提交 1083e995 编写于 作者: S sneaxiy

Merge develop

......@@ -138,12 +138,6 @@ else()
set(THIRD_PARTY_BUILD_TYPE Release)
endif()
if(WITH_MKL)
option(MKL_SPLIT_GEMM "PaddlePaddle MKL gemm would split to small ones" OFF)
if (MKL_SPLIT_GEMM)
add_definitions(-DPADDLE_MKL_SPLIT_GEMM)
endif()
endif()
set(WITH_MKLML ${WITH_MKL})
if (NOT DEFINED WITH_MKLDNN)
if (WITH_MKL AND AVX2_FOUND)
......
......@@ -36,19 +36,19 @@
<tbody>
<tr>
<td>OpProtoMake定义 </td>
<td>`.cc`文件,Backward Op不需要定义OpProtoMake </td>
<td>.cc 文件,Backward Op不需要定义OpProtoMake </td>
</tr>
<tr>
<td>Op定义 </td>
<td> `.cc`文件</td>
<td> .cc 文件</td>
</tr>
<tr>
<td>Kernel实现 </td>
<td> CPU、CUDA共享Kernel实现在`.h`文件中,否则,CPU 实现在`.cc`文件中,CUDA 实现在`.cu`文件中。</td>
<td> CPU、CUDA共享Kernel实现在.h 文件中,否则,CPU 实现在.cc 文件中,CUDA 实现在.cu 文件中。</td>
</tr>
<tr>
<td>注册Op </td>
<td> Op注册实现在`.cc`文件;Kernel注册CPU实现在`.cc`文件中,CUDA实现在`.cu`文件中</td>
<td> Op注册实现在.cc 文件;Kernel注册CPU实现在.cc 文件中,CUDA实现在.cu 文件中</td>
</tr>
</tbody>
</table>
......@@ -391,7 +391,7 @@ PADDLE_ENFORCE(ctx->HasInput("X"), "");
```
问题示例2 :提示信息过于简单
```
PADDLE_ENFORCE(i != nullptr, "I must be set"); // I是什么?
PADDLE_ENFORCE(i != nullptr, "i must be set"); // i是什么?
```
2. 在报错信息中使用开发人员定义的变量缩写,不易理解!
......
......@@ -163,6 +163,7 @@ paddle.fluid.layers.rank_loss ArgSpec(args=['label', 'left', 'right', 'name'], v
paddle.fluid.layers.prelu ArgSpec(args=['x', 'mode', 'param_attr', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.flatten ArgSpec(args=['x', 'axis', 'name'], varargs=None, keywords=None, defaults=(1, None))
paddle.fluid.layers.sequence_mask ArgSpec(args=['x', 'maxlen', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, 'int64', None))
paddle.fluid.layers.stack ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=(0,))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_recordio_file ArgSpec(args=['filename', 'shapes', 'lod_levels', 'dtypes', 'pass_num', 'for_parallel'], varargs=None, keywords=None, defaults=(1, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
......@@ -192,7 +193,7 @@ paddle.fluid.layers.argsort ArgSpec(args=['input', 'axis', 'name'], varargs=None
paddle.fluid.layers.ones ArgSpec(args=['shape', 'dtype', 'force_cpu'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.zeros ArgSpec(args=['shape', 'dtype', 'force_cpu'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.reverse ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.While.__init__ ArgSpec(args=['self', 'cond', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.While.__init__ ArgSpec(args=['self', 'cond', 'is_test', 'name'], varargs=None, keywords=None, defaults=(False, None))
paddle.fluid.layers.While.block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.Switch.__init__ ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.Switch.case ArgSpec(args=['self', 'condition'], varargs=None, keywords=None, defaults=None)
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <cstdint>
#include "paddle/fluid/platform/hostdevice.h"
namespace paddle {
namespace framework {
template <typename T, size_t N>
class Array {
static_assert(N > 0, "The size of array must be larger than 0");
public:
HOSTDEVICE Array() {}
HOSTDEVICE explicit Array(const T &val) {
for (size_t i = 0; i < N; ++i) data_[i] = val;
}
HOSTDEVICE const T *Get() const { return data_; }
HOSTDEVICE T *GetMutable() { return data_; }
HOSTDEVICE T &operator[](size_t index) { return data_[index]; }
HOSTDEVICE const T &operator[](size_t index) const { return data_[index]; }
HOSTDEVICE constexpr size_t size() const { return N; }
private:
T data_[N];
};
} // namespace framework
} // namespace paddle
......@@ -763,6 +763,8 @@ void MultiDevSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result,
// Create RPC related op handles that connects its in ops and out ops.
void MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result,
ir::Node *node) const {
// FIXME(typhoonzero): Cleanup this deps for both sync mode and async mode
// put them into transpiler.
int op_dev_id = -1;
if (node->Op()->Type() == "send") {
// TODO(paddle-dev): getting the first var is not safe.
......@@ -771,26 +773,42 @@ void MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result,
"This hack no longer holds, please fix.");
// the variable name which contains .block means it was splited by
// split_byref op
// so that we can balance the variable blocks to all the pserver
// instances.
if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce &&
node->inputs[0]->Name().find(".block") == std::string::npos) {
std::vector<std::string> input_var_names;
for (ir::Node *n : node->inputs) {
input_var_names.push_back(n->Name());
}
op_dev_id = GetAppropriateDeviceID(input_var_names);
auto send_param_grad = boost::get<std::vector<std::string>>(
node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
PADDLE_ENFORCE_EQ(send_param_grad.size(), 2U);
op_dev_id = GetAppropriateDeviceID({send_param_grad[1]});
VLOG(10) << "send grad " << input_var_names[0] << " origin "
<< send_param_grad[1] << " place: " << op_dev_id;
for (auto &varname : input_var_names) {
result->Get<ShardedVarDevice>(kShardedVarDevice)
.emplace(varname, op_dev_id);
}
result->Get<ShardedVarDevice>(kShardedVarDevice)
.emplace(send_param_grad[1], op_dev_id);
}
} else if (node->Op()->Type() == "recv") {
std::vector<std::string> output_var_names;
for (ir::Node *n : node->outputs) {
output_var_names.push_back(n->Name());
}
op_dev_id = GetAppropriateDeviceID(output_var_names);
auto recv_param_grad = boost::get<std::vector<std::string>>(
node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
// FIXME(typhoonzero): assume each recv op output one param
// Use the same place as send.
if (recv_param_grad.size() == 2U) {
op_dev_id = GetVarDeviceID(*result, recv_param_grad[1]);
VLOG(10) << "recv param " << recv_param_grad[0]
<< " get grad place: " << recv_param_grad[1]
<< " place: " << op_dev_id;
} else {
op_dev_id = GetAppropriateDeviceID(output_var_names);
}
for (auto &varname : output_var_names) {
result->Get<ShardedVarDevice>(kShardedVarDevice)
.emplace(varname, op_dev_id);
......
......@@ -54,7 +54,8 @@ void GraphvizSSAGraphPrinter::Print(const ir::Graph &graph,
sout << "var_" << cur_var_id << " [label=\"" << var_handle_ptr->name_
<< "\\n"
<< var_handle_ptr->place_ << "\\n"
<< var_handle_ptr->version_ << "\"]" << std::endl;
<< "scope: " << var_handle_ptr->scope_idx_ << "\\n"
<< "v" << var_handle_ptr->version_ << "\"]" << std::endl;
} else if (dummy_ptr) {
sout << "var_" << cur_var_id << " [label=\"dummy\"]" << std::endl;
}
......
......@@ -163,8 +163,8 @@ TEST(GraphPatternDetecter, MultiSubgraph) {
// 3. Detect op2 -> var2 -> op4
// 4. Detect op2 -> var3 -> op5
// But 2 and 3 and 4 overlapped, so keep 2, so the final choices are 1 and 2
ASSERT_GE(count, 1UL);
ASSERT_LE(count, 2UL);
ASSERT_GE(count, 1);
ASSERT_LE(count, 2);
}
} // namespace ir
......
......@@ -17,7 +17,7 @@ limitations under the License. */
namespace paddle {
namespace framework {
namespace ir {
const char Node::kControlDepVarName[] = "__control_var";
constexpr char Node::kControlDepVarName[];
} // namespace ir
} // namespace framework
} // namespace paddle
......@@ -27,7 +27,7 @@ namespace ir {
class Node {
public:
enum class Type { kOperation, kVariable };
static const char kControlDepVarName[];
static constexpr char kControlDepVarName[] = "__control_var";
explicit Node(const std::string& name, Type type)
: name_(name), var_desc_(nullptr), op_desc_(nullptr), type_(type) {}
......
......@@ -139,7 +139,7 @@ int64_t SelectedRows::AutoGrownIndex(int64_t key, bool auto_grown) {
}
auto write_iter = id_to_index_.find(key);
if (write_iter == id_to_index_.end()) {
size_t row_num = rows_.size();
int row_num = rows_.size();
if (row_num == value_->dims()[0]) {
rwlock_->UNLock();
PADDLE_THROW("selected rows is full, then length exceed %d", row_num);
......@@ -182,7 +182,7 @@ void SelectedRows::Get(const framework::Tensor& ids, framework::Tensor* value,
PADDLE_ENFORCE_EQ(value_width, value->numel() / value->dims()[0],
"output tensor should have the same shape with table "
"except the dims[0].");
for (size_t i = 0; i < ids.numel(); ++i) {
for (int i = 0; i < ids.numel(); ++i) {
int64_t index = AutoGrownIndex(ids.data<int64_t>()[i], auto_grown);
framework::VisitDataType(
framework::ToDataType(value_->type()),
......
......@@ -23,6 +23,8 @@
DEFINE_string(infer_ditu_rnn_model, "", "model path for ditu RNN");
DEFINE_string(infer_ditu_rnn_data, "", "data path for ditu RNN");
DEFINE_int32(batch_size, 10, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
namespace paddle {
namespace inference {
......@@ -92,7 +94,7 @@ struct DataRecord {
size_t batch_iter{0};
size_t batch_size{1};
DataRecord() = default;
DataRecord(const std::string &path, int batch_size = 1)
explicit DataRecord(const std::string &path, int batch_size = 1)
: batch_size(batch_size) {
Load(path);
}
......@@ -165,7 +167,6 @@ struct DataRecord {
};
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
int batch_size) {
// DataRecord data(FLAGS_datapath, batch_size);
PaddleTensor lod_attention_tensor, init_zero_tensor, lod_tensor_tensor,
week_tensor, minute_tensor;
lod_attention_tensor.name = "data_lod_attention";
......@@ -174,28 +175,33 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
week_tensor.name = "week";
minute_tensor.name = "minute";
auto one_batch = data->NextBatch();
// clang-format off
std::vector<int> rnn_link_data_shape
({static_cast<int>(one_batch.rnn_link_data.size()), static_cast<int>(one_batch.rnn_link_data.front().size())});
std::vector<int> rnn_link_data_shape(
{static_cast<int>(one_batch.rnn_link_data.size()),
static_cast<int>(one_batch.rnn_link_data.front().size())});
lod_attention_tensor.shape.assign({1, 2});
lod_attention_tensor.lod.assign({one_batch.lod1, one_batch.lod2});
init_zero_tensor.shape.assign({batch_size, 15});
init_zero_tensor.lod.assign({one_batch.lod3});
lod_tensor_tensor.shape = rnn_link_data_shape;
lod_tensor_tensor.lod.assign({one_batch.lod1});
week_tensor.shape.assign({(int) one_batch.rnn_week_datas.size(), (int) one_batch.rnn_week_datas.front().size()});
// clang-format off
week_tensor.shape.assign(
{static_cast<int>(one_batch.rnn_week_datas.size()),
static_cast<int>(one_batch.rnn_week_datas.front().size())});
week_tensor.lod.assign({one_batch.lod3});
minute_tensor.shape.assign({(int) one_batch.rnn_minute_datas.size(),
(int) one_batch.rnn_minute_datas.front().size()});
minute_tensor.shape.assign(
{static_cast<int>(one_batch.rnn_minute_datas.size()),
static_cast<int>(one_batch.rnn_minute_datas.front().size())});
minute_tensor.lod.assign({one_batch.lod3});
// clang-format on
// assign data
TensorAssignData(&lod_attention_tensor, std::vector<std::vector<float>>({{0, 0}}));
TensorAssignData(&lod_attention_tensor,
std::vector<std::vector<float>>({{0, 0}}));
std::vector<float> tmp_zeros(batch_size * 15, 0.);
TensorAssignData(&init_zero_tensor, {tmp_zeros});
TensorAssignData(&lod_tensor_tensor, one_batch.rnn_link_data);
TensorAssignData(&week_tensor, one_batch.rnn_week_datas);
TensorAssignData(&minute_tensor, one_batch.rnn_minute_datas);
// clang-format on
// Set inputs.
auto init_zero_tensor1 = init_zero_tensor;
init_zero_tensor1.name = "hidden_init";
......@@ -231,12 +237,9 @@ std::string DescribeTensor(const PaddleTensor &tensor) {
os << "\n";
os << " - data: ";
// clang-format off
int dim = std::accumulate(tensor.shape.begin(),
tensor.shape.end(),
1,
[](int a, int b) { return a * b; }); // clang-format on
for (size_t i = 0; i < dim; i++) {
int dim = std::accumulate(tensor.shape.begin(), tensor.shape.end(), 1,
[](int a, int b) { return a * b; });
for (int i = 0; i < dim; i++) {
os << static_cast<float *>(tensor.data.data())[i] << " ";
}
os << '\n';
......@@ -300,13 +303,16 @@ void TestDituRNNPrediction(const std::string &model_path,
for (int i = 0; i < num_times; i++) {
predictor->Run(input_slots, &outputs);
}
LOG(INFO) << "time/batch: " << timer.toc() / num_times;
LOG(INFO) << "===========profile result===========";
LOG(INFO) << "batch_size: " << batch_size << ", repeat: " << num_times
<< ", latency: " << timer.toc() / num_times << "ms";
LOG(INFO) << "=====================================";
for (auto &out : outputs) {
size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
[](int a, int b) { return a * b; });
float *data = static_cast<float *>(out.data.data());
for (int i = 0;
for (size_t i = 0;
i < std::min(sizeof(ditu_rnn_target_data) / sizeof(float), size);
i++) {
EXPECT_NEAR(data[i], ditu_rnn_target_data[i], 1e-3);
......@@ -336,7 +342,7 @@ TEST(Analyzer, SupportIRPass) {
// Directly infer with the original model.
TEST(Analyzer, DituRNN_without_analysis) {
TestDituRNNPrediction(FLAGS_infer_ditu_rnn_model, FLAGS_infer_ditu_rnn_data,
10, false, false);
FLAGS_batch_size, false, false, FLAGS_repeat);
}
// Inference with the original model with the analysis turned on, the analysis
......@@ -344,14 +350,14 @@ TEST(Analyzer, DituRNN_without_analysis) {
TEST(Analyzer, DituRNN_with_analysis) {
LOG(INFO) << "ditu rnn with analysis";
TestDituRNNPrediction(FLAGS_infer_ditu_rnn_model, FLAGS_infer_ditu_rnn_data,
10, true, false, 1);
FLAGS_batch_size, true, false, FLAGS_repeat);
}
// Inference with analysis and IR. The IR module will fuse some large kernels.
TEST(Analyzer, DituRNN_with_analysis_with_IR) {
LOG(INFO) << "ditu rnn with analysis and IR fuse";
TestDituRNNPrediction(FLAGS_infer_ditu_rnn_model, FLAGS_infer_ditu_rnn_data,
10, true, true, 1);
FLAGS_batch_size, true, true, FLAGS_repeat);
}
} // namespace analysis
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/attention_lstm_op.h"
#include <sys/time.h>
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace paddle {
namespace operators {
void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of AttentionLSTM should not be null.");
PADDLE_ENFORCE(ctx->HasInput("C0"),
"Input(C0) of AttentionLSTM should not be null.");
PADDLE_ENFORCE(ctx->HasInput("LSTMWeight"),
"Input(LSTMWeight) of AttentionLSTM should not be null.");
PADDLE_ENFORCE(ctx->HasInput("LSTMBias"),
"Input(LSTMBias) of AttentionLSTM should not be null.");
PADDLE_ENFORCE(ctx->HasInput("AttentionWeight"),
"Input(AttentionWeight) of AttentionLSTM should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
"Output(Hidden) of AttentionLSTM should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Cell"),
"Output(Cell) of AttentionLSTM should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("AttentionedX"),
"Output(AttentionedX) of AttentionLSTM should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("AttentionFCOut"),
"Output(AttentionFCOut) of AttentionLSTM should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("LSTMX"),
"Output(LSTMX) of AttentionLSTM should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("LSTMOUT"),
"Output(LSTMOUT) of AttentionLSTM should not be null.");
auto x_dims = ctx->GetInputDim("X");
const int M = x_dims[1];
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
auto w_dims = ctx->GetInputDim("LSTMWeight");
const int D = w_dims[1] / 4;
PADDLE_ENFORCE_EQ(w_dims.size(), 2, "Input(LSTMWeight)'s rank must be 2.");
PADDLE_ENFORCE_EQ(w_dims[0], D + M,
"LSTMWeight dims should be (%d + %d) * %d.", D + M, 4 * D);
auto b_dims = ctx->GetInputDim("LSTMBias");
PADDLE_ENFORCE_EQ(b_dims.size(), 2, "Input(LSTMBias)'s rank must be 2.");
PADDLE_ENFORCE_EQ(b_dims[0], 1, "LSTMBias dims should be 1 x %d.", 4 * D);
PADDLE_ENFORCE_EQ(b_dims[1], 4 * D, "LSTMBias dims should be 1 x %d.", 4 * D);
auto c_dims = ctx->GetInputDim("C0");
PADDLE_ENFORCE_EQ(c_dims.size(), 2, "Input(C0)'s rank must be 2.");
PADDLE_ENFORCE_EQ(c_dims[1], D, "C0 dims should be N x %d.", D);
if (ctx->HasInput("H0")) {
auto h_dims = ctx->GetInputDim("H0");
PADDLE_ENFORCE(h_dims == c_dims,
"The dimension of Input(H0) and Input(C0) "
"should be the same.");
}
auto atten_w_dims = ctx->GetInputDim("AttentionWeight");
PADDLE_ENFORCE_EQ(atten_w_dims.size(), 2,
"Input(AttentionWeight)'s rank must be 2.");
PADDLE_ENFORCE_EQ(atten_w_dims[0], M + D,
"AttentionWeight shapes must be (%d + %d) * 1.", M, D);
PADDLE_ENFORCE_EQ(atten_w_dims[1], 1,
"AttentionWeight shapes must be (%d + %d) * 1.", M, D);
if (ctx->HasInput("AttentionBias")) {
auto atten_b_dims = ctx->GetInputDim("AttentionBias");
PADDLE_ENFORCE_EQ(atten_b_dims.size(), 2,
"Input(AttentionBias)'s rank must be 2.");
PADDLE_ENFORCE_EQ(atten_b_dims[0], 1,
"AttentionBias shapes must be 1 * 1.");
PADDLE_ENFORCE_EQ(atten_b_dims[1], 1,
"AttentionBias shapes must be 1 * 1.");
}
if (ctx->HasInput("AttentionScalar")) {
auto dims = ctx->GetInputDim("AttentionScalar");
PADDLE_ENFORCE_EQ(dims.size(), 2,
"Input(AttentionScalar)'s rank must be 2.");
PADDLE_ENFORCE_EQ(dims[0], 1, "AttentionScalar shapes must be 1 * 1.");
PADDLE_ENFORCE_EQ(dims[1], 1, "AttentionScalar shapes must be 1 * 1.");
}
if (ctx->HasInput("AttentionScalarBias")) {
auto dims = ctx->GetInputDim("AttentionScalarBias");
PADDLE_ENFORCE(
ctx->HasInput("AttentionScalar"),
"AttentionScalar should not be null when have AttentionScalarBias.");
PADDLE_ENFORCE_EQ(dims.size(), 2,
"Input(AttentionScalarBias)'s rank must be 2.");
PADDLE_ENFORCE_EQ(dims[0], 1, "AttentionScalarBias shapes must be 1 * 1.");
PADDLE_ENFORCE_EQ(dims[1], 1, "AttentionScalarBias shapes must be 1 * 1.");
}
framework::DDim out_dims({x_dims[0], D});
ctx->SetOutputDim("Hidden", out_dims);
ctx->SetOutputDim("Cell", out_dims);
ctx->SetOutputDim("AttentionedX", {x_dims[0], 1});
ctx->SetOutputDim("LSTMX", {1, M});
ctx->SetOutputDim("LSTMOUT", {1, 4 * D});
// AttentionFCOut should be reshape as (maxseqlen,1) in runtime
ctx->ShareLoD("X", "Hidden");
ctx->ShareLoD("X", "Cell");
}
framework::OpKernelType AttentionLSTMOp::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
ctx.device_context());
}
void AttentionLSTMOpMaker::Make() {
AddInput("X",
"(LoDTensor) the input is a LodTensor, which support "
"variable-time length input sequence. The underlying tensor in "
"this LoDTensor is a matrix with shape (T X M), where T is the "
"total time steps in this mini-batch, M is the dim size of x.");
AddInput("C0",
"(Tensor) LSTM C0"
"This is a tensor with shape (N x D), where N is the batch size, D "
"is the gate size."
"C0 is necessary because of attention.");
AddInput("H0",
"(Tensor, optional) LSTM H0"
"This is a tensor with shape (N x D), where N is the "
"batch size and D is the gate size.")
.AsDispensable();
AddInput("AttentionWeight",
"(Tensor) the weights of attention fc. Always relu the fc result."
"The shape is ((M+D) x 1), where M is the dim size of x, D is the "
"gate size of LSTM.");
AddInput("AttentionBias",
"(Tensor, optional) the bias of attention fc."
"The shape is (1 x 1)")
.AsDispensable();
AddInput("AttentionScalar",
"(Tensor, optional) the scalar on the result of attentioned fc. "
"Always relu the Scalar."
"The shape is (1 x 1)")
.AsDispensable();
AddInput("AttentionScalarBias",
"(Tensor, optional) the scalar bias of attention fc."
"The shape is (1 x 1)")
.AsDispensable();
AddInput("LSTMWeight",
"(Tensor) the combined weight of LSTM"
" - The shape is ((D+M) x 4D), where D is the hidden gate size, M "
"is the dim size of x"
" - Weight = {W_forget, W_input, W_output, W_cell}");
AddInput("LSTMBias",
"(Tensor) the combined bias of LSTM, shape (1x4D)."
"Note: we should add the bias of hidden and context accorindg to "
"the same gate: "
"{B_forget, B_input, B_output, B_cell}");
AddOutput("Hidden",
"(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
"The shape is (T x D), and lod is the same with the `Input`.");
AddOutput("Cell",
"(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
"The shape is (T x D), and lod is the same with the `Input`.");
AddOutput("AttentionedX",
"(Tensor) shape is (T x 1), the result after X * AttentionWeight,"
" where T is the total time steps in this mini-batch,"
" D is the hidden size.")
.AsIntermediate();
AddOutput("AttentionFCOut",
"(Tensor) (max_seq_len, 1), compute at each step.")
.AsIntermediate();
AddOutput("LSTMX",
"(Tensor) the input X of LSTM for each step."
"Shape is (1 x M), where M is the x frame size")
.AsIntermediate();
AddOutput(
"LSTMOUT",
"(Tensor) the output of LSTM X(1*(D+M))* weight((D+M)*4D) for each step."
"Shape is (1 x 4D), where M is the x frame size")
.AsIntermediate();
AddAttr<std::string>("gate_activation",
"(string, default: sigmoid)"
"The activation for input gate, forget gate and output "
"gate, `sigmoid` by default.")
.SetDefault("sigmoid")
.InEnum({"sigmoid", "tanh", "relu", "identity"});
AddAttr<std::string>("cell_activation",
"(string, default: tanh)"
"The activation for cell output, `tanh` by defalut.")
.SetDefault("tanh")
.InEnum({"sigmoid", "tanh", "relu", "identity"});
AddAttr<std::string>("candidate_activation",
"(string, default: tanh)"
"The activation for candidate hidden state, "
"`tanh` by default.")
.SetDefault("tanh")
.InEnum({"sigmoid", "tanh", "relu", "identity"});
AddComment(R"DOC(
Attention Long-Short Term Memory (LSTM) Operator.
Attention part:
concat( x(seqlen * M), expand( cell_t-1(1,D) ) ) => tmp(seqlen*(M+D))
tmp(seqlen*(M+D)) * fc((M+D)*1) => fcout(seqlen*1) with bias, relu
fcout(seqlen*1) * scalar => fcout(seqlen*1) with bias, relu
dotmul and sum pool ( fcout(seqlen*1), x(seqlen * M) ) => lstm_x_t(1, M)
LSTM part:
use lstm_x_t as input and compute as standard LSTM.
)DOC");
}
// y[i] = (x[i] + bias[0]) > 0 ? (x[i] + bias[0]) : 0;
template <typename T>
inline void bias_relu(const int n, const T* x, const T* bias, T* y) {
if (bias) {
for (int i = 0; i < n; ++i) {
y[i] = x[i] + bias[0];
}
math::vec_relu<T>(n, y, y);
} else {
math::vec_relu<T>(n, x, y);
}
}
template <typename DeviceContext, typename T>
inline void vec_softmax(const math::BlasT<DeviceContext, T>& blas, const int n,
const T* x, T* y) {
T scalar = x[0];
// max
for (int i = 1; i < n; ++i) {
scalar = scalar < x[i] ? x[i] : scalar;
}
// sub
for (int i = 0; i < n; ++i) {
y[i] = x[i] - scalar;
}
// exp
blas.VEXP(n, y, y);
// sum
scalar = T(0);
for (int i = 0; i < n; ++i) {
scalar += y[i];
}
// scale
blas.SCAL(n, static_cast<T>(1) / scalar, y);
}
template <typename T>
class AttentionLSTMKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
using DeviceContext = paddle::platform::CPUDeviceContext;
auto* x = ctx.Input<LoDTensor>("X");
auto* h0 = ctx.Input<Tensor>("H0");
auto* c0 = ctx.Input<Tensor>("C0");
auto* atten_w = ctx.Input<Tensor>("AttentionWeight");
auto* atten_b = ctx.Input<Tensor>("AttentionBias");
auto* atten_scalar = ctx.Input<Tensor>("AttentionScalar");
auto* atten_scalar_bias = ctx.Input<Tensor>("AttentionScalarBias");
auto* lstm_w = ctx.Input<Tensor>("LSTMWeight");
auto* lstm_b = ctx.Input<Tensor>("LSTMBias");
auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
auto* cell_out = ctx.Output<LoDTensor>("Cell");
auto* atted_x = ctx.Output<Tensor>("AttentionedX");
auto* fc_out = ctx.Output<Tensor>("AttentionFCOut");
auto* lstm_x = ctx.Output<Tensor>("LSTMX");
auto* lstm_out = ctx.Output<Tensor>("LSTMOUT");
// some shape should be reshape here since infershape can not get lod info
auto x_lod = x->lod();
const int N = x_lod[0].size() - 1; // batch size
auto x_dims = x->dims(); // T x M
auto w_dims = lstm_w->dims(); // (D+M) x 4D
const int total_T = x_dims[0];
const int M = x_dims[1]; // x frame size
const int D = w_dims[1] / 4; // gate frame size
const int D2 = D * 2;
const int D3 = D * 3;
const int D4 = w_dims[1];
int max_seq_len = x_lod[0][1];
for (int i = 1; i < N; ++i) {
int len = x_lod[0][i + 1] - x_lod[0][i];
max_seq_len = max_seq_len < len ? len : max_seq_len;
}
PADDLE_ENFORCE_EQ(x_lod.size(), 1, "Input(X)'s lod size must be 1.");
PADDLE_ENFORCE_EQ(c0->dims()[0], N, "C0 dims should be %d x %d.", N, D);
fc_out->Resize({max_seq_len, 1});
math::VecActivations<T> act_functor;
std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand;
act_gate = act_functor(ctx.Attr<std::string>("gate_activation"));
act_cell = act_functor(ctx.Attr<std::string>("cell_activation"));
act_cand = act_functor(ctx.Attr<std::string>("candidate_activation"));
const T* x_data = x->data<T>();
const T* h0_data = h0 ? h0->data<T>() : NULL;
const T* c0_data = c0->data<T>();
const T* lstm_w_data = lstm_w->data<T>();
const T* lstm_b_data = lstm_b->data<T>();
const T* atten_w_data = atten_w->data<T>();
const T* atten_b_data = atten_b ? atten_b->data<T>() : NULL;
const T* atten_scalar_data = atten_scalar ? atten_scalar->data<T>() : NULL;
const T* atten_scalar_bias_data =
atten_scalar_bias ? atten_scalar_bias->data<T>() : NULL;
T* hidden_out_data = hidden_out->mutable_data<T>(ctx.GetPlace());
T* cell_out_data = cell_out->mutable_data<T>(ctx.GetPlace());
T* atted_x_data = atted_x->mutable_data<T>(ctx.GetPlace());
T* fc_out_data = fc_out->mutable_data<T>(ctx.GetPlace());
T* lstm_x_data = lstm_x->mutable_data<T>(ctx.GetPlace());
T* lstm_out_data = lstm_out->mutable_data<T>(ctx.GetPlace());
// x(TxM) * fc (Mx1) part of atten_wgt(M+D)x1
auto blas = math::GetBlas<DeviceContext, T>(ctx);
math::FCCompute<DeviceContext, T>(blas, total_T, 1, M, x_data, atten_w_data,
atted_x_data, atten_b_data);
const T* cur_atten_x_data = atted_x_data;
const T* cur_x_data = x_data;
const T* prev_cell_data = NULL;
const T* prev_hidden_data = NULL;
T* cur_cell_out_data = cell_out_data;
T* cur_hidden_out_data = hidden_out_data;
for (int i = 0; i < N; ++i) {
int seq_len = x_lod[0][i + 1] - x_lod[0][i];
prev_cell_data = c0_data + i * D;
prev_hidden_data = h0_data ? h0_data + i * D : NULL;
for (int step = 0; step < seq_len; ++step) {
/// 1. compute attention vector
// 1a. prev_cell(1xD) * fc(D) rest part of atten_wgt
T prev_cell_bias = blas.DOT(D, prev_cell_data, atten_w_data + M);
// 1b. add cell bias and relu
bias_relu<T>(seq_len, cur_atten_x_data, &prev_cell_bias, fc_out_data);
// 1c. fc scalar
if (atten_scalar_data) {
blas.SCAL(seq_len, *atten_scalar_data, fc_out_data);
bias_relu<T>(seq_len, fc_out_data, atten_scalar_bias_data,
fc_out_data);
}
// 1d. softmax
vec_softmax<DeviceContext, T>(blas, seq_len, fc_out_data, fc_out_data);
// mul x(seq_len*M) and sum pool
math::FCCompute<DeviceContext, T>(blas, 1, M, seq_len, fc_out_data,
cur_x_data, lstm_x_data);
/// 2. compute LSTM step
// lstm weight : concat[forget , input , output , tilde]
// shape : (D + M) x (4 * D)
// fc inputX(1xM) * weightX(M*(4D)) => 1 x 4D
blas.MatMul(1, D4, M, lstm_x_data, lstm_w_data + D * D4, lstm_out_data);
if (prev_hidden_data) {
blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D4, D, static_cast<T>(1),
prev_hidden_data, D, lstm_w_data, D4, static_cast<T>(1),
lstm_out_data, D4);
}
// since input is 1xM, so can use add bias
blas.VADD(D4, lstm_b_data, lstm_out_data, lstm_out_data);
// gate act: sigmoid
act_gate(D3, lstm_out_data, lstm_out_data);
// candicate act: tanh
act_cand(D, lstm_out_data + D3, lstm_out_data + D3);
// a = forget * prev_cell
blas.VMUL(D, lstm_out_data, prev_cell_data, lstm_out_data);
// b = input * tilde
blas.VMUL(D, lstm_out_data + D, lstm_out_data + D3, lstm_out_data + D);
// cell_out = a + b
blas.VADD(D, lstm_out_data, lstm_out_data + D, cur_cell_out_data);
// state act tanh(cell_out) * output_gate
act_cell(D, cur_cell_out_data, lstm_out_data);
blas.VMUL(D, lstm_out_data, lstm_out_data + D2, cur_hidden_out_data);
prev_hidden_data = cur_hidden_out_data;
prev_cell_data = cur_cell_out_data;
cur_cell_out_data = cur_cell_out_data + D;
cur_hidden_out_data = cur_hidden_out_data + D;
}
cur_x_data = cur_x_data + seq_len * M;
cur_atten_x_data = cur_atten_x_data + seq_len;
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(attention_lstm, ops::AttentionLSTMOp,
ops::AttentionLSTMOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OP_CPU_KERNEL(attention_lstm, ops::AttentionLSTMKernel<float>,
ops::AttentionLSTMKernel<double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;
class AttentionLSTMOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override;
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override;
};
class AttentionLSTMOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override;
};
} // namespace operators
} // namespace paddle
......@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
// #include <string>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
......
......@@ -90,6 +90,11 @@ class Blas {
void GEMM(bool transA, bool transB, int M, int N, int K, T alpha, const T* A,
int lda, const T* B, int ldb, T beta, T* C, int ldc) const;
template <typename T>
void GEMM(CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K,
T alpha, const T* A, int lda, const T* B, int ldb, T beta, T* C,
int ldc) const;
#ifdef PADDLE_WITH_MKLML
template <typename T>
T* GEMM_ALLOC(const CBLAS_IDENTIFIER id, const int M, const int N,
......@@ -109,6 +114,10 @@ class Blas {
void GEMM_FREE(T* data) const;
#endif
template <typename T>
void MatMul(const int M, const int N, const int K, const T* A, const T* B,
T* C) const;
template <typename T>
void MatMul(const framework::Tensor& mat_a, bool trans_a,
const framework::Tensor& mat_b, bool trans_b, T alpha,
......@@ -140,10 +149,19 @@ class Blas {
template <typename T>
void VCOPY(int n, const T* x, T* y) const;
template <typename T>
void VEXP(int n, const T* x, T* y) const;
template <typename T>
void GEMV(bool trans_a, int M, int N, T alpha, const T* A, const T* B, T beta,
T* C) const;
template <typename T>
T DOT(int n, const T* x, const T* y) const;
template <typename T>
void SCAL(int n, const T a, T* x) const;
template <typename T>
void BatchedGEMM(CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N,
int K, T alpha, const T* A, const T* B, T beta, T* C,
......@@ -215,11 +233,26 @@ class BlasT : private Blas<DeviceContext> {
Base()->template VCOPY<T>(args...);
}
template <typename... ARGS>
void VEXP(ARGS... args) const {
Base()->template VEXP<T>(args...);
}
template <typename... ARGS>
void GEMV(ARGS... args) const {
Base()->template GEMV<T>(args...);
}
template <typename... ARGS>
T DOT(ARGS... args) const {
return Base()->template DOT<T>(args...);
}
template <typename... ARGS>
void SCAL(ARGS... args) const {
Base()->template SCAL<T>(args...);
}
template <typename... ARGS>
void BatchedGEMM(ARGS... args) const {
Base()->template BatchedGEMM<T>(args...);
......
......@@ -73,6 +73,16 @@ struct CBlas<float> {
platform::dynload::cblas_sgemv(args...);
}
template <typename... ARGS>
static float DOT(ARGS... args) {
return platform::dynload::cblas_sdot(args...);
}
template <typename... ARGS>
static void SCAL(ARGS... args) {
platform::dynload::cblas_sscal(args...);
}
template <typename... ARGS>
static void GEMM_BATCH(ARGS... args) {
platform::dynload::cblas_sgemm_batch(args...);
......@@ -87,6 +97,11 @@ struct CBlas<float> {
static void VMUL(ARGS... args) {
platform::dynload::vsMul(args...);
}
template <typename... ARGS>
static void VEXP(ARGS... args) {
platform::dynload::vsExp(args...);
}
};
template <>
......@@ -138,6 +153,16 @@ struct CBlas<double> {
platform::dynload::cblas_dgemv(args...);
}
template <typename... ARGS>
static double DOT(ARGS... args) {
return platform::dynload::cblas_ddot(args...);
}
template <typename... ARGS>
static void SCAL(ARGS... args) {
platform::dynload::cblas_dscal(args...);
}
template <typename... ARGS>
static void GEMM_BATCH(ARGS... args) {
platform::dynload::cblas_dgemm_batch(args...);
......@@ -152,6 +177,11 @@ struct CBlas<double> {
static void VMUL(ARGS... args) {
platform::dynload::vdMul(args...);
}
template <typename... ARGS>
static void VEXP(ARGS... args) {
platform::dynload::vdExp(args...);
}
};
#else
......@@ -210,6 +240,9 @@ struct CBlas<platform::float16> {
PADDLE_THROW("float16 SMM_GEMM not supported on CPU");
}
static void VMUL(...) { PADDLE_THROW("float16 VMUL not supported on CPU"); }
static void VEXP(...) { PADDLE_THROW("float16 VEXP not supported on CPU"); }
static void DOT(...) { PADDLE_THROW("float16 DOT not supported on CPU"); };
static void SCAL(...) { PADDLE_THROW("float16 SCAL not supported on CPU"); };
#ifdef PADDLE_WITH_MKLML
static void GEMM_BATCH(...) {
PADDLE_THROW("float16 GEMM_BATCH not supported on CPU");
......@@ -217,64 +250,6 @@ struct CBlas<platform::float16> {
#endif
};
template <typename T>
inline bool UseXSMM(const int &m, const int &n, const int &k, bool transa,
bool transb, const T &alpha, const T &beta) {
#ifdef PADDLE_WITH_LIBXSMM
// Refer to https://github.com/hfp/libxsmm/blob/master/README.md
// But the threshold is custom
constexpr int LIBXSMM_THRESHOLD = 20 * 20 * 20;
if (m * n * k > LIBXSMM_THRESHOLD || transa || transb ||
std::abs<T>(alpha - static_cast<T>(1) >
std::numeric_limits<T>::epsilon()) ||
std::abs<T>(beta) > std::numeric_limits<T>::epsilon()) {
return false;
} else {
return true;
}
#endif
return false;
}
template <>
inline bool UseXSMM<platform::float16>(const int &m, const int &n, const int &k,
bool transa, bool transb,
const platform::float16 &alpha,
const platform::float16 &beta) {
return false;
}
template <typename T>
inline void GEMM_WARP(CBLAS_ORDER order, CBLAS_TRANSPOSE transA,
CBLAS_TRANSPOSE transB, int M, int N, int K, T alpha,
const T *A, int lda, const T *B, int ldb, T beta, T *C,
int ldc) {
#ifdef PADDLE_WITH_LIBXSMM
if (UseXSMM<T>(M, N, K, transA != CblasNoTrans, transB != CblasNoTrans, alpha,
beta)) {
// Note: SMM use ColMajor
const char transa = 'N';
const char transb = 'N';
CBlas<T>::SMM_GEMM(&transa, &transb, &N, &M, &K, &alpha, B, &ldb, A, &lda,
&beta, C, &ldc);
return;
}
#endif
#ifdef PADDLE_MKL_SPLIT_GEMM
constexpr int bs = 2;
if (M % bs == 0 && transA == CblasNoTrans && transB == CblasNoTrans) {
for (int off = 0; off < M; off += bs) {
CBlas<T>::GEMM(CblasRowMajor, CblasNoTrans, CblasNoTrans, bs, N, K, alpha,
A + off * lda, lda, B, ldb, beta, C + off * ldb, ldc);
}
return;
}
#endif
CBlas<T>::GEMM(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
beta, C, ldc);
}
#ifdef PADDLE_WITH_MKLML
template <>
template <typename T>
......@@ -319,8 +294,8 @@ void Blas<platform::CPUDeviceContext>::GEMM(CBLAS_TRANSPOSE transA,
int lda = (transA == CblasNoTrans) ? K : M;
int ldb = (transB == CblasNoTrans) ? N : K;
int ldc = N;
GEMM_WARP<T>(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
beta, C, ldc);
CBlas<T>::GEMM(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
beta, C, ldc);
}
template <>
......@@ -329,9 +304,20 @@ void Blas<platform::CPUDeviceContext>::GEMM(bool transA, bool transB, int M,
int N, int K, T alpha, const T *A,
int lda, const T *B, int ldb,
T beta, T *C, int ldc) const {
GEMM_WARP<T>(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans,
transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A,
lda, B, ldb, beta, C, ldc);
CBlas<T>::GEMM(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans,
transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A,
lda, B, ldb, beta, C, ldc);
}
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM(CBLAS_TRANSPOSE transA,
CBLAS_TRANSPOSE transB, int M,
int N, int K, T alpha, const T *A,
int lda, const T *B, int ldb,
T beta, T *C, int ldc) const {
CBlas<T>::GEMM(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
beta, C, ldc);
}
template <typename DeviceContext>
......@@ -399,6 +385,47 @@ void Blas<platform::CPUDeviceContext>::VMUL(int n, const T *x, const T *y,
#endif
}
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VEXP(int n, const T *x, T *y) const {
#ifdef PADDLE_WITH_MKLML
CBlas<T>::VEXP(n, x, y);
#else
// try to find if openblas support vexp
for (int i = 0; i < n; ++i) {
y[i] = std::exp(x[i]);
}
#endif
}
template <>
template <typename T>
T Blas<platform::CPUDeviceContext>::DOT(int n, const T *x, const T *y) const {
#ifdef PADDLE_WITH_MKLML
return CBlas<T>::DOT(n, x, 1, y, 1);
#else
// try to find if openblas support cblas_dot
T sum = 0;
for (int i = 0; i < n; ++i) {
sum += x[i] * y[i];
}
return sum;
#endif
}
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::SCAL(int n, const T a, T *x) const {
#ifdef PADDLE_WITH_MKLML
CBlas<T>::SCAL(n, a, x, 1);
#else
// try to find if openblas support cblas_scal
for (int i = 0; i < n; ++i) {
x[i] = a * x[i];
}
#endif
}
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMV(bool trans_a, int M, int N, T alpha,
......@@ -440,6 +467,42 @@ void Blas<platform::CPUDeviceContext>::BatchedGEMM(
#endif
}
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const int M, const int N, const int K,
const T *A, const T *B, T *C) const {
this->template GEMM<T>(CblasRowMajor, CblasNoTrans, CblasNoTrans, M, N, K,
static_cast<T>(1), A, K, B, N, static_cast<T>(0), C,
N);
}
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::MatMul(const int M, const int N,
const int K, const T *A,
const T *B, T *C) const {
#ifdef PADDLE_WITH_LIBXSMM
// Refer to https://github.com/hfp/libxsmm/blob/master/README.md
// But the threshold is custom constexpr int LIBXSMM_THRESHOLD = 20 * 20 * 20;
// Since the matrix is very small,
// so the unit of calculation is already very fast,
// and the if( M*N*K < LIBXSMM_THRESHOLD) would be overhead,
// use xsmm directly.
// Note: SMM use ColMajor
const char transa = 'N';
const char transb = 'N';
const T alpha = static_cast<T>(1);
const T beta = static_cast<T>(0);
CBlas<T>::SMM_GEMM(&transa, &transb, &N, &M, &K, &alpha, B, &N, A, &K, &beta,
C, &N);
return;
#endif
CBlas<T>::GEMM(CblasRowMajor, CblasNoTrans, CblasNoTrans, M, N, K,
static_cast<T>(1), A, K, B, N, static_cast<T>(0), C, N);
}
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const framework::Tensor &mat_a,
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/platform/cpu_info.h"
namespace paddle {
namespace operators {
namespace math {
#define SIGMOID_THRESHOLD_MIN -40.0
#define SIGMOID_THRESHOLD_MAX 13.0
#define EXP_MAX_INPUT 40.0
template <typename T>
inline T sigmoid(T x) {
return 1. / (1. + exp(-x));
}
template <typename T>
inline T tanh(T x) {
return 2. * sigmoid(2. * x) - 1.;
}
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_identity(const int n, const T* x, T* y) {
// do nothing
return;
}
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_sigmoid(const int n, const T* x, T* y) {
const T min = SIGMOID_THRESHOLD_MIN;
const T max = SIGMOID_THRESHOLD_MAX;
for (int i = 0; i < n; ++i) {
T tmp = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
y[i] = 1.0 / (1.0 + std::exp(-tmp));
}
}
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_tanh(const int n, const T* x, T* y) {
for (int i = 0; i < n; ++i) {
y[i] = tanh<T>(x[i]);
}
}
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_relu(const int n, const T* x, T* y) {
for (int i = 0; i < n; ++i) {
y[i] = x[i] > 0 ? x[i] : 0;
}
}
template <>
inline void vec_relu<float, platform::jit::avx2>(const int n, const float* x,
float* y) {
// TODO(TJ): complete me
for (int i = 0; i < n; ++i) {
y[i] = x[i] > 0 ? x[i] : 0;
}
}
template <>
inline void vec_relu<float, platform::jit::avx>(const int n, const float* x,
float* y) {
// TODO(TJ): complete me
for (int i = 0; i < n; ++i) {
y[i] = x[i] > 0 ? x[i] : 0;
}
}
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
class VecActivations {
public:
std::function<void(const int, const T*, T*)> operator()(
const std::string& type) {
if (type == "sigmoid") {
return vec_sigmoid<T, isa>;
} else if (type == "relu") {
return vec_relu<T, isa>;
} else if (type == "tanh") {
return vec_tanh<T, isa>;
} else if (type == "identity" || type == "") {
return vec_identity<T, isa>;
}
PADDLE_THROW("Not support type %s.", type);
}
};
} // namespace math
} // namespace operators
} // namespace paddle
......@@ -25,17 +25,25 @@ namespace math {
template <typename DeviceContext, typename T>
inline void FCCompute(const BlasT<DeviceContext, T>& blas, const int M,
const int N, const int K, const T* X, const T* W, T* Y,
const T* B = NULL) {
blas.GEMM(CblasNoTrans, CblasNoTrans, M, N, K, static_cast<T>(1), X, W,
static_cast<T>(0), Y);
if (B) {
const T* B = NULL, bool relu = false) {
blas.MatMul(M, N, K, X, W, Y);
if (B == NULL) {
return;
}
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for if (FLAGS_paddle_num_threads > 1)
#endif
for (int i = 0; i < M; i++) {
blas.AXPY(N, static_cast<T>(1), B, Y + i * N);
}
for (int i = 0; i < M; i++) {
blas.AXPY(N, static_cast<T>(1), B, Y + i * N);
}
if (!relu) {
return;
}
// TODO(TJ): fuse relu
LOG(FATAL) << "Not implemented!";
}
} // namespace math
......
......@@ -54,7 +54,7 @@ class SamplingIdKernel : public framework::OpKernel<T> {
static_cast<T>(context.Attr<float>("max")));
std::vector<T> ids(batch_size);
for (size_t i = 0; i < batch_size; ++i) {
for (int i = 0; i < batch_size; ++i) {
T r = dist(engine);
int idx = width - 1;
for (int j = 0; j < width; ++j) {
......@@ -63,7 +63,7 @@ class SamplingIdKernel : public framework::OpKernel<T> {
break;
}
}
ids[i] = ins_vector[i * width + idx];
ids[i] = ins_vector[idx];
}
std::vector<int64_t> out_dim;
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/stack_op.h"
namespace plat = paddle::platform;
namespace ops = paddle::operators;
REGISTER_OPERATOR(stack, ops::StackOp, ops::StackOpMaker,
ops::StackGradOpDescMaker);
REGISTER_OPERATOR(stack_grad, ops::StackOpGrad);
REGISTER_OP_CPU_KERNEL(stack, ops::StackKernel<plat::CPUDeviceContext, float>,
ops::StackKernel<plat::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(stack_grad,
ops::StackGradKernel<plat::CPUDeviceContext, float>,
ops::StackGradKernel<plat::CPUDeviceContext, double>);
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/stack_op.h"
namespace plat = paddle::platform;
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(stack, ops::StackKernel<plat::CUDADeviceContext, float>,
ops::StackKernel<plat::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(stack_grad,
ops::StackGradKernel<plat::CUDADeviceContext, float>,
ops::StackGradKernel<plat::CUDADeviceContext, double>);
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/for_range.h"
#ifdef __NVCC__
#include <thrust/device_vector.h>
#include "paddle/fluid/framework/array.h"
#endif
namespace paddle {
namespace operators {
class StackOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE_GT(ctx->Inputs("X").size(), 0,
"Number of Inputs(X) must be larger than 0");
PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) must exist.");
auto input_dims = ctx->GetInputsDim("X");
for (size_t i = 1; i < input_dims.size(); ++i) {
PADDLE_ENFORCE_EQ(input_dims[i], input_dims[0],
"Dims of all Inputs(X) must be the same");
}
// Only lod of X[0] would be shared with Y
ctx->ShareLoD("X", /*->*/ "Y");
int axis = ctx->Attrs().Get<int>("axis");
int rank = input_dims[0].size();
PADDLE_ENFORCE(
axis >= -(rank + 1) && axis < rank + 1,
"Attr(axis) must be inside [-(rank+1), rank+1), where rank = %d", rank);
if (axis < 0) axis += (rank + 1);
auto vec = framework::vectorize2int(input_dims[0]);
vec.insert(vec.begin() + axis, input_dims.size());
ctx->SetOutputDim("Y", framework::make_ddim(vec));
}
};
class StackOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "The input of stack op.").AsDuplicable();
AddOutput("Y", "The output of stack op.");
AddAttr<int>("axis",
"The axis along which all of the Inputs(X) should be stacked.")
.SetDefault(0);
AddComment(R"DOC(
Stack Operator.
Stack all of the Inputs(X) into one tensor along Attr(axis). The dims of all Inputs(X) must be the same.
)DOC");
}
};
template <typename VecXType, typename T>
struct StackFunctor {
HOSTDEVICE StackFunctor(const VecXType &x, T *y, int n, int post)
: x_(x), y_(y), n_(n), post_(post) {}
HOSTDEVICE void operator()(int idx) {
int i = idx / (n_ * post_);
int which_x = idx / post_ - i * n_;
int x_index = i * post_ + idx % post_;
y_[idx] = x_[which_x][x_index];
}
private:
VecXType x_;
T *y_;
int n_;
int post_;
};
template <typename VecDxType, typename T>
struct StackGradFunctor {
HOSTDEVICE StackGradFunctor(const VecDxType &dx, const T *dy, int n, int post)
: dx_(dx), dy_(dy), n_(n), post_(post) {}
HOSTDEVICE void operator()(int idx) {
int i = idx / (n_ * post_);
int which_x = idx / post_ - i * n_;
int x_index = i * post_ + idx % post_;
dx_[which_x][x_index] = dy_[idx];
}
private:
VecDxType dx_;
const T *dy_;
int n_;
int post_;
};
template <typename DeviceContext, typename VecXType, typename T>
static inline void StackFunctorForRange(const DeviceContext &ctx,
const VecXType &x, T *y, int total_num,
int n, int post) {
platform::ForRange<DeviceContext> for_range(ctx, total_num);
for_range(StackFunctor<VecXType, T>(x, y, n, post));
}
template <typename DeviceContext, typename VecDxType, typename T>
static inline void StackGradFunctorForRange(const DeviceContext &ctx,
const VecDxType &dx, const T *dy,
int total_num, int n, int post) {
platform::ForRange<DeviceContext> for_range(ctx, total_num);
for_range(StackGradFunctor<VecDxType, T>(dx, dy, n, post));
}
template <typename DeviceContext, typename T>
class StackKernel : public framework::OpKernel<T> {
using Tensor = framework::LoDTensor;
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto x = ctx.MultiInput<Tensor>("X");
auto *y = ctx.Output<Tensor>("Y");
int axis = ctx.Attr<int>("axis");
if (axis < 0) axis += (x[0]->dims().size() + 1);
int n = static_cast<int>(x.size());
auto *y_data = y->mutable_data<T>(ctx.GetPlace());
std::vector<const T *> x_datas(n);
for (int i = 0; i < n; i++) x_datas[i] = x[i]->data<T>();
int pre = 1, post = 1;
auto &dim = x[0]->dims();
for (auto i = 0; i < axis; ++i) pre *= dim[i];
for (auto i = axis; i < dim.size(); ++i) post *= dim[i];
int total_num = pre * n * post;
auto &dev_ctx = ctx.template device_context<DeviceContext>();
constexpr auto kMaxThreshold = 16;
if (std::is_same<DeviceContext, platform::CPUDeviceContext>::value ||
n > kMaxThreshold) {
#ifdef __NVCC__
VLOG(10) << "Stack more than " << kMaxThreshold
<< " tensors on GPU may be slow.";
thrust::device_vector<const T *> device_x_vec(x_datas);
auto x_data_arr = device_x_vec.data().get();
#else
auto x_data_arr = x_datas.data();
#endif
StackFunctorForRange(dev_ctx, x_data_arr, y_data, total_num, n, post);
#ifdef __NVCC__
// Wait() must be called because device_x_vec may be destructed before
// kernel ends
dev_ctx.Wait();
#endif
}
#ifdef __NVCC__
else { // NOLINT
framework::Array<const T *, kMaxThreshold> x_data_arr;
for (int i = 0; i < n; ++i) x_data_arr[i] = x_datas[i];
StackFunctorForRange(dev_ctx, x_data_arr, y_data, total_num, n, post);
}
#endif
}
};
class StackOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
"Input(Y@Grad) must exist.");
int axis = ctx->Attrs().Get<int>("axis");
auto dy_dim = ctx->GetInputDim(framework::GradVarName("Y"));
int rank = dy_dim.size();
PADDLE_ENFORCE(axis >= -rank && axis < rank,
"Attr(axis) must be inside [-rank, rank), where rank = %d",
rank);
if (axis < 0) axis += rank;
PADDLE_ENFORCE_EQ(ctx->Outputs(framework::GradVarName("X")).size(),
static_cast<size_t>(dy_dim[axis]),
"Number of Outputs(X@Grad) is wrong");
auto vec = framework::vectorize2int(dy_dim);
vec.erase(vec.begin() + axis);
ctx->SetOutputsDim(
framework::GradVarName("X"),
std::vector<framework::DDim>(dy_dim[axis], framework::make_ddim(vec)));
}
};
class StackGradOpDescMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType("stack_grad");
op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));
op->SetOutput(framework::GradVarName("X"), InputGrad("X", false));
op->SetAttrMap(Attrs());
return op;
}
};
template <typename DeviceContext, typename T>
class StackGradKernel : public framework::OpKernel<T> {
using Tensor = framework::LoDTensor;
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
auto dx = ctx.MultiOutput<Tensor>(framework::GradVarName("X"));
int axis = ctx.Attr<int>("axis");
if (axis < 0) axis += dy->dims().size();
int n = dy->dims()[axis];
std::vector<T *> dx_datas(n); // NOLINT
for (int i = 0; i < n; i++) {
dx_datas[i] = dx[i]->mutable_data<T>(ctx.GetPlace());
}
auto dy_data = dy->data<T>();
int pre = 1;
for (int i = 0; i < axis; ++i) pre *= dy->dims()[i];
int total_num = dy->numel();
int post = total_num / (n * pre);
auto &dev_ctx = ctx.template device_context<DeviceContext>();
constexpr auto kMaxThreshold = 16;
if (std::is_same<DeviceContext, platform::CPUDeviceContext>::value ||
n > kMaxThreshold) {
#ifdef __NVCC__
VLOG(10) << "Stack more than " << kMaxThreshold
<< " tensors on GPU may be slow.";
thrust::device_vector<T *> device_dx_vec(dx_datas);
auto dx_data_arr = device_dx_vec.data().get();
#else
auto dx_data_arr = dx_datas.data();
#endif
StackGradFunctorForRange(dev_ctx, dx_data_arr, dy_data, total_num, n,
post);
#ifdef __NVCC__
// Wait() must be called because device_dx_vec may be destructed before
// kernel ends
dev_ctx.Wait();
#endif
}
#ifdef __NVCC__
else { // NOLINT
framework::Array<T *, kMaxThreshold> dx_data_arr;
for (int i = 0; i < n; ++i) dx_data_arr[i] = dx_datas[i];
StackGradFunctorForRange(dev_ctx, dx_data_arr, dy_data, total_num, n,
post);
}
#endif
}
};
} // namespace operators
} // namespace paddle
......@@ -58,11 +58,15 @@ class WhileOp : public framework::OperatorBase {
PADDLE_ENFORCE(platform::is_cpu_place(cond.place()),
"Condition of while op must in CPU memory.");
bool is_test = Attr<bool>("is_test");
auto ctx = executor.Prepare(*program, block->ID());
while (cond.data<bool>()[0]) {
auto &current_scope = scope.NewScope();
step_scopes->push_back(&current_scope);
executor.RunPreparedContext(ctx.get(), &current_scope, false);
if (is_test) {
scope.DeleteScope(&current_scope);
}
}
}
};
......@@ -88,6 +92,7 @@ class WhileOpMaker : public framework::OpProtoAndCheckerMaker {
"variables generated in the i'th step.");
AddAttr<framework::BlockDesc *>(kStepBlock,
"The step block inside WhileOp");
AddAttr<bool>("is_test", "True if in test phase.").SetDefault(false);
AddComment(R"DOC(
)DOC");
}
......@@ -103,6 +108,8 @@ class WhileGradOp : public framework::OperatorBase {
private:
void RunImpl(const framework::Scope &scope,
const platform::Place &dev_place) const override {
PADDLE_ENFORCE(!Attr<bool>("is_test"),
"GradOp is only callable when is_test is false");
// get device context from pool
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(dev_place);
......
......@@ -103,15 +103,16 @@ size_t CUDAPinnedMaxChunkSize() {
return CUDAPinnedMaxAllocSize() / 256;
}
#ifdef PADDLE_WITH_XBYAK
namespace jit {
#ifdef PADDLE_WITH_XBYAK
static Xbyak::util::Cpu cpu;
bool MayIUse(const cpu_isa_t cpu_isa) {
using namespace Xbyak::util; // NOLINT
switch (cpu_isa) {
case sse42:
return cpu.has(Cpu::tSSE42);
case avx:
return cpu.has(Cpu::tAVX);
case avx2:
return cpu.has(Cpu::tAVX2);
case avx512_common:
......@@ -134,8 +135,16 @@ bool MayIUse(const cpu_isa_t cpu_isa) {
}
return false;
}
#else
bool MayIUse(const cpu_isa_t cpu_isa) {
if (cpu_isa == isa_any) {
return true;
} else {
return false;
}
}
#endif
} // namespace jit
#endif
} // namespace platform
} // namespace paddle
......@@ -37,12 +37,11 @@ size_t CUDAPinnedMinChunkSize();
//! Get the maximum chunk size for buddy allocator.
size_t CUDAPinnedMaxChunkSize();
#ifdef PADDLE_WITH_XBYAK
namespace jit {
typedef enum {
isa_any,
sse42,
avx,
avx2,
avx512_common,
avx512_core,
......@@ -55,7 +54,6 @@ typedef enum {
inline bool MayIUse(const cpu_isa_t cpu_isa);
} // namespace jit
#endif
} // namespace platform
} // namespace paddle
......@@ -66,10 +66,16 @@ extern void* mklml_dso_handle;
__macro(cblas_dgemm_free); \
__macro(cblas_sgemm_batch); \
__macro(cblas_dgemm_batch); \
__macro(cblas_sdot); \
__macro(cblas_ddot); \
__macro(cblas_sscal); \
__macro(cblas_dscal); \
__macro(vsAdd); \
__macro(vdAdd); \
__macro(vsMul); \
__macro(vdMul); \
__macro(vsExp); \
__macro(vdExp); \
__macro(MKL_Set_Num_Threads)
MKLML_ROUTINE_EACH(DECLARE_DYNAMIC_LOAD_MKLML_WRAP);
......
......@@ -13,7 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/pybind/const_value.h"
#include <paddle/fluid/framework/op_proto_maker.h>
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/op_proto_maker.h"
#include "paddle/fluid/framework/operator.h"
namespace paddle {
......@@ -24,6 +25,8 @@ void BindConstValue(pybind11::module* m) {
m->def("kTempVarName", [] { return framework::kTempVarName; });
m->def("kGradVarSuffix", [] { return framework::kGradVarSuffix; });
m->def("kZeroVarSuffix", [] { return framework::kZeroVarSuffix; });
m->def("kControlDepVarName",
[] { return framework::ir::Node::kControlDepVarName; });
auto op_proto_and_checker_maker =
m->def_submodule("op_proto_and_checker_maker");
......
......@@ -116,7 +116,6 @@ function cmake_gen() {
-DCMAKE_EXPORT_COMPILE_COMMANDS=ON
-DWITH_CONTRIB=${WITH_CONTRIB:-ON}
-DWITH_ANAKIN=${WITH_ANAKIN:-OFF}
-DWITH_INFERENCE_DEMO=${WITH_INFERENCE_DEMO:-ON}
-DPY_VERSION=${PY_VERSION:-2.7}
========================================
EOF
......@@ -146,7 +145,6 @@ EOF
-DCMAKE_EXPORT_COMPILE_COMMANDS=ON \
-DWITH_CONTRIB=${WITH_CONTRIB:-ON} \
-DWITH_ANAKIN=${WITH_ANAKIN:-OFF} \
-DWITH_INFERENCE_DEMO=${WITH_INFERENCE_DEMO:-ON} \
-DPY_VERSION=${PY_VERSION:-2.7}
}
......
......@@ -50,6 +50,12 @@ EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()
def generate_control_dev_var_name():
import random
return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
def grad_var_name(var_name):
......
......@@ -661,6 +661,7 @@ class While(object):
Args:
cond (Variable): condition used to compare.
is_test(bool): A flag indicating whether execution is in test phase.
name (str): The name of this layer.
Examples:
......@@ -683,7 +684,7 @@ class While(object):
IN_WHILE_BLOCK = 1
AFTER_WHILE_BLOCK = 2
def __init__(self, cond, name=None):
def __init__(self, cond, is_test=False, name=None):
self.helper = LayerHelper("while", name=name)
self.status = While.BEFORE_WHILE_BLOCK
if not isinstance(cond, Variable):
......@@ -694,6 +695,7 @@ class While(object):
if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
raise TypeError("condition should be a bool scalar")
self.cond_var = cond
self.is_test = is_test
def block(self):
return WhileGuard(self)
......@@ -735,7 +737,8 @@ class While(object):
},
outputs={'Out': out_vars,
'StepScopes': [step_scope]},
attrs={'sub_block': while_block})
attrs={'sub_block': while_block,
"is_test": self.is_test})
def lod_rank_table(x, level=0):
......
......@@ -105,6 +105,7 @@ __all__ = [
'prelu',
'flatten',
'sequence_mask',
'stack',
]
......@@ -5568,3 +5569,40 @@ def sequence_mask(x, maxlen=None, dtype='int64', name=None):
'out_dtype': out.dtype
})
return out
def stack(x, axis=0):
"""
**Stack Layer**
This layer stacks all of the input :code:`x` along axis.
Input :code:`x` can be a single variable, a :code:`list` of variables,
or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
:code:`tuple`, the shapes of all these variables must be the same.
Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
the shape of the output variable would be
:math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
If :code:`axis` is None, it would be replaced with 0.
Args:
x (Variable|list(Variable)|tuple(Variable)): Input variables.
axis (int|None): The axis along which all inputs are stacked.
Returns:
Variable: The stacked variable.
"""
helper = LayerHelper('stack', **locals())
axis = 0 if axis is None else axis
if not isinstance(x, list) and not isinstance(x, tuple):
x = [x]
out = helper.create_tmp_variable(x[0].dtype)
helper.append_op(
type='stack', inputs={'X': x}, outputs={'Y': out},
attrs={'axis': axis})
return out
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
from test_fusion_lstm_op import fc, ACTIVATION
from test_softmax_op import stable_softmax
def attention_lstm(
x, # T x M
lod, # 1 x N
h0, # N x D
c0, # N x D
fcws, # (M+D) x 1, 1x1
fcbs, # 1 x 1, 1x1
w, # (M+D) x 4D
b, # 1 x 4D
act_gate,
act_cell,
act_cand):
T = sum(lod[0])
N = len(lod[0])
M = x.shape[1]
D = b.shape[1] / 4
assert T == x.shape[0]
assert len(fcws) == len(fcbs)
hidden = []
cell = []
start_offset = 0
for bid in range(N):
seq_len = lod[0][bid]
xi = np.copy(x[start_offset:start_offset + seq_len, :]).reshape(seq_len,
M)
prev_cell = np.copy(c0[bid]).reshape([1, D])
prev_hidden = np.copy(h0[bid]).reshape([1, D])
for step in range(seq_len):
expanded_cell = np.repeat(prev_cell, seq_len, axis=0)
tmp = np.concatenate((xi, expanded_cell), axis=1)
assert tmp.shape[0] == seq_len
assert tmp.shape[1] == M + D
for fcid in range(len(fcbs)):
tmp = fc(tmp, fcws[fcid], fcbs[fcid])
tmp = ACTIVATION['relu'](tmp)
tmp = np.reshape(tmp, (1, seq_len))
tmp = stable_softmax(tmp).reshape(seq_len, 1)
lstmx = xi * tmp # seq * M
lstmx = np.sum(lstmx.reshape(seq_len, M), axis=0).reshape([1, M])
lstmin = np.concatenate((prev_hidden, lstmx), axis=1)
lstmout = fc(lstmin, w, b).reshape([1, 4 * D])
g_f, g_i, g_o, cand = np.split(lstmout, 4, axis=1)
g_f = act_gate(g_f).reshape([1, D])
g_i = act_gate(g_i).reshape([1, D])
g_o = act_gate(g_o).reshape([1, D])
cand = act_cand(cand).reshape([1, D])
cell_t = (prev_cell * g_f) + (g_i * cand)
hidden_t = g_o * act_cell(cell_t)
hidden.append(hidden_t.flatten())
cell.append(cell_t.flatten())
prev_cell = cell_t.reshape([1, D])
prev_hidden = hidden_t.reshape([1, D])
start_offset += seq_len
hidden = np.array(hidden).astype('float32').reshape([T, D])
cell = np.array(cell).astype('float32').reshape([T, D])
return hidden, cell
class TestAttentionLSTMOp(OpTest):
def set_conf(self):
pass
def setUp(self):
self.op_type = 'attention_lstm'
self.lod = [[3]]
self.M = 30
self.D = 15
self.has_initial_hidden = True
self.act_gate = 'sigmoid'
self.act_cell = 'tanh'
self.act_cand = 'tanh'
self.set_conf()
T = sum(self.lod[0])
bs = len(self.lod[0])
x = np.random.normal(size=(T, self.M)).astype('float32')
c0 = np.random.normal(size=(bs, self.D)).astype('float32')
if self.has_initial_hidden:
h0 = np.random.normal(size=(bs, self.D)).astype('float32')
else:
h0 = np.zeros((bs, self.D)).astype('float32')
fcw1 = np.random.normal(size=(self.M + self.D, 1)).astype('float32')
fcb1 = np.random.normal(size=(1, 1)).astype('float32')
fcw2 = np.random.normal(size=(1, 1)).astype('float32')
fcb2 = np.random.normal(size=(1, 1)).astype('float32')
# lstm weight and bias
w = np.random.normal(size=(self.M + self.D,
self.D * 4)).astype('float32')
b = np.random.normal(size=(1, self.D * 4)).astype('float32')
h, c = attention_lstm(x, self.lod, h0, c0, [fcw1, fcw2], [fcb1, fcb2],
w, b, ACTIVATION[self.act_gate],
ACTIVATION[self.act_cell],
ACTIVATION[self.act_cand])
self.inputs = {
'X': (x, self.lod),
'C0': c0,
'AttentionWeight': fcw1,
'AttentionBias': fcb1,
'AttentionScalar': fcw2,
'AttentionScalarBias': fcb2,
'LSTMWeight': w,
'LSTMBias': b
}
if self.has_initial_hidden:
self.inputs['H0'] = h0
self.outputs = {
'Hidden': (h, self.lod),
'Cell': (c, self.lod),
}
self.attrs = {
'gate_activation': self.act_gate,
'cell_activation': self.act_cell,
'candidate_activation': self.act_cand
}
def test_check_output(self):
self.check_output()
class TestAttentionOpNonInit(TestAttentionLSTMOp):
def set_conf(self):
self.has_initial_hidden = False
class TestAttentionOpAct(TestAttentionLSTMOp):
def set_conf(self):
self.M = 3
self.D = 2
self.act_gate = 'relu'
self.act_cell = 'tanh'
self.act_cand = 'sigmoid'
class TestAttentionOpMD1(TestAttentionLSTMOp):
def set_conf(self):
self.M = 36
self.D = 8
class TestAttentionOpMD2(TestAttentionLSTMOp):
def set_conf(self):
self.M = 8
self.D = 8
class TestAttentionOpMD3(TestAttentionLSTMOp):
def set_conf(self):
self.M = 15
self.D = 30
class TestAttentionOpBS1(TestAttentionLSTMOp):
def set_conf(self):
self.lod = [[5]]
self.M = 16
self.D = 32
class TestAttentionOpBS2(TestAttentionLSTMOp):
def set_conf(self):
self.lod = [[3, 6]]
class TestAttentionOpBS5(TestAttentionLSTMOp):
def set_conf(self):
self.lod = [[3, 2, 4, 7, 5]]
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from op_test import OpTest
import numpy as np
import unittest
class TestStackOpBase(OpTest):
def initDefaultParameters(self):
self.num_inputs = 4
self.input_dim = (5, 6, 7)
self.axis = 0
self.dtype = 'float32'
def initParameters(self):
pass
def get_x_names(self):
x_names = []
for i in range(self.num_inputs):
x_names.append('x{}'.format(i))
return x_names
def setUp(self):
self.initDefaultParameters()
self.initParameters()
self.op_type = 'stack'
self.x = []
for i in range(self.num_inputs):
self.x.append(
np.random.random(size=self.input_dim).astype(self.dtype))
tmp = []
x_names = self.get_x_names()
for i in range(self.num_inputs):
tmp.append((x_names[i], self.x[i]))
self.inputs = {'X': tmp}
self.outputs = {'Y': np.stack(self.x, axis=self.axis)}
self.attrs = {'axis': self.axis}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(self.get_x_names(), 'Y')
class TestStackOp1(TestStackOpBase):
def initParameters(self):
self.num_inputs = 16
class TestStackOp2(TestStackOpBase):
def initParameters(self):
self.num_inputs = 20
class TestStackOp3(TestStackOpBase):
def initParameters(self):
self.axis = -1
class TestStackOp4(TestStackOpBase):
def initParameters(self):
self.axis = -4
class TestStackOp5(TestStackOpBase):
def initParameters(self):
self.axis = 1
class TestStackOp6(TestStackOpBase):
def initParameters(self):
self.axis = 3
if __name__ == '__main__':
unittest.main()
......@@ -212,8 +212,10 @@ class DistributeTranspiler(object):
ps_dispatcher = self.config.split_method(self.pserver_endpoints)
self.has_distributed_lookup_table = self._has_distributed_lookup_table()
self.param_name_to_grad_name = dict()
self.grad_name_to_param_name = dict()
for param_var, grad_var in self.params_grads:
self.param_name_to_grad_name[param_var.name] = grad_var.name
self.grad_name_to_param_name[grad_var.name] = param_var.name
# add distributed attrs to program
self.origin_program._is_distributed = True
......@@ -262,8 +264,10 @@ class DistributeTranspiler(object):
AssertionError("Can not insert the send op by original "
"variable name :", splited_grad_varname)
dummy_output = program.global_block().create_var()
dummy_output = program.global_block().create_var(
name=framework.generate_control_dev_var_name())
grad_name_to_send_dummy_out[grad_varname] = dummy_output
program.global_block()._insert_op(
index=index + 1,
type="send",
......@@ -272,6 +276,8 @@ class DistributeTranspiler(object):
attrs={
"epmap": eplist,
RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
OP_ROLE_VAR_ATTR_NAME:
[self.grad_name_to_param_name[grad_varname], grad_varname],
"sync_mode": not self.sync_mode,
})
for _, var in enumerate(splited_vars):
......@@ -313,6 +319,10 @@ class DistributeTranspiler(object):
attrs={
"epmap": eps,
RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
OP_ROLE_VAR_ATTR_NAME: [
param_varname,
self.param_name_to_grad_name[param_varname]
],
"sync_mode": not self.sync_mode
})
......@@ -971,7 +981,11 @@ class DistributeTranspiler(object):
attrs={
"sync_mode": True,
"epmap": pserver_endpoints,
RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
OP_ROLE_VAR_ATTR_NAME: [
self.grad_name_to_param_name[table_grad_name],
table_grad_name
]
})
break
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册