nn.py 200.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

Y
Yu Yang 已提交
20 21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
23
from ..param_attr import ParamAttr
24 25 26
from .layer_function_generator import autodoc, templatedoc
from .tensor import concat
from . import utils
Y
yuyang18 已提交
27
import random
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
    'fc', 'embedding', 'dynamic_lstm', 'dynamic_lstmp', 'dynamic_gru',
    'gru_unit', 'linear_chain_crf', 'crf_decoding', 'cos_sim', 'cross_entropy',
    'square_error_cost', 'chunk_eval', 'sequence_conv', 'conv2d', 'conv3d',
    'sequence_pool', 'sequence_softmax', 'softmax', 'pool2d', 'pool3d',
    'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'conv3d_transpose',
    'sequence_expand', 'lstm_unit', 'reduce_sum', 'reduce_mean', 'reduce_max',
    'reduce_min', 'reduce_prod', 'sequence_first_step', 'sequence_last_step',
    'dropout', 'split', 'ctc_greedy_decoder', 'edit_distance', 'l2_normalize',
    'matmul', 'topk', 'warpctc', 'sequence_reshape', 'transpose', 'im2sequence',
    'nce', 'hsigmoid', 'beam_search', 'row_conv', 'multiplex', 'layer_norm',
    'softmax_with_cross_entropy', 'smooth_l1', 'one_hot',
    'autoincreased_step_counter', 'reshape', 'lod_reset', 'lrn', 'pad',
    'label_smooth', 'roi_pool', 'dice_loss', 'image_resize',
    'image_resize_short', 'resize_bilinear', 'gather', 'scatter', 'random_crop',
    'mean_iou', 'relu', 'log', 'crop', 'rank_loss', 'prelu', 'flatten', 'stack'
Y
Yu Yang 已提交
47 48 49 50 51 52 53 54
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
55
       use_mkldnn=False,
Y
Yu Yang 已提交
56
       act=None,
J
Jacek Czaja 已提交
57
       is_test=False,
58
       name=None):
Y
Yu Yang 已提交
59
    """
60
    **Fully Connected Layer**
Y
Yu Yang 已提交
61

62 63 64 65 66 67 68 69
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
70
    to the output as well.
C
caoying03 已提交
71

C
caoying03 已提交
72
    This process can be formulated as follows:
73 74 75

    .. math::

76
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
77 78 79

    In the above equation:

C
caoying03 已提交
80 81 82 83
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
84
    * :math:`Act`: The activation function.
C
caoying03 已提交
85
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
86 87

    Args:
R
ranqiu 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
103 104
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
105
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
106
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
107 108
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
109
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
110

111
    Returns:
F
fengjiayi 已提交
112
        Variable: The transformation result.
113 114

    Raises:
C
caoying03 已提交
115
        ValueError: If rank of the input tensor is less than 2.
116 117 118 119

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
120
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
121
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
122
    """
C
caoying03 已提交
123

C
caoying03 已提交
124
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
125 126 127 128

    dtype = helper.input_dtype()

    mul_results = []
129 130
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
131 132 133
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
134

Y
Yu Yang 已提交
135
        w = helper.create_parameter(
136 137
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
138
        helper.append_op(
139 140 141
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
142
            outputs={"Out": tmp},
M
mozga-intel 已提交
143 144
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
145 146 147 148
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
149
    else:
150 151
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
152 153 154 155
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
156 157 158 159
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
160 161


162 163 164
def embedding(input,
              size,
              is_sparse=False,
165
              is_distributed=False,
166 167 168
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
169
    """
170 171
    **Embedding Layer**

172
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
173 174
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
175 176 177

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
178 179

    Args:
180 181 182 183 184
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
185
        is_distributed(bool): Whether to run lookup table from remote parameter server.
186 187
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
188
            with zeros whenever lookup encounters it in :attr:`input`. If
189
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
190 191
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
192
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
193

194 195 196
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
197

198 199
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
200

C
chengduoZH 已提交
201
          dict_size = len(dataset.ids)
202
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
203
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
204 205 206 207 208 209
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
210 211
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
212 213 214 215 216
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
217 218 219 220 221
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
222 223 224
    return tmp


Y
yi.wu 已提交
225
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
226 227
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
228 229
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
230 231 232 233 234 235 236
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
237 238
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
239
    """
Y
yi.wu 已提交
240
    ${comment}
Y
Yibing Liu 已提交
241 242

    Args:
Y
yi.wu 已提交
243 244
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
245 246 247 248 249 250 251
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

252
        param_attr(ParamAttr|None): The parameter attribute for the learnable
253
                               hidden-hidden weights.
Y
Yibing Liu 已提交
254 255 256

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
257 258
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
259
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
260 261 262
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
263

264
                              1. `use_peepholes = False`
Y
yi.wu 已提交
265 266
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
267
                              2. `use_peepholes = True`
Y
yi.wu 已提交
268
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
269
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
270
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
271 272 273 274 275 276 277 278
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
279 280

    Returns:
Y
Yibing Liu 已提交
281 282
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
283

Y
Yibing Liu 已提交
284
    Examples:
Y
Yibing Liu 已提交
285 286
        .. code-block:: python

Y
Yibing Liu 已提交
287 288
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
289
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
290 291
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
292
    """
293

Y
Yu Yang 已提交
294
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
295
    size = size // 4
Y
Yu Yang 已提交
296 297 298 299 300 301 302 303 304 305 306 307
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
308 309 310 311 312 313 314 315 316 317
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
318 319 320

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
321
        inputs=inputs,
Y
Yu Yang 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
338 339 340 341 342 343 344 345 346 347 348
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
349 350
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
351 352 353
    """
    **Dynamic LSTMP Layer**

354 355 356 357 358 359
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
360 361 362 363 364

    The formula is as follows:

    .. math::

365
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
366

367
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
368

369
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
370

371
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
372

373
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
374

375
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
376

377
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
378

Y
Yibing Liu 已提交
379 380 381 382 383 384
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
385
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
386
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
387
          bias vector).
Y
Yibing Liu 已提交
388 389 390
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
391
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
392
    * :math:`h`: The hidden state.
393
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
394 395
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
396
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
397
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
398
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
399 400
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
401 402 403 404

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
405

Y
Yibing Liu 已提交
406 407 408 409 410 411 412 413 414 415 416 417
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
418
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
419 420
                               hidden-hidden weight and projection weight.

421 422
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
423 424
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
425 426
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
427 428
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
429 430 431 432 433 434
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
435
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
436 437 438
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
439
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
440 441 442 443 444 445 446 447 448
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
449
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
450 451
                              default "tanh".
        proj_activation(str): The activation for projection output.
452
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
453 454
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
455 456
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
457 458

    Returns:
459 460 461 462
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
463 464

    Examples:
465

Y
Yibing Liu 已提交
466 467
        .. code-block:: python

468 469 470 471
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
472
            hidden_dim, proj_dim = 512, 256
473
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
474
                                     act=None, bias_attr=None)
475 476 477
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
478 479 480 481
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
482
    """
483

Y
Yibing Liu 已提交
484
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
485
    size = size // 4
Y
Yibing Liu 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
530 531 532 533 534 535 536 537 538
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
539
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
540

541
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
542
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
543

G
guosheng 已提交
544 545 546 547 548 549 550 551 552
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
553

G
guosheng 已提交
554
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
555

G
guosheng 已提交
556
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
557 558
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
559 560 561 562
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
563
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
564 565

    Args:
566 567
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
568
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
569
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
570 571
            is the hidden size.
        size(int): The dimension of the gru cell.
572
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
573 574
            hidden-hidden weight matrix. Note:

575
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
576
              :math:`D` is the hidden size.
577
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
578
              The first part are weights of the update gate and reset gate with
579
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
580
              candidate hidden state with shape :math:`(D \\times D)`.
581
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
582
            hidden-hidden bias.
583
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
584 585 586
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
587
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
588
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
589 590 591 592
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
593 594

    Returns:
G
guosheng 已提交
595
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
596
            and sequence length is the same with the input.
597

G
guosheng 已提交
598
    Examples:
599

G
guosheng 已提交
600 601
        .. code-block:: python

602 603 604 605
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
606
            hidden_dim = 512
607
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
608 609 610 611 612 613 614 615 616 617
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
618
    batch_size = input.shape[0]
G
guosheng 已提交
619 620 621
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
622 623 624
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
648 649 650
def gru_unit(input,
             hidden,
             size,
651 652
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
653
             activation='tanh',
654
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
655
    """
656
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
657

658 659
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
660

661
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
662

663
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
664

665
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
666 667

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
668 669 670
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
671 672
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

673 674
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
675 676 677
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
678 679 680 681 682

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
683 684
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
685 686 687 688
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
689

690 691 692 693 694 695
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
696

697
             # assuming we have x_t_data and prev_hidden of size=10
698
             x_t = fluid.layers.fc(input=x_t_data, size=30)
699 700
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
701 702 703 704 705 706 707 708 709 710 711 712

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
713
    size = size // 3
Y
Yu Yang 已提交
714 715

    # create weight
716 717
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
718

719 720 721 722
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
723
    # create bias
724
    if helper.bias_attr:
Y
Yu Yang 已提交
725 726 727
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
728
        inputs['Bias'] = bias
Y
Yu Yang 已提交
729 730 731

    helper.append_op(
        type='gru_unit',
732
        inputs=inputs,
Y
Yu Yang 已提交
733 734 735 736 737 738
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
739 740
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
741 742 743 744 745
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
746
@templatedoc()
747
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
748 749 750 751 752 753 754
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
755
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
756 757 758 759
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
760 761 762
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
763 764

    """
Y
Yu Yang 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
790
@templatedoc()
791
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
792 793 794 795 796
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
797

Y
yuyang18 已提交
798
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
799

Y
yuyang18 已提交
800 801 802
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
803
        Variable: ${viterbi_path_comment}
804

Y
yi.wu 已提交
805 806 807 808 809
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
810
    """
Y
Yu Yang 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
824
@templatedoc()
F
fengjiayi 已提交
825
def cos_sim(X, Y):
Y
Yu Yang 已提交
826
    """
Y
yi.wu 已提交
827 828 829
    ${comment}

    Args:
830 831
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
832

Y
yi.wu 已提交
833
    Returns:
834
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
835
    """
F
fengjiayi 已提交
836
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
837 838 839 840 841 842 843 844 845 846 847 848 849
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


850
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
851 852 853 854 855
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
856
    training. The dropout operator randomly sets (according to the given dropout
857 858 859 860
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
861 862
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
863 864 865 866 867 868 869
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
870 871

    Returns:
872
        Variable: A tensor variable is the shape with `x`.
873 874

    Examples:
875

876 877
        .. code-block:: python

878 879
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
880 881
    """

F
fengjiayi 已提交
882
    helper = LayerHelper('dropout', **locals())
883 884
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
885 886 887 888

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

889 890 891 892 893
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
894 895 896 897 898 899
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
900 901 902
    return out


F
fengjiayi 已提交
903
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
904
    """
Y
Yibing Liu 已提交
905 906
    **Cross Entropy Layer**

907 908 909
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
910 911

    1) One-hot cross-entropy:
F
fengjiayi 已提交
912
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
913

Y
Yibing Liu 已提交
914
        .. math::
Y
yangyaming 已提交
915

Y
Yibing Liu 已提交
916 917 918
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
919 920
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
921 922 923 924 925

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
926
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
927 928 929
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
930 931
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
932
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
933

Y
Yibing Liu 已提交
934
    Args:
Y
yangyaming 已提交
935
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
936 937 938 939
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
940
        label (Variable|list): the ground truth which is a 2-D tensor. When
941 942 943 944
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
945
        soft_label (bool): a flag indicating whether to
946 947
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
948 949 950 951 952

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
953 954 955 956 957
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
958 959 960 961 962 963

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
964
    """
F
fengjiayi 已提交
965
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
966 967 968 969 970 971
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
972
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
973 974 975
    return out


F
fengjiayi 已提交
976
def square_error_cost(input, label):
Y
Yu Yang 已提交
977
    """
978 979
    **Square error cost layer**

980 981
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
982

983 984 985 986 987 988 989 990 991 992 993 994 995
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
996 997
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
998 999

    Returns:
G
guosheng 已提交
1000
        Variable: The tensor variable storing the element-wise squared error \
1001
                  difference of input and label.
1002 1003 1004 1005 1006 1007 1008 1009

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1010
    """
F
fengjiayi 已提交
1011
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1021 1022
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1023 1024 1025
    return square_out


Y
yi.wu 已提交
1026
@templatedoc()
Y
Yu Yang 已提交
1027 1028 1029 1030
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1031
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1032
    """
Y
yi.wu 已提交
1033
    **Chunk Evaluator**
Y
yi.wu 已提交
1034

Y
yangyaming 已提交
1035
    This function computes and outputs the precision, recall and
1036
    F1-score of chunk detection.
Y
yi.wu 已提交
1037

Y
yi.wu 已提交
1038 1039 1040 1041 1042 1043 1044 1045
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1046

Y
yi.wu 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1072

Y
yi.wu 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1097
    Args:
1098 1099 1100 1101 1102
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1103

Y
yi.wu 已提交
1104
    Returns:
Y
update  
yi.wu 已提交
1105 1106 1107
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1108

Y
yi.wu 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1121
    """
F
fengjiayi 已提交
1122
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1123 1124 1125 1126 1127

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1128 1129 1130
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1131 1132 1133 1134 1135 1136 1137 1138

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1139 1140 1141 1142
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1143 1144 1145
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1146 1147
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1148
        })
1149 1150
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1151 1152


1153
@templatedoc()
Y
Yu Yang 已提交
1154 1155 1156 1157 1158 1159 1160
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1161
                  act=None):
Y
Yu Yang 已提交
1162 1163 1164 1165
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1176

1177 1178
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1197
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1198 1199 1200 1201 1202 1203
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1204
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
1205 1206 1207
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1208
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed. Default: True
1228

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1251
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1252
    """
1253
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1254
    has the same shape as the input.
Q
qiaolongfei 已提交
1255

1256 1257 1258 1259 1260 1261
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1262
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1263 1264 1265 1266 1267 1268 1269

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1270
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1305 1306 1307
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1308 1309
           stride=1,
           padding=0,
1310
           dilation=1,
Y
Yu Yang 已提交
1311 1312 1313
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1314
           use_cudnn=True,
1315
           use_mkldnn=False,
1316 1317
           act=None,
           name=None):
Y
Yu Yang 已提交
1318
    """
C
chengduoZH 已提交
1319
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1320 1321
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1322
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1323 1324 1325 1326 1327 1328 1329
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1330 1331 1332
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1333

1334
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1335

C
chengduoZH 已提交
1336 1337
    .. math::

C
refine  
chengduoZH 已提交
1338
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1339

T
tensor-tang 已提交
1340
    Where:
C
chengduoZH 已提交
1341

1342 1343 1344 1345 1346
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1347
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1348 1349 1350

    Example:

1351 1352
        - Input:

W
weixing02 已提交
1353
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1354

W
weixing02 已提交
1355
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1356

1357
        - Output:
T
tensor-tang 已提交
1358

W
weixing02 已提交
1359
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1360

C
chengduoZH 已提交
1361
        Where
1362 1363

        .. math::
C
chengduoZH 已提交
1364

W
weixing02 已提交
1365 1366
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1367 1368

    Args:
1369
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1370
        num_filters(int): The number of filter. It is as same as the output
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1393 1394
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1395 1396 1397
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1398 1399

    Returns:
G
guosheng 已提交
1400
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1401 1402
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1403
    Raises:
1404 1405
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1406

C
chengduoZH 已提交
1407 1408 1409
    Examples:
        .. code-block:: python

1410 1411
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1412 1413 1414
    """

    num_channels = input.shape[1]
1415 1416

    l_type = 'conv2d'
X
xzl 已提交
1417 1418
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1419
        l_type = 'depthwise_conv2d'
1420 1421 1422 1423

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1424 1425 1426 1427 1428
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1429
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1430

C
chengduoZH 已提交
1431 1432 1433
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1434
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1435

C
chengduoZH 已提交
1436 1437
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1438 1439

    input_shape = input.shape
M
minqiyang 已提交
1440
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1455
        type=l_type,
Y
Yu Yang 已提交
1456 1457 1458 1459 1460
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1461 1462 1463
        attrs={
            'strides': stride,
            'paddings': padding,
1464
            'dilations': dilation,
C
chengduoZH 已提交
1465
            'groups': groups,
1466 1467
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1468
        })
Y
Yu Yang 已提交
1469 1470 1471 1472 1473 1474

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1493 1494 1495 1496 1497 1498
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1499 1500 1501 1502 1503 1504 1505 1506 1507

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1508 1509
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1510 1511 1512
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1513
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1539
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1540 1541
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1542
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1543 1544
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1545
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1546 1547
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1548
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1575 1576
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1591
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1632
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1633 1634 1635 1636

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1637
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1638
    """
Y
yangyaming 已提交
1639 1640 1641
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1653
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1654 1655 1656 1657 1658
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1659
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1660 1661 1662 1663 1664 1665 1666

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1667 1668
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1669

L
Luo Tao 已提交
1670 1671
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1672
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1673 1674 1675 1676 1677 1678 1679 1680
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1681

Y
yangyaming 已提交
1682
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1683 1684 1685 1686 1687
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1688 1689
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1690
    """
F
fengjiayi 已提交
1691
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1703 1704 1705 1706 1707
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1708 1709 1710
    return pool_out


F
fengjiayi 已提交
1711
def sequence_first_step(input):
L
Luo Tao 已提交
1712
    """
L
Luo Tao 已提交
1713
    This function gets the first step of sequence.
L
Luo Tao 已提交
1714 1715 1716 1717

    .. code-block:: text

       x is a 1-level LoDTensor:
1718
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1719 1720 1721 1722 1723
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1724
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1725
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1726

L
Luo Tao 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1736

Y
yangyaming 已提交
1737
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1738 1739 1740
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1741 1742 1743
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1744
def sequence_last_step(input):
L
Luo Tao 已提交
1745
    """
L
Luo Tao 已提交
1746
    This function gets the last step of sequence.
L
Luo Tao 已提交
1747 1748 1749 1750

    .. code-block:: text

       x is a 1-level LoDTensor:
1751
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1752 1753 1754 1755 1756
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1757
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1758
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1759

L
Luo Tao 已提交
1760 1761 1762 1763 1764 1765 1766 1767 1768
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1769

Y
yangyaming 已提交
1770
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1771 1772 1773
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1774 1775 1776
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1777
@templatedoc()
Y
Yu Yang 已提交
1778
def pool2d(input,
C
chengduoZH 已提交
1779 1780
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1781 1782
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1783
           global_pooling=False,
C
chengduoZH 已提交
1784
           use_cudnn=True,
1785
           ceil_mode=False,
1786
           use_mkldnn=False,
C
caoying03 已提交
1787
           name=None):
Y
Yu Yang 已提交
1788
    """
F
fengjiayi 已提交
1789
    ${comment}
1790 1791

    Args:
1792 1793 1794
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1795
                          feature, and W is the width of the feature.
1796
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1797
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1798
        pool_type: ${pooling_type_comment}
1799 1800
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1801 1802 1803 1804
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1805
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1806 1807
                        layer will be named automatically.

1808
    Returns:
F
fengjiayi 已提交
1809
        Variable: The pooling result.
F
fengjiayi 已提交
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1823 1824 1825 1826
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1827
                            global_pooling=False)
Y
Yu Yang 已提交
1828 1829 1830 1831 1832
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1833

C
chengduoZH 已提交
1834 1835 1836 1837 1838
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1839 1840 1841 1842
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1843 1844
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1845

C
Add doc  
chengduoZH 已提交
1846
    l_type = 'pool2d'
1847 1848

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1849 1850 1851 1852
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1882
    pooling configurations mentioned in input parameters.
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1896

1897
    Returns:
1898
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1899 1900 1901 1902 1903
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1904

C
chengduoZH 已提交
1905 1906 1907 1908 1909
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

1910 1911 1912
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1913

C
chengduoZH 已提交
1914 1915
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1916

1917 1918
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1919 1920 1921 1922
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1923
        type=l_type,
Y
Yu Yang 已提交
1924 1925 1926 1927 1928 1929 1930
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1931
            "paddings": pool_padding,
1932
            "use_cudnn": use_cudnn,
1933 1934
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
1947
               data_layout='NCHW',
Y
Yang Yang 已提交
1948
               in_place=False,
1949
               use_mkldnn=False,
1950 1951
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
1952
               moving_variance_name=None,
1953 1954
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
1955
    """
Q
qiaolongfei 已提交
1956 1957 1958 1959
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
1960

Q
qiaolongfei 已提交
1961
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
1962

Q
qiaolongfei 已提交
1963 1964
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
1965 1966 1967
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
1980 1981

    Args:
Q
qiaolongfei 已提交
1982
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
1983 1984 1985 1986
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
1987 1988 1989
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
Q
qiaolongfei 已提交
1990
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
1991 1992 1993 1994 1995
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
1996
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
1997
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
1998 1999

    Returns:
Q
qiaolongfei 已提交
2000
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2001 2002 2003 2004 2005 2006 2007

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2031
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2032

2033 2034
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2035 2036 2037
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2038
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2039
        shape=param_shape,
2040 2041 2042 2043 2044 2045 2046
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2047
            trainable=False,
W
wanghaoshuang 已提交
2048
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2049
        shape=param_shape,
2050 2051
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2052 2053 2054 2055 2056 2057

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2058 2059
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2060

Y
Yang Yang 已提交
2061
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2079 2080 2081 2082
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2083 2084
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2085
        })
Y
Yu Yang 已提交
2086 2087 2088 2089

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2090
@templatedoc()
G
guosheng 已提交
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2101
    ${comment}
G
guosheng 已提交
2102 2103 2104

    The formula is as follows:

Y
yuyang18 已提交
2105
    ..  math::
G
guosheng 已提交
2106 2107 2108 2109 2110 2111 2112

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2113 2114 2115 2116 2117 2118 2119 2120
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2121

G
guosheng 已提交
2122 2123
    Args:
        input(Variable): The input tensor variable.
2124
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2125
            normalization.
2126
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2127
            normalization.
2128
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2129
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2130
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2131 2132 2133 2134 2135 2136
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2137
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2138 2139

    Returns:
Y
yuyang18 已提交
2140
        ${y_comment}
G
guosheng 已提交
2141 2142 2143

    Examples:

Y
yuyang18 已提交
2144 2145 2146
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2162
    if shift:
G
guosheng 已提交
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2187 2188 2189 2190
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2191 2192 2193
                     padding=0,
                     stride=1,
                     dilation=1,
2194
                     groups=None,
C
caoying03 已提交
2195
                     param_attr=None,
2196
                     bias_attr=None,
C
chengduoZH 已提交
2197
                     use_cudnn=True,
2198
                     act=None,
C
caoying03 已提交
2199
                     name=None):
Y
Yu Yang 已提交
2200
    """
2201 2202 2203 2204 2205 2206 2207 2208
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2209 2210
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2211 2212 2213
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2214 2215 2216 2217 2218

    For each input :math:`X`, the equation is:

    .. math::

2219
        Out = \sigma (W \\ast X + b)
2220

2221
    Where:
2222 2223 2224

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2225 2226 2227 2228
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2229

2230 2231 2232 2233
    Example:

        - Input:

2234
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2235

2236
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2237 2238 2239

        - Output:

2240
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2241 2242

        Where
Y
Yu Yang 已提交
2243

2244 2245 2246 2247
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
2248 2249

    Args:
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2283 2284

    Returns:
2285
        Variable: The tensor variable storing the convolution transpose result.
2286 2287

    Raises:
2288 2289
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2290 2291 2292 2293

    Examples:
       .. code-block:: python

2294 2295
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2296
    """
2297 2298 2299 2300 2301 2302 2303 2304 2305

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2306 2307 2308
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2309 2310 2311
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2312

C
chengduoZH 已提交
2313 2314
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2315

Y
Yu Yang 已提交
2316 2317 2318 2319 2320
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2321

Y
Yu Yang 已提交
2322 2323
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2324

C
chengduoZH 已提交
2325
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2326
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2327
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2328
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2329
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2330 2331 2332
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2333

2334
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2335
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2336 2337 2338
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2339
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2340
    helper.append_op(
2341
        type=op_type,
Y
Yu Yang 已提交
2342 2343
        inputs={'Input': [input],
                'Filter': [img_filter]},
2344
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2345
        attrs={
2346 2347 2348 2349 2350
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2351 2352
        })

2353 2354 2355
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2356 2357


2358
def conv3d_transpose(input,
Y
Yu Yang 已提交
2359 2360 2361
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2362 2363 2364
                     padding=0,
                     stride=1,
                     dilation=1,
2365
                     groups=None,
C
caoying03 已提交
2366
                     param_attr=None,
2367
                     bias_attr=None,
C
chengduoZH 已提交
2368
                     use_cudnn=True,
2369
                     act=None,
C
caoying03 已提交
2370
                     name=None):
Y
Yu Yang 已提交
2371
    """
2372
    **Convlution3D transpose layer**
2373

2374
    The convolution3D transpose layer calculates the output based on the input,
2375
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2376 2377 2378 2379 2380 2381
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2382 2383 2384
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2385 2386 2387 2388 2389

    For each input :math:`X`, the equation is:

    .. math::

2390
        Out = \sigma (W \\ast X + b)
2391 2392 2393

    In the above equation:

2394 2395
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2396 2397 2398 2399
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2400

2401 2402 2403 2404
    Example:

        - Input:

2405
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2406

2407
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2408 2409 2410

        - Output:

2411
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2412 2413

        Where
Y
Yu Yang 已提交
2414

2415 2416
        .. math::

2417 2418 2419
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2420 2421

    Args:
2422
        input(Variable): The input image with [N, C, D, H, W] format.
2423 2424 2425
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2426
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2427 2428
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2429
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2430 2431 2432
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2433 2434
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2435
        stride(int|tuple): The stride size. If stride is a tuple, it must
2436 2437
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2438
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2439 2440 2441
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2442 2443 2444 2445 2446
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2447 2448 2449
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2450 2451 2452 2453 2454
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2455 2456

    Returns:
2457
        Variable: The tensor variable storing the convolution transpose result.
2458 2459

    Raises:
2460 2461
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2462 2463 2464 2465

    Examples:
       .. code-block:: python

2466 2467
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2468
    """
2469 2470
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2471
    if not isinstance(input, Variable):
2472
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2473 2474
    input_channel = input.shape[1]

2475 2476 2477
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2478

C
chengduoZH 已提交
2479 2480 2481
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2482 2483 2484 2485 2486 2487
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2488 2489 2490
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2491

2492
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2493
                         padding[0] - 1) // dilation[0] + 1
2494
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2495
                         padding[1] - 1) // dilation[1] + 1
2496
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2497
                         padding[2] - 1) // dilation[2] + 1
2498
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2499
    else:
2500 2501
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2502

2503
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2504
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2505 2506 2507
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2508
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2509
    helper.append_op(
2510
        type=l_type,
Y
Yu Yang 已提交
2511 2512
        inputs={'Input': [input],
                'Filter': [img_filter]},
2513
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2514 2515 2516 2517
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2518
            'groups': groups,
C
chengduoZH 已提交
2519 2520
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2521

2522 2523
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2524
    return out
Y
yangyaming 已提交
2525 2526


Y
yangyaming 已提交
2527
def sequence_expand(x, y, ref_level=-1, name=None):
2528
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2529 2530 2531 2532
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2533 2534 2535 2536 2537

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2538
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2539
                x.data = [[a], [b], [c], [d]]
2540 2541 2542
                x.dims = [4, 1]

            y is a LoDTensor:
2543 2544
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2545

Y
yangyaming 已提交
2546
            ref_level: 0
2547

Y
yangyaming 已提交
2548
            then output is a 1-level LoDTensor:
2549
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2550
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2551 2552 2553 2554
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2555
                x.data = [[a], [b], [c]]
2556 2557 2558
                x.dims = [3, 1]

            y is a LoDTensor:
2559
                y.lod = [[2, 0, 3]]
2560

Y
yangyaming 已提交
2561
            ref_level: -1
2562

Y
yangyaming 已提交
2563 2564 2565
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2566 2567 2568
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2569 2570
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2571
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2572
                        will be named automatically.
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2583
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2584
    """
Y
yangyaming 已提交
2585
    helper = LayerHelper('sequence_expand', input=x, **locals())
2586 2587 2588
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2589 2590 2591 2592 2593
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2594
    return tmp
2595 2596


2597 2598 2599 2600 2601 2602 2603 2604 2605
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2606 2607
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2608 2609 2610

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2611 2612

    This layer does the search in beams for one time step. Specifically, it
2613 2614 2615 2616 2617 2618
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2619

2620 2621 2622 2623 2624 2625 2626 2627
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2628

2629
    Args:
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2655

2656
    Returns:
2657 2658
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2659 2660 2661 2662

    Examples:
        .. code-block:: python

2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2691
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2709 2710 2711 2712 2713 2714 2715
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2716

2717 2718 2719 2720 2721 2722 2723 2724 2725
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2726

2727 2728 2729 2730 2731 2732
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2733

2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2759 2760 2761 2762
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2763
              param_attr=None,
C
caoying03 已提交
2764 2765
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2766 2767 2768 2769
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2770
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2771

2772
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2773

2774
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2775

2776
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2777 2778 2779

            h_t & = o_t tanh(c_t)

2780 2781 2782 2783 2784 2785
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2786 2787 2788

        .. math::

2789
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2790 2791 2792 2793 2794 2795 2796 2797

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2798
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2799 2800

    Args:
Y
yangyaming 已提交
2801 2802 2803 2804 2805 2806
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2807
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2808 2809
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2810 2811
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2812 2813
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2814 2815

    Returns:
Y
yangyaming 已提交
2816
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2817 2818

    Raises:
2819 2820 2821 2822
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2823 2824 2825 2826 2827 2828

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2829
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2830
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2831
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2848
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2849 2850 2851 2852
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2853 2854
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2855 2856 2857
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2858
    size = cell_t_prev.shape[1]
2859
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2860 2861
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2862
                param_attr=param_attr,
2863
                bias_attr=bias_attr)
Y
yangyaming 已提交
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2876
    return h, c
G
guosheng 已提交
2877 2878


C
caoying03 已提交
2879
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2880
    """
Y
yangyaming 已提交
2881
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2882 2883 2884

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2885
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2886 2887
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2888 2889
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2890
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2891
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2892
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2893 2894
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2895 2896 2897

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2898

G
guosheng 已提交
2899 2900 2901 2902 2903 2904
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
2905
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
2906 2907 2908 2909
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2910 2911 2912 2913

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
2914
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
2915 2916 2917
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
2918 2919 2920
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2921 2922
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2923 2924 2925 2926 2927
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2928
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2929 2930 2931 2932
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2933 2934


C
caoying03 已提交
2935
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2936
    """
Y
Yibing Liu 已提交
2937
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
2938 2939 2940

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
2941 2942 2943
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
2944
            must be in the range :math:`[-rank(input), rank(input))`. If
2945
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
2946
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
2947 2948
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2949
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
2950
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
2951
                       will be named automatically.
G
guosheng 已提交
2952 2953

    Returns:
Y
Yibing Liu 已提交
2954
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
2955

G
guosheng 已提交
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
2966 2967
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
2968 2969 2970 2971 2972 2973 2974

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
2975 2976 2977
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2978 2979
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2980 2981 2982 2983 2984
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2985
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2986 2987 2988 2989
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
2990 2991


C
caoying03 已提交
2992
def reduce_max(input, dim=None, keep_dim=False, name=None):
2993
    """
Y
yangyaming 已提交
2994
    Computes the maximum of tensor elements over the given dimension.
2995 2996 2997

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2998
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
2999 3000 3001
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3002
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3003 3004
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3005
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3006 3007
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3008 3009 3010

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3011

3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3023 3024 3025 3026 3027 3028 3029

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3030 3031 3032
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3033 3034
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3035 3036 3037 3038 3039
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3040
            'dim': dim if dim != None else [0],
3041 3042 3043 3044 3045 3046
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3047
def reduce_min(input, dim=None, keep_dim=False, name=None):
3048
    """
Y
yangyaming 已提交
3049
    Computes the minimum of tensor elements over the given dimension.
3050 3051 3052

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3053
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3054 3055 3056
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3057
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3058 3059
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3060
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3061 3062
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3063 3064 3065

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3066

3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3078 3079 3080 3081 3082 3083 3084

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3085 3086 3087
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3088 3089
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3090 3091 3092 3093 3094
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3095
            'dim': dim if dim != None else [0],
3096 3097 3098 3099
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3100 3101


3102 3103 3104 3105 3106 3107
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3108
        dim (list|int|None): The dimensions along which the product is performed. If
3109 3110
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3111 3112
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3113 3114 3115
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3116
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3117
            layer will be named automatically.
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3132
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3133
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3134 3135 3136 3137 3138 3139 3140

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3141 3142 3143
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3144 3145
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3146 3147 3148 3149 3150
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3151
            'dim': dim if dim != None else [0],
3152 3153 3154 3155 3156 3157
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3158
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3159
    """
C
caoying03 已提交
3160
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3161 3162 3163

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3164 3165 3166 3167 3168
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3169
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3170
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3171
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3172 3173
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3174 3175

    Returns:
D
dzhwinter 已提交
3176
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3177 3178 3179 3180 3181 3182 3183 3184 3185

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3186 3187
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3217 3218 3219 3220 3221 3222 3223 3224 3225


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3226
    .. math::
3227 3228

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3229 3230 3231 3232 3233

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3234
        x(Variable|list): The input tensor to l2_normalize layer.
3235
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3236 3237
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3238
        epsilon(float): The epsilon value is used to avoid division by zero, \
3239
            the defalut value is 1e-10.
3240
        name(str|None): A name for this layer(optional). If set None, the layer \
3241
            will be named automatically.
C
caoying03 已提交
3242 3243

    Returns:
3244
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3245 3246

    Examples:
3247

C
caoying03 已提交
3248 3249
        .. code-block:: python

3250 3251 3252 3253
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3254 3255
    """

F
fengjiayi 已提交
3256 3257
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3258 3259
    helper = LayerHelper("l2_normalize", **locals())

3260 3261
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3262
    helper.append_op(
3263 3264 3265 3266
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3267
        attrs={
3268 3269
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3270 3271
        })
    return out
3272 3273


3274
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
3275
    """
Y
ying 已提交
3276 3277 3278 3279
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3280

C
chengduoZH 已提交
3281
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3282
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3283

3284 3285 3286 3287 3288
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3289
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3290

C
chengduoZH 已提交
3291
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3292
      performs in the following way.
G
guosheng 已提交
3293

3294
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3295
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3296
        last two dimensions and a batched matrix multiply supporting broadcast
3297
        applies on the two tensors.
G
guosheng 已提交
3298

Y
ying 已提交
3299 3300
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3301
    removed after matrix multiplication.
G
guosheng 已提交
3302 3303 3304

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3305 3306 3307
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
3308
        name(str|None): A name for this layer(optional). If set None, the layer
3309
            will be named automatically.
G
guosheng 已提交
3310 3311

    Returns:
3312
        Variable: The product Tensor variable.
G
guosheng 已提交
3313

G
guosheng 已提交
3314 3315 3316
    Examples:
        .. code-block:: python

3317
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3318 3319
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3320

3321 3322
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3323

3324 3325
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3326

3327 3328
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3329 3330 3331 3332

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3333 3334
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3335

Y
ying 已提交
3336
            # x: [M], y: [N]
3337
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3338
    """
Y
ying 已提交
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3351
            y_shape = y_shape + [1]
Y
ying 已提交
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3368
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3369
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3370
    helper.append_op(
3371 3372 3373 3374 3375 3376 3377
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
3378 3379


3380
def topk(input, k, name=None):
Q
qingqing01 已提交
3381 3382 3383 3384
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3385
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3386 3387 3388 3389 3390 3391
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3413 3414 3415
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3416
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3417
                 of input.
3418
        name(str|None): A name for this layer(optional). If set None, the layer
3419
                       will be named automatically.
F
fengjiayi 已提交
3420
                       Default: None
Q
qingqing01 已提交
3421 3422

    Returns:
3423 3424 3425
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3426
        within the last dimension of input.
Q
qingqing01 已提交
3427

F
fengjiayi 已提交
3428 3429
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3430 3431 3432 3433 3434 3435 3436

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
F
fengjiayi 已提交
3437
    if k < 1 or k >= shape[-1]:
Q
qingqing01 已提交
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3455
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3456
    """
Y
ying 已提交
3457 3458 3459 3460 3461 3462 3463 3464 3465
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3466

Y
ying 已提交
3467
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3468

3469
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3470 3471
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3472
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3473

3474
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3475 3476
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3477

3478 3479 3480
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3481
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3482
                          the length of reference string.
3483
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3484
                                     calculating edit distance.
3485
        name (str): The name of this layer. It is optional.
3486

W
wanghaoshuang 已提交
3487
    Returns:
W
wanghaoshuang 已提交
3488
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3489 3490 3491 3492 3493

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3494
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3495
            cost = fluid.layers.edit_distance(input=x,label=y)
3496
    """
3497
    helper = LayerHelper("edit_distance", **locals())
3498

3499
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3500
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3501 3502 3503 3504 3505 3506 3507
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3508
            attrs={"tokens": ignored_tokens})
3509 3510 3511 3512 3513
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3514
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3515
            attrs={"tokens": ignored_tokens})
3516 3517
        label = erased_label

3518 3519
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3520
    sequence_num = helper.create_tmp_variable(dtype="int64")
3521 3522 3523 3524
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3525 3526
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3527 3528
        attrs={"normalized": normalized})

3529
    return edit_distance_out, sequence_num
3530 3531 3532 3533 3534


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3535

Y
ying 已提交
3536 3537 3538 3539
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3557
        input.lod = [[4, 4]]
3558 3559 3560 3561 3562 3563 3564

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3565
        output.lod = [[2, 1]]
3566 3567 3568

    Args:

Y
ying 已提交
3569 3570 3571 3572 3573 3574 3575 3576 3577
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3578
        name (str): The name of this layer. It is optional.
3579 3580

    Returns:
3581
        Variable: CTC greedy decode result. If all the sequences in result were
3582
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3583 3584 3585 3586 3587

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3588

3589
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3590
    """
3591
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3592
    _, topk_indices = topk(input, k=1)
3593 3594 3595 3596 3597 3598

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3599
        outputs={"Output": [ctc_out]},
3600 3601
        attrs={"merge_repeated": True,
               "blank": blank})
3602
    return ctc_out
3603 3604


F
fengjiayi 已提交
3605
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3606
    """
3607 3608
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3609
    to compute Connectionist Temporal Classification (CTC) loss.
3610 3611
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3612 3613 3614
    input tensor.

    Args:
3615
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3616 3617 3618 3619
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3620
       label (Variable): The ground truth of variable-length sequence,
3621 3622 3623
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3624 3625
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3626 3627 3628
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3629
         follewed by a mean_op.
W
wanghaoshuang 已提交
3630 3631

    Returns:
3632 3633
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3634 3635

    Examples:
3636

W
wanghaoshuang 已提交
3637
        .. code-block:: python
3638

3639 3640 3641
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3642 3643

    """
F
fengjiayi 已提交
3644
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3671 3672 3673
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3674 3675 3676 3677 3678
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3679

3680
            out.lod  = [[0, 1, 3]]
3681 3682 3683 3684

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3685 3686 3687 3688 3689 3690 3691
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3692 3693 3694

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3695 3696

    Returns:
3697

3698 3699 3700 3701 3702
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3703
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3704
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3705 3706 3707 3708 3709 3710 3711 3712 3713
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3714 3715


3716 3717 3718 3719
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3720 3721 3722 3723 3724 3725 3726
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3727 3728 3729 3730 3731 3732 3733
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3734 3735
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3736
            sample is 1.0.
3737 3738 3739
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3740

3741
    Returns:
Y
Yibing Liu 已提交
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3769
    """
Y
Yang Yu 已提交
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3789 3790 3791 3792 3793 3794 3795 3796 3797
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3814
    return cost / (num_neg_samples + 1)
3815 3816


G
guosheng 已提交
3817
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
3818 3819
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
3820
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
3821 3822 3823 3824 3825 3826 3827 3828 3829
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
3830

W
weixing02 已提交
3831
    Args:
M
minqiyang 已提交
3832
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
3833 3834 3835 3836 3837
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
3838 3839
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
3840
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
3841 3842
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
3843 3844 3845 3846 3847 3848 3849 3850

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
3851 3852 3853
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
3854 3855 3856 3857 3858 3859 3860 3861
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
3862
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
3863 3864 3865 3866 3867
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
3868 3869 3870 3871 3872 3873 3874 3875
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
3876 3877
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
3878
        inputs=inputs,
W
weixing02 已提交
3879 3880 3881 3882 3883 3884
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
3885
def transpose(x, perm, name=None):
Y
ying 已提交
3886 3887 3888 3889 3890 3891 3892
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
3893 3894 3895
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
3896 3897 3898 3899 3900 3901 3902 3903

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
3904
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
3905 3906
    """

Y
fix ci.  
ying 已提交
3907
    if len(perm) != len(x.shape):
Y
ying 已提交
3908 3909 3910
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
3911 3912 3913 3914 3915 3916
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
3917 3918

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
3919
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
3920 3921
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
3922
        inputs={'X': [x]},
Y
ying 已提交
3923 3924 3925
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
3926 3927


3928 3929 3930 3931 3932 3933 3934
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
3935
    """
3936 3937 3938 3939 3940 3941 3942
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

3971 3972 3973 3974 3975 3976 3977 3978 3979
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

3980 3981 3982
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
3983 3984 3985 3986 3987
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4015 4016 4017
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4030
            output.dims = {8, 8}
4031

4032
            output.lod = [[4, 4]]
4033

D
dzhwinter 已提交
4034
     Examples:
4035 4036 4037

        .. code-block:: python

4038 4039
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4040 4041

    """
W
wanghaoshuang 已提交
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4052 4053 4054 4055 4056 4057 4058
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4059
    helper = LayerHelper('im2sequence', **locals())
4060 4061
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4062
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4063
    return out
4064 4065


Y
yuyang18 已提交
4066
@templatedoc()
4067
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4068 4069
    """
    ${comment}
4070 4071

    Args:
Y
yuyang18 已提交
4072
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4073 4074
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4075 4076 4077 4078 4079
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4080
        ${out_comment}.
4081 4082

    Examples:
Y
yuyang18 已提交
4083 4084 4085 4086
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4099
    return helper.append_activation(out)
4100 4101


Y
yuyang18 已提交
4102
@templatedoc()
4103 4104
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4105 4106 4107 4108 4109 4110 4111
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4112 4113

    Args:
Y
yuyang18 已提交
4114 4115
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4116 4117

    Returns:
Y
yuyang18 已提交
4118
        ${out_comment}.
4119 4120
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4121 4122 4123 4124 4125 4126

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4127 4128 4129 4130 4131 4132
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4133 4134 4135 4136 4137


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
4138

4139 4140 4141 4142
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4143

4144 4145 4146
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4147

4148 4149 4150
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4151

4152
    The equation is as follows:
4153

4154
    1) Hard label (one-hot label, so every sample has exactly one class)
4155

4156 4157 4158 4159
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4160

4161 4162 4163
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4164

4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4186 4187
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4204 4205
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4206
    For each instance, it computes the smooth L1 loss element by element first
4207
    and then sums all the losses. So the shape of ouput Variable is
4208
    [batch_size, 1].
4209

4210 4211
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4212
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4213
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4214
            L1 loss op with same shape as :attr:`x`.
4215
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4216 4217
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4218
            by this tensor element by element.
4219
        outside_weight (Variable|None): A tensor with rank at least 2. This
4220 4221
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4222
            element by element.
4223
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4224 4225
           scalar with default value 1.0.

4226
    Returns:
4227
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4228 4229 4230 4231 4232

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4233 4234
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4235
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4236
            out = fluid.layers.smooth_l1(x=fc, y=label)
4237
    """
4238

4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4254 4255 4256 4257


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4258
    This layer creates the one-hot representations for input indices.
4259 4260

    Args:
Y
Yibing Liu 已提交
4261 4262
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4263 4264

    Returns:
Y
Yibing Liu 已提交
4265
        Variable: The one-hot representations of input.
4266 4267

    Examples:
C
caoying03 已提交
4268
        .. code-block:: python
4269

Y
Yibing Liu 已提交
4270 4271
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4272 4273 4274 4275 4276 4277 4278 4279 4280
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4281 4282


Y
Yu Yang 已提交
4283
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4284
    """
Y
yi.wu 已提交
4285 4286 4287
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4288 4289 4290 4291 4292 4293

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4294 4295
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4296 4297 4298 4299 4300 4301

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4302 4303
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4304 4305
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4306 4307 4308 4309 4310
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4311
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4312
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4313 4314
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4315 4316
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4317 4318 4319
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4320 4321


4322
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4323
    """
C
caoying03 已提交
4324 4325
    Gives a new shape to the input Tensor without changing its data.

4326 4327 4328 4329 4330
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4331

4332
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4333

4334 4335 4336 4337
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4338
    2. 0 means the actual dimension value is going to be copied from the
4339 4340 4341 4342
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4343 4344

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4345
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4346
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4347

4348
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4349 4350
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4351 4352
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4353
    dimensions.
C
caoying03 已提交
4354

4355
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4356 4357 4358 4359
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4360 4361

    Args:
4362
        x(variable): The input tensor.
C
caoying03 已提交
4363 4364
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4365 4366 4367 4368 4369
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4370
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4371 4372 4373 4374
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4375
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4376

4377 4378
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4379

X
Xin Pan 已提交
4380 4381 4382
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4383 4384
    Examples:
        .. code-block:: python
G
guosheng 已提交
4385

4386
            data = fluid.layers.data(
4387
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4388
            reshaped = fluid.layers.reshape(
4389
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4390 4391 4392 4393
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")
X
Xin Pan 已提交
4394 4395 4396 4397 4398
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4399

4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
4415
    helper = LayerHelper("reshape", **locals())
D
dzhwinter 已提交
4416
    out = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4417 4418
    helper.append_op(
        type="reshape",
X
Xin Pan 已提交
4419
        inputs=inputs,
D
dzhwinter 已提交
4420 4421
        attrs={"shape": shape},
        outputs={"Out": out})
C
caoying03 已提交
4422

D
dzhwinter 已提交
4423
    return helper.append_activation(out)
4424 4425


Y
yangyaming 已提交
4426
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4427
    """
Y
Yibing Liu 已提交
4428
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4429 4430 4431 4432
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4433
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4434 4435 4436 4437 4438 4439

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4440
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4441 4442 4443
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4444
            target_lod: [4, 2]
Y
yangyaming 已提交
4445 4446

            then we get a 1-level LoDTensor:
4447
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4448 4449 4450 4451 4452 4453
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4454
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4455 4456 4457 4458
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4459
                y.data = [[2, 4]]
Y
yangyaming 已提交
4460 4461 4462
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4463
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4464 4465 4466 4467 4468 4469
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4470
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4471 4472 4473 4474
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4475
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4476 4477 4478 4479
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4480
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4481 4482 4483 4484 4485
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4486
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4487
                           from :attr:`y`.
Y
yangyaming 已提交
4488
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4489
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4490 4491

    Returns:
Y
Yibing Liu 已提交
4492
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4493 4494

    Raises:
Y
Yibing Liu 已提交
4495
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4531
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4560 4561
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4589 4590 4591 4592


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4593
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4594
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4595

G
guosheng 已提交
4596 4597 4598 4599
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4622
                         The length of :attr:paddings must be
G
guosheng 已提交
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4633

G
guosheng 已提交
4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4648 4649 4650 4651 4652 4653 4654 4655 4656


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4657 4658
    called label-smoothing regularization (LSR).

4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
4682
                              be :math:`(1, class\_num)`.
4683 4684
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
4685
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
4713 4714


Y
yi.wu 已提交
4715
@templatedoc()
4716 4717
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
4718
    ${comment}
4719 4720

    Args:
Y
yi.wu 已提交
4721 4722
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
4723 4724 4725
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
4726 4727

    Returns:
Y
update  
yi.wu 已提交
4728
        Variable: ${out_comment}.
4729 4730

    Examples:
4731 4732
        .. code-block:: python

4733
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
4779 4780
        .. code-block:: python

W
whs 已提交
4781 4782 4783 4784
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
4785
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
4786 4787 4788 4789 4790 4791
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
4792 4793


4794 4795 4796 4797 4798
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
4799
    """
Q
qiaolongfei 已提交
4800
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
4801

4802
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
4803 4804 4805
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
4806

4807
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
4808

4809
    Args:
4810
        input (Variable): The input tensor of image resize layer,
4811 4812
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
4813
        out_shape(list|tuple|Variable|None): Output shape of image resize
4814 4815
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
4816
        scale(float|None): The multiplier for the input height or width.
4817 4818 4819
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
4820 4821
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4822 4823
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
4824 4825

    Returns:
Q
update  
qiaolongfei 已提交
4826 4827
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
4828

4829 4830 4831
    Examples:
        .. code-block:: python

4832
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
4833
    """
4834 4835 4836 4837
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
4838 4839
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
4840 4841
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
4842 4843 4844 4845

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

4846 4847 4848
    out_h = 0
    out_w = 0
    inputs = {"X": input}
4849
    if out_shape is not None:
B
baiyf 已提交
4850 4851 4852
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
4853 4854 4855 4856 4857 4858
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
4859 4860 4861 4862
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

4863 4864
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
4865
        type=resample_methods[resample],
4866
        inputs=inputs,
4867 4868 4869 4870
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
4871 4872


Y
yuyang18 已提交
4873
@templatedoc(op_type="bilinear_interp")
4874 4875
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
4876 4877 4878 4879 4880 4881
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
4882

Y
yuyang18 已提交
4883 4884 4885 4886 4887 4888 4889 4890
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
4891 4892 4893 4894 4895 4896 4897
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
4898 4899 4900
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
4901 4902 4903 4904 4905 4906 4907
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
4908
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
4909

4910
    Returns:
Q
update  
qiaolongfei 已提交
4911
        Variable: The output is a 4-D tensor of the shape
4912
        (num_batches, channls, out_h, out_w).
4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
4923 4924 4925
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
4926 4927 4928
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
4929 4930
def gather(input, index):
    """
Q
qiaolongfei 已提交
4931 4932
    **Gather Layer**

4933
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
4934 4935 4936 4937
    of X indexed by `index` and concatenate them together.

    .. math::

4938
        Out = X[Index]
W
whs 已提交
4939 4940 4941 4942 4943 4944 4945


    .. code-block:: text


                Given:

4946 4947
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
4948 4949 4950 4951 4952 4953 4954 4955 4956 4957
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
4958
        input (Variable): The source input with rank>=1.
W
whs 已提交
4959 4960 4961 4962 4963 4964
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
4965

W
whs 已提交
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5035

5036 5037 5038
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5039
    """
F
stash  
fengjiayi 已提交
5040
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5041
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5042
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5043 5044
    if seed is None:
        seed = random.randint(-65536, 65535)
F
fengjiayi 已提交
5045
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5046
    if isinstance(seed, int):
F
fengjiayi 已提交
5047 5048 5049 5050 5051
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5052 5053 5054 5055
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5056
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5057 5058
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5059 5060
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5061
    return out
W
whs 已提交
5062 5063


5064
def log(x, name=None):
W
wanghaoshuang 已提交
5065 5066 5067 5068 5069
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5070
        Out = \\ln(x)
W
wanghaoshuang 已提交
5071 5072

    Args:
5073
        x (Variable): Input tensor.
5074 5075
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5076 5077 5078 5079 5080 5081 5082 5083

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5084
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5085 5086
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5087
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5088
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5089
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5090 5091 5092
    return out


5093
def relu(x, name=None):
W
wanghaoshuang 已提交
5094 5095
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5096
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5097 5098 5099 5100
    the tensor elementwise.

    .. math::

5101
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5102 5103

    Args:
5104
        x (Variable): The input tensor.
5105 5106
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5107 5108 5109 5110 5111 5112 5113 5114

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5115
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5116 5117
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5118
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5119
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5120
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5121
    return out
5122 5123


W
whs 已提交
5124 5125 5126
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5127 5128 5129 5130
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5131
    .. math::
5132 5133

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5134

5135
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5136 5137 5138 5139 5140
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5141
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5142
                           Its shape should be the same as input.
5143
        num_classes (int): The possible number of labels.
W
whs 已提交
5144 5145 5146 5147

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5148
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5149 5150 5151 5152

    Examples:

        .. code-block:: python
5153

W
whs 已提交
5154 5155 5156 5157 5158 5159 5160 5161 5162
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5163 5164
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5165
        outputs={
W
whs 已提交
5166 5167 5168
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5169 5170 5171
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
        isinstance(shape, Variable)):
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5270 5271 5272 5273 5274 5275 5276 5277 5278 5279


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5280

5281 5282
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5283

5284 5285 5286 5287
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5288

5289 5290 5291 5292 5293
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5294 5295 5296

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5341 5342


J
jerrywgz 已提交
5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
	  name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically. 

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
5409

5410 5411 5412 5413 5414 5415 5416 5417 5418 5419
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
5420 5421
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
5437
        ValueError: If axis is not in range [0, rank(x)].
5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
    helper.append_op(
        type='flatten',
        inputs={"X": x},
        outputs={'Out': out},
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473


def stack(x, axis=0):
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
        type='stack', inputs={'X': x}, outpus={'Y': out}, attrs={'axis': axis})
    return out