nn.py 439.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
49
    'bpr_loss',
X
Xin Pan 已提交
50 51 52 53 54 55 56 57 58 59
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
60 61
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
62
    'batch_norm',
H
heqiaozhi 已提交
63
    'data_norm',
X
Xin Pan 已提交
64 65 66 67 68 69
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
70
    'sequence_unpad',
X
Xin Pan 已提交
71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
77 78
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
79 80
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
81
    'sequence_slice',
X
Xin Pan 已提交
82 83 84 85 86 87 88 89 90 91 92 93
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
94
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
95 96 97 98 99
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
100
    'group_norm',
D
dengkaipeng 已提交
101
    'spectral_norm',
X
Xin Pan 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
115
    'roi_align',
X
Xin Pan 已提交
116 117 118 119
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
120
    'resize_nearest',
X
Xin Pan 已提交
121 122 123 124 125 126
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
127
    'selu',
X
Xin Pan 已提交
128 129 130
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
131
    'margin_rank_loss',
X
Xin Pan 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
158 159
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
160 161 162 163 164 165 166
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
167
    'rank',
X
Xin Pan 已提交
168 169 170 171 172 173 174 175 176 177
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
178
    'space_to_depth',
W
whs 已提交
179
    'affine_grid',
S
sneaxiy 已提交
180
    'sequence_reverse',
181
    'affine_channel',
B
barrierye 已提交
182
    'similarity_focus',
M
minqiyang 已提交
183
    'hash',
D
dengkaipeng 已提交
184
    'grid_sampler',
G
gmcather 已提交
185 186
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
187
    'bilinear_tensor_product',
C
chengduo 已提交
188 189
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
190
    'lstm',
S
shippingwang 已提交
191
    'shuffle_channel',
192
    'temporal_shift',
S
sneaxiy 已提交
193
    'py_func',
194
    'psroi_pool',
H
heqiaozhi 已提交
195
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
196
    'huber_loss',
D
dengkaipeng 已提交
197
    'kldiv_loss',
Z
zhaozhehao 已提交
198
    'tree_conv',
C
ceci3 已提交
199
    'npair_loss',
R
ruri 已提交
200
    'pixel_shuffle',
201
    'fsp_matrix',
H
heqiaozhi 已提交
202
    'continuous_value_model',
Z
zhoukunsheng 已提交
203
    'where',
Z
zhoukunsheng 已提交
204
    'sign',
205
    'deformable_conv',
206
    'unfold',
Y
Yu Yang 已提交
207 208
]

J
jerrywgz 已提交
209 210
kIgnoreIndex = -100

Y
Yu Yang 已提交
211 212 213 214 215 216 217

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
218
       is_test=False,
219
       name=None):
Y
Yu Yang 已提交
220
    """
221
    **Fully Connected Layer**
Y
Yu Yang 已提交
222

223
    This function creates a fully connected layer in the network. It can take
224
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
225
    Args in detail). It creates a variable called weights for each input tensor,
226 227 228 229
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
230
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
231 232
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
233

234
    When the input is single tensor:
C
caoying03 已提交
235

236 237 238 239 240
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
241 242 243

    .. math::

244
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
245 246 247

    In the above equation:

248 249 250
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
251
    * :math:`b`: The bias parameter created by this layer (if needed).
252
    * :math:`Act`: The activation function.
C
caoying03 已提交
253
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
254

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
273
    Args:
R
ranqiu 已提交
274 275 276 277 278 279 280 281 282 283
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
284
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
285 286 287 288
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
289 290
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
291
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
292
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
293
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
294

295
    Returns:
F
fengjiayi 已提交
296
        Variable: The transformation result.
297 298

    Raises:
C
caoying03 已提交
299
        ValueError: If rank of the input tensor is less than 2.
300 301 302 303

    Examples:
        .. code-block:: python

304
          # when input is single tensor
F
fengjiayi 已提交
305
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
306
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
307 308 309 310 311

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
312
    """
C
caoying03 已提交
313
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
314 315 316 317

    dtype = helper.input_dtype()

    mul_results = []
318 319
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
320 321 322
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
323

Y
Yu Yang 已提交
324
        w = helper.create_parameter(
325
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
326
        tmp = helper.create_variable_for_type_inference(dtype)
327
        helper.append_op(
328 329 330
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
331
            outputs={"Out": tmp},
M
mozga-intel 已提交
332 333
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
334 335 336 337
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
338
    else:
X
Xin Pan 已提交
339
        pre_bias = helper.create_variable_for_type_inference(dtype)
340
        helper.append_op(
341 342 343
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
344
            attrs={"use_mkldnn": False})
345 346 347 348
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
349 350


351 352 353
def embedding(input,
              size,
              is_sparse=False,
354
              is_distributed=False,
355 356 357
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
358
    """
359 360
    **Embedding Layer**

361
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
362 363
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
364 365 366

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
367 368

    Args:
369 370 371 372 373
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
374
        is_distributed(bool): Whether to run lookup table from remote parameter server.
375 376
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
377
            with zeros whenever lookup encounters it in :attr:`input`. If
378
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
379 380
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
381
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
382

383 384 385
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
386

387 388
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
389

B
bdzhuxiaoning 已提交
390 391 392
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.embedding(input=data, size=[128, 64])    
Y
Yu Yang 已提交
393 394 395
    """

    helper = LayerHelper('embedding', **locals())
396
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
397 398
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
399 400
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
401
    tmp = helper.create_variable_for_type_inference(dtype)
402 403
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
404 405 406 407 408
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
409 410 411
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
412
            'remote_prefetch': remote_prefetch,
413 414
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
415 416 417
    return tmp


W
wopeizl 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
434

W
wopeizl 已提交
435 436 437 438 439 440 441 442 443 444 445
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
446

W
wopeizl 已提交
447 448 449 450
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
451

W
wopeizl 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
488 489 490
            
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
491
            hidden_dim = 512
492 493 494 495 496 497
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
498
                                           bias_attr=False)
499

W
wopeizl 已提交
500 501 502
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
503
    assert in_dygraph_mode(
504
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
548 549


P
phlrain 已提交
550 551 552 553 554 555
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
556
         dropout_prob=0.0,
P
phlrain 已提交
557 558 559 560 561
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
562
    """
P
phlrain 已提交
563
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
564 565

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
566
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
567 568
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
569
    .. math::
M
minqiyang 已提交
570 571 572 573 574 575 576

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
577
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
578 579 580 581

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
582 583

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
584 585 586 587 588 589
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
590 591 592
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
593
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
594

M
minqiyang 已提交
595
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
596 597 598 599 600
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
601
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
602 603 604 605 606
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
607
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
608 609
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
610 611
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
612 613 614 615 616 617
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
618
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
619

L
liuhongyu 已提交
620 621

    Returns:
M
minqiyang 已提交
622 623
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
624
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
625

H
haowang101779990 已提交
626 627 628 629
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
630
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
631 632
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
633
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
634 635 636 637


    Examples:
        .. code-block:: python
638 639 640 641 642 643
            
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
644 645 646 647 648 649
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
650 651 652 653 654
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
655 656 657 658
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
659 660 661
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
721 722 723 724 725 726 727 728 729 730
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
731
                  proj_activation='tanh',
732
                  dtype='float32',
X
xuezhong 已提交
733 734 735 736 737
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
738 739 740
    """
    **Dynamic LSTMP Layer**

741 742 743 744 745 746
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
747 748 749 750 751

    The formula is as follows:

    .. math::

752
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
753

754
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
755

756
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
757

758
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
759

760
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
761

762
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
763

764
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
765

Y
Yibing Liu 已提交
766 767 768 769 770 771
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
772
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
773
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
774
          bias vector).
Y
Yibing Liu 已提交
775 776 777
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
778
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
779
    * :math:`h`: The hidden state.
780
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
781 782
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
783
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
784
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
785
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
786 787
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
788 789 790 791

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
792

Y
Yibing Liu 已提交
793 794 795 796 797 798 799 800 801 802 803 804
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
805
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
806 807
                               hidden-hidden weight and projection weight.

808 809
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
810 811
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
812 813
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
814
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
815 816 817 818 819

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
820
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
821 822 823 824 825 826
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
827
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
828 829 830
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
831
                                - The shape is (1 x 7D).
C
chengduo 已提交
832 833 834 835 836

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
837 838 839 840 841 842 843 844 845
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
846
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
847 848
                              default "tanh".
        proj_activation(str): The activation for projection output.
849
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
850
                              default "tanh".
Y
Yibing Liu 已提交
851
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
852 853
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
854 855 856 857 858 859 860 861 862 863 864
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
865 866

    Returns:
867 868 869 870
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
871 872

    Examples:
873

Y
Yibing Liu 已提交
874 875
        .. code-block:: python

876 877 878 879
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
880
            hidden_dim, proj_dim = 512, 256
881
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
882
                                     act=None, bias_attr=None)
883 884 885
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
886 887 888 889
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
890
    """
891

L
lujun 已提交
892
    assert in_dygraph_mode(
893 894
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
895
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
896
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
897
    size = size // 4
Y
Yibing Liu 已提交
898 899 900 901 902 903 904 905 906 907
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
908 909 910 911 912 913
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
929

X
xuezhong 已提交
930 931 932 933 934
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
935 936
    helper.append_op(
        type='lstmp',
937
        inputs=inputs,
Y
Yibing Liu 已提交
938 939 940 941 942 943 944 945 946
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
947 948
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
949 950 951 952 953 954 955 956 957
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
958 959 960 961 962 963 964
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
965 966
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
967
    """
968
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
969

970 971 972
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
973

G
guosheng 已提交
974 975 976 977 978 979 980 981 982
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
983

G
guosheng 已提交
984
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
985

Q
Qiao Longfei 已提交
986 987 988

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
989 990 991 992 993 994 995 996 997 998 999 1000
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
1001
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1002 1003
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1004 1005 1006 1007
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1008
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1009 1010

    Args:
1011 1012
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1013
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1014
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1015 1016
            is the hidden size.
        size(int): The dimension of the gru cell.
1017
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1018 1019
            hidden-hidden weight matrix. Note:

1020
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1021
              :math:`D` is the hidden size.
1022
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1023
              The first part are weights of the update gate and reset gate with
1024
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1025
              candidate hidden state with shape :math:`(D \\times D)`.
1026 1027 1028 1029 1030

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1031
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1032
            the bias in the update gate, reset gate and candidate calculations.
1033 1034 1035
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1036 1037
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1038
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1039 1040 1041
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1042
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1043
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1044 1045 1046 1047
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1048 1049

    Returns:
G
guosheng 已提交
1050
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1051
            and sequence length is the same with the input.
1052

G
guosheng 已提交
1053
    Examples:
1054

G
guosheng 已提交
1055 1056
        .. code-block:: python

1057 1058
            import paddle.fluid as fluid

1059 1060 1061 1062
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1063
            hidden_dim = 512
1064
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1065
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1066 1067
    """

L
lujun 已提交
1068
    assert in_dygraph_mode(
1069 1070
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1071 1072 1073 1074 1075 1076 1077
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1078
    batch_size = input.shape[0]
G
guosheng 已提交
1079
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1080
    if h_0:
G
guosheng 已提交
1081
        assert h_0.shape == (
Y
Yancey 已提交
1082 1083 1084
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1085

X
Xin Pan 已提交
1086 1087 1088 1089
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1103 1104
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1105 1106 1107 1108
        })
    return hidden


Y
Yu Yang 已提交
1109 1110 1111
def gru_unit(input,
             hidden,
             size,
1112 1113
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1114
             activation='tanh',
Q
Qiao Longfei 已提交
1115 1116
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1117
    """
1118 1119 1120
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1121
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1122
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1123

1124 1125
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1126

1127
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1128

1129
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1130

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1146 1147

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1148 1149 1150
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1151 1152
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1153 1154
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1155 1156 1157
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1158 1159 1160

    Args:
        input (Variable): The fc transformed input value of current step.
1161
        hidden (Variable): The hidden value of gru unit from previous step.
1162
        size (integer): The input dimension value.
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1177
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1178
            the bias in the update gate, reset gate and candidate calculations.
1179 1180 1181
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1182 1183
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1184 1185 1186 1187
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1188

1189 1190 1191 1192 1193 1194
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1195

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1219
    size = size // 3
Y
Yu Yang 已提交
1220 1221

    # create weight
1222 1223
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1224

X
Xin Pan 已提交
1225 1226 1227
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1228
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1229
    # create bias
1230
    if helper.bias_attr:
Y
Yu Yang 已提交
1231 1232 1233
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1234
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1235 1236 1237

    helper.append_op(
        type='gru_unit',
1238
        inputs=inputs,
Y
Yu Yang 已提交
1239 1240 1241 1242 1243 1244
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1245 1246
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1247 1248 1249 1250 1251
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1252
@templatedoc()
1253
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1254 1255 1256 1257 1258 1259 1260
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1261
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1262 1263 1264 1265
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1266 1267 1268
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1269

J
JesseyXujin 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             emission = fluid.layers.data(name='emission', shape=[1000], dtype='float32')
             target = fluid.layers.data(name='target', shape=[1], dtype='int32')
             crf_cost = fluid.layers.linear_chain_crf(
                 input=emission,
                 label=target,
                 param_attr=fluid.ParamAttr(
                     name='crfw',
                     learning_rate=0.2))

Y
yuyang18 已提交
1283
    """
Y
Yu Yang 已提交
1284 1285 1286 1287 1288 1289
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1290 1291 1292 1293 1294 1295 1296 1297
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1313 1314 1315 1316
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1317

W
wopeizl 已提交
1318 1319
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1320

W
wopeizl 已提交
1321
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1322

W
wopeizl 已提交
1323
        label(${label_type}): ${label_comment}
1324

W
wopeizl 已提交
1325 1326
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1327

W
wopeizl 已提交
1328 1329
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1330

Y
Yibing Liu 已提交
1331 1332 1333 1334 1335 1336 1337
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1338 1339 1340 1341 1342 1343 1344 1345
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1346
                "Transition": transition,
W
wopeizl 已提交
1347 1348
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1349

W
wopeizl 已提交
1350
    return viterbi_path
Y
Yu Yang 已提交
1351 1352


Y
yi.wu 已提交
1353
@templatedoc()
F
fengjiayi 已提交
1354
def cos_sim(X, Y):
Y
Yu Yang 已提交
1355
    """
Y
yi.wu 已提交
1356 1357 1358
    ${comment}

    Args:
1359 1360
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1361

Y
yi.wu 已提交
1362
    Returns:
1363
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1364 1365 1366 1367 1368 1369 1370

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1371
    """
F
fengjiayi 已提交
1372
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1373 1374 1375
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1386 1387 1388 1389 1390
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1391
            dropout_implementation="downgrade_in_infer"):
1392 1393 1394 1395 1396
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1397
    training. The dropout operator randomly sets (according to the given dropout
1398 1399 1400
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1401 1402
    dropout op can be removed from the program to make the program more efficient.

1403
    Args:
1404 1405
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1406 1407 1408 1409 1410 1411 1412
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1413 1414
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1415
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1416 1417

                                           - train: out = input * mask
C
ceci3 已提交
1418
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1419 1420 1421

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1422
                                        2. upscale_in_train, upscale the outcome at training time
1423

H
haowang101779990 已提交
1424 1425
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1426

H
haowang101779990 已提交
1427 1428
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1429

M
minqiyang 已提交
1430

1431
    Returns:
1432
        Variable: A tensor variable is the shape with `x`.
1433 1434

    Examples:
1435

1436 1437
        .. code-block:: python

1438 1439
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1440 1441
    """

F
fengjiayi 已提交
1442
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1443 1444
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1445
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1446 1447 1448 1449

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1450 1451 1452 1453 1454
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1455 1456 1457 1458
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1459 1460
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1461
        })
1462 1463 1464
    return out


J
jerrywgz 已提交
1465
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1466
    """
Y
Yibing Liu 已提交
1467 1468
    **Cross Entropy Layer**

1469 1470 1471
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1472 1473

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1474
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1475

Y
Yibing Liu 已提交
1476
        .. math::
Y
yangyaming 已提交
1477

Y
Yibing Liu 已提交
1478 1479 1480
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1481 1482
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1483 1484 1485 1486 1487

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1488
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1489 1490 1491
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1492 1493
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1494
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1495

Y
Yibing Liu 已提交
1496
    Args:
Y
yangyaming 已提交
1497
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1498 1499 1500 1501
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1502
        label (Variable|list): the ground truth which is a 2-D tensor. When
1503 1504 1505 1506
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1507
        soft_label (bool): a flag indicating whether to
1508
                                           interpretate the given labels as soft
1509
                                           labels. Default: `False`.
M
minqiyang 已提交
1510 1511
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1512
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1513 1514 1515 1516 1517

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1518 1519 1520
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1521

H
haowang101779990 已提交
1522 1523
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1524

H
haowang101779990 已提交
1525 1526
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1527 1528 1529 1530

    Examples:
        .. code-block:: python

L
lvmengsi 已提交
1531 1532 1533 1534
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1535
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1536
    """
S
sneaxiy 已提交
1537 1538
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1539
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1540
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1541 1542 1543 1544 1545
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1546 1547
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1548 1549 1550
    return out


S
sneaxiy 已提交
1551 1552 1553 1554
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1555
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1556 1557 1558 1559 1560
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1561
                 'MatchX': [match_x],
S
sneaxiy 已提交
1562 1563 1564 1565 1566
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1567
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1568
    """
1569
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1570

1571
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1572
    The loss at a given point in one session is defined as:
1573 1574 1575

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1576 1577

    Learn more details by reading paper <session-based recommendations with recurrent
1578
    neural networks>.
F
frankwhzhang 已提交
1579

1580 1581 1582 1583 1584 1585
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1586 1587
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1588 1589 1590
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1591 1592 1593
    Examples:
        .. code-block:: python

1594 1595 1596 1597 1598 1599 1600
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1601
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1602
    """
1603 1604 1605 1606 1607
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1608
                'Label': [label]},
1609 1610 1611 1612
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1613
def square_error_cost(input, label):
Y
Yu Yang 已提交
1614
    """
1615 1616
    **Square error cost layer**

1617 1618
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1619

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1633 1634
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1635 1636

    Returns:
G
guosheng 已提交
1637
        Variable: The tensor variable storing the element-wise squared error \
1638
                  difference of input and label.
1639 1640 1641 1642

    Examples:
        .. code-block:: python

R
ruri 已提交
1643 1644 1645
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1646

Y
Yu Yang 已提交
1647
    """
F
fengjiayi 已提交
1648
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1649
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1650 1651 1652 1653 1654 1655
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1656
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1657
    helper.append_op(
F
fengjiayi 已提交
1658 1659
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1660 1661 1662
    return square_out


Y
yi.wu 已提交
1663
@templatedoc()
Y
Yu Yang 已提交
1664 1665 1666 1667
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1668
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1669
    """
Y
yi.wu 已提交
1670
    **Chunk Evaluator**
Y
yi.wu 已提交
1671

Y
yangyaming 已提交
1672
    This function computes and outputs the precision, recall and
1673
    F1-score of chunk detection.
Y
yi.wu 已提交
1674

M
minqiyang 已提交
1675
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1676
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1677 1678 1679 1680 1681 1682

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1683

Y
yi.wu 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1709

Y
yi.wu 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1734
    Args:
1735 1736 1737 1738 1739
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1740

Y
yi.wu 已提交
1741
    Returns:
Y
update  
yi.wu 已提交
1742 1743 1744
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1745

Y
yi.wu 已提交
1746 1747 1748
    Examples:
        .. code-block:: python

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1760
            crf = fluid.layers.linear_chain_crf(
1761
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1762
            crf_decode = fluid.layers.crf_decoding(
1763
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1764 1765 1766 1767 1768
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1769
    """
F
fengjiayi 已提交
1770
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1771 1772

    # prepare output
X
Xin Pan 已提交
1773 1774 1775 1776 1777 1778 1779
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1780 1781 1782 1783 1784 1785 1786 1787

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1788 1789 1790 1791
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1792 1793 1794
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1795 1796
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1797
        })
1798 1799
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1800 1801


1802
@templatedoc()
Y
Yu Yang 已提交
1803 1804 1805 1806 1807 1808 1809
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1810 1811
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1812 1813 1814 1815
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1816 1817 1818 1819 1820 1821 1822

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1836

1837 1838
    Returns:
        Variable: output of sequence_conv
B
bdzhuxiaoning 已提交
1839 1840 1841 1842 1843 1844 1845

    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
             x_conved = fluid.layers.sequence_conv(x,2)
Y
Yu Yang 已提交
1846 1847
    """

L
lujun 已提交
1848
    assert not in_dygraph_mode(), (
1849
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1850 1851 1852 1853 1854
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1855
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1866
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1867 1868 1869 1870 1871 1872
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1873
def sequence_softmax(input, use_cudnn=False, name=None):
1874 1875 1876
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1877
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1894 1895 1896
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1897

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
1909
    assert not in_dygraph_mode(), (
1910
        "sequence layer is not supported in dygraph mode yet.")
1911 1912
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1913
    softmax_out = helper.create_variable_for_type_inference(dtype)
1914 1915 1916 1917 1918 1919 1920 1921
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1922
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1923
    """
1924
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1925
    has the same shape as the input.
Q
qiaolongfei 已提交
1926

D
dengkaipeng 已提交
1927
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1928
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1929
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1930 1931 1932
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1933
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1934
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1935 1936 1937 1938 1939 1940 1941

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1942
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1943 1944 1945 1946 1947 1948 1949 1950

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1951 1952
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1953 1954
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1955 1956 1957
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1958 1959 1960 1961 1962 1963 1964 1965

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
1966 1967
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
1968
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1969
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1970
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1971 1972
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1973 1974

    """
1975 1976
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1977
    softmax_out = helper.create_variable_for_type_inference(dtype)
1978 1979 1980 1981
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1982 1983
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1984 1985 1986
    return softmax_out


Y
Yu Yang 已提交
1987 1988 1989
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1990 1991
           stride=1,
           padding=0,
1992
           dilation=1,
Y
Yu Yang 已提交
1993 1994 1995
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1996
           use_cudnn=True,
1997 1998
           act=None,
           name=None):
Y
Yu Yang 已提交
1999
    """
C
chengduoZH 已提交
2000
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
2001 2002
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
2003
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
2004 2005 2006 2007 2008 2009 2010
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
2011 2012 2013
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2014

2015
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2016

C
chengduoZH 已提交
2017 2018
    .. math::

C
refine  
chengduoZH 已提交
2019
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2020

T
tensor-tang 已提交
2021
    Where:
C
chengduoZH 已提交
2022

2023 2024 2025 2026 2027
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2028
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2029 2030 2031

    Example:

2032 2033
        - Input:

W
weixing02 已提交
2034
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2035

W
weixing02 已提交
2036
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2037

2038
        - Output:
T
tensor-tang 已提交
2039

W
weixing02 已提交
2040
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2041

C
chengduoZH 已提交
2042
        Where
2043 2044

        .. math::
C
chengduoZH 已提交
2045

W
weixing02 已提交
2046 2047
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2048 2049

    Args:
2050
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2051
        num_filters(int): The number of filter. It is as same as the output
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2069 2070 2071 2072 2073
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2074
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2075 2076 2077 2078 2079
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2080 2081
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2082 2083
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2084
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2085
            will be named automatically. Default: None
C
chengduoZH 已提交
2086 2087

    Returns:
G
guosheng 已提交
2088
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2089 2090
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2091
    Raises:
2092 2093
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2094

C
chengduoZH 已提交
2095 2096 2097
    Examples:
        .. code-block:: python

2098 2099
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2100 2101 2102
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2103
    assert param_attr is not False, "param_attr should not be False here."
2104
    l_type = 'conv2d'
X
xzl 已提交
2105 2106
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2107
        l_type = 'depthwise_conv2d'
2108 2109 2110 2111

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2112 2113 2114 2115 2116
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2117
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2118

C
chengduoZH 已提交
2119 2120 2121
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2122
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2123

C
chengduoZH 已提交
2124 2125
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2126 2127

    input_shape = input.shape
M
minqiyang 已提交
2128
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2129 2130

    def _get_default_param_initializer():
C
chengduo 已提交
2131 2132
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2133 2134 2135 2136 2137 2138 2139 2140
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2141
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2142

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2157
    helper.append_op(
2158
        type=l_type,
Y
Yu Yang 已提交
2159 2160 2161 2162 2163
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2164 2165 2166
        attrs={
            'strides': stride,
            'paddings': padding,
2167
            'dilations': dilation,
C
chengduoZH 已提交
2168
            'groups': groups,
2169
            'use_cudnn': use_cudnn,
2170
            'use_mkldnn': False,
2171
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2172
        })
Y
Yu Yang 已提交
2173 2174 2175 2176 2177 2178

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2196 2197 2198 2199 2200 2201
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2211 2212
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2213 2214 2215
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2216
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2242
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2243 2244
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2245
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2246 2247
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2248
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2249 2250
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2251
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2252 2253 2254 2255 2256 2257
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2268 2269
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2270 2271
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2272
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2273
            will be named automatically. Default: None.
C
chengduoZH 已提交
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2286 2287
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2288 2289 2290
    """

    l_type = 'conv3d'
C
chengduo 已提交
2291
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2302
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2316 2317 2318
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2319 2320 2321 2322 2323 2324 2325 2326
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2327
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2342
            'use_mkldnn': False
C
chengduoZH 已提交
2343 2344
        })

2345
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2346 2347 2348 2349

    return helper.append_activation(pre_act)


2350
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
Y
Yu Yang 已提交
2351
    """
Y
yangyaming 已提交
2352 2353 2354
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

2365 2366
       x is a 1-level LoDTensor and **pad_value** = 0.0:
         x.lod = [[2, 3, 2, 0]]
L
Luo Tao 已提交
2367 2368 2369 2370
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
2371
         out.dim = [4, 1]
2372
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2373 2374

       for different pool_type:
2375 2376 2377
         average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
2378
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
2379 2380 2381 2382 2383
         max    : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
         last   : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

         and all above 0.0 = **pad_value**.
F
fengjiayi 已提交
2384

L
Luo Tao 已提交
2385
    Args:
2386
        input (variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2387
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2388
            It supports average, sum, sqrt and max.
2389 2390
        is_test (bool): Used to distinguish training from scoring mode. Default False.
        pad_value (float): Used to pad the pooling result for empty input sequence.
L
Luo Tao 已提交
2391 2392 2393 2394 2395 2396 2397

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2398

2399 2400
             import paddle.fluid as fluid

Y
yangyaming 已提交
2401
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2402 2403 2404 2405 2406
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2407 2408
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2409
    """
L
lujun 已提交
2410
    assert not in_dygraph_mode(), (
2411
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2412
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2413
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2414 2415
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2416 2417 2418 2419 2420 2421

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
2422 2423 2424 2425 2426
        attrs={
            "pooltype": pool_type.upper(),
            "is_test": is_test,
            "pad_value": pad_value
        })
Y
Yu Yang 已提交
2427

Y
yangyaming 已提交
2428 2429 2430 2431 2432
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2433 2434 2435
    return pool_out


C
add doc  
chengduoZH 已提交
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
2452 2453 2454 2455
           import paddle.fluid as fluid
           x = fluid.layers.data(name='x', shape=[10], dtype='float32')
           y = fluid.layers.data(name='y', shape=[10], dtype='float32')
           out = fluid.layers.sequence_concat(input=[x, y])
C
add doc  
chengduoZH 已提交
2456
    """
L
lujun 已提交
2457
    assert not in_dygraph_mode(), (
2458
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2459
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2460
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2461 2462 2463 2464 2465
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2466
def sequence_first_step(input):
L
Luo Tao 已提交
2467
    """
L
Luo Tao 已提交
2468
    This function gets the first step of sequence.
L
Luo Tao 已提交
2469 2470 2471 2472

    .. code-block:: text

       x is a 1-level LoDTensor:
2473
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2474 2475 2476 2477 2478
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2479
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2480
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2481

L
Luo Tao 已提交
2482 2483 2484 2485 2486 2487 2488 2489 2490
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2491

Y
yangyaming 已提交
2492
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2493 2494 2495
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2496 2497 2498
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2499
def sequence_last_step(input):
L
Luo Tao 已提交
2500
    """
L
Luo Tao 已提交
2501
    This function gets the last step of sequence.
L
Luo Tao 已提交
2502 2503 2504 2505

    .. code-block:: text

       x is a 1-level LoDTensor:
2506
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2507 2508 2509 2510 2511
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2512
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2513
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2514

L
Luo Tao 已提交
2515 2516 2517 2518 2519 2520 2521 2522 2523
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2524

Y
yangyaming 已提交
2525
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2526 2527 2528
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2529 2530 2531
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2532 2533 2534 2535
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2536
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2537 2538 2539 2540 2541
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2542

H
haowang101779990 已提交
2543
              - Case:
Y
Yibing Liu 已提交
2544

2545
            Given the input Variable **input**:
2546

2547 2548 2549
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2550

2551
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2552

2553
            the output Variable will be
2554

2555 2556 2557
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2558

M
minqiyang 已提交
2559
    Note:
H
haowang101779990 已提交
2560
          The first dimension size of **input**, **offset** and **length**
2561
          should be equal. The **offset** should start from 0.
2562

Y
Yibing Liu 已提交
2563
    Args:
2564
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2565
                         sequences.
Y
Yibing Liu 已提交
2566 2567 2568 2569 2570 2571
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2572
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2583
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2584 2585
                                                   length=length)
    """
L
lujun 已提交
2586
    assert not in_dygraph_mode(), (
2587
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2588 2589
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2590
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2605
@templatedoc()
Y
Yu Yang 已提交
2606
def pool2d(input,
C
chengduoZH 已提交
2607 2608
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2609 2610
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2611
           global_pooling=False,
C
chengduoZH 已提交
2612
           use_cudnn=True,
2613
           ceil_mode=False,
2614 2615
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2616
    """
F
fengjiayi 已提交
2617
    ${comment}
2618 2619

    Args:
2620 2621 2622
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2623
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2624
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2625 2626
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2627
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2628 2629 2630 2631 2632 2633
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2634 2635 2636
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2637
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2638
                        layer will be named automatically.
2639
        exclusive (bool): Whether to exclude padding points in average pooling
2640
                          mode, default is true
F
fengjiayi 已提交
2641

2642
    Returns:
F
fengjiayi 已提交
2643
        Variable: The pooling result.
F
fengjiayi 已提交
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2656
          pool2d = fluid.layers.pool2d(
2657 2658 2659 2660
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2661
                            global_pooling=False)
Y
Yu Yang 已提交
2662 2663 2664 2665 2666
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2667

C
chengduoZH 已提交
2668 2669 2670 2671 2672
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2673 2674 2675 2676
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2677 2678
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2679

C
Add doc  
chengduoZH 已提交
2680
    l_type = 'pool2d'
2681 2682

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2683
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2684
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2685 2686

    helper.append_op(
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2698 2699
            "use_mkldnn": False,
            "exclusive": exclusive,
2700 2701 2702 2703 2704
        })

    return pool_out


D
dengkaipeng 已提交
2705
@templatedoc()
2706 2707 2708 2709 2710 2711 2712 2713
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2714 2715
           name=None,
           exclusive=True):
2716
    """
2717
    ${comment}
2718 2719

    Args:
D
dengkaipeng 已提交
2720 2721 2722 2723 2724
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2725 2726 2727 2728 2729
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2730 2731 2732 2733 2734 2735 2736
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2737
        exclusive (bool): Whether to exclude padding points in average pooling
2738
                          mode, default is true
2739

2740
    Returns:
2741
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2755 2756 2757 2758 2759
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2760

C
chengduoZH 已提交
2761 2762 2763 2764 2765
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2766 2767 2768
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2769

C
chengduoZH 已提交
2770 2771
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2772

2773 2774
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2775
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2776
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2777 2778

    helper.append_op(
2779
        type=l_type,
Y
Yu Yang 已提交
2780 2781 2782 2783 2784 2785 2786
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2787
            "paddings": pool_padding,
2788
            "use_cudnn": use_cudnn,
2789
            "ceil_mode": ceil_mode,
2790 2791
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2792 2793 2794 2795 2796
        })

    return pool_out


2797 2798 2799 2800 2801 2802 2803
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2804 2805 2806 2807 2808 2809 2810
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2811

2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2825 2826 2827 2828 2829 2830 2831 2832 2833

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2834 2835
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2850
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2851
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2852
          # of input data into m * n grids averagely and performs poolings in each
2853 2854
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2855
          #
2856 2857 2858 2859 2860 2861 2862 2863
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2864 2865
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2866
          pool_out = fluid.layers.adaptive_pool2d(
2867 2868
                            input=data,
                            pool_size=[3, 3],
2869
                            pool_type='avg')
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2880
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2906
    return (pool_out, mask) if require_index else pool_out
2907 2908 2909 2910 2911 2912 2913 2914 2915


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2916 2917 2918 2919 2920 2921 2922
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2923

2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2941 2942 2943

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2944 2945 2946
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2947
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2948
            it must contain three integers, (Depth, Height, Width).
2949
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2950 2951
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2966 2967
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2968
          # of input data into l * m * n grids averagely and performs poolings in each
2969 2970
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2971
          #
2972 2973 2974 2975 2976 2977 2978 2979 2980
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2981
          #                 output[:, :, i, j, k] =
2982 2983
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
2984 2985 2986

          import paddle.fluid as fluid

2987
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
2988 2989
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
2990
                            input=data,
D
dengkaipeng 已提交
2991
                            pool_size=[3, 3, 3],
2992
                            pool_type='avg')
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3003
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3029
    return (pool_out, mask) if require_index else pool_out
3030 3031


Y
Yu Yang 已提交
3032 3033 3034 3035 3036 3037 3038
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3039
               data_layout='NCHW',
Y
Yang Yang 已提交
3040
               in_place=False,
3041 3042
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3043
               moving_variance_name=None,
3044
               do_model_average_for_mean_and_var=False,
3045 3046
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3047
    """
Q
qiaolongfei 已提交
3048 3049 3050 3051
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3052

Q
qiaolongfei 已提交
3053
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3054

Q
qiaolongfei 已提交
3055 3056
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3057 3058 3059
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3072

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

3086
    Args:
Q
qingqing01 已提交
3087
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3088
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3089 3090 3091 3092 3093 3094 3095 3096 3097
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3098 3099 3100 3101 3102 3103 3104 3105
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
3106
        data_layout(string, default NCHW): NCHW|NHWC
3107
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3108 3109 3110 3111
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
3112
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3113
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3114 3115 3116 3117 3118
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3119 3120

    Returns:
Q
qiaolongfei 已提交
3121
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3122 3123 3124 3125 3126

    Examples:

        .. code-block:: python

L
lvmengsi 已提交
3127
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3128 3129
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3130
    """
C
chengduo 已提交
3131
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3132 3133 3134
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3135 3136 3137 3138
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3157
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3158

3159 3160
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3161 3162 3163
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3164
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3165
        shape=param_shape,
W
Wu Yi 已提交
3166
        dtype=dtype)
3167 3168 3169 3170 3171 3172
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3173
            trainable=False,
W
wanghaoshuang 已提交
3174
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3175
        shape=param_shape,
W
Wu Yi 已提交
3176
        dtype=dtype)
3177
    variance.stop_gradient = True
Y
Yu Yang 已提交
3178 3179 3180 3181 3182 3183

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3184 3185 3186 3187
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3188

X
Xin Pan 已提交
3189 3190
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3208 3209 3210 3211
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3212
            "data_layout": data_layout,
X
Xin Pan 已提交
3213
            "use_mkldnn": False,
3214 3215
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3216
        })
Y
Yu Yang 已提交
3217 3218 3219 3220

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3272 3273
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3274

3275 3276
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3342
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3343 3344 3345 3346

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3347
@templatedoc()
G
guosheng 已提交
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3358
    ${comment}
G
guosheng 已提交
3359 3360 3361

    The formula is as follows:

Y
yuyang18 已提交
3362
    ..  math::
G
guosheng 已提交
3363 3364 3365 3366 3367 3368 3369

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3370 3371 3372 3373 3374 3375 3376 3377
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3378

G
guosheng 已提交
3379 3380
    Args:
        input(Variable): The input tensor variable.
3381
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3382
            normalization. Default True.
3383
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3384 3385
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3386
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3387
            Default 1.
3388
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3389
            division by zero. Default 1e-05.
G
guosheng 已提交
3390
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3391 3392
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3393 3394
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3395
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3396 3397
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3398
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3399
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3400
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3401 3402 3403
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3404 3405

    Returns:
Y
yuyang18 已提交
3406
        ${y_comment}
G
guosheng 已提交
3407 3408 3409

    Examples:

Y
yuyang18 已提交
3410 3411 3412
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3413
    """
L
lujun 已提交
3414
    assert in_dygraph_mode(
L
lujun 已提交
3415
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3430
    if shift:
G
guosheng 已提交
3431 3432 3433 3434 3435 3436
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3437 3438 3439 3440 3441
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3469
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3517 3518
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3536
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3537 3538 3539
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3540
    This layer calculates the spectral normalization value of weight parameters of
3541
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3542
    Parameters. Calculations are showed as follows.
3543

D
dengkaipeng 已提交
3544 3545 3546
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3547
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3560
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3561 3562 3563 3564

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3565

D
dengkaipeng 已提交
3566
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3567 3568
                

D
dengkaipeng 已提交
3569 3570 3571 3572
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3573 3574 3575
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3576 3577 3578
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3579
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3580 3581

    Examples:
K
Kaipeng Deng 已提交
3582
       .. code-block:: python
D
dengkaipeng 已提交
3583

K
Kaipeng Deng 已提交
3584 3585 3586 3587 3588
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3589 3590
    """
    helper = LayerHelper('spectral_norm', **locals())
3591
    dtype = weight.dtype
D
dengkaipeng 已提交
3592 3593 3594

    # create intput and parameters
    inputs = {'Weight': weight}
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3613 3614

    # create output
3615
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3616 3617

    helper.append_op(
3618
        type="spectral_norm",
D
Dun 已提交
3619
        inputs=inputs,
3620 3621 3622 3623 3624 3625
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3626

3627
    return out
D
Dun 已提交
3628 3629


Y
Yu Yang 已提交
3630 3631 3632 3633
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3634 3635 3636
                     padding=0,
                     stride=1,
                     dilation=1,
3637
                     groups=None,
C
caoying03 已提交
3638
                     param_attr=None,
3639
                     bias_attr=None,
C
chengduoZH 已提交
3640
                     use_cudnn=True,
3641
                     act=None,
C
caoying03 已提交
3642
                     name=None):
Y
Yu Yang 已提交
3643
    """
3644 3645 3646 3647 3648 3649 3650 3651
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3652 3653
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3654 3655 3656
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3657 3658 3659 3660 3661

    For each input :math:`X`, the equation is:

    .. math::

3662
        Out = \sigma (W \\ast X + b)
3663

3664
    Where:
3665 3666 3667

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3668 3669 3670 3671
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3672

3673 3674 3675 3676
    Example:

        - Input:

3677
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3678

3679
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3680 3681 3682

        - Output:

3683
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3684 3685

        Where
Y
Yu Yang 已提交
3686

3687 3688
        .. math::

3689 3690
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3691 3692
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3693 3694

    Args:
3695 3696 3697 3698
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3699 3700 3701 3702
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3731
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3732 3733 3734
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3735
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3736
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3737 3738

    Returns:
3739
        Variable: The tensor variable storing the convolution transpose result.
3740 3741

    Raises:
3742 3743
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3744 3745 3746 3747

    Examples:
       .. code-block:: python

3748 3749
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3750
    """
C
chengduo 已提交
3751
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3752 3753 3754 3755 3756 3757 3758 3759
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3760 3761 3762
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3763 3764 3765
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3766

C
chengduoZH 已提交
3767 3768
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3769

Y
Yu Yang 已提交
3770 3771 3772 3773 3774
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3775

Y
Yu Yang 已提交
3776 3777
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3778

C
chengduoZH 已提交
3779
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3780
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3781
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3782
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3783
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3784 3785 3786
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3787

3788 3789 3790 3791 3792 3793 3794
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3795
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3796
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3797

Y
Yu Yang 已提交
3798 3799 3800
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3801
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3802
    helper.append_op(
3803
        type=op_type,
Y
Yu Yang 已提交
3804 3805
        inputs={'Input': [input],
                'Filter': [img_filter]},
3806
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3807
        attrs={
3808
            'output_size': output_size,
3809 3810 3811 3812 3813
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3814 3815
        })

3816 3817 3818
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3819 3820


3821
def conv3d_transpose(input,
Y
Yu Yang 已提交
3822 3823 3824
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3825 3826 3827
                     padding=0,
                     stride=1,
                     dilation=1,
3828
                     groups=None,
C
caoying03 已提交
3829
                     param_attr=None,
3830
                     bias_attr=None,
C
chengduoZH 已提交
3831
                     use_cudnn=True,
3832
                     act=None,
C
caoying03 已提交
3833
                     name=None):
Y
Yu Yang 已提交
3834
    """
3835
    **Convlution3D transpose layer**
3836

3837
    The convolution3D transpose layer calculates the output based on the input,
3838
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3839 3840 3841 3842 3843 3844
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3845 3846 3847
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3848 3849 3850 3851 3852

    For each input :math:`X`, the equation is:

    .. math::

3853
        Out = \sigma (W \\ast X + b)
3854 3855 3856

    In the above equation:

3857 3858
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3859 3860 3861 3862
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3863

3864 3865 3866 3867
    Example:

        - Input:

3868
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3869

3870
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3871 3872 3873

        - Output:

3874
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3875 3876

        Where
Y
Yu Yang 已提交
3877

3878 3879
        .. math::

3880 3881 3882
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3883 3884

    Args:
3885
        input(Variable): The input image with [N, C, D, H, W] format.
3886 3887 3888
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3889
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3890 3891
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3892
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3893 3894 3895
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3896 3897
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3898
        stride(int|tuple): The stride size. If stride is a tuple, it must
3899 3900
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3901
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3902 3903 3904
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3905 3906 3907 3908 3909
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3910 3911 3912 3913 3914 3915 3916 3917 3918
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3919 3920
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3921 3922
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3923 3924
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3925 3926

    Returns:
3927
        Variable: The tensor variable storing the convolution transpose result.
3928 3929

    Raises:
3930 3931
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3932 3933 3934 3935

    Examples:
       .. code-block:: python

3936 3937
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3938
    """
C
chengduo 已提交
3939
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3940 3941
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3942
    if not isinstance(input, Variable):
3943
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3944 3945
    input_channel = input.shape[1]

3946 3947 3948
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3949

C
chengduoZH 已提交
3950 3951 3952
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3953 3954 3955 3956 3957 3958
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3959 3960 3961
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3962

3963
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3964
                         padding[0] - 1) // dilation[0] + 1
3965
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3966
                         padding[1] - 1) // dilation[1] + 1
3967
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3968
                         padding[2] - 1) // dilation[2] + 1
3969
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3970
    else:
3971 3972
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3973

3974
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3975
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3976 3977 3978
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3979
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3980
    helper.append_op(
3981
        type=l_type,
Y
Yu Yang 已提交
3982 3983
        inputs={'Input': [input],
                'Filter': [img_filter]},
3984
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3985 3986 3987 3988
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3989
            'groups': groups,
C
chengduoZH 已提交
3990 3991
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3992

3993 3994
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3995
    return out
Y
yangyaming 已提交
3996 3997


Y
yangyaming 已提交
3998
def sequence_expand(x, y, ref_level=-1, name=None):
3999
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
4000 4001 4002 4003
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
4004 4005 4006 4007 4008

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
4009
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
4010
                x.data = [[a], [b], [c], [d]]
4011 4012 4013
                x.dims = [4, 1]

            y is a LoDTensor:
4014 4015
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
4016

Y
yangyaming 已提交
4017
            ref_level: 0
4018

Y
yangyaming 已提交
4019
            then output is a 1-level LoDTensor:
4020
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4021
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4022 4023 4024 4025
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4026
                x.data = [[a], [b], [c]]
4027 4028 4029
                x.dims = [3, 1]

            y is a LoDTensor:
4030
                y.lod = [[2, 0, 3]]
4031

Y
yangyaming 已提交
4032
            ref_level: -1
4033

Y
yangyaming 已提交
4034 4035 4036
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4037 4038 4039
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4040 4041
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4042
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4043
                        will be named automatically.
4044 4045 4046 4047 4048 4049

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4050 4051
	
            import paddle.fluid.layers as layers
4052 4053 4054
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4055
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4056
    """
L
lujun 已提交
4057
    assert not in_dygraph_mode(), (
4058
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4059
    helper = LayerHelper('sequence_expand', input=x, **locals())
4060
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4061
    tmp = helper.create_variable_for_type_inference(dtype)
4062
    helper.append_op(
Y
yangyaming 已提交
4063 4064 4065 4066 4067
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4068
    return tmp
4069 4070


C
chengduo 已提交
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4119
            import paddle.fluid.layers as layers
C
chengduo 已提交
4120 4121 4122 4123 4124 4125

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4126
    assert not in_dygraph_mode(), (
4127
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4128 4129
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4130
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4131 4132 4133 4134 4135 4136 4137 4138
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4139
@templatedoc()
4140
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4141 4142 4143 4144 4145
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4146 4147 4148
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4149
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4150 4151 4152 4153
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4154 4155 4156
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4157

F
fengjiayi 已提交
4158
    Returns:
M
minqiyang 已提交
4159
        Variable: The padded sequence batch and the original lengths before
4160
                  padding. All sequences has the same length.
M
minqiyang 已提交
4161

F
fengjiayi 已提交
4162 4163 4164 4165 4166 4167 4168
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4169
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4170
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4171 4172 4173
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4174
    assert not in_dygraph_mode(), (
4175
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4176 4177
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4178 4179
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4180 4181 4182 4183

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4184 4185 4186 4187 4188 4189
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4190 4191
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4192
        attrs={'padded_length': maxlen})
4193
    return out, length
F
fengjiayi 已提交
4194 4195


4196
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4197
    """
4198
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4199

4200 4201
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4202 4203 4204 4205 4206 4207 4208 4209 4210
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4211 4212 4213
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4214
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4215 4216 4217 4218 4219 4220

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4221
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4222 4223 4224 4225 4226 4227

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4228 4229
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4242
    assert not in_dygraph_mode(), (
4243
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4244 4245
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4246
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4258 4259 4260 4261 4262 4263 4264
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4265
                is_accumulated=True,
4266 4267
                name=None,
                return_parent_idx=False):
4268
    """
4269 4270
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4271 4272 4273

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4274 4275

    This layer does the search in beams for one time step. Specifically, it
4276 4277 4278
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4290 4291 4292 4293

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4294

4295
    Args:
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4319 4320
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4321 4322
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4323 4324 4325 4326
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4327

4328
    Returns:
4329 4330 4331 4332
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4333 4334 4335 4336

    Examples:
        .. code-block:: python

4337 4338
            import paddle.fluid as fluid

4339 4340 4341
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4354
                axis=0)
4355
            selected_ids, selected_scores = fluid.layers.beam_search(
4356 4357 4358 4359 4360 4361 4362
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4363
    helper = LayerHelper('beam_search', **locals())
4364 4365 4366 4367 4368 4369
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4370

X
Xin Pan 已提交
4371 4372 4373
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4374 4375 4376 4377 4378
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4379 4380 4381

    helper.append_op(
        type='beam_search',
4382
        inputs=inputs,
Q
Qiao Longfei 已提交
4383 4384 4385
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4386
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4387 4388 4389 4390 4391 4392
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4393
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4394
        })
4395 4396 4397 4398
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4399 4400


4401 4402 4403 4404 4405 4406 4407
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4408

4409 4410 4411 4412 4413 4414 4415 4416 4417
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4418

4419 4420 4421 4422 4423 4424
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4425

4426 4427
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4428

4429 4430
            import paddle.fluid as fluid

4431 4432
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4433 4434 4435
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4436 4437 4438
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4439 4440
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4456 4457 4458 4459
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4460
              param_attr=None,
C
caoying03 已提交
4461 4462
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4463 4464 4465 4466
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4467
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4468

4469
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4470

4471
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4472

4473
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4474 4475 4476

            h_t & = o_t tanh(c_t)

4477 4478 4479 4480 4481 4482
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4483 4484 4485

        .. math::

4486
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4487 4488 4489 4490 4491 4492 4493 4494

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4495
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4496 4497

    Args:
Y
yangyaming 已提交
4498 4499 4500 4501 4502 4503
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4504
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4517 4518
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4519 4520

    Returns:
Y
yangyaming 已提交
4521
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4522 4523

    Raises:
4524 4525 4526 4527
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4528 4529 4530 4531 4532

    Examples:

        .. code-block:: python

4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4560
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4561 4562 4563 4564
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4565 4566
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4567 4568 4569
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4570
    size = cell_t_prev.shape[1]
4571
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4572 4573
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4574
                param_attr=param_attr,
4575
                bias_attr=bias_attr)
Y
yangyaming 已提交
4576
    dtype = x_t.dtype
X
Xin Pan 已提交
4577 4578
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4579 4580 4581 4582 4583 4584 4585 4586 4587

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4588
    return h, c
G
guosheng 已提交
4589 4590


C
caoying03 已提交
4591
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4592
    """
Y
yangyaming 已提交
4593
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4594 4595 4596

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4597
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4598 4599
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4600 4601
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4602
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4603
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4604
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4605 4606
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4607 4608 4609

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4610

G
guosheng 已提交
4611 4612 4613
    Examples:
        .. code-block:: python

4614
            import paddle.fluid as fluid
G
guosheng 已提交
4615 4616 4617
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4618
            # Each example is followed by the corresponding output tensor.
4619
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4620 4621 4622 4623
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4624

4625
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4626 4627
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4628
            # Each example is followed by the corresponding output tensor.
4629 4630 4631
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4632

G
guosheng 已提交
4633 4634
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4635
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4636 4637
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4638 4639 4640 4641 4642
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4643
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4644 4645 4646 4647
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4648 4649


C
caoying03 已提交
4650
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4651
    """
Y
Yibing Liu 已提交
4652
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4653 4654 4655

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4656 4657 4658
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4659
            must be in the range :math:`[-rank(input), rank(input))`. If
4660
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4661
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4662 4663
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4664
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4665
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4666
                       will be named automatically.
G
guosheng 已提交
4667 4668

    Returns:
Y
Yibing Liu 已提交
4669
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4670

G
guosheng 已提交
4671 4672 4673
    Examples:
        .. code-block:: python

4674
            import paddle.fluid as fluid
G
guosheng 已提交
4675 4676 4677 4678
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4679
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4680 4681 4682
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4683
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4684

4685
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4686 4687 4688
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4689 4690 4691
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4692 4693
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4694
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4695 4696
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4697 4698 4699 4700 4701
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4702
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4703 4704 4705 4706
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4707 4708


C
caoying03 已提交
4709
def reduce_max(input, dim=None, keep_dim=False, name=None):
4710
    """
Y
yangyaming 已提交
4711
    Computes the maximum of tensor elements over the given dimension.
4712 4713 4714

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4715
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4716 4717 4718
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4719
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4720 4721
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4722
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4723 4724
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4725 4726 4727

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4728

4729 4730 4731
    Examples:
        .. code-block:: python

4732
            import paddle.fluid as fluid
4733 4734 4735 4736
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4737
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4738 4739 4740 4741
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4742

4743
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4744 4745 4746
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4747 4748 4749
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4750 4751
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4752
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4753 4754
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4755 4756 4757 4758 4759
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4760
            'dim': dim if dim != None else [0],
4761 4762 4763 4764 4765 4766
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4767
def reduce_min(input, dim=None, keep_dim=False, name=None):
4768
    """
Y
yangyaming 已提交
4769
    Computes the minimum of tensor elements over the given dimension.
4770 4771 4772

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4773
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4774 4775 4776
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4777
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4778 4779
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4780
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4781 4782
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4783 4784 4785

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4786

4787 4788 4789
    Examples:
        .. code-block:: python

4790
            import paddle.fluid as fluid
4791 4792 4793 4794
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4795
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4796 4797 4798 4799
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4800

4801
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4802 4803 4804
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4805 4806 4807
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4808 4809
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4810
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4811 4812
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4813 4814 4815 4816 4817
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4818
            'dim': dim if dim != None else [0],
4819 4820 4821 4822
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4823 4824


4825 4826 4827 4828 4829 4830
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4831
        dim (list|int|None): The dimensions along which the product is performed. If
4832 4833
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4834 4835
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4836 4837 4838
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4839
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4840
            layer will be named automatically.
4841 4842 4843 4844 4845 4846 4847

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

4848
            import paddle.fluid as fluid
4849 4850 4851 4852
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4853
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4854 4855 4856
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4857
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4858
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4859

4860
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4861 4862 4863
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4864 4865 4866
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
4867 4868
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4869
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4870 4871
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4872 4873 4874 4875 4876
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4877
            'dim': dim if dim != None else [0],
4878 4879 4880 4881 4882 4883
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4884 4885
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4886
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4906
        
Z
zhoukunsheng 已提交
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_all(x)  # False 
            fluid.layers.reduce_all(x, dim=0)  # [True, False]
            fluid.layers.reduce_all(x, dim=-1)  # [False, True]
            fluid.layers.reduce_all(x, dim=1,
                                     keep_dim=True)  # [[False], [True]]

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4936
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4956

Z
zhoukunsheng 已提交
4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_any(x)  # True
            fluid.layers.reduce_any(x, dim=0)  # [True, False]
            fluid.layers.reduce_any(x, dim=-1)  # [True, False]
            fluid.layers.reduce_any(x, dim=1,
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
4979 4980 4981 4982 4983
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4984
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4985
    """
C
caoying03 已提交
4986
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4987 4988 4989

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4990 4991 4992 4993 4994
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4995
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4996
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4997
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4998 4999
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5000 5001

    Returns:
D
dzhwinter 已提交
5002
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
5003 5004 5005 5006

    Examples:
        .. code-block:: python

5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
            import paddle.fluid as fluid

            # input is a variable which shape is [-1, 3, 9, 5]
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")

            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 3, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 3, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 2, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 4, 5]
G
guosheng 已提交
5022 5023 5024 5025 5026 5027 5028 5029
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
5030
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
5031 5032 5033
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
5034
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
5048 5049 5050 5051 5052 5053 5054 5055 5056


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5057
    .. math::
5058 5059

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5060 5061 5062 5063 5064

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5065
        x(Variable|list): The input tensor to l2_normalize layer.
5066
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5067 5068
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5069
        epsilon(float): The epsilon value is used to avoid division by zero, \
5070
            the defalut value is 1e-12.
5071
        name(str|None): A name for this layer(optional). If set None, the layer \
5072
            will be named automatically.
C
caoying03 已提交
5073 5074

    Returns:
5075
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5076 5077

    Examples:
5078

C
caoying03 已提交
5079 5080
        .. code-block:: python

5081 5082 5083 5084
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5085 5086
    """

F
fengjiayi 已提交
5087 5088
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5089 5090
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5091 5092
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5093
    helper.append_op(
5094 5095 5096 5097
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5098
        attrs={
5099 5100
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5101 5102
        })
    return out
5103 5104


S
sneaxiy 已提交
5105
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5106
    """
Y
ying 已提交
5107 5108 5109 5110
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5111

C
chengduoZH 已提交
5112
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5113
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5114

5115 5116 5117 5118 5119
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5120
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5121

C
chengduoZH 已提交
5122
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5123
      performs in the following way.
G
guosheng 已提交
5124

5125
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5126
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5127
        last two dimensions and a batched matrix multiply supporting broadcast
5128
        applies on the two tensors.
G
guosheng 已提交
5129

Y
ying 已提交
5130 5131
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5132
    removed after matrix multiplication.
G
guosheng 已提交
5133 5134 5135

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5136 5137 5138
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5139
        alpha (float): The scale of output. Default 1.0.
5140
        name(str|None): A name for this layer(optional). If set None, the layer
5141
            will be named automatically.
G
guosheng 已提交
5142 5143

    Returns:
5144
        Variable: The product Tensor variable.
G
guosheng 已提交
5145

G
guosheng 已提交
5146 5147 5148
    Examples:
        .. code-block:: python

5149
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5150
            # x: [B, ..., M, K], y: [B, ..., K, N]
5151
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5152

5153
            # x: [B, M, K], y: [B, K, N]
5154
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5155

5156
            # x: [B, M, K], y: [K, N]
5157
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5158

5159
            # x: [M, K], y: [K, N]
5160
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5161 5162

            # x: [B, M, K], y: [K]
5163
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
5164

5165
            # x: [K], y: [K]
5166
            # fluid.layers.matmul(x, y)  # out: [1]
5167

Y
ying 已提交
5168
            # x: [M], y: [N]
5169 5170 5171 5172 5173
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
5174
    """
Y
ying 已提交
5175 5176 5177 5178 5179 5180 5181

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5182
            y_shape = y_shape + [1]
Y
ying 已提交
5183 5184 5185 5186 5187 5188 5189

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5190 5191
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5192

C
chengduo 已提交
5193
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5194
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5195 5196 5197
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5198
                if dim_x != y_shape[i]:
C
chengduo 已提交
5199 5200
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5201 5202 5203

    __check_input(x, y)

5204
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5205
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5206
    helper.append_op(
5207 5208 5209 5210
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5211 5212 5213
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5214
            'alpha': float(alpha),
S
sneaxiy 已提交
5215
        })
5216
    return out
5217 5218


5219
def topk(input, k, name=None):
Q
qingqing01 已提交
5220 5221 5222 5223
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5224
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5225 5226 5227 5228 5229 5230
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5252 5253 5254
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5255
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5256
                 of input.
5257
        name(str|None): A name for this layer(optional). If set None, the layer
5258
                       will be named automatically.
F
fengjiayi 已提交
5259
                       Default: None
Q
qingqing01 已提交
5260 5261

    Returns:
5262 5263 5264
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5265
        within the last dimension of input.
Q
qingqing01 已提交
5266

F
fengjiayi 已提交
5267 5268
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5269 5270 5271 5272

    Examples:
        .. code-block:: python

5273 5274
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5275 5276 5277
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5278 5279
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5280 5281 5282 5283 5284 5285
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5286 5287
    helper.append_op(
        type="top_k",
W
whs 已提交
5288
        inputs=inputs,
Q
qingqing01 已提交
5289 5290
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5291
        attrs=attrs)
Q
qingqing01 已提交
5292 5293 5294 5295 5296
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5297
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5298
    """
Y
ying 已提交
5299 5300 5301 5302 5303 5304 5305 5306 5307
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5308

Y
ying 已提交
5309
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5310

5311
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5312 5313
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5314
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5315

5316
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5317 5318
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5319

5320 5321 5322
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5323
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5324
                          the length of reference string.
5325
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5326
                                     calculating edit distance.
5327
        name (str): The name of this layer. It is optional.
5328

W
wanghaoshuang 已提交
5329
    Returns:
W
wanghaoshuang 已提交
5330
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5331 5332 5333 5334

    Examples:
        .. code-block:: python

T
tink2123 已提交
5335 5336
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5337
            cost = fluid.layers.edit_distance(input=x,label=y)
5338
    """
5339
    helper = LayerHelper("edit_distance", **locals())
5340

5341
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5342
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5343 5344
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5345 5346 5347 5348 5349

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5350
            attrs={"tokens": ignored_tokens})
5351 5352 5353 5354 5355
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5356
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5357
            attrs={"tokens": ignored_tokens})
5358 5359
        label = erased_label

5360
    # edit distance op
X
Xin Pan 已提交
5361 5362
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5363 5364 5365 5366
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5367 5368
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5369 5370
        attrs={"normalized": normalized})

5371
    return edit_distance_out, sequence_num
5372 5373 5374 5375 5376


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5377

Y
ying 已提交
5378 5379 5380 5381
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5399
        input.lod = [[4, 4]]
M
minqiyang 已提交
5400

W
whs 已提交
5401
        Computation:
5402

W
whs 已提交
5403 5404 5405 5406 5407 5408
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5409 5410 5411 5412 5413

        output.data = [[2],
                       [1],
                       [3]]

5414
        output.lod = [[2, 1]]
5415

W
whs 已提交
5416

5417 5418
    Args:

Y
ying 已提交
5419 5420 5421 5422 5423 5424 5425 5426 5427
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5428
        name (str): The name of this layer. It is optional.
5429 5430

    Returns:
H
haowang101779990 已提交
5431 5432 5433
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5434
                  LoD [[]] and dims [1, 1].
5435 5436 5437 5438

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5439
            import paddle.fluid as fluid
5440 5441
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5442
    """
5443
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5444
    _, topk_indices = topk(input, k=1)
5445 5446

    # ctc align op
X
Xin Pan 已提交
5447
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5448 5449 5450
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5451
        outputs={"Output": [ctc_out]},
5452 5453
        attrs={"merge_repeated": True,
               "blank": blank})
5454
    return ctc_out
5455 5456


W
Wu Yi 已提交
5457
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5458
    """
5459 5460
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5461
    to compute Connectionist Temporal Classification (CTC) loss.
5462 5463
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5464 5465 5466
    input tensor.

    Args:
5467
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5468 5469 5470 5471
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5472
       label (Variable): The ground truth of variable-length sequence,
5473 5474 5475
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5476 5477
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5478 5479 5480
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5481
         follewed by a mean_op.
W
Wu Yi 已提交
5482
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5483 5484

    Returns:
5485 5486
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5487 5488

    Examples:
5489

W
wanghaoshuang 已提交
5490
        .. code-block:: python
5491

B
Bai Yifan 已提交
5492 5493 5494 5495 5496
            import paddle.fluid as fluid
            label = fluid.layers.data(name='label', shape=[11, 8],
                                      dtype='float32', lod_level=1)
            predict = fluid.layers.data(name='predict', shape=[11, 1],
                                        dtype='float32')
5497
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5498 5499

    """
F
fengjiayi 已提交
5500
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5501 5502
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5503 5504 5505 5506 5507 5508
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5509 5510 5511 5512 5513
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5514
    return loss_out
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5530 5531 5532
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5533 5534 5535 5536 5537
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5538

5539
            out.lod  = [[0, 1, 3]]
5540 5541 5542 5543

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5544 5545 5546 5547 5548 5549 5550
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5551 5552 5553

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5554 5555

    Returns:
5556

5557 5558 5559 5560 5561
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
5562 5563 5564
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
5565
    """
L
lujun 已提交
5566
    assert not in_dygraph_mode(), (
5567
        "sequence layer is not supported in dygraph mode yet.")
5568
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5569
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5570 5571 5572 5573 5574 5575
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5576 5577


5578 5579 5580 5581
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5582 5583 5584 5585 5586 5587
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5588
        num_neg_samples=None,
5589 5590 5591
        name=None,
        sampler="uniform",
        custom_dist=None,
5592 5593
        seed=0,
        is_sparse=False):
5594 5595 5596 5597 5598 5599 5600
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5601 5602
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5603
            sample is 1.0.
C
chengduo 已提交
5604 5605 5606 5607 5608 5609 5610 5611 5612
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5613
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5614 5615
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5616 5617 5618
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5619
        custom_dist (float[]): A float[] with size=num_total_classes.
5620 5621 5622 5623
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5624
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5625

5626
    Returns:
Y
Yibing Liu 已提交
5627 5628 5629 5630 5631 5632
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


Y
Yibing Liu 已提交
5633
	    import numpy as np
Y
Yibing Liu 已提交
5634

Y
Yibing Liu 已提交
5635 5636 5637 5638 5639 5640 5641 5642
	    window_size = 5
	    words = []
	    for i in xrange(window_size):
		words.append(fluid.layers.data(
		    name='word_{0}'.format(i), shape=[1], dtype='int64'))

	    dict_size = 10000
	    label_word = int(window_size / 2) + 1
Y
Yibing Liu 已提交
5643

Y
Yibing Liu 已提交
5644 5645 5646 5647
	    embs = []
	    for i in xrange(window_size):
		if i == label_word:
		    continue
Y
Yibing Liu 已提交
5648

Y
Yibing Liu 已提交
5649 5650 5651
		emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
				   param_attr='embed', is_sparse=True)
		embs.append(emb)
5652

Y
Yibing Liu 已提交
5653 5654 5655 5656
	    embs = fluid.layers.concat(input=embs, axis=1)
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=dict_size, param_attr='nce.w_0',
		      bias_attr='nce.b_0')
5657

Y
Yibing Liu 已提交
5658 5659 5660 5661 5662 5663 5664 5665
	    #or use custom distribution
	    dist = np.array([0.05,0.5,0.1,0.3,0.05])
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=5, param_attr='nce.w_1',
		      bias_attr='nce.b_1',
		      num_neg_samples=3,
		      sampler="custom_dist",
		      custom_dist=dist)
5666
    """
Y
Yang Yu 已提交
5667 5668 5669
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5670 5671

    dim = input.shape[1]
Y
Yang Yu 已提交
5672 5673 5674 5675 5676 5677
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5678
    inputs = {}
C
chengduo 已提交
5679 5680 5681 5682 5683 5684 5685
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5686 5687 5688
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5689

5690 5691 5692 5693
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5694 5695 5696 5697 5698 5699 5700

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5701 5702
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5703
        custom_dist_len = num_total_classes
5704 5705 5706 5707 5708 5709
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5710
            if normal_prob - 1.0 > 0:
5711
                bigs.append((i, normal_prob))
5712
            elif 1.0 - normal_prob > 0:
5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5728
            if big_left - 1.0 > 0:
5729
                bigs.append((big_idx, big_left))
5730
            elif 1.0 - big_left > 0:
5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5760 5761 5762 5763
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5764 5765 5766 5767 5768
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5769 5770 5771 5772
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5773

Y
Yang Yu 已提交
5774 5775
    attrs = {
        'num_total_classes': int(num_total_classes),
5776 5777
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5778
        'sampler': sampler,
5779 5780
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5781
    }
Y
Yang Yu 已提交
5782 5783 5784

    helper.append_op(
        type='nce',
C
chengduo 已提交
5785
        inputs=inputs,
Y
Yang Yu 已提交
5786 5787 5788 5789 5790 5791
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5792
    return cost / (num_neg_samples + 1)
5793 5794


C
chengduo 已提交
5795 5796
def hsigmoid(input,
             label,
5797
             num_classes,
C
chengduo 已提交
5798 5799
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5800
             name=None,
5801 5802 5803
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5804
             is_sparse=False):
W
weixing02 已提交
5805 5806
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5807
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5808
    complete binary tree, or you can use is_custom to pass your own tree to
5809
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5810 5811 5812 5813 5814 5815
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5816
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5817
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5818

5819 5820
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5821 5822 5823 5824
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5825
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5826
       related to the same batch of inputs.
5827

W
weixing02 已提交
5828
    Args:
M
minqiyang 已提交
5829
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5830 5831 5832 5833
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5834 5835
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5836
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5848
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5849
            it should be in leaf -> root order
M
minqiyang 已提交
5850 5851 5852
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5853
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5854
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5855
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5856
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5857
             of W and input will be sparse.
W
weixing02 已提交
5858 5859

    Returns:
J
JiabinYang 已提交
5860
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5861 5862 5863 5864 5865

    Examples:

        .. code-block:: python

5866
            import paddle.fluid as fluid
G
guosheng 已提交
5867 5868 5869
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5870 5871 5872 5873
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5874 5875
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5876
    dim = input.shape[1]
5877
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5878 5879 5880
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5881 5882 5883 5884 5885 5886 5887 5888 5889
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

5890
    if (is_custom) and (path_code is None):
5891
        raise ValueError("path_code should not be None with custom tree")
5892
    elif (is_custom) and (path_table is None):
5893
        raise ValueError("path_table should not be None with custom tree")
5894
    elif (is_custom) and (num_classes is None):
5895
        raise ValueError("num_classes should not be None with custom tree")
5896 5897 5898
    else:
        pass

J
JiabinYang 已提交
5899
    weights = None
5900 5901 5902 5903
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5904
    if not is_custom:
J
JiabinYang 已提交
5905 5906 5907 5908 5909 5910 5911 5912
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5913
            shape=[num_classes, dim],
J
JiabinYang 已提交
5914 5915
            is_bias=False,
            dtype=input.dtype)
5916 5917 5918
    inputs = {
        "X": input,
        "W": weights,
5919
        "PathTable": path_table,
5920
        "PathCode": path_code,
5921 5922
        "Label": label
    }
W
weixing02 已提交
5923
    if helper.bias_attr:
5924
        if not is_custom:
J
JiabinYang 已提交
5925 5926
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5927
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5928 5929 5930 5931 5932 5933
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5934
                shape=[num_classes, 1],
J
JiabinYang 已提交
5935 5936 5937
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5938 5939
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5940
        inputs=inputs,
W
weixing02 已提交
5941
        outputs={"Out": out,
5942 5943 5944 5945 5946 5947 5948
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5949 5950 5951
    return out


Y
fix ci.  
ying 已提交
5952
def transpose(x, perm, name=None):
Y
ying 已提交
5953 5954 5955 5956 5957 5958 5959
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5960 5961 5962
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5963 5964 5965 5966 5967 5968 5969

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5970
            # use append_batch_size=False to avoid prepending extra
5971
            # batch size in shape
5972
            import paddle.fluid as fluid
5973
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5974
                            dtype='float32', append_batch_size=False)
5975
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5976 5977
    """

Y
fix ci.  
ying 已提交
5978
    if len(perm) != len(x.shape):
Y
ying 已提交
5979 5980 5981
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5982 5983 5984 5985 5986 5987
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5988 5989

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5990 5991
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5992
    helper.append_op(
5993
        type='transpose2',
Y
fix ci.  
ying 已提交
5994
        inputs={'X': [x]},
5995 5996
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5997 5998
        attrs={'axis': perm})
    return out
5999 6000


6001 6002 6003 6004 6005 6006 6007
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
6008
    """
6009 6010 6011 6012 6013 6014 6015
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
6016 6017 6018 6019 6020 6021 6022 6023 6024 6025

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

6044 6045 6046 6047 6048 6049 6050 6051 6052
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

6053 6054 6055
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
6056 6057 6058 6059 6060
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6088 6089 6090
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6103
            output.dims = {8, 8}
6104

6105
            output.lod = [[4, 4]]
6106

T
Tink_Y 已提交
6107
    Examples:
6108 6109 6110

        .. code-block:: python

B
Bai Yifan 已提交
6111 6112 6113
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
6114
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
6115 6116
                input=data, stride=[1, 1], filter_size=[2, 2])

6117 6118

    """
L
lujun 已提交
6119
    assert not in_dygraph_mode(), (
6120
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6121 6122 6123 6124 6125 6126 6127 6128 6129 6130

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6131
    inputs = {"X": input}
6132
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
6133 6134 6135 6136 6137
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6138
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6139
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6140
    helper.append_op(
6141
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6142
    return out
6143 6144


Y
yuyang18 已提交
6145
@templatedoc()
6146
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6147 6148
    """
    ${comment}
6149 6150

    Args:
Y
yuyang18 已提交
6151
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6152 6153
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6154 6155 6156 6157 6158
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6159
        ${out_comment}.
6160 6161

    Examples:
Y
yuyang18 已提交
6162 6163 6164 6165
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6166 6167 6168 6169 6170 6171
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6172
    out = helper.create_variable_for_type_inference(dtype)
6173 6174 6175 6176 6177
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6178
    return helper.append_activation(out)
6179 6180


Y
yuyang18 已提交
6181
@templatedoc()
6182 6183
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6184 6185
    ${comment}

L
lujun 已提交
6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6229 6230

    Args:
Y
yuyang18 已提交
6231 6232
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6233 6234

    Returns:
Y
yuyang18 已提交
6235
        ${out_comment}.
6236 6237
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6238 6239 6240 6241 6242

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6243
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6244 6245 6246 6247 6248 6249
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6250 6251


6252 6253 6254
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6255
                               ignore_index=kIgnoreIndex,
6256
                               numeric_stable_mode=True,
6257 6258
                               return_softmax=False,
                               axis=-1):
6259 6260
    """
    **Softmax With Cross Entropy Operator.**
6261

6262
    Cross entropy loss with softmax is used as the output layer extensively. This
6263 6264 6265
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6266

6267 6268 6269
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6270

6271 6272 6273 6274
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6275

6276
    The equation is as follows:
6277

6278
    1) Hard label (one-hot label, so every sample has exactly one class)
6279

6280 6281 6282 6283
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6284

6285 6286 6287
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6288

6289 6290 6291 6292
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6293 6294
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6295 6296

    .. math::
6297

H
haowang101779990 已提交
6298
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6299

H
haowang101779990 已提交
6300
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6301

H
haowang101779990 已提交
6302
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6303 6304 6305

    and then cross entropy loss is calculated by softmax and label.

6306
    Args:
6307 6308 6309 6310 6311 6312
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6313
        soft_label (bool): A flag to indicate whether to interpretate the given
6314
            labels as soft labels. Default False.
M
minqiyang 已提交
6315 6316
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6317 6318
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6319 6320
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6321 6322 6323 6324
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6325
                                    Note that the speed may be slower when use
6326
                                    stable algorithm. Default: True
6327
        return_softmax (bool): A flag indicating whether to return the softmax
6328
                               along with the cross entropy loss. Default: False
6329 6330 6331
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6332

6333
    Returns:
H
haowang101779990 已提交
6334 6335
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6336 6337 6338 6339
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6340 6341 6342 6343 6344 6345 6346

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6347 6348
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6349 6350
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6351 6352
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6353 6354 6355 6356 6357 6358
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6359 6360 6361
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6362 6363
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6364
        })
6365 6366 6367 6368

    if return_softmax:
        return loss, softmax

6369 6370 6371
    return loss


6372 6373 6374
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6375
                                       num_true=1,
6376
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6377 6378 6379
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6380
                                       seed=0):
X
xuezhong 已提交
6381 6382 6383 6384 6385
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6386
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6387 6388 6389 6390 6391 6392 6393 6394
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6395
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6396 6397 6398 6399 6400 6401 6402 6403
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6404
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6416
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6417 6418 6419 6420 6421
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6422
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6423
            logits.
X
xuezhong 已提交
6424 6425 6426 6427 6428
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6429 6430 6431
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6432 6433 6434 6435 6436 6437 6438
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

6439 6440 6441
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
X
xuezhong 已提交
6442
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
6443
            fc = fluid.layers.fc(input=input, size=100)
X
xuezhong 已提交
6444
            out = fluid.layers.sampled_softmax_with_cross_entropy(
6445
                      logits=fc, label=label, num_samples=25)
X
xuezhong 已提交
6446 6447 6448 6449 6450 6451 6452 6453
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6454 6455
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6456 6457
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6458 6459 6460 6461 6462

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6463
            'Labels': label,
X
xuezhong 已提交
6464 6465
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6466 6467 6468 6469
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6470
            'SampledLabels': sampled_label,
6471 6472 6473
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6474 6475
        },
        attrs={
X
xuezhong 已提交
6476
            'use_customized_samples': use_customized_samples,
6477
            'uniq': True,
X
xuezhong 已提交
6478 6479 6480 6481
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6482 6483
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6484 6485 6486 6487 6488 6489
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6490 6491
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6492
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6493
                'Label': sampled_softlabel},
X
xuezhong 已提交
6494 6495 6496
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6497
            'soft_label': True,
X
xuezhong 已提交
6498 6499 6500
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6501
    return loss / num_true
X
xuezhong 已提交
6502 6503


6504 6505
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6506 6507
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6508
    For each instance, it computes the smooth L1 loss element by element first
6509
    and then sums all the losses. So the shape of ouput Variable is
6510
    [batch_size, 1].
6511

6512 6513
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6514
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6515
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6516
            L1 loss op with same shape as :attr:`x`.
6517
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6518 6519
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6520
            by this tensor element by element.
6521
        outside_weight (Variable|None): A tensor with rank at least 2. This
6522 6523
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6524
            element by element.
6525
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6526 6527
           scalar with default value 1.0.

6528
    Returns:
6529
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6530 6531 6532 6533 6534

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6535 6536
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6537
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6538
            out = fluid.layers.smooth_l1(x=fc, y=label)
6539
    """
6540

6541
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6542 6543
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6544 6545 6546 6547 6548 6549 6550 6551 6552 6553
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6554
        attrs={'sigma': sigma if sigma is not None else 1.0})
6555
    return loss
6556 6557 6558 6559


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6560
    This layer creates the one-hot representations for input indices.
6561 6562

    Args:
Y
Yibing Liu 已提交
6563 6564
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6565 6566

    Returns:
Y
Yibing Liu 已提交
6567
        Variable: The one-hot representations of input.
6568 6569

    Examples:
C
caoying03 已提交
6570
        .. code-block:: python
6571

Y
Yibing Liu 已提交
6572 6573
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6574 6575
    """
    helper = LayerHelper("one_hot", **locals())
6576

X
Xin Pan 已提交
6577
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6578 6579 6580 6581 6582 6583 6584 6585 6586 6587

    if in_dygraph_mode():
        inputs = {'X': input}
        attrs = {'depth': depth}
    else:
        if not isinstance(depth, Variable):
            # user attribute 
            inputs = {'X': input}
            attrs = {'depth': depth}
        else:
H
Hongyu Liu 已提交
6588
            depth.stop_gradient = True
6589 6590
            inputs = {'X': input, 'depth_tensor': depth}
            attrs = {}
6591 6592
    helper.append_op(
        type="one_hot",
6593 6594
        inputs=inputs,
        attrs=attrs,
6595 6596
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6597
    return one_hot_out
Y
Yu Yang 已提交
6598 6599


Y
Yu Yang 已提交
6600
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6601
    """
Y
yi.wu 已提交
6602 6603 6604
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6605 6606 6607 6608 6609 6610

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6611 6612
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6613 6614 6615 6616 6617

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6618
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6619 6620
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6621 6622
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6623 6624 6625 6626 6627
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6628
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6629
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6630 6631
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6632
            outputs={'Out': [counter]},
M
minqiyang 已提交
6633 6634
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6635 6636 6637
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6638 6639


6640
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6641
    """
C
caoying03 已提交
6642 6643
    Gives a new shape to the input Tensor without changing its data.

6644 6645 6646 6647 6648
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6649

6650
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6651

6652 6653 6654 6655
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6656
    2. 0 means the actual dimension value is going to be copied from the
6657 6658 6659 6660
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6661 6662

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6663
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6664
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6665

6666
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6667 6668
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6669 6670
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6671
    dimensions.
C
caoying03 已提交
6672

6673
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6674 6675 6676 6677
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6678 6679

    Args:
6680
        x(variable): The input tensor.
C
caoying03 已提交
6681 6682
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6683 6684 6685 6686 6687
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6688 6689
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6690 6691 6692
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6693
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6694
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6695

6696
    Returns:
G
guosheng 已提交
6697 6698 6699 6700
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6701

X
Xin Pan 已提交
6702 6703 6704
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6705 6706
    Examples:
        .. code-block:: python
G
guosheng 已提交
6707

6708
            data = fluid.layers.data(
6709
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6710
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6711
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6712 6713 6714
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6715
        raise ValueError("Input shape must be a python list or tuple.")
6716

X
Xin Pan 已提交
6717 6718 6719 6720 6721
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6722

6723 6724
    # Validate the shape
    unk_dim_idx = -1
6725
    contain_var = False
6726
    for dim_idx, dim_size in enumerate(shape):
6727 6728 6729 6730
        if isinstance(dim_size, Variable):
            contain_var = True
            continue

6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6743
    helper = LayerHelper("reshape2", **locals())
6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765
    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'shape': shape}
    else:
        if contain_var:
            new_shape_tensor = []
            for dim in shape:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_shape_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = helper.create_variable_for_type_inference(
                        'int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_shape_tensor.append(temp_out)
            inputs['ShapeTensor'] = new_shape_tensor
            attrs = {}

        else:
            attrs = {'shape': shape}
6766 6767
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6768
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6769
    helper.append_op(
6770
        type="reshape2",
X
Xin Pan 已提交
6771
        inputs=inputs,
6772
        attrs=attrs,
6773 6774
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6775

D
dzhwinter 已提交
6776
    return helper.append_activation(out)
6777

6778

6779
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6780
    """
M
minqiyang 已提交
6781 6782 6783
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6784
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6785

H
haowang101779990 已提交
6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6807

Y
Yibing Liu 已提交
6808
    Args:
6809
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6810
        axes (list): List of integers, indicating the dimensions to be squeezed.
6811
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6812 6813 6814 6815 6816 6817 6818

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

6819
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
6820
            x = layers.data(name='x', shape=[5, 1, 10])
6821
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6822
    """
L
lujun 已提交
6823
    assert not in_dygraph_mode(), (
L
lujun 已提交
6824
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6825
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6826 6827
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6828
    helper.append_op(
6829
        type="squeeze2",
6830
        inputs={"X": input},
Y
Yibing Liu 已提交
6831
        attrs={"axes": axes},
6832 6833
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6834

6835 6836 6837
    return out


6838
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6839
    """
M
minqiyang 已提交
6840 6841 6842
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6843

M
minqiyang 已提交
6844
    For example:
H
haowang101779990 已提交
6845 6846 6847

    .. code-block:: text

M
minqiyang 已提交
6848
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6849
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6850

Y
Yibing Liu 已提交
6851
    Args:
6852
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6853
        axes (list): List of integers, indicating the dimensions to be inserted.
6854
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6855 6856 6857 6858 6859 6860 6861

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

6862 6863 6864
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6865 6866
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6867 6868
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6869
    helper.append_op(
6870
        type="unsqueeze2",
6871
        inputs={"X": input},
Y
Yibing Liu 已提交
6872
        attrs={"axes": axes},
6873 6874
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6875

6876 6877
    return out

6878

Y
yangyaming 已提交
6879
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6880
    """
Y
Yibing Liu 已提交
6881
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6882 6883 6884 6885
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6886
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6887 6888 6889 6890 6891 6892

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6893
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6894 6895 6896
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6897
            target_lod: [4, 2]
Y
yangyaming 已提交
6898 6899

            then we get a 1-level LoDTensor:
6900
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6901 6902 6903 6904 6905 6906
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6907
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6908 6909 6910 6911
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6912
                y.data = [[2, 4]]
Y
yangyaming 已提交
6913 6914 6915
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6916
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6917 6918 6919 6920 6921 6922
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6923
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6924 6925 6926 6927
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6928
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6929 6930 6931 6932
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6933
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6934 6935 6936 6937 6938
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6939
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6940
                           from :attr:`y`.
Y
yangyaming 已提交
6941
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6942
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6943 6944

    Returns:
Y
Yibing Liu 已提交
6945
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6946 6947

    Raises:
Y
Yibing Liu 已提交
6948
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6949 6950 6951 6952

    Examples:
        .. code-block:: python

6953 6954 6955
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
6956 6957
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6958
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
6984
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
7013 7014
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
7027 7028 7029
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
7043 7044 7045 7046


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
7047
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
7048
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
7049

G
guosheng 已提交
7050 7051 7052 7053
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
7076
                         The length of :attr:paddings must be
G
guosheng 已提交
7077 7078 7079 7080 7081 7082 7083 7084 7085 7086
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
7087

G
guosheng 已提交
7088
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
7089 7090
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
7091 7092 7093 7094 7095
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7096
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
7097 7098 7099 7100 7101 7102 7103
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
7104 7105


C
chengduo 已提交
7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7137 7138
		And
            pad_value = -1,
C
chengduo 已提交
7139

T
Tink_Y 已提交
7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7170 7171 7172
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7173 7174 7175 7176 7177
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7178
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7179 7180 7181 7182 7183 7184 7185 7186 7187
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7188 7189 7190 7191 7192 7193 7194
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7195 7196
    called label-smoothing regularization (LSR).

7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7220
                              be :math:`(1, class\_num)`.
7221 7222
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7223
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7224 7225 7226 7227 7228 7229 7230 7231 7232
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
7233 7234
            
            import paddle.fluid.layers as layers
7235 7236 7237 7238 7239 7240 7241 7242 7243 7244

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7245
    smooth_label = helper.create_variable_for_type_inference(dtype)
7246 7247 7248 7249 7250 7251 7252
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7253 7254


W
wopeizl 已提交
7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7303 7304


J
jerrywgz 已提交
7305 7306 7307 7308 7309 7310
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7311 7312
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

J
jerrywgz 已提交
7329 7330 7331 7332
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7333 7334 7335
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7336 7337 7338 7339 7340 7341
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7342
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7383 7384
        .. code-block:: python

S
SunGaofeng 已提交
7385 7386 7387
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7388
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7389
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7390 7391
    """
    label = one_hot(label, depth=input.shape[-1])
7392
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7393 7394 7395 7396 7397 7398
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7399 7400


7401 7402 7403 7404
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7405
                 resample='BILINEAR',
7406 7407
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7408
                 align_mode=1):
7409
    """
Q
qiaolongfei 已提交
7410
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7411

7412
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7413 7414 7415
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7416

7417
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7418

7419
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7420

7421 7422 7423 7424 7425 7426 7427 7428 7429 7430
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7431
    Align_corners and align_mode are optinal parameters,the calculation method 
7432 7433 7434 7435
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7436
    .. code-block:: text
7437

T
Tink_Y 已提交
7438
        For scale:
7439
          
T
Tink_Y 已提交
7440
            if align_corners = True && out_size > 1 :
7441

T
Tink_Y 已提交
7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7453

T
Tink_Y 已提交
7454 7455
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7456

T
Tink_Y 已提交
7457 7458
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7459

T
Tink_Y 已提交
7460 7461
          else:
              align_corners = True
7462

T
Tink_Y 已提交
7463 7464
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7465

T
Tink_Y 已提交
7466 7467
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7468

T
Tink_Y 已提交
7469 7470 7471 7472 7473 7474 7475 7476 7477 7478
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7479

T
Tink_Y 已提交
7480 7481 7482 7483
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7484

T
Tink_Y 已提交
7485 7486
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7487 7488 7489 7490 7491 7492 7493 7494 7495

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7496
    Args:
7497
        input (Variable): The input tensor of image resize layer,
7498 7499
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7500
        out_shape(list|tuple|Variable|None): Output shape of image resize
7501 7502
                                    layer, the shape is (out_h, out_w).
                                    Default: None
D
dengkaipeng 已提交
7503
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7504
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7505
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7506
             Default: None.
7507 7508
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7509
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7510
                       currently.
7511
                       Default: 'BILINEAR'
7512 7513 7514
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7515
                                :attr:`out_shape` and :attr:`scale` specifying
7516 7517 7518 7519 7520 7521 7522
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7523 7524
                                constructing stage.
                                Default: None
7525 7526 7527 7528
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7529
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7530 7531
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7532 7533

    Returns:
Q
update  
qiaolongfei 已提交
7534 7535
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7536

7537 7538 7539
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7540
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7541 7542 7543
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
D
dengkaipeng 已提交
7544
        ValueError: scale should be greater than zero.
7545 7546
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7547

7548 7549 7550
    Examples:
        .. code-block:: python

R
ruri 已提交
7551
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7552
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7553
    """
7554 7555 7556 7557
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7558 7559
    if resample not in resample_methods:
        raise ValueError(
7560
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7561
        )
7562
    resample_type = resample_methods[resample]
7563 7564 7565 7566 7567 7568

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7569
    if out_shape is None and scale is None:
7570
        raise ValueError("One of out_shape and scale must not be None.")
7571
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7572
    dtype = helper.input_dtype()
7573 7574 7575 7576

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7577
    inputs = {"X": input}
D
dengkaipeng 已提交
7578
    attrs = {
D
dengkaipeng 已提交
7579 7580
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7581 7582 7583 7584 7585
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7586
    if out_shape is not None:
7587 7588 7589 7590
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7591
            inputs['OutSize'] = out_shape
7592 7593
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7594 7595
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7596 7597 7598 7599 7600 7601 7602
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7603
    else:
D
dengkaipeng 已提交
7604 7605
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7606
        attrs['scale'] = float(scale)
7607

7608 7609 7610 7611 7612
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7613
    out = helper.create_variable_for_type_inference(dtype)
7614
    helper.append_op(
7615
        type='{}_interp'.format(resample_type),
7616
        inputs=inputs,
7617
        outputs={"Out": out},
D
dengkaipeng 已提交
7618
        attrs=attrs)
7619
    return out
F
stash  
fengjiayi 已提交
7620 7621


7622
@templatedoc(op_type="bilinear_interp")
7623 7624 7625 7626
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7627 7628
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7629
                    align_mode=1):
7630
    """
7631 7632
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7633 7634
    in priority order.

7635 7636 7637 7638
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7639 7640
    again in the other direction.

7641
    For details of bilinear interpolation, please refer to Wikipedia:
7642
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7643

T
tink2123 已提交
7644
    Align_corners and align_mode are optinal parameters,the calculation 
7645 7646 7647 7648
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7649
    .. code-block:: text
7650

T
Tink_Y 已提交
7651
        For scale:
7652
          
T
Tink_Y 已提交
7653
            if align_corners = True && out_size > 1 :
7654

T
Tink_Y 已提交
7655 7656 7657 7658 7659
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7660

T
Tink_Y 已提交
7661 7662 7663 7664 7665 7666 7667 7668 7669 7670
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7671 7672


T
Tink_Y 已提交
7673
          else:
T
tink2123 已提交
7674

T
Tink_Y 已提交
7675 7676
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7677

T
Tink_Y 已提交
7678 7679
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7680 7681 7682



Y
yuyang18 已提交
7683 7684 7685
    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7686 7687 7688
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7689

Y
yuyang18 已提交
7690
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7691
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7692
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7693
             Default: None.
Y
yuyang18 已提交
7694 7695

        name(str|None): The output variable name.
7696 7697 7698
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7699
                                :attr:`out_shape` and :attr:`scale` specifying
7700 7701 7702 7703 7704 7705 7706
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7707 7708
                                constructing stage.
                                Default: None
7709 7710
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7711 7712 7713

    Returns:
        ${out_comment}.
7714 7715 7716 7717

    Examples:
        .. code-block:: python

R
ruri 已提交
7718
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7719
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7720 7721
    """

7722 7723
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7724 7725


7726
@templatedoc(op_type="nearest_interp")
7727 7728 7729 7730
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7731 7732
                   actual_shape=None,
                   align_corners=True):
7733
    """
7734
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7735 7736
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7737 7738
    out_shape and scale in priority order.

7739 7740
    Example:

T
Tink_Y 已提交
7741 7742 7743 7744 7745
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7746

T
Tink_Y 已提交
7747 7748 7749 7750 7751 7752 7753 7754
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7755
          
T
Tink_Y 已提交
7756 7757
          if:
              align_corners = False
7758

T
Tink_Y 已提交
7759 7760
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7761

T
Tink_Y 已提交
7762 7763
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7764

T
Tink_Y 已提交
7765 7766
          else:
              align_corners = True
7767

T
Tink_Y 已提交
7768 7769
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7770

T
Tink_Y 已提交
7771 7772
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7773 7774


7775
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7776
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7777 7778 7779 7780

    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7781 7782 7783
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7784

Y
yuyang18 已提交
7785
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7786
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7787
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7788
             Default: None.
Y
yuyang18 已提交
7789 7790

        name(str|None): The output variable name.
7791 7792 7793
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7794
                                :attr:`out_shape` and :attr:`scale` specifying
7795 7796 7797 7798 7799 7800 7801
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7802 7803
                                constructing stage.
                                Default: None
7804
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7805 7806 7807

    Returns:
        ${out_comment}.
7808 7809 7810 7811

    Examples:
        .. code-block:: python

R
ruri 已提交
7812
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7813
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7814 7815
    """

7816 7817
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7818 7819 7820 7821


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7822 7823 7824
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7825 7826 7827 7828 7829 7830 7831
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7832
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7833

7834
    Returns:
Q
update  
qiaolongfei 已提交
7835
        Variable: The output is a 4-D tensor of the shape
7836
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
7837 7838 7839 7840 7841 7842

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7843 7844 7845 7846 7847 7848 7849 7850 7851 7852
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7853 7854 7855
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7856 7857 7858
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7859 7860
def gather(input, index):
    """
Q
qiaolongfei 已提交
7861 7862
    **Gather Layer**

7863
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7864 7865 7866 7867
    of X indexed by `index` and concatenate them together.

    .. math::

7868
        Out = X[Index]
W
whs 已提交
7869 7870 7871 7872 7873 7874 7875


    .. code-block:: text


                Given:

7876 7877
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7878 7879 7880 7881 7882 7883 7884 7885 7886 7887
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7888
        input (Variable): The source input with rank>=1.
W
whs 已提交
7889 7890 7891 7892 7893 7894
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7895

W
whs 已提交
7896 7897
        .. code-block:: python

Y
Yibing Liu 已提交
7898 7899
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7900 7901 7902 7903
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7904
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7905 7906 7907 7908 7909 7910 7911 7912
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

7939 7940 7941 7942 7943
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
7944

7945
            output = fluid.layers.scatter(input, index, updates)
7946 7947 7948
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7949
    out = helper.create_variable_for_type_inference(dtype)
7950 7951 7952 7953 7954 7955 7956 7957 7958
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7959 7960 7961 7962 7963 7964 7965 7966 7967
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7968

Q
Qingsheng Li 已提交
7969
    Given the following input:
H
haowang101779990 已提交
7970

Q
Qingsheng Li 已提交
7971
    .. code-block:: text
H
haowang101779990 已提交
7972

Q
Qingsheng Li 已提交
7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7985

Q
Qingsheng Li 已提交
7986
    .. code-block:: text
H
haowang101779990 已提交
7987

Q
Qingsheng Li 已提交
7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
8003
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
8004 8005 8006 8007

    Examples:

        .. code-block:: python
8008 8009
	
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
8010

8011 8012 8013
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
8014 8015 8016
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
8017
    assert not in_dygraph_mode(), (
8018
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
8019 8020
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8021
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
8022 8023 8024 8025 8026 8027 8028 8029 8030
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
8044

8045 8046 8047
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
8048
    """
F
stash  
fengjiayi 已提交
8049
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
8050
    dtype = x.dtype
X
Xin Pan 已提交
8051
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
8052
    if seed is None:
8053
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
8054
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
8055
    if isinstance(seed, int):
F
fengjiayi 已提交
8056 8057 8058 8059 8060
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
8061 8062 8063 8064
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
8065
        inputs={"X": x,
F
stash  
fengjiayi 已提交
8066 8067
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
8068 8069
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
8070
    return out
W
whs 已提交
8071 8072


8073
def log(x, name=None):
W
wanghaoshuang 已提交
8074 8075 8076 8077 8078
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

8079
        Out = \\ln(x)
W
wanghaoshuang 已提交
8080 8081

    Args:
8082
        x (Variable): Input tensor.
8083 8084
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8085 8086 8087 8088 8089 8090 8091 8092

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

8093
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8094
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
8095 8096
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
8097
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8098
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
8099
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
8100 8101 8102
    return out


8103
def relu(x, name=None):
W
wanghaoshuang 已提交
8104 8105
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
8106
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
8107 8108 8109 8110
    the tensor elementwise.

    .. math::

8111
        Out = \\max(0, x)
W
wanghaoshuang 已提交
8112 8113

    Args:
8114
        x (Variable): The input tensor.
8115 8116
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8117 8118 8119 8120 8121 8122 8123 8124

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

8125
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8126
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
8127 8128
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8129
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8130
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8131 8132
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8133
    return out
8134 8135


C
chengduo 已提交
8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python
8160 8161 8162 8163 8164 8165
             
            import paddle.fluid as fluid
          
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")
            output = fluid.layers.selu(input)
C
chengduo 已提交
8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8181 8182 8183
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8184 8185 8186 8187
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8188
    .. math::
8189

H
haowang101779990 已提交
8190
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8191

8192
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8193 8194 8195 8196 8197
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
8198
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8199
                           Its shape should be the same as input.
8200
        num_classes (int): The possible number of labels.
W
whs 已提交
8201 8202

    Returns:
M
minqiyang 已提交
8203 8204
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
8205
                     Three variables:
M
minqiyang 已提交
8206

H
haowang101779990 已提交
8207 8208 8209
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
8210 8211 8212 8213

    Examples:

        .. code-block:: python
8214

B
Bai Yifan 已提交
8215 8216 8217 8218 8219
            import paddle.fluid as fluid
            predict = fluid.layers.data(name='predict', shape=[3, 32, 32])
            label = fluid.layers.data(name='label', shape=[1])
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
                                                          num_classes=5)
W
whs 已提交
8220 8221 8222
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8223 8224 8225
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8226 8227
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8228 8229
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8230
        outputs={
W
whs 已提交
8231 8232 8233
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8234 8235 8236
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8279
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8280
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8281
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8299
            import paddle.fluid as fluid
8300 8301 8302 8303 8304 8305
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8306
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8307 8308 8309 8310 8311

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8312
            isinstance(shape, Variable)):
8313 8314 8315 8316 8317
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8318
    out = helper.create_variable_for_type_inference(x.dtype)
8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8336 8337


W
whs 已提交
8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8355

W
whs 已提交
8356
              out_shape = [2, 3, 5, 5]
8357

W
whs 已提交
8358
          Step 1:
8359

W
whs 已提交
8360 8361 8362
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8363

W
whs 已提交
8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8409
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8410
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8423

S
SunGaofeng 已提交
8424
            import paddle.fluid as fluid
W
whs 已提交
8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8436
            isinstance(out_shape, Variable)):
W
whs 已提交
8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8458 8459
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8460

8461 8462
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8463
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8464 8465 8466
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8467

8468 8469
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8470

H
haowang101779990 已提交
8471 8472
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8473 8474
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8475

H
haowang101779990 已提交
8476 8477 8478 8479 8480 8481 8482 8483
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8484 8485 8486

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

8504 8505 8506
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8521
    out = helper.create_variable_for_type_inference("float32")
8522 8523 8524 8525 8526 8527 8528 8529

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8530 8531


M
minqiyang 已提交
8532 8533
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8534
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8535
    which compares left score and right score passed in.
M
minqiyang 已提交
8536
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8537 8538 8539

    .. math::

H
haowang101779990 已提交
8540
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8541 8542

    Args:
M
minqiyang 已提交
8543
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8544 8545
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8546
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8547 8548
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8549

M
minqiyang 已提交
8550
    Returns:
M
minqiyang 已提交
8551
       Variable: The ranking loss.
H
haowang101779990 已提交
8552

M
minqiyang 已提交
8553
    Raises:
M
minqiyang 已提交
8554
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8555

M
minqiyang 已提交
8556
    Examples:
H
haowang101779990 已提交
8557

M
minqiyang 已提交
8558
        .. code-block:: python
H
haowang101779990 已提交
8559

Y
Yibing Liu 已提交
8560 8561 8562
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
8563 8564
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8565
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8566 8567 8568 8569 8570 8571
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8572 8573
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8597
        .. code-block:: text
W
whs 已提交
8598

T
Tink_Y 已提交
8599
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8600

T
Tink_Y 已提交
8601 8602
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8603

T
Tink_Y 已提交
8604
	      Case 0:
M
minqiyang 已提交
8605

T
Tink_Y 已提交
8606 8607 8608
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8609

T
Tink_Y 已提交
8610 8611 8612
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8613

T
Tink_Y 已提交
8614
	      Case 1:
M
minqiyang 已提交
8615

T
Tink_Y 已提交
8616 8617
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8618

T
Tink_Y 已提交
8619 8620 8621
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8622

T
Tink_Y 已提交
8623
	      Case 2:
M
minqiyang 已提交
8624

T
Tink_Y 已提交
8625 8626
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8627

T
Tink_Y 已提交
8628 8629 8630
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8631 8632


W
whs 已提交
8633 8634
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8635
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
8653 8654 8655 8656 8657
          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
8658 8659 8660 8661
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8662
    out = helper.create_variable_for_type_inference(dtype)
8663 8664 8665 8666 8667 8668 8669 8670 8671
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8672
    helper.append_op(
8673
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8674 8675 8676 8677

    return out


8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8690 8691 8692 8693 8694

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8695 8696
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8697 8698
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8699
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8720 8721 8722 8723 8724

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8725 8726
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8727 8728
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8729
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8750 8751 8752 8753 8754

    Examples:

        .. code-block:: python

8755
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8756 8757
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8758 8759
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8760
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8782 8783 8784 8785 8786

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8787
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8788
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8789 8790
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8791
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8814 8815 8816 8817 8818

    Examples:

        .. code-block:: python

8819
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8820 8821
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8822 8823
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8824
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8846 8847 8848 8849 8850

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8851 8852
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8853 8854
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8855
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8856 8857 8858 8859 8860 8861 8862 8863
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8864 8865 8866 8867
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8868 8869
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8870

J
jerrywgz 已提交
8871 8872 8873 8874 8875 8876 8877 8878
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
8879 8880
    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8881
        mode (string): The mode for weight sharing. 
J
jerrywgz 已提交
8882
        param_attr(ParamAttr|None): The parameter attribute for the learnable
J
jerrywgz 已提交
8883
          weight (alpha), it can be create by ParamAttr.
J
jerrywgz 已提交
8884
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8885
          will be named automatically.
J
jerrywgz 已提交
8886 8887 8888 8889 8890 8891 8892 8893

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8894 8895 8896
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
            x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
J
jerrywgz 已提交
8897
            mode = 'channel'
J
jerrywgz 已提交
8898 8899 8900
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8912
        attr=helper.param_attr,
J
jerrywgz 已提交
8913 8914 8915 8916
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8917
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8918 8919 8920 8921 8922 8923 8924 8925 8926
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8927 8928 8929 8930 8931 8932 8933 8934 8935 8936
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8937
    Returns:
8938
        output(${out_type}): ${out_comment}
8939 8940 8941

    Examples:

8942
    .. code-block:: python
8943

H
haowang101779990 已提交
8944 8945
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8946 8947
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8948
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8967
    Returns:
8968
        output(${out_type}): ${out_comment}
8969 8970 8971 8972 8973

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8974 8975
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8976 8977
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8978
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8996
    Returns:
8997
        output(${out_type}): ${out_comment}
8998 8999 9000

    Examples:

9001 9002 9003 9004 9005
        .. code-block:: python 
 
            import paddle.fluid as fluid
   
            x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
H
haowang101779990 已提交
9006
            y = fluid.layers.soft_relu(x, threshold=20.0)
9007 9008
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
9009
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9010 9011 9012 9013 9014 9015 9016 9017
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


9018 9019 9020 9021
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
9022

H
haowang101779990 已提交
9023
    For Example:
M
minqiyang 已提交
9024

H
haowang101779990 已提交
9025
    .. code-block:: text
9026

H
haowang101779990 已提交
9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9048 9049 9050

    Args:
        x (Variable): A tensor of rank >= axis.
9051 9052
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9053 9054 9055 9056 9057 9058 9059 9060
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
9061 9062 9063
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9064 9065 9066 9067
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
9068
        ValueError: If axis is not in range [0, rank(x)].
9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9085 9086
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9087
    helper.append_op(
9088
        type='flatten2',
9089
        inputs={"X": x},
9090 9091
        outputs={'Out': out,
                 'XShape': x_shape},
9092 9093
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9094 9095


C
chenweihang 已提交
9096
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
9097
    """
C
chenweihang 已提交
9098
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
9099
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
9100 9101
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
9102

H
haowang101779990 已提交
9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
9120 9121

    Args:
C
chenweihang 已提交
9122 9123 9124
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
9125 9126 9127 9128 9129 9130 9131

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

9132
            x = fluid.layers.data(shape[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
9133 9134
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
9135
    assert not in_dygraph_mode(), (
9136
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
9137
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
9138 9139
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
9140 9141 9142 9143 9144 9145
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
9146
    return out
9147

9148

S
sneaxiy 已提交
9149 9150 9151 9152 9153 9154 9155 9156 9157
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
9158

S
sneaxiy 已提交
9159
    .. math::
9160

S
sneaxiy 已提交
9161 9162 9163
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
9164
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
9165 9166 9167 9168
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
9169 9170 9171
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
9172 9173
    Returns:
        Variable: The output sequence mask.
9174

9175 9176 9177 9178 9179 9180 9181 9182
    Examples:
        .. code-block:: python
	
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
9183
    """
L
lujun 已提交
9184
    assert not in_dygraph_mode(), (
9185
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
9186

Q
qingqing01 已提交
9187
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
9188
    if name is None:
X
Xin Pan 已提交
9189
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
9190
    else:
X
Xin Pan 已提交
9191
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
9192

Q
qingqing01 已提交
9193 9194 9195
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
9196 9197
        outputs={'Y': out},
        attrs={
9198
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
9199 9200 9201
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
9202 9203


X
Xin Pan 已提交
9204
def stack(x, axis=0):
S
sneaxiy 已提交
9205 9206 9207 9208
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
9209 9210 9211 9212 9213 9214 9215

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
9216
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
9217
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
9218

C
chengduozh 已提交
9219 9220
    For Example:

C
chengduozh 已提交
9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9259
    Args:
9260
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9261
        axis (int|None): The axis along which all inputs are stacked.
9262

S
sneaxiy 已提交
9263 9264
    Returns:
        Variable: The stacked variable.
9265

9266 9267 9268 9269
    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers
9270 9271
            x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
9272 9273
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
9274 9275
    """

X
Xin Pan 已提交
9276 9277 9278 9279 9280 9281
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9282
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9283
    helper.append_op(
S
sneaxiy 已提交
9284 9285
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9286

X
Xin Pan 已提交
9287
    return out
D
dzhwinter 已提交
9288 9289 9290 9291 9292 9293 9294


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9295

D
dzhwinter 已提交
9296 9297 9298
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9299
    raised.
D
dzhwinter 已提交
9300 9301

    Args:
M
minqiyang 已提交
9302
        x (Variable): Input variable.
D
dzhwinter 已提交
9303 9304
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9305

D
dzhwinter 已提交
9306 9307
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9308

9309 9310 9311 9312 9313 9314
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
            y = fluid.layers.unstack(x, axis=1)
D
dzhwinter 已提交
9315 9316 9317 9318 9319 9320 9321 9322 9323 9324
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9325
    for _ in range(num):
X
Xin Pan 已提交
9326
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9327 9328 9329 9330 9331 9332 9333 9334

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9347

W
whs 已提交
9348 9349 9350 9351
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9352

W
whs 已提交
9353
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9354

W
whs 已提交
9355
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9356

W
whs 已提交
9357 9358 9359 9360
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9361

W
whs 已提交
9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9378
    out = helper.create_variable_for_type_inference(dtype)
9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395
    # check expand_times have tensor

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:

        def contain_tensor(expand_times):
            for ele in expand_times:
                if isinstance(ele, Variable):
                    return True
            return False

        if contain_tensor(expand_times):
            new_expand_times = []
            for ele in expand_times:
                if isinstance(ele, Variable):
H
Hongyu Liu 已提交
9396
                    ele.stop_gradient = True
9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409
                    new_expand_times.append(ele)
                else:
                    assert (isinstance(ele, int))
                    temp_out = helper.create_variable_for_type_inference(dtype)
                    fill_constant(
                        [1], 'int32', ele, force_cpu=True, out=temp_out)
                    new_expand_times.append(temp_out)
            inputs = {'X': x, 'expand_times_tensor': new_expand_times}
            attrs = {}
        else:
            inputs = {'X': x}
            attrs = {'expand_times': expand_times}

W
whs 已提交
9410
    helper.append_op(
9411
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9412
    return out
S
sneaxiy 已提交
9413 9414


G
fix  
gongweibao 已提交
9415 9416 9417
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9418
@templatedoc()
G
fix  
gongweibao 已提交
9419 9420 9421 9422 9423 9424 9425 9426 9427
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9428
    ${comment}
G
fix  
gongweibao 已提交
9429 9430

    Args:
G
gongweibao 已提交
9431 9432 9433
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9434
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9435 9436 9437
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9438 9439
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9440
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9441

9442 9443 9444
    Examples:
        .. code-block:: python

9445 9446
            import paddle.fluid.layers as layers 

9447 9448
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9449 9450 9451
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9452
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9469 9470


G
gongweibao 已提交
9471
@templatedoc()
X
Xin Pan 已提交
9472
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9473
    """
G
gongweibao 已提交
9474
    ${comment}
G
fix  
gongweibao 已提交
9475 9476

    Args:
G
gongweibao 已提交
9477 9478 9479 9480
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9481 9482 9483
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9484
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9485

9486 9487 9488
    Examples:
        .. code-block:: python

J
JesseyXujin 已提交
9489
            import paddle.fluid.layers as layers
9490
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9491 9492 9493
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9494
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9495 9496 9497 9498 9499 9500 9501 9502 9503 9504
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9505
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9506 9507 9508 9509 9510
        })

    return out


G
gongweibao 已提交
9511
@templatedoc()
G
fix  
gongweibao 已提交
9512
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9513
    """
G
gongweibao 已提交
9514
    ${comment}
G
fix  
gongweibao 已提交
9515 9516

    Args:
G
gongweibao 已提交
9517 9518 9519 9520
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9521
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9522 9523

    Returns:
G
gongweibao 已提交
9524
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9525

9526 9527 9528
    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9529
            x = fluid.layers.data(
9530 9531 9532 9533 9534
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
9535
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9536 9537 9538
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9539
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9551
@templatedoc()
G
fix  
gongweibao 已提交
9552 9553 9554 9555 9556 9557 9558 9559 9560
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9561
    ${comment}
G
fix  
gongweibao 已提交
9562 9563

    Args:
G
gongweibao 已提交
9564 9565
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9566
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9567 9568 9569 9570
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9571
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9572 9573

    Returns:
G
gongweibao 已提交
9574
        out (Variable): ${out_comment}
9575 9576 9577 9578

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9579
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
9580

Y
Yibing Liu 已提交
9581
            out = fluid.layers.gaussian_random_batch_size_like(
9582
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9583 9584 9585
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9586
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9605
@templatedoc()
X
Xin Pan 已提交
9606
def sum(x):
G
fix  
gongweibao 已提交
9607
    """
G
gongweibao 已提交
9608
    ${comment}
G
fix  
gongweibao 已提交
9609 9610

    Args:
G
gongweibao 已提交
9611
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9612 9613

    Returns:
G
gongweibao 已提交
9614
        out (Variable): ${out_comment}
9615 9616 9617 9618

    Examples:
        .. code-block:: python

9619 9620 9621 9622
            import paddle.fluid.layers as layers
            input0 = layers.data(name="input0", shape=[13, 11], dtype='float32')
            input1 = layers.data(name="input1", shape=[13, 11], dtype='float32')
            out = layers.sum([input0,input1])
G
fix  
gongweibao 已提交
9623 9624 9625
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9626 9627
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9628 9629 9630 9631
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9632
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9633 9634 9635 9636

    return out


G
gongweibao 已提交
9637
@templatedoc()
G
fix  
gongweibao 已提交
9638 9639
def slice(input, axes, starts, ends):
    """
9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
9655

9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]
G
fix  
gongweibao 已提交
9673
    Args:
G
gongweibao 已提交
9674 9675 9676 9677
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9678 9679

    Returns:
G
gongweibao 已提交
9680
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9681

9682 9683 9684
    Examples:
        .. code-block:: python

9685 9686
            import paddle.fluid as fluid
 
9687 9688 9689 9690
            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

9691
            input = fluid.layers.data(
9692 9693
                name="input", shape=[3, 4, 5, 6], dtype='float32')

9694
            out = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9695 9696 9697
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9698 9699
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9713 9714
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9715
    Get the shape of the input.
G
fix  
gongweibao 已提交
9716 9717

    Args:
C
chengduozh 已提交
9718
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9719 9720

    Returns:
C
fix doc  
chengduozh 已提交
9721
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9722

9723 9724 9725
    Examples:
        .. code-block:: python

9726 9727 9728
            import paddle.fluid as fluid

            input = fluid.layers.data(
9729
                name="input", shape=[3, 100, 100], dtype="float32")
9730
            out = fluid.layers.shape(input)
G
fix  
gongweibao 已提交
9731 9732 9733
    """

    helper = LayerHelper('shape', **locals())
9734
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9735
    helper.append_op(
G
fix  
gongweibao 已提交
9736
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9737 9738

    return out
G
merge  
gongweibao 已提交
9739 9740


Z
zhoukunsheng 已提交
9741 9742 9743 9744
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
9745
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            rank = layers.rank(input) # 4
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


S
sneaxiy 已提交
9767 9768 9769 9770
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9771
    if in_dygraph_mode():
X
Xin Pan 已提交
9772 9773 9774
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9775 9776 9777 9778
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9779 9780
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9781
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9782 9783 9784
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9785

S
sneaxiy 已提交
9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9797
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9798 9799 9800 9801 9802 9803 9804 9805
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9806
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9807
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9808 9809 9810

    Returns:
        out(${out_type}): ${out_comment}
9811 9812 9813 9814 9815 9816 9817 9818

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
            y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
S
sneaxiy 已提交
9819 9820 9821
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9822
    if name is None:
X
Xin Pan 已提交
9823
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9824 9825 9826
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9827 9828 9829 9830 9831 9832 9833 9834 9835 9836

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9837
    return helper.append_activation(out)
S
sneaxiy 已提交
9838 9839


X
Xin Pan 已提交
9840
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9841 9842 9843
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9844
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9845 9846 9847
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9848
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9849 9850 9851
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9852
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9853 9854 9855
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9856
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9857 9858 9859
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9860
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9861 9862 9863
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9864
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9865 9866 9867
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9868 9869 9870 9871 9872 9873 9874 9875
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9876
for func in [
9877 9878 9879 9880 9881 9882 9883 9884 9885
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9886 9887 9888 9889 9890
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9891 9892
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9893
        ])
9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
9931 9932


9933
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9934 9935
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9936 9937
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9938 9939 9940

    if out is None:
        if name is None:
X
Xin Pan 已提交
9941
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9957
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9969 9970 9971 9972 9973 9974 9975 9976 9977

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9978 9979 9980 9981 9982 9983 9984
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9985
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9997 9998 9999 10000 10001 10002 10003 10004 10005

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
10006 10007 10008 10009 10010 10011 10012
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10013
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10025 10026 10027 10028 10029 10030 10031 10032 10033

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
10034 10035 10036 10037 10038 10039 10040
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10041
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
10042 10043 10044 10045 10046 10047 10048 10049 10050 10051
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10052 10053 10054 10055 10056 10057 10058

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
10059 10060 10061 10062
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10078 10079 10080 10081

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
10082
            import paddle.fluid as fluid
10083 10084 10085
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
10086 10087 10088 10089 10090
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
10091 10092
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10093 10094 10095

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10119 10120 10121 10122 10123 10124 10125

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
10126 10127 10128 10129 10130
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
10131 10132
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10133 10134 10135

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10136 10137 10138 10139 10140 10141 10142 10143

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10157 10158 10159 10160 10161 10162 10163

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
10164 10165 10166 10167 10168
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
10169
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10170 10171 10172 10173 10174 10175 10176 10177 10178 10179
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10191 10192 10193 10194 10195 10196 10197 10198 10199

    Examples:
        .. code-block:: python

            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
10238 10239 10240 10241 10242
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
10243
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10244 10245 10246 10247 10248 10249 10250 10251 10252
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
10253 10254
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
10255 10256 10257 10258 10259 10260
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
10261 10262 10263
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
10264 10265
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
10266 10267 10268 10269 10270 10271
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
10272
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
10273
        name(basestring|None): Name of the output.
10274 10275
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
10276 10277 10278

    Returns:
        out(${out_type}): ${out_comment}
10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
10293 10294 10295 10296 10297
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
10298
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10299 10300 10301 10302 10303 10304 10305 10306
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
10307 10308
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
10325 10326 10327 10328 10329 10330 10331 10332 10333

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
10334 10335 10336 10337
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
10338
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10339 10340 10341 10342 10343 10344 10345 10346 10347 10348
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
10349 10350


J
JiabinYang 已提交
10351
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
10352
    """
J
JiabinYang 已提交
10353
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
10354 10355 10356

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
10357
    The attr blocksize indicates the input block size.
10358 10359

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
10360
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
10361 10362

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
10363
    (but keeping all data)
J
JiabinYang 已提交
10364

J
JiabinYang 已提交
10365
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
10366
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
10367 10368 10369 10370 10371
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
10372
    Args:
J
JiabinYang 已提交
10373
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
10374
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
10375 10376

    Returns:
J
JiabinYang 已提交
10377
        Variable: The output LoDtensor.
J
JiabinYang 已提交
10378 10379

    Raises:
J
JiabinYang 已提交
10380
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
10381 10382 10383

    Examples:
        .. code-block:: python
10384 10385 10386
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
10387 10388

            data = fluid.layers.data(
10389
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
10390
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
10391
                x=data, blocksize=2)
10392 10393 10394 10395 10396 10397

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
10398

J
JiabinYang 已提交
10399 10400
    """

J
JiabinYang 已提交
10401
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
10402

J
JiabinYang 已提交
10403 10404
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
10405 10406

    if name is None:
J
JiabinYang 已提交
10407 10408
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
10409 10410 10411 10412 10413
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
10414
        type="space_to_depth",
J
JiabinYang 已提交
10415
        inputs={"X": x},
J
JiabinYang 已提交
10416
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
10417
        outputs={"Out": out})
J
JiabinYang 已提交
10418 10419
    return out

J
JiabinYang 已提交
10420

S
sneaxiy 已提交
10421 10422
@templatedoc()
def sequence_reverse(x, name=None):
10423
    """
S
sneaxiy 已提交
10424 10425 10426 10427 10428 10429 10430 10431
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
B
bdzhuxiaoning 已提交
10432 10433 10434 10435 10436 10437 10438

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
            x_reversed = fluid.layers.sequence_reverse(x)
S
sneaxiy 已提交
10439
    """
L
lujun 已提交
10440
    assert not in_dygraph_mode(), (
10441
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
10442 10443
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
10444
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10445 10446 10447 10448 10449 10450 10451 10452 10453 10454
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
10455 10456


10457 10458 10459 10460 10461 10462
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
10463 10464 10465 10466 10467
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
10468

10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
10481
        act (str, default None): Activation to be applied to the output of this layer.
10482 10483 10484

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
B
Bai Yifan 已提交
10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            input_bias = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            out = fluid.layers.affine_channel(data,scale=input_scale,
                                     bias=input_bias)

10499 10500 10501 10502
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
10503
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
10515
    return helper.append_activation(out)
10516 10517


B
barrierye 已提交
10518
def similarity_focus(input, axis, indexes, name=None):
10519
    """
B
barrierye 已提交
10520
    SimilarityFocus Operator
B
barrierye 已提交
10521 10522

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
10523

10524 10525 10526
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
10527
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
10528 10529 10530 10531 10532 10533 10534
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
10535
       each index.
B
barrierye 已提交
10536 10537 10538 10539
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
10589
    Args:
10590
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
10591
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
10592
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
10593
            1, 2 or 3.
B
barrierye 已提交
10594
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
10595 10596

    Returns:
H
haowang101779990 已提交
10597 10598
        Variable: A tensor variable with the same shape and same type \
                  as the input.
10599

B
barrierye 已提交
10600 10601
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
10602

B
barrierye 已提交
10603
            data = fluid.layers.data(
Y
Yibing Liu 已提交
10604 10605
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
10618 10619 10620 10621 10622
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
10623 10624 10625 10626 10627 10628 10629
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
10630 10631


M
minqiyang 已提交
10632 10633
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
10634 10635
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
10636 10637
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
10638 10639 10640 10641 10642 10643 10644 10645 10646

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
10647 10648
            [[1, 2],
             [3, 4]],
M
minqiyang 已提交
10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
10665 10666
            [[9662, 9217, 1129, 8487],
             [8310, 1327, 1654, 4567]],
M
minqiyang 已提交
10667 10668 10669 10670 10671 10672 10673 10674 10675
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10676
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10677
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10678 10679 10680 10681 10682 10683

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10684

10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            import numpy as np

            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=1, hash_size=1000)

            place = fluid.core.CPUPlace()
            exece = fluid.Executor(place)
            exece.run(fluid.default_startup_program()) 

            # Init Tensor
            tensor = fluid.core.LoDTensor() 
            tensor.set(np.random.randint(0, 10, (3, 1)).astype("int32"), place)
            # Set LoD
            tensor.set_recursive_sequence_lengths([[1, 1, 1]])

            out = exece.run(feed={'titles': tensor}, fetch_list=[hash_r], return_numpy=False)
M
minqiyang 已提交
10703 10704
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10705 10706
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10707 10708 10709 10710 10711 10712 10713
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10714 10715


D
dengkaipeng 已提交
10716
@templatedoc()
10717 10718
def grid_sampler(x, grid, name=None):
    """
10719
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10720
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10721 10722 10723 10724
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10725
    interpolation value of 4 nearest corner points.
10726

H
haowang101779990 已提交
10727
    .. code-block:: text
10728

H
haowang101779990 已提交
10729 10730
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10731

H
haowang101779990 已提交
10732 10733
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10734

H
haowang101779990 已提交
10735 10736 10737
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10738

H
haowang101779990 已提交
10739 10740 10741 10742 10743 10744 10745 10746 10747
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10748

H
haowang101779990 已提交
10749 10750 10751 10752
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10753

H
haowang101779990 已提交
10754 10755 10756 10757
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10758

H
haowang101779990 已提交
10759 10760 10761 10762
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10763

H
haowang101779990 已提交
10764 10765
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10766 10767

    Args:
10768 10769 10770
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10771 10772

    Returns:
H
haowang101779990 已提交
10773
        Variable: Output of shape [N, C, H, W] data samples input X
10774 10775
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10776 10777 10778 10779
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
10780 10781 10782 10783 10784
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
10785
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10786

D
dengkaipeng 已提交
10787 10788 10789 10790 10791 10792 10793 10794 10795
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10796
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10797 10798
    ipts = {'X': x, 'Grid': grid}

10799
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10800 10801 10802
    return out


G
gmcather 已提交
10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10830 10831
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10870
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10871 10872 10873 10874 10875 10876 10877
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
10878 10879
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
10880

10881 10882 10883 10884 10885
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
10886
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
10887

H
heqiaozhi 已提交
10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10901 10902 10903 10904
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10905
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10906 10907
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10908
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10909 10910

    .. math::
H
haowang101779990 已提交
10911 10912 10913
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10914 10915

    Where:
H
haowang101779990 已提交
10916 10917
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

10931 10932 10933 10934 10935 10936 10937 10938 10939
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
10940

G
gmcather 已提交
10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10957 10958 10959 10960 10961 10962 10963 10964 10965 10966


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10967
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10968

Q
Qiao Longfei 已提交
10969
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10970 10971 10972
    For example:

    .. math::
H
haowang101779990 已提交
10973
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10974

Q
Qiao Longfei 已提交
10975
    In this formula:
10976 10977
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10978
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10979
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10980 10981 10982
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10983 10984
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10985 10986 10987
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10988
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10989
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10990
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10991 10992 10993 10994
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10995
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10996 10997 10998 10999

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
11000 11001 11002
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
11003 11004
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
11005
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
11006 11007 11008 11009

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
11010
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
B
bdzhuxiaoning 已提交
11041 11042 11043 11044 11045 11046 11047 11048

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
11049 11050 11051 11052 11053 11054 11055 11056 11057 11058
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
11059 11060


S
shippingwang 已提交
11061
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
11062 11063
    """
    **Shuffle Channel Operator**
11064

S
shippingwang 已提交
11065 11066 11067 11068 11069 11070
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
11071
    
S
shippingwang 已提交
11072
    .. code-block:: text
11073

S
shippingwang 已提交
11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
11102
    Args: 
S
shippingwang 已提交
11103 11104
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
11105 11106

    Returns:
S
shippingwang 已提交
11107 11108
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
11109 11110

    Raises:
S
shippingwang 已提交
11111
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
11112 11113 11114

    Examples:
        .. code-block:: python
11115 11116

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
11117
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
11118 11119 11120
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
11121
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
11122 11123 11124 11125 11126 11127 11128 11129 11130

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
11131
    return out
S
Add  
shippingwang 已提交
11132 11133


11134
@templatedoc()
D
dengkaipeng 已提交
11135
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
11136 11137 11138 11139 11140 11141 11142 11143
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
11144
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
11145
        name (str, default None): The name of this layer.
11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
11158
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
11171 11172
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
11173 11174 11175
    return out


S
sneaxiy 已提交
11176
class PyFuncRegistry(object):
S
sneaxiy 已提交
11177 11178 11179
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
11180
        if func is None or not callable(func):
S
sneaxiy 已提交
11181 11182 11183
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
11184
        # find named args using reflection
S
sneaxiy 已提交
11185 11186 11187 11188 11189 11190 11191
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
11192 11193 11194
        '''
        Why record self here?

M
minqiyang 已提交
11195 11196
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
11197
           to find the registered function corresponding
M
minqiyang 已提交
11198
           to :code:`idx`.
S
sneaxiy 已提交
11199

M
minqiyang 已提交
11200 11201
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
11202
           whose reference count is 1 would cause
M
minqiyang 已提交
11203
           segmentation fault error in C++ side.
S
sneaxiy 已提交
11204 11205
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
11206
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
11221 11222 11223 11224 11225 11226 11227 11228 11229
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
11230

S
sneaxiy 已提交
11231 11232
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
11233 11234

        ret = []
S
sneaxiy 已提交
11235 11236 11237
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
11238 11239
                continue

S
sneaxiy 已提交
11240 11241
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
11242

S
sneaxiy 已提交
11243 11244 11245
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
11246

S
sneaxiy 已提交
11247
        return tuple(ret)
S
sneaxiy 已提交
11248 11249


S
sneaxiy 已提交
11250 11251 11252 11253
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
11254

S
sneaxiy 已提交
11255 11256 11257 11258 11259 11260 11261 11262
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
11263
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
11264

S
sneaxiy 已提交
11265 11266
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
11267 11268 11269 11270
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
11271
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
11272
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
11273 11274
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
11275 11276 11277 11278 11279
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
11280
            should create :code:`out` beforehand.
S
sneaxiy 已提交
11281
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
11282
                                       None means no backward. Default None.
S
sneaxiy 已提交
11283
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
11284
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
11285 11286
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
11287
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
11288 11289 11290

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
11291 11292

    Examples:
M
minqiyang 已提交
11293

S
sneaxiy 已提交
11294 11295 11296 11297 11298
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
11299
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
11300 11301
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
11302
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
11303 11304 11305
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
11306
        >>>
S
sneaxiy 已提交
11307 11308 11309 11310 11311
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
11312
        >>>     print(x)
S
sneaxiy 已提交
11313 11314 11315 11316 11317 11318
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
11319
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
11320 11321
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
11322 11323
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
11324 11325 11326 11327 11328 11329 11330 11331
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
11332
    """
S
sneaxiy 已提交
11333
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
11334 11335 11336
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
11337
        x = [x]
S
sneaxiy 已提交
11338 11339
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11340

S
sneaxiy 已提交
11341 11342 11343
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
11344
        out_list = [out]
S
sneaxiy 已提交
11345
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
11346
        out_list = out
S
sneaxiy 已提交
11347 11348 11349
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11350

S
sneaxiy 已提交
11351 11352
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
11353
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
11354 11355

    for each_out in out_list:
S
sneaxiy 已提交
11356 11357
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
11358 11359
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
11360

S
sneaxiy 已提交
11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
11376 11377 11378 11379

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
11380 11381
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
11382 11383 11384
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
11385
        })
S
sneaxiy 已提交
11386
    return out
S
sneaxiy 已提交
11387 11388 11389


# For debug usage
S
sneaxiy 已提交
11390 11391 11392 11393
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
11407 11408 11409 11410 11411
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11424 11425 11426 11427
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
11453

M
minqiyang 已提交
11454

M
minqiyang 已提交
11455
def huber_loss(input, label, delta):
11456
    """
M
minqiyang 已提交
11457 11458 11459
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
11460 11461 11462 11463

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
11464
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
11465 11466 11467 11468

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
11469
        huber\_loss = 0.5 * (label - input) * (label - input)
11470 11471 11472 11473 11474 11475 11476


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
11477
        delta (float): The parameter of huber loss, which controls
11478 11479 11480
                       the range of outliers

    Returns:
M
minqiyang 已提交
11481
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
11482 11483 11484 11485

    Examples:
        .. code-block:: python

11486 11487 11488 11489 11490 11491 11492 11493 11494
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

11495
    """
M
minqiyang 已提交
11496
    helper = LayerHelper('huber_loss', **locals())
11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
11508 11509


D
dengkaipeng 已提交
11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

T
Tao Luo 已提交
11572 11573 11574
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
11575
          # edges must be directional
T
Tao Luo 已提交
11576 11577 11578 11579
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
11580
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
11581 11582
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
11583
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
11584
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
11608 11609


C
ceci3 已提交
11610
from .ops import square
C
ceci3 已提交
11611
from .control_flow import equal
C
ceci3 已提交
11612 11613


C
ceci3 已提交
11614 11615 11616
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
11617

C
ceci3 已提交
11618
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
11619 11620

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
11621
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
11622 11623 11624 11625 11626
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
11627 11628
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
11629 11630 11631 11632 11633 11634 11635

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
11636 11637 11638 11639 11640 11641 11642 11643
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
11644 11645 11646 11647 11648 11649 11650
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
11651
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
11652 11653
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
11654 11655
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
11656 11657 11658 11659
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
11660 11661 11662
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
11663 11664 11665
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
11666 11667


R
ruri 已提交
11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

11697
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
11698 11699 11700 11701 11702 11703 11704 11705 11706

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

R
ruri 已提交
11707
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
11758 11759 11760 11761 11762 11763
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32])
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
11764 11765 11766 11767 11768 11769 11770 11771
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
11772 11773 11774 11775


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
11776

H
heqiaozhi 已提交
11777
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
11778

H
fix doc  
heqiaozhi 已提交
11779
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
11780 11781 11782
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
11783
    
H
fix doc  
heqiaozhi 已提交
11784
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
11785

H
heqiaozhi 已提交
11786
    Args:
H
fix doc  
heqiaozhi 已提交
11787 11788

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
11789 11790
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
11791
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
11792
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
11793

H
heqiaozhi 已提交
11794
    Returns:
H
fix doc  
heqiaozhi 已提交
11795 11796 11797

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
11798
    Examples:
H
fix doc  
heqiaozhi 已提交
11799

H
heqiaozhi 已提交
11800
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
11801

H
heqiaozhi 已提交
11802 11803 11804 11805 11806 11807 11808 11809 11810 11811
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
11812

H
heqiaozhi 已提交
11813 11814 11815 11816 11817 11818 11819 11820 11821
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
11822
    return out
Z
zhoukunsheng 已提交
11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

             # condition is a tensor [True, False, True]
             out = fluid.layers.where(condition) # [[0], [2]]

             # condition is a tensor [[True, False], [False, True]]
             out = fluid.layers.where(condition) # [[0, 0], [1, 1]]

             # condition is a tensor [False, False, False]
             out = fluid.layers.where(condition) # [[]]
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

          # [1, 0, -1]
          data = fluid.layers.sign(np.array([3, 0, -2])) 
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060


def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
                    name=None):
    """
    **Deformable Convolution Layer**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, respectively.
    Refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ .
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Variable): The input image with [N, C, H, W] format.
        offset (Variable): The input coord offset of deformable convolution layer.
        Mask (Variable): The input mask of deformable covolution layer.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the deformable convolution \
                  result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
                                             num_filters=2, filter_size=3, padding=1)
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")
    if not isinstance(mask, Variable):
        raise TypeError("Input Mask of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='deformable_conv',
        inputs={
            'Input': input,
            'Filter': filter_param,
            'Offset': offset,
            'Mask': mask,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'deformable_groups': deformable_groups,
            'im2col_step': im2col_step,
        })

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

    This function returns a col buffer of sliding local blocks of input x, also known
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter silding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`X` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


    Args:
        x(Varaible):              The input tensor of format [N, C, H, W].
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, shold be
                                  [dilation_h, dilation_w], or an integer dialtion treated as
                                  [dilation, dilation]. For default, it will be [1, 1].

    
    Returns:
        Variable: The tensor variable corresponding to the sliding local blocks. The output shape is [N, Cout, Lout] as decribled above. Cout is the  total number of values within each block, and Lout is the total number of such blocks.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name = 'data', shape = [3, 224, 224], dtype = 'float32')
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out