("float32")
6168 6169 6170 6171 6172 6173 6174 6175

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6176 6177


M
minqiyang 已提交
6178 6179
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6180
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6181
    which compares left score and right score passed in.
M
minqiyang 已提交
6182
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6183 6184 6185 6186 6187 6188

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6189
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6190 6191
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6192
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6193 6194 6195
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6196
       Variable: The ranking loss.
M
minqiyang 已提交
6197
    Raises:
M
minqiyang 已提交
6198
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6199 6200 6201 6202 6203 6204 6205
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6206
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6207 6208 6209 6210 6211 6212
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6213 6214
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6240

W
whs 已提交
6241 6242
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6243

W
whs 已提交
6244
      Case 0:
M
minqiyang 已提交
6245

W
whs 已提交
6246 6247 6248
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6249

W
whs 已提交
6250 6251 6252
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6253

W
whs 已提交
6254
      Case 1:
M
minqiyang 已提交
6255

W
whs 已提交
6256 6257
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6258

W
whs 已提交
6259 6260 6261
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6262

W
whs 已提交
6263
      Case 2:
M
minqiyang 已提交
6264

W
whs 已提交
6265 6266
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6267

W
whs 已提交
6268 6269 6270
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6271 6272


W
whs 已提交
6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6299
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6328
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6351
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6374
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6398
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6423
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
6447
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6448 6449 6450 6451 6452 6453 6454 6455
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6470
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6471
                        will be named automatically.
J
jerrywgz 已提交
6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
6499
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6500 6501 6502 6503 6504 6505 6506 6507 6508
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
6523
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
6546
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
6568
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6569 6570 6571 6572 6573 6574 6575 6576
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6590

6591 6592 6593 6594 6595 6596 6597 6598 6599 6600
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6601 6602
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6618
        ValueError: If axis is not in range [0, rank(x)].
6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
6635 6636
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
6637
    helper.append_op(
6638
        type='flatten2',
6639
        inputs={"X": x},
6640 6641
        outputs={'Out': out,
                 'XShape': x_shape},
6642 6643
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6644 6645


C
chenweihang 已提交
6646
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6647
    """
C
chenweihang 已提交
6648
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6649
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6650 6651
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6652

C
chenweihang 已提交
6653 6654 6655 6656
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6657
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6658 6659 6660 6661 6662 6663
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6664
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6665 6666 6667
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6668 6669 6670
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
6682 6683
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6684 6685 6686 6687 6688 6689
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
6690
    return out
6691

6692

S
sneaxiy 已提交
6693 6694 6695 6696 6697 6698 6699 6700 6701
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6702

S
sneaxiy 已提交
6703
    .. math::
6704

S
sneaxiy 已提交
6705 6706 6707
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6708
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6709 6710 6711 6712
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6713 6714 6715
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6716 6717
    Returns:
        Variable: The output sequence mask.
6718

S
sneaxiy 已提交
6719 6720
    """

Q
qingqing01 已提交
6721
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6722
    if name is None:
X
Xin Pan 已提交
6723
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
6724
    else:
X
Xin Pan 已提交
6725
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
6726

Q
qingqing01 已提交
6727 6728 6729
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6730 6731
        outputs={'Y': out},
        attrs={
6732
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6733 6734 6735
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6736 6737


X
Xin Pan 已提交
6738
def stack(x, axis=0):
S
sneaxiy 已提交
6739 6740 6741 6742
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6743 6744 6745 6746 6747 6748 6749

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6750
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6751
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6752 6753

    Args:
6754
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6755
        axis (int|None): The axis along which all inputs are stacked.
6756

S
sneaxiy 已提交
6757 6758
    Returns:
        Variable: The stacked variable.
6759

S
sneaxiy 已提交
6760 6761
    """

X
Xin Pan 已提交
6762 6763 6764 6765 6766 6767
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
6768
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
6769
    helper.append_op(
S
sneaxiy 已提交
6770 6771
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6772

X
Xin Pan 已提交
6773
    return out
D
dzhwinter 已提交
6774 6775 6776 6777 6778 6779 6780


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6781

D
dzhwinter 已提交
6782 6783 6784
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6785
    raised.
D
dzhwinter 已提交
6786 6787

    Args:
M
minqiyang 已提交
6788
        x (Variable): Input variable.
D
dzhwinter 已提交
6789 6790
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6791

D
dzhwinter 已提交
6792 6793
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6794

D
dzhwinter 已提交
6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
6806
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
6807 6808 6809 6810 6811 6812 6813 6814

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6827

W
whs 已提交
6828 6829 6830 6831
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6832

W
whs 已提交
6833
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6834

W
whs 已提交
6835
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6836

W
whs 已提交
6837 6838 6839 6840
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6841

W
whs 已提交
6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6858
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6859 6860 6861 6862 6863 6864
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
6865 6866


G
fix  
gongweibao 已提交
6867 6868 6869
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6870
@templatedoc()
G
fix  
gongweibao 已提交
6871 6872 6873 6874 6875 6876 6877 6878 6879
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6880
    ${comment}
G
fix  
gongweibao 已提交
6881 6882

    Args:
G
gongweibao 已提交
6883 6884 6885
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6886
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6887 6888 6889
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6890 6891
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6892
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6893 6894 6895 6896

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
6897
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6914 6915


G
gongweibao 已提交
6916
@templatedoc()
X
Xin Pan 已提交
6917
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6918
    """
G
gongweibao 已提交
6919
    ${comment}
G
fix  
gongweibao 已提交
6920 6921

    Args:
G
gongweibao 已提交
6922 6923 6924 6925
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6926 6927 6928
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
6929
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6930 6931 6932 6933

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
6934
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6935 6936 6937 6938 6939 6940 6941 6942 6943 6944
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
6945
            'use_mkldnn': False
G
fix  
gongweibao 已提交
6946 6947 6948 6949 6950
        })

    return out


G
gongweibao 已提交
6951
@templatedoc()
G
fix  
gongweibao 已提交
6952
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6953
    """
G
gongweibao 已提交
6954
    ${comment}
G
fix  
gongweibao 已提交
6955 6956

    Args:
G
gongweibao 已提交
6957 6958 6959 6960
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6961
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6962 6963

    Returns:
G
gongweibao 已提交
6964
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6965 6966 6967 6968

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
6969
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
6981
@templatedoc()
G
fix  
gongweibao 已提交
6982 6983 6984 6985 6986 6987 6988 6989 6990
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
6991
    ${comment}
G
fix  
gongweibao 已提交
6992 6993

    Args:
G
gongweibao 已提交
6994 6995
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
6996
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6997 6998 6999 7000
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7001
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7002 7003

    Returns:
G
gongweibao 已提交
7004
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7005 7006 7007
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7008
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7027
@templatedoc()
X
Xin Pan 已提交
7028
def sum(x):
G
fix  
gongweibao 已提交
7029
    """
G
gongweibao 已提交
7030
    ${comment}
G
fix  
gongweibao 已提交
7031 7032

    Args:
G
gongweibao 已提交
7033
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7034 7035

    Returns:
G
gongweibao 已提交
7036
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7037 7038 7039
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7040 7041
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7042 7043 7044 7045
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7046
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7047 7048 7049 7050

    return out


G
gongweibao 已提交
7051
@templatedoc()
G
fix  
gongweibao 已提交
7052 7053
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7054
    ${comment}
G
fix  
gongweibao 已提交
7055 7056

    Args:
G
gongweibao 已提交
7057 7058 7059 7060
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7061 7062

    Returns:
G
gongweibao 已提交
7063
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7064 7065 7066 7067

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7068 7069
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7081
@templatedoc()
G
fix  
gongweibao 已提交
7082 7083
def shape(input):
    """
G
gongweibao 已提交
7084
    ${comment}
G
fix  
gongweibao 已提交
7085 7086

    Args:
G
gongweibao 已提交
7087
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7088 7089

    Returns:
G
gongweibao 已提交
7090
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7091 7092 7093 7094

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7095 7096
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7097
    helper.append_op(
G
fix  
gongweibao 已提交
7098
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7099 7100

    return out
G
merge  
gongweibao 已提交
7101 7102


S
sneaxiy 已提交
7103 7104 7105 7106 7107 7108 7109 7110
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7111 7112
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7113
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7114 7115 7116
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7117

S
sneaxiy 已提交
7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7129
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7130 7131 7132 7133 7134 7135 7136 7137
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7138
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7139
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7140 7141 7142 7143 7144 7145

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7146
    if name is None:
X
Xin Pan 已提交
7147
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7148 7149 7150
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7151 7152 7153 7154 7155 7156 7157 7158 7159 7160

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7161
    return helper.append_activation(out)
S
sneaxiy 已提交
7162 7163


X
Xin Pan 已提交
7164
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7165 7166 7167
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7168
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7169 7170 7171
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7172
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7173 7174 7175
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7176
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7177 7178 7179
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7180
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7181 7182 7183
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7184
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7185 7186 7187
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7188
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7200 7201
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7202
        ])
M
minqiyang 已提交
7203 7204


7205
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7206 7207
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7208 7209
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7210 7211 7212

    if out is None:
        if name is None:
X
Xin Pan 已提交
7213
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7229
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7248
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7267
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7286
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
X
Xin Pan 已提交
7321
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
X
Xin Pan 已提交
7353
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
7383
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
7413
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7414 7415 7416 7417 7418 7419 7420 7421 7422
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7423 7424
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
7447
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
7477
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7478 7479 7480 7481 7482 7483 7484 7485 7486 7487
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
7488 7489


S
sneaxiy 已提交
7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503
@templatedoc()
def sequence_reverse(x, name=None):
    """ 
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
7504
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7505 7506 7507 7508 7509 7510 7511 7512 7513 7514
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
7515 7516


7517 7518 7519 7520 7521 7522
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
7523

7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
7543
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
7556 7557


M
minqiyang 已提交
7558 7559 7560 7561 7562 7563 7564
def hash(input, hash_size, num_hash=1, name=None):
    """
    hash the input
     Args:
        input (Variable): The input variable which is a one-hot word.
        hash_size (int): The space size for hash algorithm.
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
7565
        name (str, default None): The name of this layer.
M
minqiyang 已提交
7566 7567 7568 7569
     Returns:
        Variable: The hash result variable which is a LoDTensor.
     Examples:
        .. code-block:: python
M
minqiyang 已提交
7570
            word_dict = paddle.dataset.imdb.word_dict()
M
minqiyang 已提交
7571 7572 7573 7574
            x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
            out = fluid.layers.hash(input=x, len(word_dict))
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
7575 7576
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
7577 7578 7579 7580 7581 7582 7583
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
D
dengkaipeng 已提交
7584 7585 7586


@templatedoc()
7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631
def grid_sampler(x, grid, name=None):
    """
    It sample input X by grid gennerate by AffineGridOp. The grid of shape
    [N, H, W, 2] is the concatenation of (x, y) coordinates with shape 
    [N, H, W] each, with x indexing the 4th-D(W) of input feature map and y to 
    indexng the 3rd-D(H), finally results is the bilinear interpolation value
    of 4 nearest corner points.

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear 
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
7632 7633

    Args:
7634 7635 7636
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
7637 7638

    Returns:
7639
        out(Variable): Output data indices by grid from x of shape [N, C, H, W].
D
dengkaipeng 已提交
7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x, 'Grid': grid}

    helper.apppend_op(
            type='grid_sampler',
            inputs=ipts,
7655
            outputs={'Output', out})
D
dengkaipeng 已提交
7656

7657
    return out
D
dengkaipeng 已提交
7658