Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
980499fa
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
980499fa
编写于
6月 14, 2018
作者:
F
fengjiayi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix errors
上级
29bf727e
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
92 addition
and
34 deletion
+92
-34
paddle/fluid/operators/pool_op.cc
paddle/fluid/operators/pool_op.cc
+11
-4
python/paddle/fluid/layers/control_flow.py
python/paddle/fluid/layers/control_flow.py
+12
-11
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+26
-0
python/paddle/fluid/layers/learning_rate_scheduler.py
python/paddle/fluid/layers/learning_rate_scheduler.py
+2
-2
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+37
-14
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+4
-3
未找到文件。
paddle/fluid/operators/pool_op.cc
浏览文件 @
980499fa
...
...
@@ -204,8 +204,6 @@ void Pool2dOpMaker::Make() {
// TODO(dzhwinter): need to registered layout transform function
AddComment
(
R"DOC(
Pool2d Operator.
The pooling2d operation calculates the output based on
the input, pooling_type and ksize, strides, paddings parameters.
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
...
...
@@ -215,18 +213,27 @@ These two elements represent height and width, respectively.
The input(X) size and output(Out) size may be different.
Example:
Input:
X shape: $(N, C, H_{in}, W_{in})$
Output:
Out shape: $(N, C, H_{out}, W_{out})$
For ceil_mode = false:
$$
H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1
$$
$$
W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
$$
For ceil_mode = true:
$$
H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\
H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1
$$
$$
W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1
$$
...
...
python/paddle/fluid/layers/control_flow.py
浏览文件 @
980499fa
...
...
@@ -753,9 +753,9 @@ def lod_tensor_to_array(x, table):
This function split a LoDTesnor to a LoDTensorArray according to its LoD
information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
Paddle. The generated LoDTensorArray of this function can be further read
or written by
'read_from_array()' and 'write_to_array()'
operators. However,
this function is generally an internal component of Paddle
'DynamicRNN'
.
Paddle
Paddle
. The generated LoDTensorArray of this function can be further read
or written by
`read_from_array()` and `write_to_array()`
operators. However,
this function is generally an internal component of Paddle
Paddle `DynamicRNN`
.
Users should not use it directly.
Args:
...
...
@@ -763,11 +763,10 @@ def lod_tensor_to_array(x, table):
table (ParamAttr|list): The variable that stores the level of lod
which is ordered by sequence length in
descending order. It is generally generated
by
'layers.lod_rank_table()'
API.
by
`layers.lod_rank_table()`
API.
Returns:
Variable: The LoDTensorArray that has been converted from the input
tensor.
Variable: The LoDTensorArray that has been converted from the input tensor.
Examples:
.. code-block:: python
...
...
@@ -1579,24 +1578,26 @@ def reorder_lod_tensor_by_rank(x, rank_table):
def
is_empty
(
x
,
cond
=
None
,
**
ignored
):
"""
Test whether a
n
Variable is empty.
Test whether a Variable is empty.
Args:
x (Variable): The Variable to be tested.
cond (Variable|None): Output parameter. Returns the test result
of given 'x'.
of given 'x'.
Default: None
Returns:
Variable:
The tensor variable storing the test result of 'x'
.
Variable:
A bool scalar. True if 'x' is an empty Variable
.
Raises:
TypeError: If input cond is not a variable, or cond's dtype is
not bool
not bool
.
Examples:
.. code-block:: python
less = fluid.layers.is_empty(x=input)
res = fluid.layers.is_empty(x=input)
# or:
fluid.layers.is_empty(x=input, cond=res)
"""
helper
=
LayerHelper
(
"is_empty"
,
**
locals
())
if
cond
is
None
:
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
980499fa
...
...
@@ -572,6 +572,32 @@ def parallel(reader):
def
read_file
(
file_obj
):
"""
Read data from a file object.
A file object is also a Variable. It can be a raw file object generated by
`fluid.layers.open_files()` or a decorated one generated by
`fluid.layers.double_buffer()` and so on.
Args:
file_obj(Variable): The file object from where to read data.
Returns:
Tuple[Variable]: Data read from the given file object.
Examples:
.. code-block:: python
data_file = fluid.layers.open_files(
filenames=['mnist.recordio'],
shapes=[(-1, 748), (-1, 1)],
lod_levels=[0, 0],
dtypes=["float32", "int64"])
data_file = fluid.layers.double_buffer(
fluid.layers.batch(data_file, batch_size=64))
input, label = fluid.layers.read_file(data_file)
"""
helper
=
LayerHelper
(
'read_file'
)
out
=
[
helper
.
create_tmp_variable
(
...
...
python/paddle/fluid/layers/learning_rate_scheduler.py
浏览文件 @
980499fa
...
...
@@ -90,7 +90,7 @@ def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
Default: False
Returns:
The decayed learning rate
Variable:
The decayed learning rate
Examples:
.. code-block:: python
...
...
@@ -167,7 +167,7 @@ def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
Default: False
Returns:
The decayed learning rate
Variable:
The decayed learning rate
Examples:
.. code-block:: python
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
980499fa
...
...
@@ -151,7 +151,7 @@ def fc(input,
name (str, default None): The name of this layer.
Returns:
A tensor variable storing t
he transformation result.
Variable: T
he transformation result.
Raises:
ValueError: If rank of the input tensor is less than 2.
...
...
@@ -159,8 +159,7 @@ def fc(input,
Examples:
.. code-block:: python
data = fluid.layers.data(
name="data", shape=[32, 32], dtype="float32")
data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
fc = fluid.layers.fc(input=data, size=1000, act="tanh")
"""
...
...
@@ -1543,21 +1542,24 @@ def pool2d(input,
${comment}
Args:
input (Variable): ${input_comment}
input (Variable): The input tensor of pooling operator. The format of
input tensor is NCHW, where N is batch size, C is the number of
channels, H is the height of the feature, and W is the width of
the feature.
pool_size (int): The side length of pooling windows. All pooling
windows are squares with pool_size on a side.
pool_type
(str)
: ${pooling_type_comment}
pool_type: ${pooling_type_comment}
pool_stride (int): stride of the pooling layer.
pool_padding (int): padding size.
global_pooling
(bool)
: ${global_pooling_comment}
use_cudnn
(bool)
: ${use_cudnn_comment}
ceil_mode
(bool)
: ${ceil_mode_comment}
use_mkldnn
(bool)
: ${use_mkldnn_comment}
global_pooling: ${global_pooling_comment}
use_cudnn: ${use_cudnn_comment}
ceil_mode: ${ceil_mode_comment}
use_mkldnn: ${use_mkldnn_comment}
name (str|None): A name for this layer(optional). If set None, the
layer will be named automatically.
Returns:
Variable:
output of pool2d layer
.
Variable:
The pooling result
.
Raises:
ValueError: If 'pool_type' is not "max" nor "avg"
...
...
@@ -2764,6 +2766,27 @@ def topk(input, k, name=None):
If the input is a Tensor with higher rank, this operator computes the top k
entries along the last dimension.
For example:
.. code-block:: text
If:
input = [[5, 4, 2, 3],
[9, 7, 10, 25],
[6, 2, 10, 1]]
k = 2
Then:
The first output:
values = [[5, 4],
[10, 25],
[6, 10]]
The second output:
indices = [[0, 1],
[2, 3],
[0, 2]]
Args:
input(Variable): The input variable which can be a vector or Tensor with
higher rank.
...
...
@@ -2774,10 +2797,10 @@ def topk(input, k, name=None):
Default: None
Returns:
values(Variable): The k largest elements along each last dimensional
slice.
indices(Variable): The indices of values within the last dimension of
input.
Tuple[Variable]: A tuple with two elements. Each element is a Variable.
The first one is k largest elements along each last
dimensional slice. The second one is indices of values
within the last dimension of
input.
Raises:
ValueError: If k < 1 or k is not less than the last dimension of input
...
...
python/paddle/fluid/layers/tensor.py
浏览文件 @
980499fa
...
...
@@ -159,20 +159,21 @@ def concat(input, axis=0, name=None):
def
sums
(
input
,
out
=
None
):
"""This function performs the sum operation on the input and returns the
"""
This function performs the sum operation on the input and returns the
result as the output.
Args:
input (Variable|list): The input tensor that has the elements
that need to be summed up.
out (Variable|None): Output parameter.
Returns t
he sum result.
out (Variable|None): Output parameter.
T
he sum result.
Default: None
Returns:
Variable: the sum of input. The same as the argument 'out'
Examples:
.. code-block::python
.. code-block::
python
tmp = fluid.layers.zeros(shape=[10], dtype='int32')
i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录